Upper Bounds on Recognition of a Hierarchy of Non-Context-Free Languages

Michael Palis
University of Pennsylvania
Sunil Shende
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation

Michael Palis and Sunil Shende, "Upper Bounds on Recognition of a Hierarchy of Non-Context-Free Languages", . June 1988.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-56.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/680
For more information, please contact repository@pobox.upenn.edu.

Upper Bounds on Recognition of a Hierarchy of Non-Context-Free Languages

Abstract

Control grammars, a generalization of context-free grammars recently introduced for use in natural language recognition, are investigated. In particular, it is shown that a hierarchy of non-context-free languages, called the Control Language Hierarchy (CLH), generated by control grammars can be recognized in polynomial time. Previously, the best known upper bound was exponential time. It is also shown that CLH is in $\mathrm{NC}^{(2)}$ the class of languages recognizable by uniform boolean circuits of polynomial size and $O\left(\log ^{2} n\right)$ depth.

\section*{Comments}

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-56.

UPPER BOUNDS ON RECOGNITION OF A HIERARCHY OF NON-CONTEXT-FREE LANGUAGES
 Michael Palis and Sunil Shende

MS-CIS-88-56
LINC LAB 122

Department of Computer and Information Science School of Engineering and Applied Science
 University of Pennsylvania Philadelphia, PA 19104

July 1988

Upper Bounds on Recognition of a Hierarchy of Non-Context-Free Languages*

Michael Palis
Sunil Shende ${ }^{\dagger}$

July 5, 1988

Abstract

Control grammars, a generalization of context-free grammars recently introduced for use in natural language recognition, are investigated. In particular, it is shown that a hierarchy of non-context-free languages, called the Control Language Hierarchy (CLH), generated by control grammars can be recognized in polynomial time. Previously, the best known upper bound was exponential time. It is also shown that CLH is in $\mathrm{NC}^{(2)}$, the class of languages recognizable by uniform boolean circuits of polynomial size and $O\left(\log ^{2} n\right)$ depth.

Categories and Subject Descriptors: F.1.2. [Computation by Abstract Devices]: Modes of Computation - alternation and nondeterminism, parallelism; F.4.1. [Mathematical Logic and Formal Languages]: Formal Languages - context-free grammars, control grammars; I.2.7. [Artificial Intelligence]: Natural Language Processing - language parsing.

[^0]
1 Introduction

A fundamental problem in computational linguistics is the development of grammatical models for natural language that are not only linguistically adequate but also amenable to efficient processing. To date, a large number of natural language grammars have been proposed in the literature, most of which are provably more powerful (in terms of generative capacity) than general context-free grammars (see, e.g. [1]). A recent addition to this list are control grammars [15], which generalize context-free grammars in an interesting way. Informally, a control grammar is a pair $\{G, C\}$ where G is an ordinary context-free grammar whose productions are each assigned a unique label from some finite set $V_{L} . C$, called the control set, is a set of strings over V_{L}. A derivation in a control grammar is similar to that in an ordinary context-free grammar except that the control set C is used to further constrain the set of "valid" derivations. In particular, if one views a derivation as a tree, then (in a manner to be described later) each edge in such a tree is given a label from V_{L} according to the production associated with the edge. The derivation tree is considered valid iff certain paths in the tree (called control paths) correspond to strings which are in the control set C. The language generated by the control grammar is then the set of strings having at least one valid derivation tree in the sense just described.

In essence, the control set C provides a way of limiting the set of valid derivation trees to those which have some predetermined "structure". For instance, C can be pre-selected as belonging to a particular language class, e.g., regular, context-free, or even one that is generated by another control grammar.

In [15], Weir introduced a hierarchy of language classes which are generated by control grammars in the following way: (1) the first class consists of all languages generated by control grammars whose control sets are context-free languages; (2) the k-th language class consists of all languages generated by control grammars whose control sets are members of the $(k-1)$-st class. This hierarchy has interesting properties, for instance, Weir has shown that every class in the hierarchy is a full AFL ${ }^{1}$ and contains only semilinear sets (hence, all members are included among the context-sensitive languages). These classes can also be characterized in terms of automata which are interesting generalizations of (nondeterministic) pushdown automata (see [14, 15]).

An open problem posed by Weir is whether the language classes in his hierarchy are polynomial-time recognizable. One way of proving this is by using the following inductive argument. Suppose that every language in the k-th level of the hierarchy is polynomial-time recognizable. Then, one can construct a recognition algorithm for each language L in the $(k+1)$-st level as follows: Let $\{G, C\}$ be the control grammar generating L. Then, given an input string, first obtain all derivation trees of the string (if any) that are generated by G; then test whether at least one of these derivation trees has every control path in the control set C, where C is a language in the k-th level. That is, one simply uses the recognizer for C as a "subroutine". However, the inductive step fails since the input string may have exponentially many distinct derivation trees so that recognizing the language L may take exponential time.

In this paper, we prove that every language in Weir's hierarchy is indeed polynomial-time recognizable. In particular, we show that if L is a k-th level language, $k \geq 1$, then L can be recognized in $O\left(n^{3 * 2^{k}}\right)$ time. The proof of this result is based on the observation that the recognizer for the control set can instead be used as a "coroutine" of the recognizer for L. This way, partial derivations which cannot possibly lead to valid derivation trees can be detected immediately and removed from further consideration. Using the recognition algorithm, we also show that every language class in Weir's hierarchy is in LOGCFL, the class of languages log-space reducible to context-free languages. Thus, using the result in [9], we get the corollary that every language in the hierarchy is in $\mathrm{NC}^{(2)}$, the class of languages recognized by uniform boolean circuits of polynomial size and $\left(\log ^{2} n\right)$ depth.

The paper is organized as follows. In Section 2, we define control grammars and the control language hierarchy (CLH) of Weir. Section 3 describes the recognition algorithms for languages in CLH and Section

[^1]4 proves containment of the language classes in LOGCFL. Section 5 ends the paper with some concluding remarks.

2 Control Grammars

An important result in formal language theory is the characterization of the paths in derivation trees of a context-free grammar. It was shown in [13] that the set of all such paths in derivation trees of any context-free grammar is a regular language. Control Grammars are defined by extending this idea of paths in two ways - by restricting our attention to a certain, well-defined subset of derivation paths in derivation trees of the context-free grammar and associating strings with the paths in a uniform way, and secondly, by prescribing a language (also called the control set) to which these strings must belong. In particular, the control set can be a language of arbitrary complexity, e.g. a context-free language. The following definition is adapted from [15], where Control Grammars were introduced ${ }^{2}$.

Definition 2.1 A Control Grammar (henceforth CG) \mathcal{G}, is a pair $\{G, C\}$, where $G=\left(V_{N}, V_{T}, V_{L}, Z, P, L a b e l\right)$ and $C \subseteq V_{L}{ }^{+}$. The first component, G, of the control grammar is, by itself, called a Labeled, Distinguished Context-free grammar (or LDCFG) in [15]. V_{N} and V_{T} are, respectively, finite sets of nonterminals and terminals of the LDCFG G, with $Z \in V_{N}$ the start symbol of G. The set of grammar symbols, $V_{N} \cup V_{T}$, is denoted by $V . P$ is a finite set of distinguished productions of the form $\left(X \rightarrow X_{1} \ldots X_{n}, i\right)$, where $X \rightarrow X_{1} \ldots X_{n}$ can be viewed as a standard context-free production with $X \in V_{N}$ and the right-hand side $X_{1} \ldots X_{n}$ belongs to V^{*}. In addition, i is an integer (with $1 \leq i \leq n$) that identifies exactly one symbol X_{i} on the right-hand side as being distinguished. V_{L} is a finite set of production labels and Label is a one-to-one function from P to V_{L}, which assigns a unique label to every production. For the sake of clarity, we will write a distinguished production $p=\left(X \rightarrow X_{1} \ldots X_{n}, i\right)$ with $\operatorname{Label}(p)=l$ as

$$
p=l: X \rightarrow X_{1} \ldots \check{X}_{i} \ldots X_{n}
$$

The set $C \subseteq V_{L}{ }^{+}$is called the control set of the grammar \mathcal{G}; each string in $V_{L}{ }^{+}$is referred to as a control string or control word. We say that grammar G is controlled by control set C. Note that by definition, C does not include the empty string ϵ.

An example of a control grammar is shown in Figure 1.

$$
\begin{array}{ll}
l_{1}: Z_{1} \rightarrow a \check{Z}_{1} & \\
l_{2}: Z_{1} \rightarrow \check{Z}_{1} c & \\
l_{3}: Z_{1} \rightarrow b \check{Z}_{1} & \\
l_{4}: Z_{1} \rightarrow \dot{b} & \\
& \\
& \\
\text { LDCFG Productions } & \text { Control Set }
\end{array}
$$

Figure 1: Control Grammar
Derivations and derivation trees of control grammars are very similar to those of standard context-free grammars, and are defined inductively as follows. $A \underset{G}{\underset{ }{0}} A$ is a derivation in 0 steps of G, for every nonterminal $A \in V_{N}$. The set of derivation trees corresponding to this derivation is the singleton consisting of a tree with a single node labeled A, and is denoted by $\operatorname{TreeSet}(A \underset{G}{\circ} A)$.

[^2]Inductively, let $Y \underset{\sigma}{\stackrel{k}{\Rightarrow}} \alpha X \beta$ denote a derivation of G in k or fewer steps, with its associated derivation trees, $T=\operatorname{TreeSet}(Y \underset{\sigma}{\stackrel{k}{\Rightarrow}} \alpha X \beta)$. Then for every production $p=l: X \rightarrow X_{1} \ldots \check{X}_{i} \ldots X_{n}$ of G, we say that $Y \stackrel{k+1}{\underset{\sigma}{\Rightarrow}} \alpha X_{1} \ldots X_{i} \ldots X_{n} \beta$. For every tree $\Delta \in T$, let δ be the the leaf node labeled X which corresponds to the instance of X used on the left-hand side of the production. Let Δ_{1} be the tree obtained from Δ by adding new leaf nodes labeled $X_{1}, \ldots, X_{i}, \ldots, X_{n}$, and new undirected edges from to all the new leaf nodes except the one labeled X_{i}. For this node, we add an directed edge to it from δ, and label the edge with the production label l. All such trees Δ_{1} are included in TreeSet $\left(Y \underset{G}{\stackrel{k+1}{\Longrightarrow}} \alpha X_{1} \ldots X_{i} \ldots X_{n} \beta\right)$.

Following standard terminology, we say that $A \underset{\sigma}{\stackrel{*}{\Rightarrow}} \alpha$, if $A \underset{\sigma}{\stackrel{k}{\Rightarrow}} \alpha$ for some finite $k \geq 0$. Likewise, $\operatorname{TreeSet}(A \stackrel{*}{\Rightarrow} \alpha)$ is the set of all derivation trees for derivations $A \stackrel{*}{\Rightarrow} \alpha$. Figure 2 shows a derivation tree in $\operatorname{TreeSet}\left(Z_{1} \stackrel{*}{\Rightarrow} a a b b c c\right)$ of the grammar G in Figure 1. Note that from every node in the tree, there is a unique, directed path to some leaf node in the tree.

Figure 2: Derivation Tree associated with $Z_{1} \stackrel{*}{\stackrel{*}{\Rightarrow}} a a b b c c$
For any derivation tree $\Gamma \in \operatorname{TreeSet}(X \underset{G}{*} \alpha)$, we shall call the unique directed, labeled path from the root node to a leaf node as $\operatorname{Spine}(\Gamma)$ (or simply, the spine if Γ is clear from the context). Thus, $l_{1} l_{2} l_{1} l_{2} l_{3} l_{4}$ is the spine in Figure 2. The (unique) leaf node which terminates Spine (Γ) is denoted as the foot node of Γ. Finally, ControlWords (Γ) is the set of all maximal directed, labeled paths in Γ (such a path begins at a node which is either the root or one which is connected to its parent by an undirected edge; the path ends at a leaf node). In particular, Spine $(\Gamma) \in$ ControlWords (Γ).

Definition 2.2 The Control Language $L(\mathcal{G})$, generated by CG $\mathcal{G}=\{G, C\}$, with start symbol Z of G, is

$$
\begin{gathered}
L(\mathcal{G})=\left\{a_{1} \ldots a_{n} \in V_{T}^{*} \mid \text { there is a derivation tree } \Gamma \in \operatorname{TreeSet}\left(Z \underset{\sigma}{*} a_{1} \ldots a_{n}\right),\right. \text { and } \\
\text { ControlWords }(\Gamma) \subseteq C\} .
\end{gathered}
$$

Let \mathcal{C} be any family of languages over a finite alphabet. We say that a language L is controlled in family \mathcal{C} iff there is a control grammar $\mathcal{G}=\{G, C\}$ such that $L=L(\mathcal{G})$ and $C \in \mathcal{C}$.

For instance, it may be verified that the control language generated by the grammar in Figure 1 is the context-sensitive language $\left\{a^{n} b^{n} c^{n} \quad \mid n \geq 1\right\}$. with the context-free control set $\left\{\left(l_{1} l_{2}\right)^{n} l_{3}{ }^{n-1} l_{4} \mid n \geq 1\right\}$. The control language generated is, therefore, controlled in the family CFL of context-free languages, but is itself not a context-free language.

2.1 The Control Language Hierarchy

Following [15], we define a countable hierarchy of language classes, such that the 0 -th family in the hierarchy is exactly the family of context-free languages, and every language in the ($i+1$)-th family is generated by a control grammar whose control set is a language in the i-th family.

Definition 2.3 The Control Language Hierarchy (CLH) is defined as follows:

- $\mathbf{C L H}_{\mathbf{0}}=\{L \mid L=L(G)$, where G is a standard context-free grammar $\}$; i.e. $\mathbf{C L H}_{\mathbf{0}}=\mathbf{C F L}$, the family of context-free languages.
- for all $k \geq 1$,
$\mathbf{C L H}_{\mathbf{k}}=\left\{L \mid\right.$ there exists a context-free grammar G_{0}, and a sequence of LDCFGs $G_{1}, G_{2}, \ldots, G_{k}$ such that

1. $C_{0}=L\left(G_{0}\right)$,
2. for all $1 \leq j<k, C_{j}=L\left(\left\{G_{j}, C_{j-1}\right\}\right)$, and
3. $\left.L=L\left(\left\{G_{k}, C_{k-1}\right\}\right)\right\}$.

We say that G_{0} and the sequence of LDCFGs $G_{1}, G_{2}, \ldots, G_{k}$ defines L.

- $\mathbf{C L H}=\cup_{k} \mathrm{CLH}_{\mathbf{k}}$, for all countable $k \geq 0$.

A language L is said to be ϵ-free iff L does not contain the empty string. It is well known that every ϵ-free context-free language can be generated by a context-free grammar in Chomsky Normal Form (CNF), i.e, one whose productions are of the form $A \rightarrow B C$ or $A \rightarrow a$, where A, B and C are nonterminal symbols and a is a terminal symbol [6]. An LDCFG G is said to be in CNF iff for every production $l: X \rightarrow \alpha$ of G, the corresponding unlabeled, non-distinguished context-free production $X \rightarrow \alpha$ is in CNF. The following lemma states an analogous result for ϵ-free languages in CLH.

Lemma 2.1 (Chomsky Normal Form) Let L be an ϵ-free language in the family $\mathrm{CLH}_{\mathbf{k}}, k>0$. Then there is a context-free grammar G_{0} and a sequence of LDCFGs $G_{1}, G_{2}, \ldots, G_{k}$ defining L such that G_{0} and every LDCFG $G_{j}, 1 \leq j \leq k$, in the sequence is in CNF.

The proof of Lemma 2.1 is deferred to the Appendix; it utilizes techniques similar to the conversion of a standard context-free grammar into CNF (as discussed, e.g., in [6]), and also the property that every family $\mathrm{CLH}_{\mathrm{k}}, k>1$, forms a full AFL.

In the next section, we shall describe a family of recognition algorithms for languages in the hierarchy. These algorithms are essentially motivated by the well-known Cocke-Kasami-Younger (CKY) recognition algorithm for context-free grammars [5], and like the CKY algorithm, require that every grammar in the sequence of grammars defining a particular control language be in CNF. Lemma 2.1 provides such a sequence.

3 Family of Recognition Algorithms for CLH

We generalize the Cocke-Kasami-Younger recognition algorithm [5, 6] for context-free languages, to a family of algorithms Recognizer ${ }_{k}, k \geq 0$, where the k th algorithm recognizes any ϵ-free language in $\mathbf{C L H}_{\mathbf{k}}$.

We know that any language $L \in \mathbf{C L H}_{\mathbf{k}}$ is defined by a context-free grammar G_{0} and a sequence of LDCFGs $G_{i}, 1 \leq i \leq k$. Given a string whose membership in L is in question, it should be intuitively clear that we must check whether there is a complete derivation tree for the string, and whether all the control strings (over the terminal alphabet T_{k-1}) in the tree belong to the language $L\left(\mathcal{G}_{k-1}\right)$. Each control string should, therefore, have a derivation tree of \mathcal{G}_{k-1} such that all the control strings (now over T_{k-2}) in that tree belong to the language $L\left(\mathcal{G}_{k-2}\right)$; this process is carried out till the entire sequence of grammars is unraveled and we can finally decide the context-freeness of some collection of control strings over T_{0}. Unfortunately,
there may be many derivation trees for strings at any level (i.e. the input string at level k, and control strings at lower levels) and it should be apparent that our algorithm must be able to represent multiple derivations without explicitly storing control strings in these derivations.

In order to get around this problem, we extend the idea used by the CKY recognizer of implicitly encoding potentially unbounded information contained in derivation trees, in a bounded collection of objects, which we call items of the appropriate grammars. The CKY algorithm makes use of the CNF property of the context-free grammar by creating for every input string $\alpha=a_{1} a_{2} \ldots a_{n}$ of length n, a 2-dimensional recognition matrix M such that any matrix entry $M(i, j)$ contains exactly all the nonterminals which derive the substring $a_{i} \ldots a_{j}$ of input α. Note that a nonterminal in $M(i, j)$ may derive $a_{i} \ldots a_{j}$ in many different ways none of which are explicitly represented by the algorithm. In the next section, we pursue this idea further by defining a data structure, for a language in family $\mathbf{C L H}_{\mathbf{k}}$, which is analogous to a nonterminal in a context-free grammar. We shall see that these items encode derivations compactly, and can be combined to produce new items by using information in the productions of the sequence of grammars defining the language.

3.1 Data Structures and Operations

For $k>0$, let L be any ϵ-free language in $\mathbf{C L H}_{\mathbf{k}}$. Then by Lemma 2.1 , there is a context-free grammar $G_{0}=\left(N_{0}, T_{0}, P_{0}, Z_{0}\right)$ in CNF, and a sequence of control grammars $\mathcal{G}_{1}, \mathcal{G}_{2}, \ldots, \mathcal{G}_{k}$, such that

$$
\begin{gathered}
\mathcal{G}_{1}=\left\{G_{1}, L\left(G_{0}\right)\right\} \\
\mathcal{G}_{2}=\left\{G_{2}, L\left(\mathcal{G}_{1}\right)\right\} \\
\vdots \\
\mathcal{G}_{\boldsymbol{k}}=\left\{G_{\boldsymbol{k}}, L\left(\mathcal{G}_{\boldsymbol{k}-1}\right)\right\},
\end{gathered}
$$

and $L=L\left(\mathcal{G}_{k}\right)$, where each of the LDCFGs G_{i} for $1 \leq i \leq k$ is defined as $G_{i}=\left(N_{i}, T_{i}, P_{i}, Z_{i}, T_{i-1}\right.$, Label $\left._{i}\right)$ and is in Chomsky Normal Form. For notational convenience, we shall occasionally refer to G_{0} as control grammar \mathcal{G}_{0}, with the understanding that $L\left(G_{0}\right)=L\left(\mathcal{G}_{0}\right)$. We shall also denote by $C_{i}, 0 \leq i<k$, the control set $L\left(\mathcal{G}_{i}\right)$ in the definition above.

For $0 \leq i \leq k$, let $x \in T_{i}^{*}$ be a string over the terminal alphabet of G_{i}. Then every 2^{i} tuple of strings

$$
\left(u_{1}, u_{2}, \ldots, u_{2,-1}, v_{2 i-1}, \ldots, v_{2}, v_{1}\right), \quad u_{j}, v_{j} \in T_{i}^{*}
$$

such that $x=u_{1} u_{2} \ldots u_{2^{-1}} v_{2^{-1}} \ldots v_{2} v_{1}$ is called an (i)-factorization of x. We shall denote this as

$$
x=\#\left(u_{1}, u_{2}, \ldots, u_{2^{\prime-1}}, v_{2 i-1}, \ldots, v_{2}, v_{1}\right)
$$

As a special case, if $i=0$ then $u_{1}=x$ is the unique (0)-factorization of x.
Before we define the data structures and operations used by the k th recognition algorithm, we describe a restricted kind of derivation tree of any LDCFG $G_{i}, 1 \leq i \leq k$. A derivation tree Γ of G_{i} is called simple iff all the leaves of Γ, except possibly the foot node (i.e. the node which terminates the directed labeled path from the root node), are labeled by terminal symbols in T_{i}. As a special case, a single node labeled by a grammar symbol in ($N_{i} \cup T_{i}$) (which represents both the root node and the foot node) is also a simple tree of G_{i}.

A simple tree Γ of G_{i} with root node labeled $A \in N_{i}$ and foot node labeled $B \in N_{i}$ is said to yield a $\operatorname{pair}(u, v), u, v \in T_{i}^{*}$, iff $\Gamma \in \operatorname{TreeSet}\left(A \underset{\sigma_{i}}{\stackrel{*}{\Rightarrow}} u B v\right)$ and every string in ControlWords (Γ), except possibly Spine (Γ), is in the control set C_{i-1}. If the foot node is labeled by a terminal symbol $B=a \in T_{i}$, then Γ yields both ($u, a v$) and ($u a, v$). As a special case, if Γ is a single node labeled $A \in\left(N_{i} \cup T_{i}\right)$, then Γ yields (ϵ, ϵ), and $\operatorname{Spine}(\Gamma)=\epsilon$ (see Figures 3 (a) and (b)).

Definition 3.1 For $0 \leq i \leq k$, an (i)-item is defined inductively as follows:

Figure 3: Derivation trees yielding a pair of terminal strings

- Every nonterminal symbol $A \in N_{0}$ is a (0)-item.
- For $1 \leq i \leq k$, an (i)-item is a tuple of the form [$\left.\left(A_{1}, B_{1}, A_{2}, B_{2}, \ldots, A_{2^{i-1}}, B_{2^{i-1}}\right) ; I\right]$, such that

1. $A_{1} \in N_{i}$,
2. $B_{1}, A_{2}, B_{2}, \ldots, A_{2^{i-1}}, B_{2^{i-1}} \in\left(N_{i} \cup T_{i}\right)$,
3. if A_{j} (for $2 \leq j \leq 2^{i-1}$), or B_{l} (for $1 \leq l \leq 2^{i-1}$) is the first terminal symbol, say a, in the sequence of symbols in 2 above, then all the symbols following A_{j} (i.e., $B_{j}, \ldots, B_{2^{i-1}}$), or following B_{l} (i.e., $A_{l+1}, \ldots, B_{2^{i-1}}$), are equal to A_{j} or B_{l} respectively, and
4. I is an $(i-1)$-item.

We denote the set of (i)-items as $\mathcal{I}_{i}, 0 \leq i \leq k$. For example, for $i=2$, if $A, B \in N_{2}, a \in T_{2}$, and I is a (1)-item, then $[(A, B, A, B) ; I],[(A, B, A, a) ; I],[(A, B, a, a) ; I]$ and $[(A, a, a, a) ; I]$ are (2)-items.

Definition 3.2 For $0 \leq i \leq k$, we inductively define the notion of an (i)-item being valid for an (i)factorization.

- A (0)-item A is valid for $u \in T_{0}{ }^{+}$iff $A \underset{\sigma_{0}}{\stackrel{*}{\Rightarrow}} u$.
- For $i>0$, an (i-item

$$
\left[\left(A_{1}, B_{1}, A_{2}, B_{2}, \ldots, A_{2^{-1}}, B_{2^{i-1}}\right) ; I\right]
$$

is valid for an (i)-factorization

$$
\left(u_{1}, u_{2}, \ldots, u_{2^{i-1}}, v_{2^{i-1}}, \ldots, v_{2}, v_{1}\right), \text { iff }
$$

1. there exists a sequence of simple trees $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{2^{i-1}}$ such that for $1 \leq j \leq 2^{i-1}$, the tree Γ_{j} has root and foot nodes labeled A_{j} and B_{j} respectively, and Γ_{j} yields (u_{j}, v_{j}), and
2. I is valid for the $(i-1)$-factorization $\left(\operatorname{Spine}\left(\Gamma_{1}\right), \operatorname{Spine}\left(\Gamma_{2}\right), \ldots, \operatorname{Spine}\left(\Gamma_{2^{-1}}\right)\right)$.

Note that an (i)-item represents a set of sequences of simple trees where any sequence read from the left to the right, can be depicted from top to bottom as a sequence of disjoint simple trees. These trees share a common "thread ", viz. their respective spines represent disjoint substrings of a single control string. This intuitive picture of (i-items will be extensively used to illustrate the various operations below. For example, Figure 4 above shows an item valid for an appropriately sized tuple of strings, as a sequence of simple trees. By definition, all maximal paths (i.e., control words) in any of these trees (except possibly their spines) are already in the control set. We now define the following predicates on (i)-items, which will be used in the sequel.

Definition 3.3 For all $1 \leq i \leq k$:

- for $1 \leq j \leq 2^{i-1}, \operatorname{StartItem}_{i, j}(I)$ is true iff I is an (i)-item of the form

$$
\left[\left(A_{1}, B_{1}, \ldots, A_{j}, B_{j}, \ldots, A_{2,-1}, B_{2,-1}\right) ; I^{\prime}\right]
$$

where for all $1 \leq m \neq j \leq 2^{i-1}, A_{m}=B_{m}$ (A_{j} may or may not be equal to B_{j}).

Figure 4: An (i)-item valid for $\left(u_{1}, \ldots, u_{2 i-1} v_{2 i-1}, \ldots, v_{1}\right)$

- SourceItem $m_{1}(I)$ holds iff I is an item of the form $\left[(A, a) ; Z_{0}\right]$, where $a \in T_{1}$ and Z_{0} is the start symbol of grammar G_{0}.
For $1<i \leq k$, SourceItem ${ }_{i}(I)$ is true iff I is an (i)-item of the form

$$
\left[\left(A_{1}, B_{1}, \ldots, A_{j}, B_{j}, \ldots, A_{2^{i-1}}, a\right) ; I^{\prime}\right]
$$

where $A_{j}=B_{j-1}$ for all $2 \leq j \leq 2^{i-1}, a \in T_{i}, I^{\prime}$ is of the form $\left[\left(Z_{i-1}, \ldots\right) ; I^{\prime \prime}\right]$ with Z_{i-1} being the start symbol of G_{i-1}, and SourceItem $m_{i-1}\left(I^{\prime}\right)$ holds recursively for item I^{\prime}.

- let $I_{1}=\left[\left(A_{1}, B_{1}, \ldots, A_{j}, B_{j}, \ldots, A_{2^{i-1}}, B_{2^{i-1}}\right) ; I_{1}{ }^{\prime}\right]$ and $I_{2}=\left[\left(C_{1}, D_{1}, \ldots, C_{j}, D_{j}, \ldots, C_{2^{i-1}}, D_{2^{i-1}}\right) ; I_{2}{ }^{\prime}\right]$ be any two (i)-items of \mathcal{G}_{i}. Then $\operatorname{Compatible}_{i}\left(I_{1}, I_{2}\right)$ is true iff $A_{j}=D_{j}$ for all even j, and $B_{j}=C_{j}$ for all odd j.

Note that StartItemi,j , SourceItem $_{i}$ and Compatible e_{i} are only syntactic restrictions on items, and do not imply any notion of validity.

Definition 3.4 The set of wrapping operations, $\left\{W_{i} \mid 0 \leq i \leq k\right\}$, is inductively defined for (i)-items I_{1}, I_{2} as follows:

1. For $i=0$, let $I_{1}=Y$ and $I_{2}=Z$, where $Y, Z \in N_{0}$. Then

$$
W_{0}(Y, Z)=\left\{X \in N_{0} \mid X \rightarrow Y Z \text { is a production in } P_{0}\right\}
$$

2. for $1 \leq i \leq k$, let $I_{1}=\left[\left(A_{1}, B_{1}, \ldots, A_{j}, B_{j}, \ldots, A_{2^{i-1}}, B_{2^{-1}}\right) ; I_{1}{ }^{\prime}\right]$ and $I_{2}=\left[\left(C_{1}, D_{1}, \ldots, C_{j}, D_{j}, \ldots, C_{2^{-1}}, D_{2^{i-1}}\right) ; I_{2}^{\prime}\right]$ be (i)-items of \mathcal{G}_{i}. Then

$$
\begin{aligned}
W_{i}\left(I_{1}, I_{2}\right)=\left\{\left[\left(X_{1}, Y_{1}, \ldots, X_{j}, Y_{j}, \ldots, X_{2^{-1}}, Y_{2}{ }^{-1}\right) ; I^{\prime}\right] \mid\right. & \text { Compatible } e_{i}\left(I_{1}, I_{2}\right) \text { holds and } \\
& X_{j}= \begin{cases}A_{j} & \text { for all odd } j, \\
C_{j} & \text { for all even } j\end{cases} \\
& Y_{j}= \begin{cases}D_{j} & \text { for all odd } j, \\
B_{j} & \text { for all even } j\end{cases} \\
& \text { and } \left.I^{\prime} \in W_{i-1}\left(I_{1}{ }^{\prime}, I_{2}{ }^{\prime}\right)\right\}
\end{aligned}
$$

(a)

-
-
\circ

(b)

Figure 5: (a) StartItem ${ }_{i, j}$ (b) Source Item $_{i}$

Intuitively, W_{i} is the binary wrapping operation which combines two compatible (i)-items into a single one (see Figure 6). It can be extended in a straightforward way to the case when the arguments are sets of (i)-items, e.g.

$$
W_{i}\left(S_{1}, S_{2}\right)=\cup_{I_{1} \in S_{1}, I_{2} \in S_{2}} W_{i}\left(I_{1}, I_{2}\right)
$$

In the sequel, we shall assume that other operations are similarly extended to sets without ambiguity.
An easy consequence of the above definition is the following:
Proposition 3.1 For any given i, let I_{1} and I_{2} be (i)-items respectively valid for factorizations $\left(x_{1}, x_{2}, \ldots, x_{2^{i-1}}, y_{2^{i-1}}, \ldots, y_{2}, y_{1}\right)$ and for $\left(w_{1}, w_{2}, \ldots, w_{2^{i-1}}, z_{2^{-1}}, \ldots, z_{2}, z_{1}\right)$.
If $W_{i}\left(I_{1}, I_{2}\right)$ is defined, then every item $I \in W_{i}\left(I_{1}, I_{2}\right)$ is valid for the factorization

$$
\left(u_{1}, u_{2}, \ldots, u_{2^{i-1}}, v_{2^{i-1}}, \ldots, v_{2}, v_{1}\right)
$$

where
for all $1 \leq j \leq 2^{i-1}:\left(u_{j}, v_{j}\right)= \begin{cases}\left(x_{j} w_{j}, z_{j} y_{j}\right) & \text { if } j \text { is odd } \\ \left(w_{j} x_{j}, y_{j} z_{j}\right) & \text { if } j \text { is even }\end{cases}$
We now define some other operations which construct new items. It is intuitively easier to understand these operations as though they are applied to simple tree sequences (represented as items). Thus, the subscript i stands for the fact that the corresponding operation is applied to (i)-items, whereas the subscript j identifies the appropriate tree in the simple tree sequence represented by the constructed item.

Definition 3.5 The operations Init $_{i, j}, L C_{i, j}$ and $R C_{i, j}$ are defined inductively as follows:

- For $i=0$, let $a \in T_{0}$.

1. Init $_{0,1}(a)=\left\{X \mid X \rightarrow a \in P_{0}\right\}$.
2. $L C_{0,1}(I)=R C_{0,1}(I)=\{I\}$, for any (0)-item I.

- For $1 \leq i \leq k$, and $1 \leq j \leq 2^{i-1}$:

Figure 6: Operation W_{i}

1. let $a \in T_{i}$. Then

$$
\begin{aligned}
\operatorname{Init}_{i, j}(a)= & \left\{I=\left[\left(A_{1}, B_{1}, \ldots, A_{j}, a, \ldots, a\right) ; I^{\prime}\right] \in \mathcal{I}_{i} \mid\right. \\
& \text { StartItem } m_{i, j}(I)=\text { true, and, there is a labeled production } \\
& l: A_{j} \rightarrow \bar{a} \in P_{i}, \text { such that the }(i-1) \text { item } \\
& I^{\prime} \in \begin{cases}\operatorname{Init}_{i-1, j}(l) \cup L C_{i-1, j}\left(\text { Init }_{i-1,1}(l)\right) & \text { if } 1 \leq j \leq 2^{i-2} \\
\operatorname{Init}_{i-1,2^{i-1}-j+1}(l) \cup R C_{i-1,2^{-1-1}-j+1}\left(\text { Init }_{i-1,1}(l)\right) & \text { otherwise }\}\end{cases}
\end{aligned}
$$

(note that if $i=1$, then $I^{\prime} \in L C_{0,1}\left(\operatorname{Init}_{0,1}(l)\right)=R C_{0,1}\left(\right.$ Init $\left._{0,1}(l)\right)=\operatorname{Init}_{0,1}(l)$)
2. Let $I_{1}=\left[\left(C_{1}, D_{1}, \ldots, C_{2^{i-1}}, D_{2^{i-1}}\right) ; I^{\prime}\right]$ be any (i)-item such that $\operatorname{Source}^{\operatorname{Item}}{ }_{i}\left(I_{1}\right)$ is true. Then

$$
\begin{aligned}
L C_{i, j}\left(I_{1}\right)= & \left\{I=\left[\left(A_{1}, B_{1}, \ldots, A_{j}, B_{j}, \ldots, A_{2,-1}, B_{2,-1}\right) ; I^{\prime \prime}\right] \in \mathcal{I}_{i} \mid\right. \\
& \text { StartItem } m_{i, j}(I)=\text { true, and there is a labeled } \\
& \text { production } l: A_{j} \rightarrow C_{1} \dot{B}_{j} \in P_{i} \text { such that } \\
& I^{\prime \prime} \in \begin{cases}L C_{i-1, j}\left(\text { Init }_{i-1,1}(l)\right) & \text { if } 1 \leq j \leq 2^{i-2} \\
R C_{i-1,2^{i-1}-j+1}\left(\text { Init }_{i-1,1}(l)\right) & \text { otherwise }\}\end{cases}
\end{aligned}
$$

(if $i=1$, then $I^{\prime \prime} \in \operatorname{Init}_{0,1}(l)$)
3. Let $I_{1}=\left[\left(C_{1}, D_{1}, \ldots, C_{2^{i-1}}, D_{2^{i-1}}\right) ; I^{\prime}\right]$ be any (i)-item such that SourceItem $m_{i}\left(I_{1}\right)$ is true. Then

$$
\begin{aligned}
R C_{i, j}\left(I_{1}\right)= & \left\{I=\left[\left(A_{1}, B_{1}, \ldots, A_{j}, B_{j}, \ldots, A_{2^{-1}}, B_{2^{i-1}}\right) ; I^{\prime \prime}\right] \in \mathcal{I}_{i}\right. \\
& \text { StartItem } \quad \text { ind }(I)=\text { true, and there is a labeled } \\
& \text { production } l: A_{j} \rightarrow \dot{B}_{j} C_{1} \in P_{i} \text { such that } \\
& I^{\prime \prime} \in \begin{cases}L C_{i-1, j}\left(\text { Init }_{i-1,1}(l)\right) & \text { if } 1 \leq j \leq 2^{i-2} \\
R C_{i-1,2^{-1}-j+1}\left(\text { Init }_{i-1,1}(l)\right) & \text { otherwise }\}\end{cases}
\end{aligned}
$$

(if $i=1$, then $\left.I^{\prime \prime} \in \operatorname{Init}_{0,1}(l)\right)$)

Figure 7: Init $_{i, j}(l)$

Intuitively, Init $_{i, j}(a)$ produces an initial set of (i)-items valid for a terminal symbol $a . L C_{i, j}\left(I_{1}\right)$ and $R C_{i, j}\left(I_{1}\right)$ concatenate the "degenerate" sequence represented by I_{1} to, respectively, the left and the right in the resulting simple tree sequence (see Figures 7 and 8). The definition ensures the following proposition analogous to proposition 3.1. The proof is inductive as before, and is left to the reader.

Proposition 3.2 1. If $I \in \operatorname{Init} i_{i, j}(a)$, then I is valid for the factorization

$$
\left(u_{1}, u_{2}, \ldots, u_{2 i-1}, v_{2 i-1}, \ldots, v_{2}, v_{1}\right)
$$

where for all $1 \leq m \neq j \leq 2^{i-1}, u_{m}=v_{m}=\epsilon$ and

- either $u_{j}=\epsilon$ and $v_{j}=a$, or
- $u_{j}=a$ and $v_{j}=\epsilon$.

If $i=0$ then I is simply valid for a.
2. Let I_{1} be valid for the factorization $\left(x_{1}, x_{2}, \ldots, x_{2,-1}, y_{2,-1}, \ldots, y_{2}, y_{1}\right)$ of string x. Then

- every item $I \in L C_{i, j}\left(I_{1}\right)$ is valid for the factorization $\left(u_{1}, u_{2}, \ldots, u_{2^{i-1}}, v_{2^{i-1}}, \ldots, v_{2}, v_{1}\right)$ of x where $x=u_{j}$ (hence all other u_{i} 's and v_{i} 's are empty).
- every item $I \in R C_{i, j}\left(I_{1}\right)$ is valid for the factorization $\left(u_{1}, u_{2}, \ldots, u_{2^{i-1}}, v_{2^{i-1}}, \ldots, v_{2}, v_{1}\right)$ of x where $x=v_{j}$ (hence all other u_{i} 's and v_{i} 's are empty).
(Observe that if $i=0$ then both I_{1} and I are valid for x).

3.2 Soundness and Completeness of the Operations

We now state a lemma which asserts the soundness and completeness of the operations with respect to items and the factorizations that they are valid for. We shall use this result to prove the correctness of algorithm Recognizer ${ }_{k}$.

Lemma 3.3 For all $0 \leq i \leq k$, the following holds:
Let $\left(u_{1}, \ldots, u_{2^{i-1}}, v_{2^{i-1}}, \ldots, v_{1}\right)$ be a factorization of a nonempty string $x \in T_{i}^{+}$, let I be any (i)-item. Then
I is valid for $\left(u_{1}, \ldots, u_{2},-1, v_{2},-1, \ldots, v_{1}\right)$ iff
(A) $i=0, I$ is valid for $x=u_{1}$, and either
(1) $u_{1}=a \in T_{0}$, and $I \in$ Init $_{0,1}(a)$, or
(2) $u_{1}=x_{1} y_{1}$ such that both x_{1} and y_{1} are nonempty, there are items I_{1} and I_{2} valid respectively for x_{1} and y_{1}, and $I \in W_{0}\left(I_{1}, I_{2}\right)$
(B) $i \geq 1, I=\left[\left(X_{1}, Y_{1}, \ldots, X_{2^{i-1}} Y_{2^{i-1}}\right) ; I^{\prime}\right]$, and either

Figure 8: Operations $L C_{i, j}$ and $R C_{i, j}$
(1) there is a terminal symbol $a \in T_{i}$, such that $x=a$, and $I \in \operatorname{Init}_{i, j}(a)$ for some $j: 1 \leq j \leq 2^{i-1}$, or
(2) there is some $1 \leq j \leq 2^{i-1}$ such that $x=u_{j}$ (or $x=v_{j}$), and an item I_{1} for which $\operatorname{SourceItem}_{i}\left(I_{1}\right)$ is true, where $I \in L C_{i, j}\left(I_{1}\right)$ (respectively, $I \in R C_{i, j}\left(I_{1}\right)$), and I_{1} is valid for a factorization $\left(y_{1}, y_{2}, \ldots, y_{2^{i}}\right)$ of u_{j} (respectively, v_{j}).
(3) there are (i)-items I_{1} and I_{2} respectively valid for factorizations $\left(x_{1}, x_{2}, \ldots, x_{2^{i-1}}, y_{2^{i-1}}, \ldots, y_{2}, y_{1}\right)$ and for $\left(w_{1}, w_{2}, \ldots, w_{2^{i-1}}, z_{2^{i-1}}, \ldots, z_{2}, z_{1}\right)$, where
for all $1 \leq j \leq 2^{i-1}:\left(u_{j}, v_{j}\right)= \begin{cases}\left(x_{j} w_{j}, z_{j} y_{j}\right) & \text { if } j \text { is odd } \\ \left(w_{j} x_{j}, y_{j} z_{j}\right) & \text { if } j \text { is even }\end{cases}$ and $I \in W_{i}\left(I_{1}, I_{2}\right)$.

Proof Sketch: The reverse direction of the lemma follows from the Propositions 3.1 and 3.2 .
The proof in the forward direction proceeds by induction on i; statement (A) forms the basis of the inductive assertion and is a direct consequence of the fact that G_{0} is a context-free grammar in Chomsky Normal Form.

Consider an (i)-item $I=\left[\left(X_{1}, Y_{1}, \ldots, X_{2 i-1} Y_{2^{i-1}}\right) ; I^{\prime}\right]$ which is valid for the (i)-factorization $\left(u_{1}, \ldots, u_{2^{i-1}}, v_{2^{i-1}}, \ldots, v_{1}\right)$ of a nonempty string x. By definition, there is a sequence of simple trees $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{2^{i-1}}$ such that for all $1 \leq j \leq 2^{i-1}, \Gamma_{j}$ has root node labeled X_{j}, foot node labeled Y_{j}, and yields $\left(u_{j}, v_{j}\right)$. Moreover, I^{\prime} is valid for the $(i-1)$-factorization $\left(\operatorname{Spine}\left(\Gamma_{1}\right), \ldots, \operatorname{Spine}\left(\Gamma_{2^{-1}}\right)\right)$ of the control string $y=\#\left(\operatorname{Spine}\left(\Gamma_{1}\right), \ldots, \operatorname{Spine}\left(\Gamma_{2^{-1}}\right)\right)$.

We shall illustrate the proof for the forward direction when $i=1$, since it provides the basic argument used for the rest of the cases where $i>1$. By definition, I is an item of the form [$\left.\left(X_{1}, Y_{1}\right) ; I^{\prime}\right]$ and represents the simple tree Γ_{1} which yields $\left(u_{1}, v_{1}\right)$, where $\#\left(u_{1}, v_{1}\right)=x$. Also, I^{\prime} is a single nonterminal of G_{0} such that $I^{\prime} \stackrel{+}{\sigma_{0}} y$. Consider the following different cases:

1. \# $\left(u_{1}, v_{1}\right)=a$, a single terminal symbol in T_{1}.

It is easily verified as a consequence of the CNF property of G_{1}, that the tree Γ_{1} must be one of the trees in Figure 9. Let $u_{1}=a$. Now $I^{\prime} \in \operatorname{Init} t_{0}(l)$ and hence $\in R C_{0,1}\left(\operatorname{Init} t_{0}(l)\right)$ by definition; therefore

Figure 9: Simple tree corresponding to $x=a$
for the tree (a) in the Figure, we must have that $I \in \operatorname{Init}_{1}(a)$ by definition (note that StartItem $m_{1,1}(I)$ is true). Hence I is valid for (a, ϵ) and satisfies part (1) of case (B) of the lemma. A similar argument disposes of the case when I is valid for (ϵ, a).

Now consider tree (b) in the Figure, where $u_{1}=a$. Since every control word in the tree other than the spine must be in the control set, we must have that Z_{0}, the start symbol of G_{0} is valid for l^{\prime}. Also, $I^{\prime} \in \operatorname{Init}_{0}(l)$ and hence $\in L C_{0,1}\left(\right.$ Init $\left._{0}(l)\right)$. But then there is an item $I_{0}=\left[\left(V_{1}, a\right) ; Z_{0}\right]$ such that $I \in C o n 1,1$, left $\left(I_{0}\right)$ and I_{0} is valid for the factorization (a, ϵ) (or (ϵ, a)) of \# $\left(u_{1}, v_{1}\right)$. This satisfies part (2) of case (B) of the lemma. The same holds of tree (c) in the figure except that $v_{1}=a$ and $I \in R C_{1,1}\left(I_{0}\right)$.
2. $\left(u_{1}, v_{1}\right)=\left(a_{1} \ldots a_{p}, a_{p+1} \ldots a_{q}\right)$. Now, there are three possible subcases; viz. $p=0, p=q$, and $1 \leq p<q$. The first two subcases have similar proofs so we shall only illustrate the instance when $p=0$.
In particular, I is valid for ($\epsilon, a_{1} \ldots a_{q}$) and represents the different trees shown in Figure 10. The situation with respect to tree (a) is similar to the one encountered before; thus we have that there is an item $I_{0}=\left[\left(V_{1}, a_{r}\right) ; Z_{0}\right]$ which is valid for the factorization $\left(a_{1} \ldots a_{r}, a_{r+1} \ldots a_{q}\right)$ (or, the factorization $\left.\left(a_{1} \ldots a_{r-1}, a_{r} \ldots a_{q}\right)\right)$, such that $I \in R C_{1,1}\left(I_{0}\right)$. Part (2) of case (B) of the lemma holds and we are done.

For the tree (b), it can be verified that the spine y of the tree must have length greater than 1 . By part (A) of the lemma, and the fact that I^{\prime} is valid for y, it must be true that $y=x_{1} y_{1}$, and there are (0)-items Q_{1} and Q_{2} respectively valid for x_{1} and y_{1} such that $I^{\prime} \in W_{0}\left(Q_{1}, Q_{2}\right)$. From the figure and the previous definitions, it should be clear that $I \in W_{1}\left(I_{1}, I_{2}\right)$ where $I_{1}=\left[\left(X_{1}, V_{m}\right) ; Q_{1}\right]$ and $I_{2}=\left[\left(V_{m}, Y_{1}\right) ; Q_{2}\right]$ are items respectively valid for the factorizations $\left(\epsilon, u_{2}\right)$ and $\left(\epsilon, v_{2}\right)$. Thus I satisfies part (3) of case (B) of the lemma.
Finally, consider the case when $1 \leq p<q$. We have only one possible form of simple tree shown in Figure 11. Again the argument in the previous paragraph works; this should be evident from the figure and the foregoing explanation.

$y=1$

(a)

$$
\begin{aligned}
& y=x_{1} \quad y_{1} \\
& u_{2} v_{2}=q_{1} \quad a_{q}
\end{aligned}
$$

(b)

Figure 10: Simple tree corresponding to $x=\#\left(\epsilon, a_{1} a_{2} \ldots a_{q}\right)$

For $i>1$, the proof essentially follows the same lines except that we use the three cases in statement (B) for our inductive assertions about I^{\prime} and y. The details are fairly tedious and are omitted here. The reader may work his way through them by using the appropriate definitions introduced previously.

3.3 The Recognition Algorithm

In the discussion so far, we have explicitly talked about sequences of strings over T_{i} and their relationships to (i)-items. The algorithm, however, uses a recognition matrix whose entries are indexed according to the specific input string. We therefore, provide some additional notation which relates factorizations of strings to matrix indices.

Definition 3.6 Given $n, i \geq 0$, Indices (n, i) is the set of tuples, $\left(p_{1}, p_{2}, \ldots, p_{2^{++1}}\right)$, of natural numbers $0 \leq p_{1} \leq p_{2} \leq \ldots \leq p_{2+1} \leq n$, such that there exists an $m, 1 \leq m \leq 2^{i}$, with $\left(p_{2 m}-p_{2 m-1}\right)>0$. The size of $\left(p_{1}, p_{2}, \ldots, p_{2^{++1}}\right) \in \operatorname{Indices}(n, i)$ is given by

$$
\sum_{j=1}^{2^{\prime}}\left(p_{2 j}-p_{2 j-1}\right)
$$

Whenever the value of n is understood from the context, elements of Indices (n, i) will simply be denoted as (i)-indices. Note that the size of every (i)-index is greater than 0 .

Let $\alpha=a_{1}, \ldots, a_{n} \in T_{k}{ }^{+}$, the input string, and n, its length, be considered fixed in the subsequent discussion. Let ${ }_{i} \alpha_{j}, \quad 0 \leq i \leq j \leq n$, stand for the substring $a_{i+1} \ldots a_{j}$ of α. In particular, if $i=j$ then ${ }_{i} \alpha_{j}$ denotes the empty string ϵ.

Given input string $\alpha \in T_{k}^{+}$, the k th recognition algorithm creates a 2^{k+1}-dimensional matrix M_{k}, with each dimension indexed from 0 through n (inclusive), which is accessed by (k)-indices. Its entries contain (k)-items and satisfy the following invariant:

Lemma 3.4 Let Recognizer ${ }_{k}$ be the k-th recognition recognition algorithm. Then given an input string $\alpha=a_{1} a_{2} \ldots a_{n}$ of length $n, \mathrm{a}(k)$-index $\left(i_{1}, i_{2}, \ldots, i_{2^{k+1}}\right)$, and a (k)-item $\left[\left(A_{1}, B_{1}, \ldots, A_{j}, B_{j}, \ldots, A_{2^{-1}}, B_{2^{i-1}}\right) ; I^{\prime}\right]$, Recognizer ${ }_{k}$ satisfies the invariant condition

Figure 11: Simple tree corresponding to $x=\#\left(a_{1} \ldots a_{p}, a_{p+1} \ldots a_{q}\right)$

$$
\begin{aligned}
& {\left[\left(A_{1}, B_{1}, \ldots, A_{j}, B_{j}, \ldots, A_{2^{i-1}}, B_{2^{i-1}}\right) ; I^{\prime}\right] \in M_{k}\left(i_{1}, i_{2}, \ldots, i_{2^{k+1}}\right) \text { iff }} \\
& {\left[\left(A_{1}, B_{1}, \ldots, A_{j}, B_{j}, \ldots, A_{2^{i-1}}, B_{2^{i-1}}\right) ; I^{\prime}\right] \text { is valid for the tuple }} \\
& \text { of strings }\left(i_{1} \alpha_{i_{2}}, \ldots, i_{2^{k+1}-1} \alpha_{i_{2^{k+1}}}\right) \text { of the input string } \alpha .
\end{aligned}
$$

The algorithm is a dynamic programming algorithm, i.e., it starts out with items constructed by Init $_{k, j}$ for $1 \leq j \leq 2^{k-1}$, and then applies the operations $W_{k}, L C_{k, j}$ and $R C_{k, j}$ on items in appropriately indexed matrix entries which are already computed. The resulting (k)-items are inserted into the entry being currently computed. We simply need to ensure that entries of the matrix are accessed in the correct order so as to preserve the invariant.

Observe first that the definitions of the predicates StartItem $_{k, j}$, SourceItem $_{k}$ and Compatible $_{k}$ on (k)-items can be translated into corresponding definitions for (k)-indices, as follows:

Definition 3.7 For all (k)-indices $\arg _{1}=\left(p_{1}, p_{2}, \ldots, p_{2^{k+1}}\right), \arg _{2}=\left(q_{1}, q_{2}, \ldots, q_{2^{k+1}}\right)$, and current $=\left(i_{1}, i_{2}, \ldots, i_{2^{k+1}}\right)$,
a For any $1 \leq j \leq 2^{k}$, we say that StartIndex $x_{k, j}($ current $)$ is true iff $\left(i_{2 m}-i_{2 m-1}\right)=0$ for all $1 \leq m \neq j \leq 2^{k}$. Note that the size of current is equal to ($i_{2 j}-i_{2 j-1}$).
b SourceIndex (current $^{\prime}$) is true iff the size of current $=\left(i_{2^{k+1}}-i_{1}\right)$.
c Indices $\arg _{1}$ and $\arg _{2}$ are compatible with current, denoted ICompatible ${ }_{k}\left(\arg _{1}, \arg g_{2}\right.$, current $)$, iff either

- $k=0, p_{2}=q_{1}$, and $\left[p_{1}, q_{2}\right]=\left[i_{1}, i_{2}\right]$, or
- $k \geq 1$ and for all $1 \leq m \leq 2^{k-1}, \arg _{1}$ and $\arg _{2}$ satisfy:

1. if m is odd, then

$$
\begin{aligned}
& -\left[p_{2 m}, p_{2^{k+1}-2 m+1}\right]=\left[q_{2 m-1}, q_{2^{k+1}-2 m+2}\right], \text { and } \\
& -\left[p_{2 m-1}, q_{2 m}, q_{2^{k+1}-2 m+1}, p_{2^{k+1}-2 m+2}\right]=\left[i_{2 m-1}, i_{2 m}, i_{2^{k+1}-2 m+1}, i_{2^{k+1}-2 m+2}\right] .
\end{aligned}
$$

2. if m is even, then

$$
\begin{aligned}
& -\left[q_{2 m}, q_{2^{k+1}-2 m+1}\right]=\left[p_{2 m-1}, p_{2^{k+1}-2 m+2}\right], \text { and } \\
& -\left[q_{2 m-1}, p_{2 m}, p_{2^{k+1}-2 m+1}, q_{2^{k+1}-2 m+2}\right]=\left[i_{2 m-1}, i_{2 m}, i_{2^{k+1}-2 m+1}, i_{2^{k+1}-2 m+2}\right] .
\end{aligned}
$$

Note that the size of current $=$ the size of $\arg _{1}+$ the size of $\arg _{2}$.
With these auxiliary definitions, it is easy to see that Init $_{k, j}$ should initialize entries whose indices have size 1 and satisfy either $\operatorname{StartIndex} x_{k, j}$ or StartIndex $x_{k, 2^{k}-j+1}$. Similarly, operation $L C_{k, j}$ (respectively,
$R C_{k, j}$) takes arguments from entries whose indices are of size m for some $m \leq n$, and satisfy Source Index ${ }_{k}$. The resulting items satisfy the predicate StartItem $m_{k, j}$ but do not satisfy Source Item m_{k}. These items are placed in entries whose indices are of the same size m but satisfy StartIndex ${ }_{k, j}$ (respectively, satisfy StartIndex $x_{k 2^{k}-j+1}$). Finally, W_{k} is applied to entries indexed by $\arg _{1}$ and $\arg _{2}$ and the result placed in current, if ICompatible(arg $_{1}$, arg $_{2}$, current $)$ is true.

The foregoing discussion implies that it suffices to access the matrix in increasing order of the size of its (k)-indices, with no further restriction on the order for (k)-indices of the same size.

Algorithm 3.1 (Recognizer $_{k}$) For an input string $\alpha=a_{1} \ldots a_{n}$ of length n, the algorithm creates a 2^{k+1}-dimensional recognition matrix M_{k} such that matrix entry $M\left(i_{1}, i_{2}, \ldots, i_{2^{k+1}}\right)$ is referenced iff $\left(i_{1}, i_{2}, \ldots, i_{2^{k+1}}\right)$ belongs to \mathcal{I}_{k}.

Initialization:

For all (k)-indices $\arg =\left(i_{1}, i_{2}, \ldots, i_{2^{k+1}}\right)$ such that arg has size 1 ,
for all $0 \leq i \leq(n-1)$ if StartIndex $x_{k, j}($ arg $)$ is true for some j
and $i_{2 j}=(i+1), i_{2 j-1}=i$, do
perform

$$
M_{k}(\arg):=\operatorname{Init}_{k, j}\left(a_{i+1}\right) ;
$$

Main Loop:

For all (k)-indices current of size $=1,2, \ldots, n$ do
begin
for all (k)-indices $\arg _{1}$ and $\arg _{2}$ such that
ICompatible ${ }_{k}\left(\right.$ arg $_{1}$, arg $_{2}$, current $)$, do
perform
(I) $M_{k}($ current $):=M_{k}($ current $) \cup W_{k}\left(M_{k}\left(\arg _{1}\right), M_{k}\left(\arg _{2}\right)\right)$;
for all $1 \leq j \leq 2^{k}$
if StartIndex ${ }_{k, j}$ (current) then
begin
if $j \leq 2^{k-1}$ then for all (k)-indices arg such that Source Index ${ }_{k}(\arg)$ is true and size of $\arg =$ size of current, do perform
(II) $M_{k}($ current $):=M_{k}($ current $) \cup L C_{k, j}\left(M_{k}(\arg)\right)$; else $\% j>2^{k-1}$ for all (k)-indices arg such that Source Index ${ }_{k}(\arg)$ is true and size of $\arg =$ size of current, do perform
(III) $M_{k}($ current $):=M_{k}($ current $) \cup R C_{k, j}\left(M_{k}(\arg)\right) ;$ end end

Recognition Condition:

If there exists a (k)-index arg such that
(a) size of $\arg =n$,
(b) SourceIndex $x_{k}($ arg $)$ is true, and
(c) $M_{k}(\arg)$ contains some item $I=\left[\left(Z_{k}, \ldots\right) ; I^{\prime}\right]$ satisfying $\operatorname{SourceItem}_{k}(I)$

then declare string α accepted

else reject α

It may be observed that Recognizer ${ }_{0}$ is simply the CKY algorithm. The instance of the invariant stated in Lemma 3.4 for $k=0$ is the familiar invariant satisfied by the CKY algorithm, viz. a nonterminal A is in $M_{0}(i, j)$ iff $A \underset{G_{0}}{\stackrel{*}{\Rightarrow}} a_{i+1} \ldots a_{j}$. The correctness of the algorithm immediately follows from the Lemma, which can be proved by making use of the soundness and completeness of the operations with respect to items and factorizations of the input string.

The reader will observe that the set \mathcal{I}_{k} is bounded in size by a constant

$$
Q_{k}=\left|N_{k}\right|^{2^{k}}\left|N_{k-1}\right|^{2^{k-1}} \ldots\left|N_{0}\right|
$$

which depends only on the sequence of grammars $G_{0}, G_{1}, \ldots, G_{k}$. Consequently, for any set (or, any pair of sets if the operation used is W_{k}) of (k)-items, the results of applying the operations are sets of (k)-items of constant size $O\left(Q_{k}\right)$ and can be computed in time at most $O\left(Q_{k}{ }^{2}\right)$. Moreover, the algorithm uses a constant number of operations.

Now, the main loop of the algorithm is executed $O\left(n^{2^{k+1}}\right)$ times, once for each (k)-index. Statements (I), (II) and (III) are respectively executed in secondary loops, each of which take $O\left(n^{2^{k}}\right)$ time within a main loop iteration, thus giving an overall time complexity of $O\left(n^{2^{k}+2^{k+1}}\right)=O\left(n^{3 * 2^{k}}\right)$ for the execution of the main loop. The initialization and recognition condition can be implemented in $O\left(n^{2^{k}}\right)$ and $O\left(n^{2^{k}-1}\right)$ time respectively. Hence,

Corollary 3.1 For any $k \geq 0$, and any control grammar \mathcal{G} generating language L in the family $\mathrm{CLH}_{\mathbf{k}}$, there is a constant Q_{k} which depends on \mathcal{G} such that Recognizer $_{k}$ accepts L in polynomial time $O(T(n))$ and polynomial space $O(S(n))$ where $T(n)=Q_{k}{ }^{2} n^{3 * 2^{k}}$ and $S(n)=Q_{k} n^{2^{k+1}}$, for an input string of length n.

4 Parallel Recognition of Languages in CLH

In [9] it was shown that $\mathbf{C F L}=\mathbf{C L H}_{\mathbf{0}}$ is in $\mathbf{N C}{ }^{(2)}$, the class of languages recognizable by simultaneous $(\log n)$-space bounded and $\left(\log ^{2} n\right)$-time bounded alternating Turing machines (ATMs), or equivalently, by uniform boolean circuits of polynomial size and $\left(\log ^{2} n\right)$ depth [8]. We generalize this result to the following: the class of languages $\mathbf{C L H}_{\mathbf{k}}$, for any fixed $k \geq 0$, is in $\mathbf{N C}{ }^{(\mathbf{2})}$. In fact, we prove a stronger theorem, namely,

Theorem 4.1 The class of languages $\mathrm{CLH}_{\mathbf{k}}$, for any fixed $k \geq 0$, is in LOGCFL.
LOGCFL is the class of languages log-space reducible to context-free languages. In [9] it was shown that LOGCFL is in $\mathrm{NC}^{(2)}$; thus, we have

Corollary 4.1 The class of languages $\mathbf{C L H}_{\mathbf{k}}$, for any fixed $k \geq 0$, is in $\mathbf{N C}^{(\mathbf{2})}$.
The proof of Theorem 4.1 uses the well-known characterization of LOGCFL in terms of ATMs, namely, LOGCFL is exactly the class of languages accepted by simultaneously ($\log n$)-space bounded and polynomial tree-size bounded ATMs.

An alternating Turing machine (ATM) $[2,9,8]$ is a generalization of a nondeterministic TM whose state set is partitioned into "universal" and "existential" states. As with a nondeterministic TM, one can view the computation of an ATM as a tree of configurations. A configuration is called universal (existential) if the state associated with the configuration is universal (existential). A computation tree of an ATM M on input w is a tree whose nodes are labeled by configurations of M on w, such that the root is the initial configuration and the children of any non-leaf node labeled by a universal (existential) configuration include all (one) of the immediate successors of that configuration. A computation tree is accepting iff it is finite and all the leaves are accepting configurations. M accepts w if there is an accepting computation tree for M on input w. Note that nondeterministic TMs are essentially ATMs with only existential states. We assume
that ATMs have a read-only input tape with endmarkers. We use a variant of an ATM, called an indexing ATM [9], which allows sublinear time bounds. An indexing ATM has a special "index tape"; whenever an integer i is written on the index tape, the i-th symbol of the input is immediately accessible to the ATM. Thus, in $\log n$ steps, it can read any position on the input tape.

A language L is accepted by an ATM M within time $T(n)$ (space $S(n)$) if for every string w in L of length n, there is an accepting computation tree for M on w of height at most $T(n)$ (each of whose nodes is labeled by a configuration using space at most $S(n)$). Similarly, L is accepted by M within tree-size bound $Z(n)$ if for every string in L of length n, there is an accepting computation tree of size (number of nodes) at most $Z(n)$.
Proof of Theorem 4.1: Let L be language in $\mathbf{C L H}_{\mathbf{k}}$ defined by a sequence $G_{0}, G_{1}, \ldots, G_{k}$, where G_{0} is a context-free grammar in CNF and $G_{i}, 1 \leq j \leq k$ is an LDCFG in CNF. We construct an ATM M which for a given string α checks that α is in L by essentially executing the recursive version of algorithm Recognizer $_{k}$ discussed in the previous section. M does this by splitting at a universal state and performing steps I and II below:
I. Guess the length n of the input string α and verify by checking that the $(n+1)$-st symbol of the input tape is the endmarker.
II. Guess a (k)-index P such that $\operatorname{size}(P)=n$ and $\operatorname{Source} I n d e x_{k}(P)$ holds. Guess a (k)-item $I=\left[\left(Z_{k}, \ldots\right)\right.$; $\left.I^{\prime}\right]$, where Z_{k} is the start symbol of G_{k} and $\operatorname{SourceItem}_{k}(I)$ holds. Accept iff Verify (I, P) accepts. Informally, given a (k)-item I and a (k)-index $P=\left(i_{1}, i_{2}, \ldots, i_{2^{k+1}}\right)$, procedure Verify (I, P) accepts iff I is valid for the tuple of strings $\left(i_{1} \alpha_{i_{2}}, \ldots, i_{2^{k+1}-1} \alpha_{i_{2^{k+1}}}\right)$.
procedure Verify $y_{k}(I, P)$:

1. If $\operatorname{size}(P)>1$ then guess an $r \in\{2,3\}$ and go to step r. Otherwise, if StartIndex $x_{k, j}(P)$ holds for some j and $i_{2 j}=(i+1)$, then if $I \in \operatorname{Init}_{k, j}\left(a_{i+1}\right)$, accept and halt; else go to step 3.
2. [I obtained via W_{k}] Guess (k)-indices P_{1} and P_{2} such that I Compatible $_{k}\left(P_{1}, P_{2}, P\right)$ holds. Guess (k)-items I_{1} and I_{2} such that $I \in W_{k}\left(I_{1}, I_{2}\right)$. Accept iff Verify $y_{k}\left(I_{1}, P_{1}\right)$ and Verify $y_{k}\left(I_{2}, P_{2}\right)$ both accept.
3. [I obtained via $L C_{k, j}$ or $R C_{k, j}$] If $\operatorname{StartIndex}_{k, j}(P)$ does not hold for any j, reject and halt. Otherwise, let j be such that StartIndex $x_{k, j}(P)$ holds. If If $j \leq 2^{k-1}$ go to step 3.1 ; else go to step 3.2.
3.1 Guess a (k)-index P_{1} such that SourceIndex $x_{k}\left(P_{1}\right)$ holds and $\operatorname{size}\left(P_{1}\right)=\operatorname{size}(P)$. Guess a (k)-item I_{1} such that SourceItem $m_{k}\left(I_{1}\right)$ holds and $I \in L C_{k, j}\left(I_{1}\right)$. Accept iff Verify $y_{k}\left(I_{1}, P_{1}\right)$ accepts.
3.2 Guess a (k)-index P_{1} such that SourceIndex ${ }_{k}\left(P_{1}\right)$ holds and $\operatorname{size}\left(P_{1}\right)=\operatorname{size}(P)$. Guess a (k)-item I_{1} such that SourceItem $_{k}\left(I_{1}\right)$ holds and $I \in R C_{k, j}\left(I_{1}\right)$. Accept iff Verify $y_{k}\left(I_{1}, P_{1}\right)$ accepts.
end Verify y_{k}.
The proof of correctness of the above procedure follows from the proof of correctness of procedure Recognizer ${ }_{k}$ and is left to the reader. That the ATM M uses $O(\log n)$ space is easily seen from the fact that it stores a constant number of (k)-items and (k)-indices; a (k)-item requires constant space and a (k)-index requires $2^{k+1} \log n=O(\log n)$ space.
We now show that an accepting computation tree of M on an input of length n has size polynomial in n. Consider the first call to Verify y_{k} in step II. Clearly, the second argument of this call is a (k)-index whose size is n. The execution of this call results in further recursive calls to Verif y_{k} in either steps 2 , 3.1 or 3.2 . The recursion ends when step 1 is executed, which happens when the argument (k)-index has size 1 .

Figure 12: Tree Δ

The sequence of recursive calls can be viewed as binary tree Δ whose nodes are labeled by the sizes of the (k)-indices that appear as arguments in the calls, as illustrated in Figure 12. In tree Δ, a node with two children represents the two recursive calls to Verify in step 2, and a node with one child represents the single recursive call in either step 3.1 or step 3.2 . A leaf represents the execution of step 1 , with argument (k)-index of size 1. (Since we are considering an accepting computation tree, all leaves represent "acceptance" in step 1).
If a node in Δ represents a (k)-index of size m and it has two children representing (k)-indices of sizes m_{1} and m_{2}, then $m_{1}, m_{2}>0$ and $m_{1}+m_{2}=m$. On the other hand, if the node has only one child representing a (k)-index P_{1} of length m_{1}, then $m_{1}=m$. Now, the (k)-item I_{1} corresponding to P_{1} should be such that SourceItem $_{k}\left(I_{1}\right)$ holds. If this is the case, one can verify from the definitions that I_{1} cannot be in $L C_{k, j}\left(I_{2}\right)$ or $R C_{k, j}\left(I_{2}\right)$ for any I_{2}. This implies that if a recursive call to Verify ${ }_{k}$ results in the execution of either step 3.1 or 3.2 , then the next recursive call cannot result in the execution of either of these steps and still guarantee acceptance. Thus, in tree Δ, if node m has only one child m_{1}, then m_{1} must either have two children or be a leaf node.
Let $T(n)$ be the number of nodes in tree Δ whose root represents a (k)-index of size n. Then, for $n>1$,

$$
T(n) \leq \max _{1 \leq j \leq(n-1)}(2+T(n-j)+T(j))
$$

where the constant 2 represents a chain of at most 2 nodes in the tree, the first of which has the second one as its only child, and the second of which has two children (representing the term $T(n-j)+T(j)$). Since $T(1)=1$, the solution to the above recurrence is easily seen by induction to be

$$
T(n) \leq(3 n-2)=O(n)
$$

Finally, we note that the portion of the accepting computation tree Γ of the ATM M whose root corresponds to the first call to Verify y_{k} in step II is "isomorphic" to the tree Δ except that each node in Δ would correspond to $O(\log n)$ nodes in Γ to take into account the steps carried out by the ATM in writing the (k)-indices on its worktapes, and in the case of step 1 of Verif y_{k}, in looking at a symbol on the input tape. Together with the $O(\log n)$ nodes required by step I, the size of the accepting computation tree is thus $O(n \log n)$.

5 Conclusions

We have shown that a hierarchy of non-context-free language classes generated by control grammars can be recognized in polynomial time, settling an open problem posed in [15]. Previously, the best
known upper bound was exponential time. We have also shown that every language class in this hierarchy is in $\mathbf{N C}^{(2)}$, generalizing Ruzzo's result [9] that the class of context-free languages is in $\mathbf{N C}^{(2)}$.

An interesting question that we have not addressed is the following: suppose that the control set of a given control grammar is a language not generated by some grammatical family but instead a language from some general complexity class, say $D S P A C E(\log n)$ or $P T I M E$, what can be said about the complexity of the language generated by this control grammar? In other words, a control grammar can be thought of as the grammatical analog of an oracle Turing machine, with the control set taking the role of an oracle. It would be interesting to investigate whether such control grammars give rise to complexity hierarchies similar to the logspace and polynomial-time hierarchies defined in $[2,10,11]$.

A Chomsky Normal Form for CLH

We prove the Chomsky Normal Form lemma 2.1; i.e. the existence of a defining sequence of grammars for a language L in the family $\mathrm{CLH}_{\mathbf{k}}$, where each grammar in the sequence is in CNF as defined in an earlier section.
Let G be an arbitrary LDCFG. Productions in G of the form $l: X \rightarrow \bar{\epsilon}$ and $l: X \rightarrow \dot{Y}$ for nonterminals X, Y are respectively called ϵ-productions and chain-productions of G. The grammar is said to be in two-normal-form if every labeled production of G either has exactly two nonterminal symbols on the right-hand side, or has a single terminal symbol or ϵ on the right-hand side. G is said to be in Chomsky Normal Form (abbreviated as CNF) iff it is in two-normal-form and furthermore, does not contain any ϵ-productions.

For the basis of the proof, it suffices to know that any context-free language can be generated by a context-free grammar in CNF, cf. [5]. Assume that every language in $\mathbf{C L H}_{\mathbf{k}-1}$ is definable by a sequence of grammars in CNF (see definition 2.3).
Consider $L \in \mathbf{C L H}_{\mathbf{k}}$ for some k, and let $L=L(\{G, C\})$ for some LDCFG G and a control set $C \in \mathbf{C L H}_{\mathbf{k}-1}$. Let V_{N} and V_{T} denote the nonterminals and terminals of G respectively. In an intermediate step, we produce from G and C, a control grammar $\{H, D\}$ such that H is in two-normalform, $D \in \mathbf{C L H}_{\mathbf{k}-1}$, and $L=L(\{H, D\})$.

A. 1 Two Normal Form

The construction involves the following two stages:

Stage I

- For every terminal symbol a of G, we introduce a new nonterminal V_{a}, a new label l_{a} and a new production $l_{a}: V_{a} \rightarrow \dot{a}$. Now, consider a non-CNF production $p=l: X \rightarrow X_{1} \ldots \dot{X}_{i} \ldots X_{n}$ of G. This production is transformed to $p=l: X \rightarrow Y_{1} \ldots Y_{i} \ldots Y_{n}$, where $Y_{j}=X_{j}$ if X_{j} is a nonterminal symbol, or else $Y_{j}=V_{a}$ if $X_{j}=a$, where a is terminal. Simultaneously, we define the substitution

$$
\Theta_{1}(l)= \begin{cases}l & \text { if } X_{i} \text { is a nonterminal. } \\ l \cdot l_{a} & \text { if } X_{i}=a\end{cases}
$$

Let G_{1} be the new LDCFG with the foregoing additions and transformations to G.

- We define the new control set C_{1} to be

$$
C_{1}=\left\{l_{a} \mid a \in V_{T}\right\} \cup \Theta_{1}(C)
$$

It is very easy to show that $L=L(\{G, C\})=L\left(\left\{G_{1}, C_{1}\right\}\right.$; the detailed proof is left to the reader.

Stage II

- Let V_{ϵ} be a new nonterminal, and $l_{\epsilon}: V_{\epsilon} \rightarrow \check{\epsilon}$ be a new production. For every chain-production $l: X \rightarrow \check{Y}$, we transform it to the new production $l: X \rightarrow \check{Y} V_{\epsilon}$.
- For every production $p=l: X \rightarrow X_{1} \ldots \check{X}_{i} \ldots X_{n}$ of G_{1}, with $n>2$, we discard p and create
instead the following set of new productions (see Figure 13):

$$
\begin{array}{lll}
l_{1} & : & X \rightarrow X_{1} \check{Y}_{1} \\
\vdots & & \\
l_{i-1} & : & Y_{i-2} \rightarrow X_{i-1} Y_{i-1} \\
l_{i} & : & Y_{i-1} \rightarrow \dot{X}_{i} Y_{i} \\
l_{i+1} & : & Y_{i} \rightarrow X_{i+1} Y_{i+1}^{-} \\
\vdots & \\
l_{n-2} & : & Y_{n-3} \rightarrow X_{n-2} Y_{n-2} \\
l_{n-1} & : & Y_{n-2} \rightarrow X_{n-1} \dot{X}_{n}
\end{array}
$$

Figure 13: Expansion of a production to two-normal-form productions.
Simultaneously, define the substitution Θ_{2} such that $\Theta(l)=l_{1} l_{2} \ldots l_{i}$, and include the string $l_{i+1} l_{i+2} \ldots l_{n-1}$ to a set Prefixes. Let H be the new LDCFG so obtained from G_{1}.

- Let the new control set be given by

$$
D=\Theta_{2}\left(C_{1} \cup \text { Prefixes } \cdot C_{1}\right) \cup\left\{l_{\epsilon}\right\}
$$

where ((dot) represents concatenation of languages.
Note that the substitutions Θ_{1} and Θ_{2} behave like the identity substitutions on labels not specified above. Clearly, H is an LDCFG in two-normal-form. A straightforward inductive proof can be constructed to show that control grammars $\left\{G_{1}, C_{1}\right\}$ and $\{H, D\}$ generate the same languages. Now every family in CLH is a full AFL [15], and C_{1} and D are obtained in stages I and II by applying the operations of regular substitution, union and concatenation. Since AFLs are closed under these operations, it follows that C_{1} and D are both languages in $\mathbf{C L H}_{\mathbf{k}-1}$. Applying the inductive hypothesis to D, we see that L is defined by combining a sequence of grammars in CNF (defining D), with LDCFG H which is in two-normal-form. Let the entire sequence of grammars defining L be ($H_{0}, H_{1}, \ldots, H_{k-1}, H_{k}=H$), where each component grammar $H_{j}, 0 \leq k-1$ is in CNF, and $H_{k}=H$ is in two-normal-form. We now use this sequence to eliminate ϵ-productions.

A. 2 Elimination of ϵ-productions

Given an LDCFG H with control set D, we say that a nonterminal A of H is valid for string w iff there is a derivation tree Γ in $\operatorname{TreeSet}(A \underset{\boldsymbol{H}}{*} w)$ such that $\operatorname{Control} W \operatorname{ords}(\Gamma) \in D$. Let T be the set of nonterminals of H which are valid for ϵ.
T is obtained from H in a somewhat complicated way, because verifying that all the control words in a derivation tree in $\operatorname{TreeSet}(X \underset{H}{\boldsymbol{*}} \epsilon)$ essentially forces us to use the recognizer at lower levels, i.e. $C L H_{k-1}, C L H_{k-2}$ etc. This is done in the following way. Let

$$
S_{0}=\bigcup_{1 \leq j \leq 2^{k-1}} \text { Init }_{k, j}(\epsilon)
$$

Inductively, for $i \geq 0$, let

$$
\begin{gathered}
S_{i+1}^{1}=S_{i} \bigcup_{1 \leq j \leq 2^{k-1}}\left(L C_{k, j}\left(S_{i}\right) \cup R C_{k, j}\left(S_{i}\right)\right), \text { and } \\
S_{i+1}=S_{i+1}^{1} \cup W_{k}\left(S_{i+1}^{1}, S_{i+1}^{1}\right)
\end{gathered}
$$

We terminate this iterative process as soon as $S_{i+1}=S_{i}$ for some $i \geq 0$. It is left to the reader to verify that that the number of iterations i is bounded by the number of possible (k)-items of the grammar sequence H_{0}, \ldots, H_{k}. We now claim that:

Claim A. 1 Let $S=\left\{I \mid I\right.$ is a (k)-item such that I is valid for the 2^{k+1}-tuple of strings $\left.(\epsilon, \epsilon, \ldots, \epsilon)\right\}$. Then $S_{i}=S_{i+1}$ for some $i \geq 0$ if and only if $S_{i}=S$.

One direction is trivial, i.e. $S_{i}=S$ implies $S_{i}=S_{i+1}$. For the forward implication, it should be clear from the definitions that $S_{i} \subseteq S$ for all $i \geq 0$. Assume to the contrary that $S_{i}=S_{i+1}$ but $S_{i} \neq S$. Then there is an item I in the set $S-S_{i} \neq \emptyset$. By definition of S, there are possibly many sequences of simple trees represented by I (which is valid for the 2^{k+1}-tuple of empty strings). Let us denote these sequences by $M T(I)$. From among all sequences in $\cup_{I \in\left(S-S_{i}\right)} M T(I)$, we shall choose the smallest sequence, i.e the one with minimum total depth, and with minimum total spine length ${ }^{3}$. Let this sequence be represented by item $I^{\prime} \in\left(S-S_{i}\right)$.
If one recalls lemma 3.3 , it is easy to show that either $I^{\prime} \in \operatorname{Init}_{k, j}(\epsilon)$, or there must be an item I_{1} such that $I^{\prime}=L C_{k, j}\left(I_{1}\right)$ for some j (or, $I^{\prime}=R C_{k, j}\left(I_{1}\right)$), or there are items I_{1} and I_{2} such that $I^{\prime}=W_{k}\left(I_{1}, I_{2}\right)$. If $I^{\prime} \in \operatorname{Init}_{k, j}(\epsilon)$ then $I^{\prime} \in S_{0} \subseteq S_{i}$, by definition, and hence cannot be in $S-S_{i}$, a contradiction. Otherwise, if I_{1} (for the first two cases) or I_{1} and I_{2} (in the final case involving W_{k}) are in S_{i}, then the construction of S_{i+1} guarantees that I^{\prime} is in S_{i+1}. But $S_{i}=S_{i+1}$, thus yielding a contradiction to our assumption that $I^{\prime} \notin S_{i}$. The only remaining possibility, viz. I_{1} (respectively, I_{1} or I_{2} or both) is (are) not in S_{i}, violates the minimality of our choice of I^{\prime}. It follows then that our assumption must be wrong, i.e. $S_{i}=S$.

It is easy to see that

$$
T=\left\{X \mid I=[(X, \ldots, \epsilon) ; \ldots] \in S, \text { and } \operatorname{SourceItem}_{k}(I)=\operatorname{true}\right\} .
$$

Also, consider the set $T^{\prime} \subseteq T$ defined by:
$T^{\prime}=\left\{X \mid\left[\left(X=A_{1}, B_{1}, \ldots, A_{2^{k-1}}, B_{2^{k-1}}=\epsilon\right) ; \ldots\right] \in S\right.$, and $B_{j}=A_{j+1}$ for all $\left.1 \leq j \leq 2^{k-1}-1\right\}$
Clearly, both T and T^{\prime} can be computed syntactically from S.
Then, for every labeled production $l: X \rightarrow X_{1} \bar{X}_{2}$ (the other possibility where symbol X_{1} is distinguished is handled in a similar way), we consider the following two cases:

1. $X_{1} \in T$. Then, a new production $p_{l}: X \rightarrow \check{X}_{2}$, is introduced into the grammar, with the substitution $\Theta(l)=\left\{l, p_{l}\right\}$.

[^3]2. $X_{2} \in T^{\prime}$. In this case, we create a new production $q_{l}: X \rightarrow \check{X}_{1}$. Let C_{l} denote the language l.Label* ${ }_{k}^{*}$.

All ϵ-productions in H are now eliminated, and the new control set is specified by the expression ${ }^{4}$:

$$
D_{1}=\bigcup_{l \in L a b e l_{k}} \Theta\left(\left[D / C_{l}\right]^{*} D\right)
$$

The new LDCFG is denoted by H_{1}. It is easy to see that if $w \in L(\{H, D\})$ then $w \in L\left(\left\{H_{1}, D_{1}\right\}\right)$ by induction on the number of productions used in a proper derivation of w from the start symbol of H (which remains unchanged in H_{1}). The basic idea is that subtrees of the derivation tree which derive ϵ are pruned, and either the substitution Θ is applied, or a new control path is below. These cases are shown in Figures 14 and 15.

Figure 14: $X_{1} \in T$.

Figure 15: $X_{2} \in T^{\prime}$.
The converse is slightly more tricky, but essentially runs along the same lines as the previous paragraph. Hence if $w \in L\left(\left\{H_{1}, D_{1}\right\}\right)$ then we undo the transformations and the substitution wherever applied in the derivation tree of $\left\{H_{1}, D_{1}\right\}$ to get a derivation tree of $\{H, D\}$ for w. It is crucial to recognize that without specifying set T, the transformation outlined above will not work (the standard procedure for eliminating ϵ-productions from a CFG requires specifying only the set of nonterminals which derive the empty string; our procedure must take into account the fact that a derivation tree may contain invalid paths not in the control set, which cannot be eliminated in the transformation).

A. 3 Elimination of chain-productions

To get back to matters at hand, we have now produced a control grammar with no ϵ-productions, but which may contain chain-productions. These can be eliminated as follows. Let $V_{N}=\left(V_{1}, \ldots, V_{p}\right.$ be the set of nonterminals of a control grammar free of ϵ-productions. Let the set Chain $\left(V_{j}\right)$ is the set of nonterminals V_{i} such that $V_{i} \stackrel{*}{\Rightarrow} V_{j}$. This set can be computed by standard methods.

[^4]Remark: The language

$$
L_{\text {chain }}\left(V_{i}, V_{j}\right)=\left\{\omega \mid V_{i} \stackrel{*}{\Rightarrow} V_{j} \text { via a derivation tree with spine } \omega\right\}
$$

is regular.
Now, for every non-chain production in the original LDCFG of the form $l: X \rightarrow X_{1} \bar{X}_{2}$ (or with X_{1} distinguished), we create a new production:

$$
l_{V_{i}}: V_{i} \rightarrow X_{1} \check{X}_{2}
$$

for every nonterminal $V_{i} \in C h a i n(X)$. Simultaneously, let Θ be a substitution where $\Theta\left(l_{V_{i}}\right)=L_{\text {chain }}\left(V_{i}, X\right)$.
The new LDCFG is obtained by removing all chain-productions from the original one and incorporating the new productions described above. The new control set is simply $\Theta^{-1}(D)$, where D is the original control-set. Note that all the operations described so far are full AFL operations ${ }^{5}$; consequently the new control set is still a member of $\mathbf{C L H}_{\mathbf{k}-1}$. It is clear that the resulting LDCFG is also in CNF. The inductive hypothesis now applies to the new control set, thus proving the normal-form lemma.

[^5]
References

[1] G. E. Barton, R. C. Berwick, and E. S. Ristad. Computational Complexity and Natural Languages. MIT Press, Cambridge, MA, 1987.
[2] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28:114-122, 1981.
[3] S. Ginsburg and S. A. Greibach. Abstract families of languages. Mem. Am. Math. Soc., 87(1):132, 1969.
[4] S. Ginsburg and E. H. Spanier. AFL with semilinear properties. J. Comput. Syst. Sci., 5:365-396, 1971.
[5] M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, Reading, MA, 1978.
[6] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-Wesley, 1979.
[7] N. A. Khabbaz. A geometric hierarchy of languages. J. Comput. Syst. Sci., 8:142-157, 1974.
[8] W. L. Ruzzo. On uniform circuit complexity. J. Comput. Syst. Sci., 22:365-383, 1981.
[9] W. L. Ruzzo. Tree-size bounded alternation. J. Comput. Syst. Sci., 21:218-235, 1980.
[10] W. L. Ruzzo, J. Simon, and M. Tompa. Space-bounded hierarchies and probabilistic computations. J. Comput. Syst. Sci., 28:216-230, 1984.
[11] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Comput. Sci., 3:1-22, 1977.
[12] I. H. Sudborough. On the tape complexity of deterministic context-free languages. J. $A C M$, 25(3):405-414, July 1978.
[13] J. W. Thatcher. Tree automata: An informal survey. In A. V. Aho, editor, Currents in the Theory of Computing, pages 143-172, Prentice Hall Inc., Englewood Cliffs, NJ, 1973.
[14] K. Vijay-Shanker. A Study of Tree Adjoining Grammars. PhD thesis, University of Pennsylvania, Philadelphia, $\mathrm{Pa}, 1987$.
[15] D. J. Weir. Context-Free Grammars to Tree Adjoining Grammars and Beyond. Technical Report, Department of Computer and Information Science, University of Pennsylvania, Philadelphia, 1987.

[^0]: *Research funded in part by ARO grant DAA 29-84-9-0027, NSF grants MCS-8219116-CER, MCS-82-07294, DCR-84-10413, MCS-83-05221, and DARPA grant N00014-85-K-0018.
 ${ }^{\dagger}$ Both authors affiliated to the Dept. of Computer and Information Sciences, University of Pennsylvania, Philadelphia, PA 19104.

[^1]: ${ }^{1}$ A (Full) AFL (Abstract Family of Languages) is a family closed under the operations of union, concatenation, Kleene star. (arbitrary) ϵ-free homomorphism, and intersection with regular languages, e.g., see [3]

[^2]: ${ }^{2}$ Other authors have described formalisms which have a somewhat different notion of control, but are also called control grammars; for example, see [7]. Throughout this paper, a "control grammar" satisfies definition 2.1 above.

[^3]: ${ }^{3}$ The total depth of a simple tree sequence is the sum of the depths of the simple trees in the sequence. The total spine length is similarly the sum of the lengths of the spines of the simple trees in the sequence.

[^4]: ${ }^{4}$ The operator / denotes right-quotient of languages. Thus, L / C is the language $\{x \mid$ there is a string $y \in C$ such that $x y \in$ $L\}$. Full AFLs are closed under right-quotient with regular sets.

[^5]: ${ }^{5}$ Full AFLs are closed under inverse regular substitutions; for a comprehensive discussion, see [6]

