
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

June 1988

Upper Bounds on Recognition of a Hierarchy of Non-Context-Free Upper Bounds on Recognition of a Hierarchy of Non-Context-Free

Languages Languages

Michael Palis
University of Pennsylvania

Sunil Shende
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Michael Palis and Sunil Shende, "Upper Bounds on Recognition of a Hierarchy of Non-Context-Free
Languages", . June 1988.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-56.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/680
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76362942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/680
mailto:repository@pobox.upenn.edu

Upper Bounds on Recognition of a Hierarchy of Non-Context-Free Languages Upper Bounds on Recognition of a Hierarchy of Non-Context-Free Languages

Abstract Abstract
Control grammars, a generalization of context-free grammars recently introduced for use in natural
language recognition, are investigated. In particular, it is shown that a hierarchy of non-context-free
languages, called the Control Language Hierarchy (CLH), generated by control grammars can be
recognized in polynomial time. Previously, the best known upper bound was exponential time. It is also

shown that CLH is in NC(2) the class of languages recognizable by uniform boolean circuits of polynomial

size and O(log2 n) depth.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-56.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/680

https://repository.upenn.edu/cis_reports/680

UPPER BOUNDS ON RECOGNITION
OF A HIERARCHY OF

NON-CONTEXT-FREE LANGUAGES
Michael Palis and

Sunil Shende

MS-CIS-88-56
LlNC LAB 122

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 191 04

July 1988

Acknowledgements: This research was supported in part by DARPA grant N00014-85-
K-0018, NSF grants MCS-8219196-CER, MCS-82-07294, DCR-84-10413, MCS 83-05221,
IR184-10413-A02 and U.S. Army grants DAA29-84-K-0061, DAA29-84-9-0027.

Upper Bounds on Recognition of

a Hierarchy of Non-Context-Free Languages*

Michael Palis Sunil Shendet

July 5, 1988

Abs t r ac t

Control grammars, a generalization of context-free grammars recently introduced for use in natural
language recognition, are investigated. In particular, it is shown that a hierarchy of non-context-free lan-
guages, called the Control Language Hierarchy (CLH), generated by control grammars can be recognized
in polynomial time. Previously, the best known upper bound was exponential time. It is also shown that
C L H is in N C (~) , the class of languages recognizable by uniform boolean circuits of polynomial size and
O(log2 n) depth.

Categories and Subject Descriptors: F.1.2. [Computa t ion by Abs t r ac t Devices]: Modes of Com-
putation - alternation and nondeterminism, parallelism; F.4.1. [Mathematical Logic a n d Formal
Languages]: Formal Languages - context-free grammars, control grammars; 1.3.7. [Artificial Intelli-
gence]: Natural Language Processing - language parsing.

*Research funded in part by ARO grant DAA29-84-90027, NSF grants MCS-8219116CER, MCS82-07294, DCR-84-10413,
MCS-83-05221, and DARPA grant N00014-85-K-0018.

'Both authors affiliated to the Dept. of Computer and Information Sciences, University of Pennsylvania, Philadelphia, PA
19104.

Recognition of Control Languages

1 Introduction

A fundamental problem in computational linguistics is the development of grammatical models for natural
language that are not only linguistically adequate but also amenable to efficient processing. To date, a large
number of natural language grammars have been proposed in the literature, most of which are provably
more powerful (in terms of generative capacity) than general context-free grammars (see, e.g. [I]). A recent
addition to this list are control grammars [15], which generalize context-free grammars in an interesting
way. Informally, a control grammar is a pair { G , C) where G is an ordinary context-free grammar whose
productions are each assigned a unique label from some finite set VL. C , called the control set, is a set of
strings over VL. A derivation in a control grammar is similar to that in an ordinary context-free grammar
except that the control set C is used to further constrain the set of "valid" derivations. In particular, if one
views a derivation as a tree, then (in a manner to be described later) each edge in such a tree is given a
label from VL according to the production associated with the edge. The derivation tree is considered valid
iff certain paths in the tree (called control paths) correspond to strings which are in the control set C . The
language generated by the control grammar is then the set of strings having a t least one valid derivation
tree in the sense just described.

In essence, the control set C provides a way of limiting the set of valid derivation trees to those which have
some predetermined "structure". For instance, C can be pre-selected as belonging to a particular language
class, e.g., regular, context-free, or even one that is generated by another control grammar.

In [15], Weir introduced a hierarchy of language classes which are generated by control grammars in
the following way: (1) the first class consists of all languages generated by control grammars whose control
sets are context-free languages; (2) the k-th language class consists of all languages generated by control
grammars whose control sets are members of the (k - 1)-st class. This hierarchy has interesting properties,
for instance, Weir has shown that every class in the hierarchy is a full A F L ' and contains only semilinear
sets (hence, all members are included among the context-sensitive languages). These classes can also be
characterized in terms of automata which are interesting generalizations of (nondeterministic) pushdown
automata (see [14, 151).

An open problem posed by Weir is whether the language classes in his hierarchy are polynomial-time
recognizable. One way of proving this is by using the following inductive argument. Suppose that every
language in the k-th level of the hierarchy is polynomial-time recognizable. Then, one can construct a
recognition algorithm for each language L in the (k + 1)-st level as follows: Let {G, C) be the control
grammar generating L. Then, given an input string, first obtain all derivation trees of the string (if any)
that are generated by G; then test whether a t least one of these derivation trees has every control path in
the control set C, where C is a language in the k-th level. That is, one simply uses the recognizer for C as a
"subroutine". However, the inductive step fails since the input string may have exponentially many distinct
derivation trees so that recognizing the language L may take exponential time.

In this paper, we prove that every language in Weir's hierarchy is indeed polynomial-time recognizable.
In particular, we show that if L is a k-th level language, k 2 1, then L can be recognized i n . ~ (n ~ * ~ ~) time.
The proof of this result is based on the observation that the recognizer for the control set can instead be used
as a "coroutine" of the recognizer for L. This way, partial derivations which cannot possibly lead to valid
derivation trees can be detected immediately and removed from further consideration. Using the recognition
algorithm, we also show that every language class in Weir's hierarchy is in L O G C F L , the class of languages
log-space reducible to context-free languages. Thus, using the result in [9], we get the corollary that every
language in the hierarchy is in N C (~) , the class of languages recognized by uniform boolean circuits of
polynomial size and (log2 n) depth.

The paper is organized as follows. In Section 2, we define control grammars and the control language
hierarchy (C L H) of Weir. Section 3 describes the recognition algorithms for languages in C L H and Section

'A (Full) AFL (Abstract Family of Languages) is a family closed under the operations of union, concatenation. I<leene star.
(arbitrary) c -free homomorphism, and intersection with regular languages, e.g., see [3]

Recognition of Control Languages 3

4 proves containment of the language classes in LOGCFL. Section 5 ends the paper with some concluding
remarks.

2 Control Grammars

An important result in formal language theory is the characterization of the paths in derivation trees of a
context-free grammar. I t was shown in [13] that the set of all such paths in derivation trees of any context-free
grammar is a regular language. Control Grammars are defined by extending this idea of paths in two ways
- by restricting our attention to a certain, well-defined subset of derivation paths in derivation trees of the
context-free grammar and associating strings with the paths in a uniform way, and secondly, by prescribing
a language (also called the control set) to which these strings must belong. In particular, the control set can
be a language of arbitrary complexity, e.g. a context-free language. The following definition is adapted from
1151, where Control Grammars were introduced '.
Definition 2.1 A Control Grammar (henceforth CG) G, is a pair {G, C) , where
G = (VN , VTI VLr Z, P, Label) and C C vL+. The first component, G , of the control grammar is, by itself,
called a Labeled, Distinguished Context-free grammar (or LDCFG) in [15]. VN and VT are, respectively,
finite sets of nonterminals and terminals of the LDCFG G, with Z E VN the start symbol of G. The set
of grammar symbols, VN U VT, is denoted by V. P is a finite set of distinguished productions of the form
(X 4 X1 . . . X,, i) , where X +- X1 . . . X, can be viewed as a standard context-free production with X E VN
and the right-hand side X1 . . .X, belongs to V*. In addition, i is an integer (with 1 5 i 5 n) that identifies
exactly one symbol X, on the right-hand side as being distinguished. VL is a finite set of production labels
and Label is a one-to-one function from P to VL, which assigns a unique label to every production. For the
sake of clarity, we will write a distinguished production p = (X - X1 . . . X,, i) with Label(p) = 1 as

The set C C_ VL+ is called the control set of the grammar G; each string in vL+ is referred to as a control
string or control word. We say that grammar G is controlled by control set C. Note that by definition, C
does not include the empty string c.

An example of a control grammar is shown in Figure 1.

LDCFG Productions Control Set

Figure 1: Control Grammar

Derivations and derivation trees of control grammars are very similar to those of standard context-free
0 grammars, and are defined inductively as follows. A 7 A is a derivation in 0 steps of G, for every

nonterminal A E VN. The set of derivation trees corresponding to this derivation is the singleton consisting
of a tree with a single node labeled A, and is denoted by T r e e S e t (A A) .

20ther authors have described formalisms which have a somewhat different notion of contro l , but are also called control
grammars; for example, see [7]. Throughout this paper, a "control grammar" satisfies definition 2.1 above.

Recognition of Control Languages 4

k
Inductively, let Y j a X P denote a derivation of G in k or fewer steps, with its associated derivation

C)

k
trees, T = TreeSet(Y 7 crX P). Then for every production p = 1 : X --. X i . . . x i . . . Xn of GI we

say that Y k% ax1 . . .Xi . . . XnP. For every tree A E TI let 6 be the the leaf node labeled X which
G

corresponds to the instance of X used on the left-hand side of the production. Let Al be the tree obtained
from A by adding new leaf nodes labeled XI , . . . , X i , . . . , X,, and new undirected edges from to all the new
leaf nodes except the one labeled Xi. For this node, we add an directed edge to it from 5 , and label the edge
with the production label 1. All such trees AI are included in TreeSet(Y '9 oxl . . X i . . . Xn 0).

k
Following standard terminology, we say that A a, if A 7 a for some finite k 2 0. Likewise,

TreeSet(A a) is the set of all derivation trees for derivations A % a. Figure 2 shows a derivation

tree in TreeSet(Z1 aabbcc) of the grammar G in Figure 1. Note that from every node in the tree, there

is a unique, directed path to some leaf node in the tree.

Figure 2: Derivation Tree associated with Z1 aabbcc

For any derivation tree r E TreeSet(X a), we shall call the unique directed, labeled path from the

root node to a leaf node a s Spine(I') (or simply, the spine if is clear from the context). Thus, 11/211121314
is the spine in Figure 2. The (unique) leaf node which terminates Spine(r) is denoted as the foot node of
r. Finally, ControlWords(I') is the set of all maximal directed, labeled paths in r (such a path begins at a
node which is either the root or one which is connected to its parent by an uitdirected edge; the path ends
at a leaf node). In particular, Spine(I') E ControlWords(I').

Definition 2.2 The Control Language L(G), generated by CG G = {G,C) , with start symbol Z of G , is

L(g) = {al . . .a, E VT* I there is a derivation tree r E TreeSet(Z a1 . . .a,), and

ControlWords(I') 5 C) .

Let C be any family of languages over a finite alphabet. We say that a language L is controlled zn jamzly C
iff there is a control grammar 5 = {G ,C) such that L = L(G) and C E C.

For instance, it may be verified that the control language generated by the grammar in Figure 1 is the
context-sensitive language {anbncn I n > 1). with the context-free control set {(1112)n13n-114 I R 2 1) .
The control language generated is, therefore, controlled in the family CFL of context-free languages, but is
itself not a context-free language.

Recognition of Control Languages 5

2.1 The Control Language Hierarchy

Following [15], we define a countable hierarchy of language classes, such that the 0-th family in the hierarchy
is exactly the family of context-free languages, and every language in the (i + 1)-th family is generated by a
control grammar whose control set is a language in the i-th family.

Definition 2.3 The Control Language Hierarchy (CLH) is defined as follows:

CLHO = {L 1 L = L(G), where G is a standard context-free grammar); i.e. CLHO = CFL, the
family of context-free languages.

for all k 2 1,
CLHk = {L I there exists a context-free grammar Go, and a sequence of LDCFGs GI , G2, . . . , Gk
such that

1. Co = L(Go),

2. for all 1 5 j < k, Cj = L({Gj,Cj-l)), and

3. L = L({Gk,Ck-1)))

We say that Go and the sequence of LDCFGs GI, G2, . . . , Gk defines L.

C L H = UkCLHk, for all countable k 2 0.

A language L is said to be €-free iff L does not contain the empty string. It is well known that every
€-free context-free language can be generated by a context-free grammar in Chomsky Normal Form (CNF),
i.e, one whose productions are of the form A -. BC or A -+ a, where A , B and C are nonterminal symbols
and a is a terminal symbol [6]. An LDCFG G is said to be in CNF iff for every production 1 : X - cr of
G, the corresponding unlabeled, non-distinguished context-free production X -+ a is in CNF. The following
lemma states an analogous result for €-free languages in CLH.

Lemma 2.1 (Chomsky Normal Form) Let L be an €-free language in the family C L H k , k > 0. Then
there is a context-free grammar Go and a sequence of LDCFGs GI, G2 , . . . , Gk defining L such that Go and
every LDCFG Gj , 1 5 j 5 k, in the sequence is in CNF.

The proof of Lemma 2.1 is deferred to the Appendix; it utilizes techniques similar to the conversion of a
standard context-free grammar into CNF (as discussed, e.g., in [6]), and also the property that every family
CLHk, k > 1, forms a full AFL.

In the next section, we shall describe a family of recognition algorithms for languages in the hierarchy.
These algorithms are essentially motivated by the well-known Cocke-Kasami-Younger (CI<Y) recognition
algorithm for context-free grammars [5], and like the CKY algorithm, require that every grammar in the
sequence of grammars defining a particular control language be in CNF. Lemma 2.1 provides such a sequence.

3 Family of Recognition Algorithms for CLH

We generalize the Cocke-Kasami-Younger recognition algorithm [5, 61 for context-free languages, to a family
of algorithms Recognirerk, k 2 0, where the kth algorithm recognizes any €-free language in CLHk.

We know that any language L E CLHk is defined by a context-free grammar Go and a sequence of
LDCFGs Gi, 1 5 i 5 k . Given a string whose membership in L is in question, it should be intuitively clear
that we must check whether there is a complete derivation tree for the string, and whether all the control
strings (over the terminal alphabet Tk-1) in the tree belong to the language L(6k-1). Each control string
should, therefore, have a derivation tree of 6k-1 such that all the control strings (now over Tk-?) in that tree
belong to the language L(G6-2); this process is carried out till the entire sequence of grammars is unraveled
and we can finally decide the context-freeness of some collection of control strings over To. Unfortunately,

Recognition of Control Languages 6

there may be many derivation trees for strings at any level (i.e. the input string at level k, and control strings
at lower levels) and it should be apparent that our algorithm must be able to represent multiple derivations
without explicitly storing control strings in these derivations.

In order to get around this problem, we extend the idea used by the CKY recognizer of implicztly encoding
potentially unbounded information contained in derivation trees, in a bounded collection of objects, which
we call items of the appropriate grammars. The CKY algorithm makes use of the CNF property of the
context-free grammar by creating for every input string (Y = a l az . . .a, of length n, a 2-dimensional
recognition matrix M such that any matrix entry M (i , j) contains exactly all the nonterminals which derive
the substring ai . . . a j of input a. Note that a nonterminal in M (i , j) may derive a, . . . a j in many different
ways none of which are explicitly represented by the algorithm. In the next section, we pursue this idea
further by defining a data structure, for a language in family CLHk , which is analogous to a nonterminal in
a context-free grammar. We shall see that these items encode derivations compactly, and can be combined
to produce new items by using information in the productions of the sequence of grammars defining the
language.

3.1 Data Structures and Operations

For k > 0, let L be any r-free language in CLHk . Then by Lemma 2.1, there is a context-free grammar
Go = (No, To, Pol Zo) in CNF, and a sequence of control grammars GI, G2, . . . , Gk, such that

and L = L(Gk), where each of the LDCFGs Gi for 1 < i 5 k is defined as Gi = (N,, , Pi, Zi, T,-l, Labeli)
and is in Chornsky Normal Form. For notational convenience, we shall occasionally refer to Go as control
grammar Go, with the understanding that L(G0) = L(&). We shall also denote by C,, 0 < i < k , the
control set L(Gi) in the definition above.

For 0 5 i 5 k, let x 6 z* be a string over the terminal alphabet of Gi. Then every 2i tuple of strings

such that x = ulu2 . . . u2.-~v2.-~ . . . ~ 2 ~ 1 is called an (i)-factorization of z. We shall denote this as

Z = #(ul, uq, . . . , U p - I , u p - 1 , . . . , v2,v1)

As a special case, if i = 0 then ul = x is the unique (0)-factorization of x.
Before we define the data structures and operations used by the kth recognition algorithm, we describe a

restricted kind of derivation tree of any LDCFG Gi, 1 < i < k. A derivation tree r of G, is called szmple iff
all the leaves of l?, except possibly the foot node (i.e. the node which terminates the directed labeled path
from the root node), are labeled by terminal symbols in Ti. As a special case, a single node labeled by a

grammar symbol in (Ni U T,) (which represents both the root node and the foot node) is also a simple tree
of Gi.

A simple tree I' of G, with root node labeled A E N , and foot node labeled B E Ni is said to yzeld a

pair (u , v) , u,v E Ti*, iff l? E TreeSet(A uBv) and every string in ControlWords(I'), except possibly
a.

Spine(I'), is in the control set C,-l. If the foot node is labeled by a terminal symbol B = a E Ti, then r
yields both (u, a v) and (ua, v). As a special case, if l? is a single node labeled A E (N , U Ti), then r yields
(~ , r) , and Spine(I') = r (see Figures 3 (a) and (b)).

Definition 3.1 For 0 5 i 5 k, an (i)-item is defined inductively as follows:

Recognition of Control Languages

Spine (r)

& a
Figure 3: Derivation trees yielding a pair of terminal strings

Every nonterminal symbol A E No is a (0)-item.

For 1 5 i 5 k, an (i)-item is a tuple of the form [(AI, Bl,A:!, B2,. . . , A ~ - I , 82-1); I] , such that

1. A1 E Ni,

2. B1,A2,B2,. ..,A2s-1, 8 2 . - I E (N; UT,),

3. if Aj (for 2 5 j 5 2'-I), or Bl (for 1 5 1 5 2'-') is the j r s l terminal symbol, say a , in the sequence
of symbols in 2 above, then all the symbols following Aj (i.e., B j , . . . , 8 2 . - I), or following B,
(i.e., Al+1, . . . , Bzt-I) , are equal to A, or BI respectively, and

4. I is an (i - 1)-item.

We denote the set of (i)-items as T i , 0 5 i 5 Ic. For example, for i = 2, if A, B E N2, a E T?, and I is a
(1)-item, then [(A, B , A , B) ; I], [(A, B , A , a); I], [(A, B , a , a) ; I] and [(A, a , a , a); I] are (2)-items.

Definition 3.2 For 0 < i < k, we inductively define the notion of an (i)-item being valid for an (i)-
factorization.

A (0)-item A is valid for u E T ~ + iff A u.
Go

For i > 0, an (+item

[(A I , B I , A ~ , B ~ , . . . ~ A Z ~ - ~ , B ~ ~ - ~) ; I]

is valid for an (i)-factorization

(u l , u2,. . . , u2'-1 , v2*-1 , . . . , v2, vl), iff

1. there exists a sequence of simple trees r l , r2 , . . . , r2.-1 such that for 1 5 j 5 2'-', the tree r,
has root and foot nodes labeled Aj and B, respectively, and r j yields (uj , v j) , and

2. I is valid for the (i - 1)-factorization (Spine(r l) , Spine(r2) , . . . , Spine(r2.-I)).

Note that an (i)-item represents a set of sequences of simple trees where any sequence read from the left
to the right, can be depicted from top to bottom as a sequence of disjoint simple trees. These trees share a
common "thread ", viz. their respective spines represent disjoint substrings of a single control string. This
intuitive picture of (i)-items will be extensively used to illustrate the various operations below. For example.
Figure 4 above shows an item valid for an appropriately sized tuple of strings, as a sequence of simple trees.
By definition, all maximal paths (i.e., control words) in any of these trees (except possibly their spines) are
already in the control set. We now define the following predicates on (+items, which will be used in the
sequel.

Definition 3.3 For all 1 < i 5 k :

for 1 5 j < 2'-', S t ~ r t l t e m ; , ~ (I) is true iff 1 is an (i)-item of the form

[(A1 , B,, . . . , A,, B j , . . . , A2.-1, B2-- I) ; 1'1

where for all 1 5 rn # j 5 2'-', A, = B, (Aj may or may not be equal to Bj).

Recognition of Control Languages

Figure 4: An (i)-item valid for (ul , . . . , u2.-I V ~ L - I , . . . , v1)

Source I teml (I) holds iff I is an item of the form [(A, a) ; Zo], where a E TI and Zo is the start symbol
of grammar Go.
For 1 < i 5 k, SourceItem;(I) is true iff I is an (+item of the form

[(Al, B1, . . . , Aj, Bj , . . . , A2.-1, a); 1'1

where Aj = BjV1 for all 2 5 j 5 2'-', a E T,, I' is of the form [(Zi-l,. . .); I"] with ZiVl being the
start symbol of Gi-1, and ~ourcel temi-1(11) holds recursively for item I'.

let Il = [(A1, B1,. . . , Aj , B j , . . . , A2t-I, 82'-I); 11'1 and
I2 = [(C1, D l , . . . , C j , Dj , . . . ,C2,-1, 02.-I); I ~ '] be any two (i)-items of Gi. Then Compati61e,(Zl, I?)
is true iff Aj = D j for all even j, and Bj = Cj for all odd j.

Note that S ta r t I t em; j , SourceItemi and Compatible; are only syntactic restrictions on items, and do
not imply any notion of validity.

Definition 3.4 The set of wrapping operations, {Wi I 0 5 i 5 k), is inductively defined for (i)-items 11,
I2 as follows:

1. For i = 0, let Il = Y and I2 = 2, where Y, Z E No. Then

Wo(Y, Z) = {X E No I X -+ Y Z is a production in Po)

2. for 1 5 i 5 k, let Il = [(Al, B1,. . . , Ajl Bj , . . . , A2r-1, B2L-I); 11'1 and
I2 = [(Cl, D l , . . . , Cj , D j , . . . , C2.-I, D2,-l); 12'1 be (+items of Gi. Then

Wi(I1, I?) = {[(Xl,Yl, . . . , X j , Y j , . . . , X2,-1, Y2--I); 1'1 1 Compatiblei(Il, I?) holds and

{
Aj for aH odd j,

Xj =
Cj for all even j

= D j for all odd j ,

{ B~ for all even j
and I' E ~;-1(11 ' , 12'))

Recognition of Control Languages

Figure 5: (a) S t ~ r t I t e m , , ~ (b) SourceItemi

Intuitively, Wi is the binary wrapping operation which combines two compatible (i)-items into a single one
(see Figure 6). It can be extended in a straightforward way to the case when the arguments are sets of
(i)-items, e.g.

Wi(S11S2) = U I , E S ~ , I ~ E S ~ W ~ (I ~ ~ Iz) .

In the sequel, we shall assume that other operations are similarly extended to sets without ambiguity.
An easy consequence of the above definition is the following:

Proposition 3.1 For any given i , let Il and 1 2 be (i)-items respectively valid for factorizations
(21, x2, . . . , x2.-l, y2,-1 ,.. . , y2, yl) and for (wl, w2, . . . , w2,-1, ZZB- I , . . . ,z2, ZI) .
If Wi(11,4) is defined, then every item I E Wi(Il, 12) is valid for the factorization

where
(x, wj, z j yj) if j is odd

for all 1 < j 5 2'-': (u j , v j) =
wj xj , yj zj) if j is even

We now define some other operations which construct new items. It is intuitively easier to understand
these operations as though they are applied to simple tree sequences (represented as items). Thus, the
subscript i stands for the fact that the corresponding operation is applied to (i)-items, whereas the subscript
j identifies the appropriate tree in the simple tree sequence represented by the constructed item.

Definition 3.5 The operations Init;,,, LCi,j and RCi j are defined inductively as follows:

For i = 0, let a E To.

1. Inito,l(a) = {X (X + a E Po}.

2. LCo,l(I) = R C O , ~ (I) = {I) , for any (0)-item I-

* For l S i < k , a n d 1 5 j<2 ' - ' :

Recognition of Control Languages

Figure 6: Operation Wi

1. let a E Ti. Then

Ini t i j (a) = { I = [(A 1 , B 1 , . . . , Aj ,a ,..., a); 1'1 E Ti I
StartItemij(I) = true, and , there is a labeled production

1 : Aj --. ti E Pi, such that the (i - 1) item
f

In&-l,,(l) U LC,-l,j(Initi-l,l(l)) i f 1 5 j 5 2'-?
I n i t i l , 2 . - j + l (l) U R C i l , - j + l (I n i t l 1 (l)) otherwise)

(note that if i = 1 , then I' E LCo,l(Inito,l(l)) = RCo,l(Init~,l(l)) = Inito,l(l))

2. Let Il = [(Cl , D l , . . . , Czn-l , Dza-l); 1'1 be any (i)-item such that SourceItemi(Il) is true. Then

LCi,j(Il) = { I = [(Al , B1,. . . , A j , B j , . . . , A2'-I , B2'-1); I "] € 1, 1
StartItem;,j (I) = true, and there is a labeled
production 1 : Aj --. cl Bj E Pi such that

f
LCi-l,j(Initi-l,l(~)) if 1 5 j 5 2"*
RCi-1,2~-~-j+l(Init,-1~1(l)) otherwise)

(i f i = 1 , then I" E InitoVl(l))

3. Let Il = [(C1, D l , . . . , C2,-1, 0 2 . - I) ; 1'1 be any (i)-item such that SourceItem;(Il) is true. Then

RCi,j(Il) = { I = [(All B1,. . . , A j , B j l . . . ,A2*-l, B2s-1); I "] E Ti I
StartItemi,j(I) = true, and there is a labeled
production 1 : Aj - Bjcl E Pi such that

LC;-i,j (I n i t i - ~ , ~ (i)) if 1 5 j 5 2'-'
RCi-1,2~-~-j+l(Init;-1,1(f)) otherwise)

(if i = 1, then I" E InitoVl(l)))

Recognition of Control Languages

Figure 7: InitiVj(l)

Intuitively, Init;,,(a) produces an initial set of (i)-items valid for a terminal symbol a. L C i f (l l) and
RCi j (I l) concatenate the "degenerate" sequence represented by Il to, respectively, the left and the right in
the resulting simple tree sequence (see Figures 7 and 8). The definition ensures the following proposition
analogous to proposition 3.1. The proof is inductive as before, and is left to the reader.

where for all 1 5 m # j 5 2'-', u, = v, = e and

either u j = E and vj = a, or

u j = a and v, = E .

If i = 0 then I is simply valid for a.

2. Let Il be valid for the factorization (11, x2, . . . , x ~ s - I , y p - 1 , . . . , y ~ , y1) of string z. Then

every item I E LCi j (I l) is valid for the factorization (u l , uz, . . . , u2.-1, v2'-1,. . . , v?, v l)
of z where x = U, (hence all other ui's and vi's are empty).

every item I E RCi j (I l) is valid for the factorization (u ~ , 212,. . . , u2,-1, ~ ~ ~ - 1 , . . . , v2, vl) of x
where x = vj (hence all other ui's and v,'s are empty).

(Observe that if i = 0 then both Il and I are valid for x).

3.2 Soundness and Completeness of the Operations

We now state a lemma which asserts the soundness and completeness of the operations with respect to items
and the factorizations that they are valid for. We shall use this result to prove the correctness of algorithm
Recognirerk.

Lemma 3.3 For all 0 5 i 5 k, the following holds:
Let (u l , . . . , ~ ~ ~ - 1 , v2.-1, . . . , vl) be a factorization of a nonempty string x E zf, let I be any (2)-item. Then

I is valid for (ul , . . . , u?.-I, V ~ ~ - I , . . . , v1) iff
(A) i = 0, I is valid for x = ul , and either

(1) ul = a E To, and I E Inito,l(a), or
(2) ul = xlyl such that both z l and yl are nonempty, there are items Il and

I:! valid respectively for zl and yl, and I E Wo(I1, I?)
(B) i > 1, I = [(XI, Yl, . . . , X z l - ~ Y 2 1 - ~) ; 1'1, and either

Recognition of Control Languages

Figure 8: Operations LC,,, and RCiYj

(1) there is a terminal symbol a E T i , such that x = a, and I E Inzt,,,(a) for
some j: 1 5 j 5 2'", or
(2) there is some 1 < j < 2'-l such that 3: = uj (or x = vj), and an item Il

for which SourceItemi(Il) is true, where I E LCi,j(I1) (respectively,
I E RCi j (I l)) , and Il is valid for a factorization (yl , y2, . . . , y2.)
of uj (respectively, vj).

(3) there are (+items Il and I2 respectively valid for factorizations
(xl , x2, . . . , 22.-1, y2,-tr . . . , y2, yl) and for (wl, w2,. . . , w2,-I, z ~ . - I , . . . , z2, 11),
where

(xi wj , zj y,) if j is odd
for all 15 j 5 2i-1: (uj , v;) =

(w; zj , y, z j) if j is even
and I E Wi(I1, 12).

Proof Sketch: The reverse direction of the lemma follows from the Propositions 3.1 and 3.2.
The proof in the forward direction proceeds by induction on i; statement (A) forms the basis of the

inductive assertion and is a direct consequence of the fact that Go is a context-free grammar in Chornsky
Normal Form.

Consider an (i)-item I = [(X1,Yl,. . . ,X2.-~Y2.-~); 1'1 which is valid for the (i)-factorization
(u l , . . . , ~ ~ ~ - 1 , v2'-r, . . . , vl) of a nonempty string x. By definition, there is a sequence of simple trees
r l , r 2 , . . . , r2,-1 such that for all 1 5 j 5 2'-', l?, has root node labeled ,Yj, foot node labeled Yj, and
yields (uj ,v,). Moreover, I' is valid for the (i - 1)-factorization (Spine(T1), . . . , S p ~ n e (r ~ . - ~)) of the control
string y = #(Sp ine (r~) , . . . , Spine(r2.-I)).

We shall illustrate the proof for the forward direction when i = 1, since it provides the basic argument
used for the rest of the cases where i > 1. By definition, I is an item of the form [(XI, Yl); 1'1 and represents
the simple tree rl which yields (u l ,v l) , where #(ul, vl) = x. Also, I' is a single nonterminal of Go such

that I' A y. Consider the following different cases:
Go

Recognition of Control Languages 13

1. #(ul, vl) = a, a single terminal symbol in TI.
It is easily verified as a consequence of the CNF property of G I , that the tree rl must be one of the
trees in Figure 9. Let ul = a. Now I' E Inito(l) and hence E RCo,l(Inito(l)) by definition; therefore

Figure 9: Simple tree corresponding to x = a

for the tree (a) in the Figure, we must have that I E Initl(a) by definition (note that S t a ~ t I t e r n ~ , ~ (I)
is true). Hence I is valid for (a, 6) and satisfies part (1) of case (B) of the lemma. A similar argument
disposes of the case when I is valid for (c, a).

Now consider tree (b) in the Figure, where ul = a. Since every control word in the tree other than the
spine must be in the control set, we must have that 20, the start symbol of Go is valid for 1 ' . Also,
I' E Inito(l) and hence E LCo,l(Inito(l)). But then there is an item l o = [(Vl,a); Zo] such that
I E Conl, 1, le f t (Io) and I. is valid for the factorization (a, 6) (or (E , a)) of #(ul , vl). This satisfies
part (2) of case (B) of the lemma. The same holds of tree (c) in the figure except that v l = a and

I E RCi,i(Io).

2. (ul ,vl) = (a1 . . . ap,ap+l . . . aq) . NOW, there are three possible subcases; viz. p = 0, p = q , and
1 5 p < q . The first two subcases have similar proofs so we shall only illustrate the instance when
p = 0 .

In particular, I is valid for (6, a1 . . . aq) and represents the different trees shown in Figure 10. The
situation with respect to tree (a) is similar to the one encountered before; thus we have that there is an
item lo = [(Vl, a,); Zo] which is valid for the factorization (al . . .a,, a , + ~ . . . aq) (or, the factorization
(a l . . .a , - l ,a , . . . al)), such that I E RCl,l(Io). Part (2) of case (B) of the lemma holds and we are
done.

For the tree (b), it can be verified that the spine y of the tree must have length greater than 1. By
part (A) of the lemma, and the fact that I' is valid for y, it must be true that y = X I yl , and there
are (0)-items Q1 and Qz respectively valid for X I and yl such that I' E Wo(Q1,Qz). From the figure
and the previous definitions, it should be clear that I E Wl(I1, I 2) where I1 = [(XI, V,); Ql] and
I2 = [(V,, Yl); Q2] are items respectively valid for the factorizations (6, u2) and (6 , vz). Thus I satisfies
part (3) of case (B) of the lemma.

Finally, consider the case when 1 5 p < q . We have only one possible form of simple tree shown in
Figure 11. Again the argument in the previous paragraph works; this should be evident from the
figure and the foregoing explanation.

Recognition of Control Languages

Figure 10: Simple tree corresponding to z = # (E , alaz . . . a q)

For i > 1, the proof essentially follows the same lines except that we use the three cases in statement (B)
for our inductive assertions about I' and y. The details are fairly tedious and are omitted here. The reader
may work his way through them by using the appropriate definitions introduced previously.

3.3 The Recognition Algorithm

In the discussion so far, we have explicitly talked about sequences of strings over Ti and their relationships
to (i)-items. The algorithm, however, uses a recognition matrix whose entries are indexed according to the
specific input string. We therefore, provide some additional notation which relates factorizations of strings
to matrix indices.

Definition 3.6 Given n, i 3 0, Indices(n, i) is the set of tuples, (pl,p2,. . . ,p2,+'),
of natural numbers 0 5 pl 5 p2 5 . . . 5 p2,+1 5 n, such that there exists an m, 1 5 m 5 2', with
(p2m - ~ 2 ~ - 1) > 0. The size of (pi, p2, . . . , p2.+l) E Indices(n, i) is given by

Whenever the value of n is understood from the context, elements of Indices(n, i) will simply be denoted as
(i)-indices. Note that the size of every (i)-index is greater than 0.

Let rr = a l , . . . , a n E ~ k + , the input string, and n , its length, be considered fixed in the subsequent
discussion. Let iaj, 0 < i < j < n, stand for the substring ai+l . . . a j of a . In particular, if i = 3 then ,a,
denotes the empty string c.

Given input string a E ~ k ' , the kth recognition algorithm creates a 2k+1-dimensional matrix M k , with
each dimension indexed from 0 through n (inclusive), which is accessed by (k)-indices. Its entries contain
(k)-items and satisfy the following invariant:

Lemma 3.4 Let Recognizerk be the k-th recognition recognition algorithm. Then given an input string
a = alas .. . a n of length n, a (k)-index (i l , i2,. . . , iz,+,), and a (k)-item
[(Al, B1 , . . . , Aj, B j , . . . , A2.-I, B2,-1); 1'1, Recognizerk satisfies the invariant condition

Recognition of Control Languages

Figure 11: Simple tree corresponding to z = #(a1 . . . a,, . . . a,)

[(Al, B1,. . . , Aj, B j , . . . ,AZ8-1, Bzt-I); 1'1 E Mk(il, i 2 , . . . , &+I) iff
[(Al, B1,. . . ,Aj , B j , . . . , A2.-1, B2,-1); 1'1 is valid for the tuple
of strings (i,ai,, . . . , ilk+, -1ai2k+I) of the input string a.

The algorithm is a dynamic programming algorithm, i.e., it starts out with items constructed by in it^,^
for 1 < j 5 2k-1, and then applies the operations Wk, LCk,j and RCkj on items in appropriately indexed
matrix entries which are already computed. The resulting (k)-items are inserted into the entry being currently
computed. We simply need to ensure that entries of the matrix are accessed in the correct order so as to
preserve the invariant.

Observe first that the definitions of the predicates StartItemk,, , SourceItemk and Compatiblek on
(k)-items can be translated into corresponding definitions for (k)-indices, as follows:

Definition 3.7 For all (k)-indices argl = (PI, pz, . . . , pzk+1), argz = (ql , q 2 , . . . , q2k+1) , and
current = (i l l i 2 , . . . , i2k+1),

a For any 1 < j 5 2k, we say that StartIndexkj(current) is true iff (i2m-i2m-l) = 0 for all 1 5 m # j 5 2k.
Note that the size of current is equal to (iZj - i2j-l).

b SourceIndexk(current) is true iff the size of current = (&+I - i l) .

c Indices argl and argz are compatible wath current, denoted ICOmpatiblek(aVgl, arg2, current), iff either

k =0, rn = q1, and [pi,q2] = [iiIiz],0r

k 2 1 and for all 1 < m 5 2k-1, argl and argz satisfy:

1. if m is odd, then

- [P2mr ~2*+1--2rn+l] = [92m-lr Q Z * + ~ - Z ~ + Z] , and
. .

- [P ~ m - 1 ~ 9 2 m 1 ~ 2 k + ~ - ~ ~ + l 1 PZ*+ ' -Z~+Z] = [i2m-11 22m~22k+1-2m+l1~2~+1-2m+?l.
2. if m is even, then

- [q ~ m , q~k+l -~m+l] = ~Zm-l1~2*+~-2m+2]1 and
. .

- [q2m-1~ ~ Z m , p ~ k + ~ - 2 ~ + ~ ~ q 2 * + 1 - 2 ~ + 2] = [izm-l, 22mr 22*+'-2rn+l, i2k+1-2rn+21.

Note that the size of current = the size of argl + the size of argz.

With these auxiliary definitions, it is easy to see that l n i t k j should initialize entries whose indices have
size 1 and satisfy either Star t Indezkj or S t a r t I n d e ~ ~ , ~ k - ~ + ~ . Similarly, operation LCkg (respectively,

Recognition of Control Languages 16

RCk,j) takes arguments from entries whose indices are of size m for some m 5 n, and satisfy SourceIndexk.
The resulting items satisfy the predicate StartItemkVj but do not satisfy SourceItemk. These items are
placed in entries whose indices are of the same size m but satisfy StartIndezktj (respectively, satisfy
S t a r t I n d e ~ ~ , ~ k - ~ + l) . Finally, Wk is applied to entries indexed by argl and argz and the result placed
in current, if ICornpatible(argl, arg2, current) is true.

The foregoing discussion implies that it suffices to access the matrix in increasing order of the size of its
(k)-indices, with no further restriction on the order for (k)-indices of the same size.

Algori thm 3.1 (Recogni%erk) For an input string a = a1 . . . a , of length n , the algorithm creates a
2k+1-dimensional recognition matrix Mk such that matrix entry M(i l , i2 , . . . , i2k+l) is referenced iff
(i l l iz, . . . , ++I) belongs to Zk.
Initialization:

For all (k)-indices arg = (il, i2, . . . , i2h+l) such that arg has size 1,
for all O 5 i 5 (n - 1) if StartIndezkj(arg) is true for some j

and i2j = (i + I), i2j-l = i t do
perform

Mk(arg) := Initk,j(ai+l);

Main Loop:

For all (k)-indices current of size = 1, 2 , . . . , n do
begin

for all (k)-indices argl and argz such that
Icompatiblek (argl , arg2, current), do
perform

(I) Mk(c~rren t) := Mk(current)U Wk(Mk(argl), Mk (arga));
for all 15 j < 2k

if S t a r t I n d e ~ k , ~ (current) then
begin

if j 5 2"-' then
for all (k)-indices arg such that SourceIndexk(arg) is true
and size of arg = size of current, do
perform

(11) Mk(current) := Mk(current) U LCktj(Mk(arg));
else % j > 2k-1

for all (k)-indices arg such that SourceIndexk(arg) is true
and size of arg = size of current, do
perform

(111) Mk(current) := Mk(current) u Rekpj (Mk(arg));
end

end

Recognition Condition:

If there exists a (k)-index arg such that

(a) size of arg = n,
(b) Sourcelndexk(arg) is true, and
(c) Mk(arg) contains some item I = [(Zk, . . .); 1'1 satisfying SourceItemk(I)

then declare string a accepted
else reject a

Recognition of Control Languages 17

It may be observed that Recognizer0 is simply the CKY algorithm. The instance of the invariant stated
in Lemma 3.4 for k = 0 is the familiar invariant satisfied by the CKY algorithm, viz. a nonterminal A is in
Mo(i , j) iff A & ai+l . . . a,. The correctness of the algorithm immediately follows from the Lemma, which

G o

can be proved by making use of the soundness and completeness of the operations with respect to items and
factorizations of the input string.

The reader will observe that the set Zk is bounded in size by a constant

which depends only on the sequence of grammars Go, GI, . . . , Gk. Consequently, for any set (or, any pair
of sets if the operation used is W k) of (k)-items, the results of applying the operations are sets of (k)-items of
constant size O(Qk) and can be computed in time at most 0(&k2). Moreover, the algorithm uses a constant
number of operations.

Now, the main loop of the algorithm is executed 0(n2*+') times, once for each (k)-index. Statements (I),
(11) and (111) are respectively executed in secondary loops, each of which take 0(n2*) time within a main
loop iteration, thus giving an overall time complexity of ~ (n ~ ~ + ~ * + ') = 0(n3*'*) for the execution of the
main loop. The initialization and recognition condition can be implemented in 0(n2 ') and ~ (n * ~ - ') time
respectively. Hence,

Corollary 3.1 For any k >_ 0, and any control grammar G generating language L in the family CLHk ,
there is a constant Qk which depends on 6 such that Recognizerk accepts L in polynomial time O(T(n))
and polynomial space O(S(n)) where T(n) = ~ k ' n ~ * ' * and S(n) = ~ k n ' ~ + ' , for an input string of length
n.

4 Parallel Recognition of Languages in CLH

In [9] it was shown that C F L = CLHO is in N C (~) , the class of languages recognizable by simultaneous
(log n)-space bounded and (log2 n)-time bounded alternating Turing machines (ATMs), or equivalently, by
uniform boolean circuits of polynomial size and (log2 n) depth [8]. We generalize this result to the following:
the class of languages CLHk, for any fixed k > 0, is in NC('). In fact, we prove a stronger theorem,
namely,

Theo rem 4.1 The class of languages C L H k l for any fixed k >_ 0, is in LOGCFL

L O G C F L is the class of languages log-space reducible to context-free languages. In [9] it was shown
that L O G C F L is in N C (~) ; thus, we have

Corollary 4.1 The class of languages CLHk, for any fixed k > 0, is in N C (~) .

The proof of Theorem 4.1 uses the well-known characterization of LOGCFL in terms of ATMs, namely,
LOGCFL is exactly the class of languages accepted by simultaneously (log n)-space bounded and polyno-
mial tree-size bounded ATMs.

An alternating Turing machine (ATM) [2, 9, 81 is a generalization of a nondeterministic TM whose state
set is partitioned into "universal" and "existential" states. As with a nondeterministic TM, one can view
the computation of an ATM as a tree of configurations. A configuration is called universal (existential) if
the state associated with the configuration is universal (existential). A computation tree of an ATM M on
input w is a tree whose nodes are labeled by configurations of M on w, such that the root is the initial
configuration and the children of any non-leaf node labeled by a universal (existential) configuration include
all (one) of the immediate successors of that configuration. A computation tree is accepting iff it is finite
and all the leaves are accepting configurations. M accepts w if there is an accepting computation tree for 1M
on input w. Note that nondeterministic TMs are essentially ATMs with only existential states. We assume

Recognition of Control Languages 18

that ATMs have a read-only input tape with endmarkers. We use a variant of an ATM, called an indexing
ATM [9], which allows sublinear time bounds. An indexing ATM has a special "index tape"; whenever an
integer i is written on the index tape, the i-th symbol of the input is immediately accessible to the ATM.
Thus, in logn steps, it can read any position on the input tape.

A language L is accepted by an ATM M within time T(n) (space S(n)) if for every string w in L of
length n, there is an accepting computation tree for M on w of height at most T(n) (each of whose nodes is
labeled by a configuration using space at most S(n)). Similarly, L is accepted by M within tree-size bound
Z(n) if for every string in L of length n, there is an accepting computation tree of size (number of nodes) at
most Z(n).
Proof of Theorem 4.1: Let L be language in CLHk defined by a sequence Go, GI , ..., Gk, where Go
is a context-free grammar in CNF and G,, 1 5 j 5 k is an LDCFG in CNF. We construct an ATM M
which for a given string a checks that a is in L by essentially executing the recursive version of algorithm
Recognizerk discussed in the previous section. M does this by splitting at a universal state and performing
steps I and I1 below:

I. Guess the length n of the input string a and verify by checking that the (n + 1)-st symbol of the input
tape is the endmarker.

11. Guess a (k)-index P such that size(P) = n and SourceIndezk(P) holds. Guess a (k)-item I = [(Zkr ...);
1'1, where Zk is the start symbol of Gk and SourceItemk(I) holds. Accept iff Veri f y k (I , P) accepts.

Informally, given a (k)-item I and a (k)-index P = (i l , in , ..., i2*+1), procedure Verifyk(I , P) accepts
iff I is valid for the tuple of strings (i,ai,, ..., i,,+,-, ai2h+l).

procedure Veri f yk(I , P) :

1. If size(P) > 1 then guess an r E {2,3) and go to step r . Otherwise, if StartIndexk,j (P) holds for
some j and ilj = (i + I), then if I E Initk,j(ai+l), accept and halt; else go to step 3.

2. [I obtained via Wk] Guess (k)-indices Pl and P2 such that ICompatib!ek(Pl, P2, P) holds. Guess
(k)-items Il and 12 such that I E Wk(I1,12). Accept iff Veri f yk(Il, P1) and Veri f yk(12, P2) both
accept.

3. [I obtained via LCk,j or RCkSj] If StartIndexkIj(P) does not hold for any j , reject and halt.
Otherwise, let j be such that S t a r t I n d e ~ ~ , ~ (P) holds. If If j 5 2k-1 go to step 3.1; else go to
step 3.2.

3.1 Guess a (k)-index Pl such that SourceIndexk(P1) holds and size(P1) = size(P). Guess a
(k)-item Il such that Sourceltemk (11) holds and I E LCk,j (11). Accept iff Veri f yk(Il , P I)
accepts.

3.2 Guess a (k)-index PI such that SourceIndexk(P1) holds and size(P1) = size(P). Guess a
(k)-item Il such that SourceItemt(Il) holds and I E RCb,J (11). Accept iff Veri f yk(I l , Pl)
accepts.

end Veri f yk.

The proof of correctness of the above procedure follows from the proof of correctness of procedure
Recognizerk and is left to the reader. That the ATM M uses O(1og n) space is easily seen from the
fact that it stores a constant number of (k)-items and (k)-indices; a (k)-item requires constant space
and a (k)-index requires 2'+' log n = O(1og n) space.

We now show that an accepting computation tree of M on an input of length n has size polynomial in
n. Consider the first call to Verifyk in step 11. Clearly, the second argument of this call is a (k)-index
whose size is n. The execution of this call results in further recursive calls to Veri f yk in either steps 2,
3.1 or 3.2. The recursion ends when step 1 is executed, which happens when the argument (k)-index
has size 1.

Recognition of Control Languages

Figure 12: Tree A

The sequence of recursive calls can be viewed as binary tree A whose nodes are labeled by the sizes of
the (k)-indices that appear as arguments in the calls, as illustrated in Figure 12. In tree A, a node
with two children represents the two recursive calls to Verifyk in step 2, and a node with one child
represents the single recursive call in either step 3.1 or step 3.2. A leaf represents the execution of
step 1, with argument (k)-index of size 1. (Since we are considering an accepting computation tree, all
leaves represent "acceptance" in step 1).

If a node in A represents a (k)-index of size m and it has two children representing (k)-indices of sizes
ml and ma, then m l , mz > 0 and ml + m2 = m. On the other hand, if the node has only one
child representing a (k)-index PI of length ml , then ml = m. Now, the (k)-item Il corresponding to
PI should be such that SourceItemk(Il) holds. If this is the case, one can verify from the definitions
that Il cannot be in LCkj(12) or RCkj(12) for any 12. This implies that if a recursive call to Veri f y k
results in the execution of either step 3.1 or 3.2, then the next recursive call cannot result in the
execution of either of these steps and still guarantee acceptance. Thus, in tree A , if node m has only
one child ml , then m l must either have two children or be a leaf node.

Let T(n) be the number of nodes in tree A whose root represents a (k)-index of size n. Then, for
n > 1,

T(n) 5 max (2 + T(n - j) + T (d) ,
I l 3 S (n - l)

where the constant 2 represents a chain of at most 2 nodes in the tree, the first of which has the second
one as its only child, and the second of which has two children (representing the term T(n- j) + T (j)) .
Since T(1) = 1, the solution to the above recurrence is easily seen by induction to be

Finally, we note that the portion of the accepting computation tree r of the ATM M whose root
corresponds to the first call to Verifyk in step I1 is "isomorphic" to the tree A except that each node
in A would correspond to O(1og n) nodes in r to take into account the steps carried out by the ATM
in writing the (k)-indices on its worktapes, and in the case of step 1 of Veri f yk, in looking at a symbol
on the input tape. Together with the O(log n) nodes required by step I, the size of the accepting
computation tree is thus O(n log n).

5 Conclusions

We have shown that a hierarchy of non-context-free language classes generated by control grammars
can be recognized in polynomial time, settling an open problem posed in [15]. Previously, the best

Recognition o f Control Languages 20

known upper bound was exponential time. We have also shown that every language class in this
hierarchy is in N C (~) , generalizing Ruzzo's result [9] that the class of context-free languages is in
N C (~) .

An interesting question that we have not addressed is the following: suppose that the control set of a
given control grammar is a language not generated by some grammatical family but instead a language
from some general complexity class, say DSPACE(1ogn) or P T I M E , what can be said about the
complexity of the language generated by this control grammar? In other words, a control grammar
can be thought of as the grammatical analog of an oracle Turing machine, with the control set taking
the role of an oracle. It would be interesting to investigate whether such control grammars give rise to
complexity hierarchies similar to the logspace and polynomial-time hierarchies defined in [2, 10, 111.

Recognition of Control Languages 2 1

A Chomsky Normal Form for CLH

We prove the Chomsky Normal Form lemma 2.1; i.e. the existence of a defining sequence of grammars
for a language L in the family CLHk , where each grammar in the sequence is in CNF as defined in
an earlier section.

Let G be an arbitrary LDCFG. Productions in G of the form 1 : X -+ E and 1 : X -- Y for
nonterminals X, Y are respectively called 6-productions and chain-productions of G. The grammar
is said to be in two-normal-form if every labeled production of G either has exactly two nonterminal
symbols on the right-hand side, or has a single terminal symbol or c on the right-hand side. G is said
to be in Chornsky Normal Form (abbreviated as CNF) iff it is in two-normal-form and furthermore,
does not contain any 6-productions.

For the basis of the proof, it suffices to know that any context-free language can be generated by a
context-free grammar in CNF, cf. 151. Assume that every language in CLHkWl is definable by a
sequence of grammars in CNF (see definition 2.3).

Consider L E CLHk for some k, and let L = L({G, C)) for some LDCFG G and a control set
C E CLHk-l. Let VN and VT denote the nonterminals and terminals of G respectively. In an
intermediate step, we produce from G and C , a control grammar {H, D) such that H is in two-normal-
form, D E CLHk-1, and L = L({H, D)).

A. l Two Normal Form

The construction involves the following two stages:

Stage I

For every terminal symbol a of G, we introduce a new nonterminal Val a new label I, and a new
production 1, : V, + 6. Now, consider a non-CNF production p = 1 : X - X1 . . . X , . . . ,Y, of
G. This production is transformed to p = 1 : X + Yl . . . fi . . . Y,,, where Yj = Xj if X j is a
nonterminal symbol, or else Y j = V, if X j = a, where a is terminal. Simultaneously, we define
the substitution

01(1) = 1 if Xi is a nonterminal. i 1.1, if Xi = a.

Let G1 be the new LDCFG with the foregoing additions and transformations to G.

We define the new control set C1 to be

Cl = {I, l a E VT}UO~(C)

It is very easy to show that L = L({G,C)) = L({G1, Cl}; the detailed proof is left to the reader.

Stage I1

Let V, be a new nonterminal, and I, : V6 + < be a new production. For every chazn-production
1 : X + Y , we transform it to the new production I : X --. Y V ~ .

For every production p = 1 : X -+ X1 . . . X , . . . X, of G1, with n > 2, we discard p and create

Recognition of Control Languages

instead the following set of new productions (see Figure 13):

11 : x -* X I P I ,

Figure 13: Expansion of a production to twunormal-form productions.

Simultaneously, define the substitution 0 2 such that @ (I) = 1112.. . li, and include the string

li+lli+2.. . to a set Prefixes. Let H be the new LDCFG so obtained from G I .

Let the new control set be given by

D = 02(C1 U Prefixes. C1) U { I ,)

where . (dot) represents concatenation of languages.

Note that the substitutions 01 and e2 behave like the identity substitutions on labels not specified
above. Clearly, H is an LDCFG in two-normal-form. A straightforward inductive proof can be con-
structed to show that control grammars { G I , C l) and { H , D) generate the same languages. Now every
family in CLH is a full AFL [15], and CI and D are obtained in stages I and I1 by applying the opera-
tions of regular substitution, union and concatenation. Since AFLs are closed under these operations,
it follows that C1 and D are both languages in CLHk-l Applying the inductive hypothesis to D , we

see that L is defined by combining a sequence of grammars in CNF (defining D), with LDCFG H which
is in two-normal-form. Let the entire sequence of grammars defining L be (H o , H I , . . . , Ht- I , H k = H) ,
where each component grammar H j , 0 5 k - 1 is in CNF, and Hk = H is in twunormal-form. We
now use this sequence to eliminate €-productions.

A.2 Elimination of e-productions

Given an LDCFG H with control set D, we say that a nonterminal A of H is valid for string w iff
there is a derivation tree r in TreeSet(A w) such that ControlWords(I') E D. Let T be the set

of nonterminals of H which are valid for c.

Recognition of Control Languages 23

T is obtained from H in a somewhat complicated way, because verifying that all the control words in
a derivation tree in TreeSet(X 3 6) essentially forces us to use the recognizer at lower levels, i.e.

CLHk-l, CLHk-2 etc. This is done in the following way. Let

Inductively, for i 3 0, let

S1i+l = si U (LCk,j(Si) U RCkVj(Si)), and
1<j<zk-l

We terminate this iterative process as soon as = Si for some i > 0. It is left to the reader
to verify that that the number of iterations i is bounded by the number of possible (k)-items of the
grammar sequence Ho, . . . , Hk. We now claim that:

Claim A. l Let S = {I 1 I is a (k)-item such that I is valid for the 2k+1-tuple of strings (c, 6,. . . , 6)) .

Then Si = for some i > 0 if and only if Si = S.

One direction is trivial, i.e. Si = S implies Si = S;+I. For the forward implication, it should be clear
from the definitions that Si C S for all i 2 0. Assume to the contrary that S; = Si+l but Si # S .
Then there is an item I in the set S- Si # 0. By definition of S, there are possibly many sequences of
simple trees represented by I (which is valid for the 2k+1-tuple of empty strings). Let us denote these
sequences by MT(I) . From among all sequences in UIE(S-Si) MT(I) , we shall choose the smallest
sequence, i.e the one with minimum total depth, and with minimum total spine length 3. Let this
sequence be represented by item I' E (S - Si).

one recalls lemma 3.3, it is easy to show that either I' E Initkj(c), or there must be an item
such that I' = LCk,j(Il) for some j (or, I' = RCk,,(Il)), or there are items I1 and I2 such that
= Wk(Il,12). If I' E I~ai tk,~(c) then I' E So C Si, by definition, and hence cannot be in S - Si, a

contradiction. Otherwise, if Il (for the first two cases) or Il and I2 (in the final case involving W k)
are in Si, then the construction of Si+l guarantees that I' is in But Si = Si+l, thus yielding a
contradiction to our assumption that I' 4 Si. The only remaining possibility, viz. Il (respectively, Il
or 12 or both) is (are) not in S;, violates the minimality of our choice of I(. I t follows then that our
assumption must be wrong, i.e. Si = S.

It is easy to see that

T = {X (I = [(X , . . . ,c); . . .] E S, and SourceItemk(1) = true).

Also, consider the set T' C T defined by:

T' = {X I [(X = All B1,. . . ,A2*-l, B2+1 = c); . . .] E S, and Bj = Aj+1 for all 1 5 j 5 2k-1 - 1)

Clearly, both T and TI can be computed syntactically from S.

Then, for every labeled production 1 : X - ~ 1 x 2 (the other possibility where symbol XI is distin-
guished is handled in a similar way), we consider the following two cases:

1. X I E T. Then, a new production pl : X -+ xi, is introduced into the grammar, with the
substitution @ (I) = { I , pl) .

3The total depth of a simple tree sequence is the sum of the depths of the simple trees in the sequence. The total spine
length is similarly the sum of the lengths of the spines of the simple trees in the sequence.

Recognition of Control Languages

2. X;, E T I . In this case, we create a new production ql : X - xl. Let Cl denote the language
1.Label;.

All 6-productions in H are now eliminated, and the new control set is specified by the expression *:

The new LDCFG is denoted by HI. It is easy t o see that if w E L({H, D)) then w E L({Hl, Dl)) by
induction on the number of productions used in a proper derivation of w from the start symbol of H
(which remains unchanged in HI). The basic idea is that subtrees of the derivation tree which derive
E are pruned, and either the substitution 8 is applied, or a new control path is below. These cases are
shown in Figures 14 and 15.

Figure 14: XI E T.

Figure 15: X2 E T'.

The converse is slightly more tricky, but essentially runs along the same lines as the previous paragraph.
Hence if w E L({H1, Dl)) then we undo the transformations and the substitution wherever applied in
the derivation tree of {HI, Dl) to get a derivation tree of {HID) for w. It is crucial to recognize that
without specifying set T, the transformation outlined above will not work (the standard procedure for
eliminating 6-productions from a CFG requires specifying only the set of nonterminals which derive
the empty string; our procedure must take into account the fact that a derivation tree may contain
invalid paths not in the control set, which cannot be eliminated in the transformation).

A.3 Elimination of chain-productions

To get back to matters a t hand, we have now produced a control grammar with no 6-productions, but
which may contain chain-productions. These can be eliminated as follows. Let VN = (Vll . . . , Vp be
the set of nonterminals of a control grammar free of 6-productions. Let the set C h a i n (b) is the set of
nonterminals Vi such that Vi 9 4. This set can be computed by standard methods.

'Theoperator / denotes right-quotient of languages. Thus. L/C is thelanguage {z I there is a string y E C such that zy E
L). Full AFLs are closed under right-quotient with regular sets.

Recognition of Control Languages 25

Remark: The language

Lchain(Kr 4) = {W I I/i & 4 via a derivation tree with spine w)
G

is regular.

Now, for every non-chain production in the original LDCFG of the form 1 : X - xlxz (or with XI
distinguished), we create a new production:

for every nonterminal I/;; E Chain(X). Simultaneously, let O be a substitution where

~ (I v ,) = Lehoin(I / i , X).
The new LDCFG is obtained by removing all chain-productions from the original one and incorporating
the new productions described above. The new control set is simply 0 - ' (D) , where D is the original
control-set. Note that all the operations described so far are full AFL operations 5 ; consequently the
new control set is still a member of CLHk-l It is clear that the resulting LDCFG is also in CNF.
The inductive hypothesis now applies to the new control set, thus proving the normal-form lemma.

5Full AFLs are closed under inverse regular substitutions; for a comprehensive discussion, see [6]

Recognition of Control Languages

References

[I] G. E. Barton, R. C. Berwick, and E. S. Ristad. Computational Complezity and Natural Languages.
MIT Press, Cambridge, MA, 1987.

[2] A. K. Chandra, D. C. Kozen, and L. J . Stockmeyer. Alternation. J. ACM, 28:114-122, 1981.

[3] S. Ginsburg and S. A. Greibach. Abstract families of languages. Mem. Am. Math. Soc., 87(1):1-
32, 1969.

[4] S. Ginsburg and E. H. Spanier. AFL with semilinear properties. J. Comput. Syst. Sci., 5:365-396,
1971.

[5] M. A. Harrison. Introduction to Fornaal Language Theory. Addison-Wesley, Reading, MA, 1978.

[6] J . E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computatzon.
Addison-Wesley, 1979.

[7] N. A. Khabbaz. A geometric hierarchy of languages. J. Comput. Syst. Sci., 8:142-157, 1974.

[8] W. L. Ruzzo. On uniform circuit complexity. J. Comput. Syst. Sci., 22:365-383, 1981.

[9] W. L. Ruzzo. Tree-size bounded alternation. J. Comput. Syst. Sci., 21:218-235, 1980.

[lo] W. L. Ruzzo, J . Simon, and M. Tompa. Space-bounded hierarchies and probabilistic computations.
J. Comput. Syst. Sci., 28:216-230, 1984.

[l l] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Comput. Sci., 3:l-22, 1977.

[12] I. H. Sudborough. On the tape complexity of deterministic context-free languages. J . ACM,
25(3):405-414, July 1978.

[13] J . W. Thatcher. Tree automata: An informal survey. In A. V. Aho, editor, Currents in the Theory
of Computing, pages 143-172, Prentice Hall Inc., Englewood Cliffs, NJ, 1973.

[14] K. Vijay-Shanker. A Study of Tree Adjoining Grammars. PhD thesis, University of Pennsylvania,
Philadelphia, Pa, 1987.

[15] D. J . Weir. Context-Free Grammars to Tree Adjoining Grammars and Beyond. Technical Report,
Department of Computer and Information Science, University of Pennsylvania, Philadelphia, 1987.

	Upper Bounds on Recognition of a Hierarchy of Non-Context-Free Languages
	Recommended Citation

	Upper Bounds on Recognition of a Hierarchy of Non-Context-Free Languages
	Abstract
	Comments

	tmp.1193852253.pdf.aRKS_

