View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by ScholarlyCommons@Penn

Penn

University of Pennsylvania

Libraries _
UNIVERSITY of PENNSYLVANIA ScholarlyCOm mons
Technical Reports (CIS) Department of Computer & Information Science
May 1983

PMDF - A PASCAL-Based Memo Distribution Facility

Ira Winston
University of Pennsylvania, IRA@CIS.UPENN.EDU

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation
Ira Winston, "PMDF - A PASCAL-Based Memo Distribution Facility", . May 1983.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-83-11.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/652
For more information, please contact repository@pobox.upenn.edu.

https://core.ac.uk/display/76362937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/652
mailto:repository@pobox.upenn.edu

PMDF - A PASCAL-Based Memo Distribution Facility

Abstract

This paper describes the implementation of PMDF, a portable Pascal-based internetwork mail router. It
includes features such as aliasing, forwarding, queueing automatic routing to network gateways,
message batching and message retransmission and is currently being used as a gateway between the
Computer Science Network's PhoneNet and local electronic mail systems.

PMDF is unigue among internetwork mailers in that it is portable. All operating system dependent
functions have been isolated to one module and therefore PMDF can be ported to any system that has a
Pascal compiler and provides the functions necessary to implement the operating system dependent
module.

Comments

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-83-11.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/652

https://repository.upenn.edu/cis_reports/652

PMDF-A PASCAL-BASED MEMO
DISTRIBUTION FACILITY

Ira Winston
MS-CIS-83-11

Department of Computer and Information Science
Moore School/D2
University of Pennsylvania
Philadelphia, PA 19104

May 1883

M5 -C15- £3-//

UNIVERSITY OF PENNSYLVANIA
THE MOORE SCHOOL OF ELECTRICAL ENGINEERING
SCHOOL OF ENGINEERING AND APPLIED SCIENCE

PMDF - A PASCAL-BASED MEMO DISTRIBUTION FACILITY
Ira Winston
Philadelphia, Pennsylvania
May 1983
A thesis presented to the Faculty of Engineering and Applied

Science of the University of Pennsylvania 1in partial
fulfillment of the requirements for the degree of Master of

Science in Engineering for graduate work in Computer and
Information Science.

O. Peter Buneman, Thesis Advisor

O. Peter Buneman, Graduate Group Chairperson

ABSTRACT

This paper describes the implementation of PMDF, a
portable Pascal-based internetwork mail router. It includes
features such as aliasing, forwarding, queueing automatic
routing to network gateways, message batching and message
retransmission and is currently being wused as a gateway

between the Computer Science Network’s PhoneNet and local

electronic mail systems.

PMDF is unique among internetwork mailers in that it is
portable. All operating system dependent functions have
been isolated to one module and therefore PMDF can be ported
to any system that has a Pascal compiler and provides the

functions necessary to implement the operating systen

dependent module.

ii

ACKNOWLEDGEMENTS

I would 1ike to thank Sharon Perl, Mark Reinhold,
Aravind Joshi and my advisor, Peter Buneman, for their
valuable input to this project. I would also like to thank
Dave Crocker for MMDF, the inspiration for PMDF, G. Brendan
Reilly, Dave Farber and Eric Allman for their assistance
with the Unix version and Michael Huhns, Steve Gutfreund and

Sten Andler for testing early versions of PMDF.

Special thanks to the users of the CIS VAX-11/780 for
putting up with PMDF even when it lost their mail;, to Ruzena
Bajcsy for her gentle persuations and, most of all, to

Flaura for just about everything.

iii

NN DN —
e o o @ L[]
W~ O o

w W W
« o
N - O

. »

* e e o °

S Y - L
L]
Wo~NOTUuEWNNNNDND-O

NN O [, RS, IV, V)|
e e @ * & e o
N = O wiN = O

~I
.
o

APPENDIX A

APPENDIX B

Table of Contents

INTRODUCTION

INTERNETWORK MAIL ROUTERS

Sendmail . « « + « &
MMDF L] L] L] * . - L] L]
PMDF - * L] L . L) L] L]

PHONENET « o ¢ o o o
Link-level Protocol
Message Protocol . .

DESCRIPTION OF PMDF .
Mail Flow =« « + « &
mm_ Package
Channel Configuration
Aliasing « « & « « &

The Message Submission

qu Package . + . .

di Package . . .« .
os: Package .+ « .« .
The SLAVE Program .
The MASTER Program .
The DLVRMAIL Program

The SEND Program . .

CURRENT IMPLEMENTATIONS

VAX/VMS Two-Channel Version

.

.

L]

Process

3

VAX/VMS Three-Channel (Relay) Version.
Berkeley Unix* Version

FUTURE DIRECTIONS . .

Internet Standards (RFC 822)

DECNET . ¢ « ¢ « o

REFERENCES « « « + «

DATA TYPES

MMDF STATUS CODES

iv

3

U SWwN —

— 00 ~¥

13
14
15
15
16
17
20
21
23
25
26
27
27

29
29
30
32

35
35
36

38

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

mn_ PACKAGE

mm_ SAMPLE SUBMISSION CODE

qu_ PACKAGE

di_ PACKAGE

CONFIGURATION FILE FORMAT

MESSAGE FILE FORMAT

RFC 822 ADDRESS PARSER

1.0 INTRODUCTION

PMDF is a portable internetwork mail router, written in
standard Pascal. Its primary use is as a gateway between
the Computer Science Network’s (CSNet) PhoneNet, a
telephone-based electronic mail relay system, and local
electronic mail systems. Features 1include aliasing and
forwarding, queueing, automatic routing to network gateways,

message batching and message retransmission.

PMDF implements a subset of the functions provided by
the Multi-channel Memo Distribution Facility (MMDF)
[Crocker79], developed by the Department of Electrical
Engineering at the University of Delaware and used by the
CSNet PhoneNet relay systems. MMDF is written in "C" and is
heavily dependent wupon the Unix* environment. PMDF was
developed for VAX/VMS**, but because it is written in
standard Pascal and because the operating system specific
functions have been isolated to one module, it has been
successfully ported to several other systems with little or

no difficulty.

* Unix is a trademark of Western Electric

*% VAX/VMS is a trademark of Digital Equipment Corporation

2.0 INTERNETWORK MAIL ROUTERS

An internetwork mail router provides a centralized
"post office" to which all mail can be submitted and then
subsequently be delivered, possibly to different networks,
using the correct mailers for the specified destinations.
It also performs message header and address rewriting as

required.

Internetwork mail routers attempt to cope with the
different message and address formats wused by different
networks by translating them from one format to another as
the messages are moved between networks. Internet standards
[Crocker82b] attempt to solve part of this problem by

providing universal message and address formats.

The internet standards use a hierarchical addressing
scheme known as '"domain-based addressing" [Su82]. The
hierarchy is a directed graph with a single path from the
root of the +tree to any node in the hierarchy. The root
node is common to all addresses and 1is never referenced.
Its children are "top-level" name-domains, which are the
names of all the networks in the addressing universe. These
network mnames are universally known, but domain names below
the network mname level are known only within the
corresponding network. This serves to limit the number of

names a host must know, but still allows any host in any

network to address any other host.

For example, in the internet standard address
"ira@upenn.udel-relay.arpa", "arpa" is a network name,
"udel-relay" is a host known in the "arpa'" domain and
"upenn" 1is a host known in the "udel-relay" sub-domain of

the "arpa" domain.

Internetwork mail routers are needed even 1if standard
internet addressing is used. Different networks still
communicate wusing different mechanisms (communications
equipment, message transmission protocols, etc.) and the
internetwork mail router is used to select the <correct

delivery mechanism for a given message.

2.1 Sendmail

Sendmail [Allman83a, Allman83b] is a general
internetwork mail router that includes facilities such as
aliasing and forwarding, address rewriting, automatic
routing to network gateways, queueing, message batching and
flexible configuration. Its major accomplishment is in
providing routing and address rewriting services that allow
networks that do not conform to internet standards to
communicate with other networks. It can handle old-style

arbitrary address syntaxes as well as the newer domain-based

incerne: addressing.

S2ndmail do23 not iaceract with the user and does not
perform actual mail delivery. It simply passes messages
from one mailer to another, rewriting the header as
necessary. One of Sendmail’s weaknesses is its inability to
provide "passive" delivery service. Sendmail must always
initiate a delivery attempt, preventing it from routing mail
through a communication channel established by a mailer.
Sendmail is written in "C" and is heavily dependent on the

Unix* environment.

2.2 MMDF

MMDF [Crocker79] is an internetwork mail router that
includes facilities such as aliasing and forwarding,
automatic forwarding to gateways, queueing, message
batching, message timeout and a PhoneNet mailer. 1Its major
function is providing an integrated view of a communication
environment which can have a variety of different
transmission channels. MMDF does not deal with the problem
of address rewriting for a heterogeneous set of networks not
conforming to the internet standards. It can only deal with
network addresses that conform to a specific standard;
currently the old Arpanet standard, RFC 733, 1is used
although this will change to RFC 822, the new internet
standard, soon. MMDF only handles heterogeneous mnetworks

that differ in type of communications equipment and message

transmission protocols. It does not handle heterogeneous

message formats as does Sendmail.

The major difference between MMDF and Sendmail 1is the
method used to determine which mailer (in Sendmail) or
channel (in MMDF) to use 1in delivering a message. MMDF
bases this decision on the host name, which is the string
after the right most "@" in an address for RFC 733, It then
locates the host name in the host tables it maintains for
each channel in order to decide which channel to wuse.
Sendmail, instead, wuses a set of configurable production
system rewriting rules to select the correct mailer and ¢to
rewrite the address. This allows Sendmail to handle a

variety of address syntaxes.

2.3 PMDF

PMDF is a subset of MMDF and therefore it, too, can
only handle heterogeneous networks that differ in type of
communications equipment and message transmission protocols.
It cannot handle heterogeneous message formats. PMDF has
the potential to be a general internetwork mail router
although {1t currently only provides two types of delivery
channels; CSNet PhoneNet and 1local. PMDF wuses MMDF’s

strategy of determining the delivery channel by looking up

the host name in a host table. It provides facilities such

as aliasing and forwarding, queueing and message batching
and provides only minimal message header rewriting services

such as adding fields which note that it has routed a

message.

PMDF’s primary advantage over Sendmail and MMDF is its
portability. Given its portability constraints, PMDF can
never be expected to be the bridge between old style (ad
hoc) and new style (internet standard) address syntaxes that
Sendmail is. However, it will be able to handle addresses

that conform to the new internet standards.

3.0 PHONENET

CSNet uses a variety of existing communication networks
to provide high level network services to computer science
research groups. Phone company lines are used directly for
the PhoneNet service (a telephone based mail relay system)
and indirectly through the value-added services of Telenet
or Arpanet. CSNet provides additional protocols above the
physical connections or packet-level services provided by
the existing communication services [Landweber8l].
Currently, the only service that CSNet provides is

electronic mail transmission.

Most of the sites that are members of CSNet only have
PhoneNet service. These sites exchange messages with each
other and with Arpanet/Telenet sites via a PhoneNet relay
machine. The PhoneNet relay machine calls the PhoneNet-only
site on a regular basis to pick up and deliver messages.
Alternatively, if the PhoneNet-only site has auto-dialing
equipment, it can call the PhoneNet relay and exchange

messages itself [Landweber8l].

Two levels of protocol are used to implement the
PhoneNet service. The lower level ("link-level") allows for
transmission of arbitrary 7-bit ASCII data over ordinary
telephone connections in a half or full duplex environment.

The higher-level protocol is responsible for the details of

mail transfer. It must establish the context, and then pass

individual messages [Crocker82a].

3.1 Link-level Protocol

The "link~level" provides services for an "active" or
"master" host to place a phone <call using auto-dialing
equipment to a '"passive" or "slave" host. The "master" host
is able to login to the '"slave" host as if it were a regular
timesharing user and then issue the appropriate command ¢to
initiate the protocol program. This approach allows
existing dial-in ports to be used for mail service. The
login and protocol startup sequence is driven by a "script"

file that resides on the "master" host [Szurkowski80].

Information is exchanged between '"master" and '"slave"
in unit of packets. A packet contains a checksum, a type, a
sequence number, flags and possibly type specific data.
Packets are terminated with a carriage return/line feed
combination. Every packet that is correctly received 1is
acknowledged by the recipient. Logical packets, which are
composed of one or more physical packets, <can be wused to
transfer information that won’t fit into one physical
packet. The last physical packet in a logical packet will

have the "end of segment" flag set.

The "link-level" protocol provides a mechanism for
translating 7-bit ASCII characters that cannot Dbe
transmitted, into a sequence of legal characters, beginning
with a predetermined escape character followed by two
hexadecimal digits that are the ASCII value of the character

to be transmitted.

Before any messages are exchanged, the "master" and
"slave" exchange information about 1legal character sets
(both input and output), maximum physical packet length and

escape characters. The sequence of events is as follows:

1. The "slave" sends an XPATH packet giving the
maximum packet length it can transmit and the

characters it cannot send.

2. The "master" acknowledges with an XPATHACK packet.

3. The "slave" sends an RPATH packet with the maximum

packet length it can receive and the characters

that it cannot receive.
4. The "master" acknowledges with an RPATHACK.

5. The "master" sends its XPATH packet.

6. The "slave" acknowledges with an XPATHACK.

7. The "master" send its RPATH packet.

8. The "slave" acknowledges with an RPATHACK.

9, The "slave" sends an ESCAPE packet.

10. The "master" acknowledges with and ESCAPEACK.
11. The "master" sends an ESCAPE packet.

12. The "slave" acknowledges with and ESCAPEACK.

After the startup sequence 1is complete, messages are

exchanged using DATA and DATAACK packets.

There 1is no negative acknowledgement packet type.
Instead, if the sender of a packet does not receive an
acknowledgement within a reasonable time after transmission,
the original packet is retransmitted. Several
retransmissions are attempted and if there is still no
response, the protocol program is aborted. Acknowledgements
have the same sequence number as the packet they are
acknowledging. For a complete description of the

"link-level” protocol see [Szurkowski80].

10

3.2 Message Protocol

In the higher level protocol, the '"master" has three
commands available: "submit", to send mail to the "slave';
"pickup", to pick up mail from the "slave"; and "end", to
terminate the session. When the "master" sends a command,
the slave returns an MMDF reply code. All information,
including actual message text, is sent in individual logical

packets.

An individual message is processed as follows. The
first logical packet of message contains the return address.
The next set of packets contains, the addresses of the
recipients, one per packet. An MMDF reply code is returned
after each address is sent to indicate whether or not the
address was accepted. After all of the addresses have been

sent, a null packet is sent indicating that the address list

is complete. The message text is then sent as one logical
packet consisting of one or more physical packets. After
the message is received a reply packet 1is returned

indicating the final status of the mail transfer.

The next message may be sent by repeating the cycle;
the submitter will send a null packet when there are no more

messages to be sent.

11

A reply value consists of an 8-bit MMDF reply code
encoded as two hexadecimal digits and string describing the

error. The reply codes are listed in Appendix B.

12

4,0 DESCRIPTION OF PMDF

The functions of PMDF can be separated into two parts,
message submission and message delivery. The message
submission section provides a centralized "post office" for

submission of all messages. The message delivery section
selects the correct delivery channel to deliver a message

and then performs the delivery using that channel.

Each delivery channel consists of a message queue which
holds messages for the channel and a program that delivers
messages from the queue to their destination (or to the next
stop in the ©path to their destination). A local channel
delivers mail to a local electronic mail system; Pobox
channels deliver mail to PhoneNet sites that dial-in to
pickup mail; and Phone channels dial-out to PhoneNet sites
to deliver mail. The Pobox and Phone channel programs also

submit mail from remote PhoneNet hosts to the local system.

PMDF is composed of several channel programs, wuser
interface programs and subroutine packages. The mm_
subroutine package 1is used for message submission and
address parsing, the qu_ package 1is wused for reading
messages from message queues, the di_ package implements the
PhoneNet '"link level" protocol, the ut_ package provides

string and file handling functions and the os_ package

contains the operating system dependent routines.

13

The SEND program 1is a wuser 1interface program that
allows wusers to compose messages to be submitted to PMDF.

It uses the mm_, ut and os_ packages.

The SLAVE program is the channel program for Pobox
channels and is invoked when a PhoneNet site dials in to the
local system to pickup and deliver mail. It uses the nm_,

di_, qu_, ut_ and os_ packages.

The MASTER program is the channel program for Phone
channels and 1is used to dial-out to a remote PhoneNet site

to deliver and pickup mail. It uses the mm_, di_, qu_, ut

and os_ packages.

The DLVRMAIL program is the channel program for the

local channel. It uses the qu_, ut_ and os_ packages.

4.1 Mail Flow

The following diagram illustrates the flow of mail

through a hypothetical PMDF configuration with one local

channel and one Pobox channel:

14

| PhoneNet | Ftormm + Fomm e ————— +
to—r——————— + | DLVRMAIL |--->} Local I
° t-m——————— R e bbb + | mailer |
|] Local | Fom——————- +
v | queue |
+e—————- +----D>+------——-- e +
| SLAVE | | SEND |
o +-=--D>t----=-——- +-=-=t-===-- +
| Pobox [
| queue |
Fommm - +

4.2 mm_ Package

4,2.1 Channel Configuration -

One of the inputs to the wmm_ package is a channel
configuration file which describes the channels present on
the system. There is one entry in the file for each defined
channel. Each entry includes a one-letter channel code, an
official host name, a list of synonyms for the official name
and a 1list of the names of hosts for whom the channel acts
as a relay. This information is used by the mm_ package to
determine to which channel a particular address refers. The
exact format of the channel configuration file is described

in Appendix G.

15

4.,2.2 Aliasing -

Aliasing is a facility that allows local addresses to
be automatically translated to one or more different local
or network addresses. The alias file defines these
translations and consists of a series of entries of the form
"alias: address,[+es.]" (for example, "info-pmdf:
jsmith, jdoe"). When a local address 1is processed that
matches one of the aliases in the alias file, the address 1is
replaced by the contents of its corresponding alias entry.
A line of the form "alias: <filename" will use the contents
of ’‘filename’ for the 1list of alias values. Alias file
entries can reference other aliases, but only forward

references are allowed.

Aliases may be used for one of three purposes:

1. True aliasing, where the alias wvalue is a local

user’'s login name, e.g. "john: jsmith".

2. Forwarding, where the alias wvalue 1is a foreign

address, such as "jsmith: jsmith@UDel".

3. Address lists, where the alias value is a set of

addresses, such as "info-pmdf: jsmith, jdoe".

16

4.2.3 The Message Submission Process -

All messages are submitted through the mm_ package 1in
three parts: first the return address; then a list of
recipients; and finally the message text. Before any

messages are submitted mm_init must be called to initialize
the package. It reads the alias file as well as the channel

configuration file.

The first step of the message submission process is to
call mm _winit (initialize for writing) with the return
address and source channel name. mm_winit records this
information for later use. Then, one address at a time 1is
passed to mm_wadr (write one address). Each address 1is
analyzed according the RFC 733 [Crocker77] address

standards.

The string after the rightmost "@" in an address 1is
called the host name, which is used to determine to which
channel the address refers. If the host name refers to the
local <channel, then the alias file is consulted to see if
the address is an alias. If it 1is an alias, then the
address 1is replaced by its alias value. Otherwise, mm_wadr
determines whether the address refers to the login name of a

local user.

17

If the host name does not refer to the 1local channel,
then the host name tables for the other channels are

consulted and the channel to which this host name refers is

determined.

If the address passed to mm _wadr is valid, it is added
to a 1list of addresses for the channel to which it refers.
If the address is invalid, an appropriate error code is
returned. An alias 1is considered wvalid 1if any of its

translations are valid.

After all of the addresses have been passed to mm_wadr,

mm_waend (write address end) is called.

Next, the text of the message 1is passed to mm_WwWCXt
(write text), one line at a time. mm wtxt copies the text
to a temporary file. The text of a message consists of
header lines and an optional message body. Header lines are
of the form '"field: wvalue" and may be continued by starting
the continuation line with one or more blanks. The message
body is a sequence of lines <containing ASCII characters.

The two are separated by a null line.

The only special processing performed by mm_wtxt is the
insertion of a "Received:" header line at the end of the
message header. The "Received:" header line indicates from

which host the message was received and to which host it was

18

submitted. This 1is only done for messages that are
submitted from a remote system (determined from the source

channel name that was passed to mm_winit).

After all the text has been processed by wmm_wtxt,
mm_wtend (write text end) is called to create message files
in the queues of all channels that have non-empty address

lists.

A message file consist of five sections:

1. the return address (saved by mm_winit),

2. a list of recipient addresses for the channel

(accumulated by mm_wadr);
3. an end-of-address sentinel;

4. the message body (read from the temporary file

created by mm _wtxt); and
5. an end-of-text sentinel.

Only those recipient addresses that refer to a specific

channel are written to that channel’s message file.

The end-of-text sentinel protects against delivery of
partially written message files created by failures because
incomplete messages (without end-of-text sentinels) are not

delivered. The exact format of a message file format is

19

described in Appendix H.

The mm_ package also includes an RFC 733 ([Crocker77]
address parser which 1is used by mail composition programs

such as the SEND program.

Appendix C contains a complete specification of the mm_
routines and Appendix D illustrates sample message

submission code.

4.3 qu Package

The qu_ package provides a standard mechanism for
channel programs to retrieve messages from their queues.
There is no facility in the qu_ package by which a channel
can obtain a list of the filenames of the messages in its
queue because this primitive would be hard to provide in a
portable fashion. Instead, a channel program expects, as
input, a file listing the filenames of the messages. If
possible, this 1list of filenames should be sorted by
creation time, so that messages are delivered in the same
order that they were submitted. This places the burden of
producing the queue 1listing on an external program or

command procedure.

20

The qu_ package is initialized by a call to qu_init. A
message file 1is opened by calling qu_rinit (initialize for
reading) with a filename and the name of the channel. If
qu_rinit can open the specified message file then it returns
the return address which 1is read from the message file

otherwise, it returns an appropriate error code.

The recipient addresses are then read, one at a time,
using qu radr (read one address) which returns an "end of

file" status when all of the addresses have been read.

qu rtxt (read text) reads the message text and returns

text or an "end of file" indication.

The entire process is terminated by <calling qu_rend
(end reading) to delete the message file which has
presumably just been delivered. qu_rkill (kill reading) can

be wused to terminate message reading without deleting the

message file.

Appendix E contains a complete specification of the qu_

routines.

4.4 di_ Package

The di_ package is an implementation of the PhoneNet
"link 1level" protocol. di_init sets up the dial package.

di_snd_rpath, di_snd_xpath, di_rcv_rpath, di_rcv_xpath,

21

di_snd_escape and di_rcv_escape are used to exchange
information about legal character sets, (both input and

output) maximum packet length, and escape characters.

Characters that cannot be received by the remote system
and those that cannot be transmitted by the local system are
replaced by the escape character followed by two hexadecimal
digits (the ASCII representation of the character to be
transmitted) by di packet_encode. The packet <can then be
transmitted by di packet write, which waits for the packet
to be acknowledged. If the packet is not acknowledged in a
reasonable amount of time, di_packet write retransmits the
packet and waits for anmn acknowledgement. Several retries

are attempted.

di_read packet reads a packet from the remote system.
If a packet 1is not received within a reasonable period of
time, di_read_packet aborts the program. di_read_packet
also checks packets for correct format, type, sequence
number and checksum and acknowledges correctly received
packets. di_packet_convert can then be used to translate
escaped characters in a packet to the corresponding

untranslated characters.

22

di_read_record reads a logical record consisting of one
or more physical packets, the last of which has the "end of

segment”" flag set, from the remote system.

The di_ package produces a transcript file with a
record of all packets received and sent and an error log
with a record of all timeouts and incorrectly received

packets.

Appendix F contains a complete specification of the di_

routines.

4.5 os_ Package

All operating system dependent functions are isolated
in the os_ package to simplify the process of porting PMDF

to different systems. The following services are included:

l. Supplying the current date, time and time =zone,
(needed for logging and message header

composition);

2. Pausing for a specified number of seconds, (used by

the MASTER program in script processing);

3. Determining the validity of a specified login name,
(used by the mm_ package for address validation for

the local channel and by the DLVRMAIL program for

23

delivering local messages);

Reading a line, terminated by a carriage
return/line feed pair, from a terminal and
returning an error status 1if the line is not
received within a specified number of seconds,

(used by the di_ package);

Reading one character from a terminal and returning
an error status 1if the character is not received
within a specified number of seconds, (used by the

MASTER program during script processing);

Writing a string to a terminal without adding any
formatting characters, such as carriage returns and
line feeds, or delay characters, such as nulls or
rubouts, (used by the di_package and the MASTER

program during script processing);

Opening a file for reading or writing and returning
an error code if the file cannot be opened, (used

by all of the packages and programs); and

Creating a unique filename given a channel name,
(used by the mm_ package to create unique filenames

for the message queues).

24

4.6 The SLAVE Program

The SLAVE program is invoked when a remote PhoneNet
host dials into the local system. One of the inputs to the
program is a file containing a 1list of message filenames
from the Pobox channel queue that are to be delivered to the

remote PhoneNet site.

The SLAVE program uses the di_ package to exchange
configuration information with the remote host. Messages
are then picked up from the remote host using the MMDF
message-level protocol described in chapter 2. These
messages are submitted to PMDF through the mm_ package. Any
rejected addresses are passed back to the remote host so

that the message sender can be notified.

After the pick-up process is completed, messages are
taken from the Pobox channel queue and are delivered to the
remote host. If a message cannot be delivered by the remote
host, a return message is sent to the sender of the message.
This return message is composed by the SLAVE and submitted

using the mm_ package.

The SLAVE program maintains a log file that contains
information about received and delivered messages; size,

sender, recipient and address rejections are recorded.

25

4,7 The MASTER Program

The MASTER program is very similar to the SLAVE program
except that it is responsible for initiating the
communications connection. This connection 1is =established
with the aid of a "script" file that specifies the sequence
of actions required to establish a physical connection, ¢to
login to the remote host and to start up the SLAVE program
on the remote host. A "script" file consists of a series of
commands that tell the MASTER program what to send to the

remote host and what responses to expect in return.

There are four basic commands; "xmit", "recv", '"go"
and "end". Each command appears on a separate line in the
file with its arguments. The "xmit" command has one
argument; a string of characters that will be transmitted

to the remote host. The "recv" command has two arguments;
a string to receive from the remote host and a maximum
number of seconds to wait for a response from the remote
host. The "go" command starts the message transfer section
of the MASTER program and the "end" command terminates the

program. "xmit" and "recv" commands appearing between the

" "

go" and "end" commands are used to logout from the remote

system in an orderly fashion before the phone connection is

terminated.

26

Many popular auto-dialers expect dialing instructions
as sequences of ASCII characters (including the phone number
to be dialed) and also output sequences of ASCII characters
which report the results of attempted calls. This class of
auto-dialers can be controlled using the "xmit" and "recv"

commands of the "script" file.

4.8 The DLVRMAIL Program

The DLVRMAIL program is the channel program for the
local channel which is responsible for delivering messages
from the local channel’s message queue to local users. It
reads messages from the queue using the qu_ package, and,
when necessary, reformats them for the 1local mail system.
Usually, a 1local mailer 1is somehow called to perform the
actual delivery. In a simple mail system, messages might

just be appended to a local user’s mail file.

4.9 The SEND Program

The SEND program is a direct translation of the MMDF
SEND program from "C" to Pascal with MMDF calls replaced by
calls to mm_ routines and with Unix system calls replaced by
calls to appropriate os_ routines. It is an interactive

program that allows a wuser to compose a message for

submission. For a complete description of the SEND program,

27

see the MMDF documentation [Crocker82al.

28

5.0 CURRENT IMPLEMENTATIONS

There are five CSNet Phonenet sites running the basic
VAX/VMS version of PMDF wusing a Pobox channel for
communication with a relay machine and a local channel to
interface to the standard VAX/VMS mail program. Another
VAX/VMS site runs an expanded version that also includes a
dial-out Phone channel to a system running the Dbasic
version. PMDF also runs in a two-channel <configuration on
an IBM system under VM/CMS and on a Hewlett Packard 3000. A
modified version of PMDF is used by Berkeley Unix* systems

as a PhoneNet mailer that interfaces to Sendmail.

5.1 VAX/VMS Two-Channel Version

The standard VAX/VMS mail program cannot be wused to
submit messages to PMDF. It 1is used to deliver mail to
local users but the PMDF SEND program must be used for
submission. A message delivered to ; local user appears as
though it comes from a local user named "CSNET" with the
subject field containing the name of the real sender, and

the body of the message containing the other header lines as

well as the body of the original message.

29

Before the SLAVE program exits, having just submitted
and received messages, it starts up a detached process that
runs the DLVRMAIL program to deliver any messages that have
just arrived for the local channel. This is the only time
that the DLVRMAIL program is run. It is assumed that all
strictly 1local mail will be sent using the VAX/VMS mail

program and therefore will not have to be delivered by

DLVRMAIL.

The following diagram illustrates the flow of mail

through the system:

tmmm e +
| PhoneNet | e + Femm e ——— +
Fomme + | DLVRMAIL |--->| VAX/VMS |
- tommm—————— L + | mailer |
| | Local | tomm—— - +
v | queue]
+ommm - D +{--=F--mm=-- +
| SLAVE | | SEND |
to—————- +{--=-D>+---———- ===t +
| Pobox |
| queue |
Fmmm +

5.2 VAX/VMS Three-Channel (Relay) Version

A VAX-11/780 in the Computer aand Information Science
Department at the University of Pennsylvania wuses a
three-channel system that communicates with a CSNet PhoneNet

relay wusing a Pobox channel and with a local VAX-11/750

30

using a Phone channel. The VAX-11/780 acts as a relay for
the VAX-11/750; that is, all network messages destined for

the VAX-11/750 must first pass through the VAX-11/780.

The standard VAX/VMS mail program is not used on this
system. Instead a more wuseable wmail program has been
developed [Perl182] that uses PMDF for all mail submission.
All mail, local and network, is sent using the same mailer.
The DLVRMAIL program has been modified to perform the local
delivery required by the mail progranm. This 1involves
appending a message to a user’s central mail file, rewriting
headers as necessary and notifying the recipient if he or

she is logged in at the time of delivery.

Because PMDF is used for all 1local mail delivery in
this configuration, the DLRVMAIL program must be run more
frequently than in the two-channel configuration. This was
accomplished by modifying the mm_ package to signal a
detached process to run the DLVRMAIL program whenever a

message is placed in the local channel’s queue.

Mail is delivered to and received from the local

VAX-11/750 by a detached process that runs the MASTER

program every thirty minutes.

31

The following diagram illustrates the flow of mail

through the system:

ettt +
| |
| e + I tom - +
| | PhoneNet | v | DLVRMAIL |
I tommmm - + tommm - D it T +
| s | local | -
| v | queue | v
| tmmm————— t-———- Dt-—mmm - Fmmmm - R ke +
| +-| SLAVE | | Mail |
T B === =Dt-mmm o Hmmmmm- mm———— +
I | pobox | |
| | | queue | |
| | t=m—————- t-———- St=mmmm + i
+---~| MASTER |]
| === ===t ——— Flrmmm +
| " | phone |
| v | queue |
| 4-—mmmmm———- + - +
i} | Upenn-750 | -
| +=—mm—m———— + |
| i
i e P +

5.3 Berkeley Unix* Version

Currently a PhoneNet-only site that 1is running the

Berkeley Unix* operating system uses MMDF to interface to
the PhoneNet. The standard Unix* mail program does not

provide an interface to MMDF and therefore cannot be used to

submit messages directly to the PhoneNet.

Two solutions to this problem have been implemented;

using the mail program provided with MMDF (xmsg) and using a

modified version of Delivermail (Sendmail’s predecessor) to

32

provide the 1link between Unix* mail and MMDF [Crocker82a].
The first solution is unacceptable in most environments and
the second solution is considered to be too complicated and
is extremely difficult to maintain. It should not be
necessary to have two full-scale internetwork mail routers
on the same system. The only feature of MMDF that 1is used
is 1its PhoneNet mailer, yet the entire system must be

installed, which is not desirable because of its size.

A new approach to the problem that uses PMDF as a
PhoneNet mailer will be available in the near future. PMDF
has been extended to act as a gateway between Sendmail and
the PhoneNet. This wvariant of PMDF uses two channels; a
Sendmail channel and a Pobox channel (or Phone <channel if
the MASTER program is used). The Pobox (or Phone) channel
program is the SLAVE (or MASTER) program. It operates as
usual, exchanging messages with the PhoneNet relay and

submitting them to PMDF using the mm_ package.

The Sendmail channel program (pmdf-deliver) submits
messages from 1its queue to Sendmail wusing the standard
submission mechanism provided by Sendmail. Sendmail submits

messages to PMDF using a mailer (pmdf-submit) that accepts

messages and queues them using the mm_ package.

33

For this environment, address validation and alias file
processing have been removed from the mm_ package because
Sendmail already provides these functions. The channel
selection logic has also been simplified so that all
messages submitted from the PhoneNet channel are placed 1in
the Sendmail queue and all messages submitted from the
Sendmail channel are placed in the PhoneNet queue. Both of
these simplifications are designed to allow Sendmail to

perform the bulk of the processing and to only use PMDF as a

PhoneNet mailer.

The following diagram illustrates the flow of mail

through the system:

tmmm +
| PhoneNet | e bbb D R D +
- + | pmdf-deliver |
- e ———— R e e e et T +
| | Sendmail | I
v | queue | |
Fmmmmm———— Fmmm D mmm e + v
| SLAVE or | Fommmm - + to—————- +
| MASTER | | Sendmail |<-=--->| Unix* |
e F{mmmmm - + Fommm e r | mail |
| Pobox I I to—————- +
| queue | v
temm e ————— R e it +
| pmdf-submit |
fmmm e - +

34

6.0 FUTURE DIRECTIONS

In addition to porting PMDF to several different

systems, there are also plans to implement a number of

enhancements.

6.1 Internet Standards (RFC 822)

The Internet standard message and address formats, as
defined by RFC 822, will be used by Arpanet and CSNet hosts
in the near future. When PhoneNet relay machines running
MMDF start accepting RFC 822 style addresses from
PhoneNet-only sites, it will be necessary to modify PMDF to

generate messages that conform to RFC 822,

In preparation for this, an RFC 822 address parser,
written 1in standard Pascal has been developed. It uses an
SLR parser generator written at the University of
Pennsylvania {[Schimpf8l1]. The parser generator processes a
BNF description of an input language (legal address forms,

in this case) and produces an SLR parse table as output.

The mm_ package as well as the SEND and DLVRMAIL
programs currently wuse an ad hoc parser to parse RFC 733

style addresses and will have to be modified to use the new
address parser. In order to generate messages conforming to

the RFC 822 message format, additional modifications will

35

/

have to be made to the mm_package to include several new

message header and address rewriting services.

The address parser is described in Appendix I.

6.2 DECNET

Digital Equipment Corporation’s DECNET networking

hardware and software allows a set of computers to

communicate with one another at data rates ranging from 9600

baud to 1 megabaud [DEC82al]. If a set of machines that use

DECNET were to join the CSNet PhoneNet, two configurations

would be possible:

1. Each machine could exchange mail with an external

relay independently.

One machine could act as a relay by exchanging mail
with a PhoneNet relay and also exchanging mail with

other machines attached to the local DECNET

network.

If all sites were to use the first approach, then the
PhoneNet relays would be severely overloaded. The second
approach could be implemented by wusing Pobox and Phone

channels with RS232 connections (phone or direct connect).

A more intelligent approach would be to implement a DECNET

36

channel for PMDF using DECNET’s task-to-task communication

facility.

Instead of using the PhoneNet message level protocol to
communicate between the nodes of a DECNET network, the new

internet standard SMTP (simple mail transfer ©protocol)

[Postel82] will probably be used.

37

7.0 REFERENCES

[Allman83a]

[Allman83b]

[Crocker77]

[Crocker79]

[Crocker82al]

[Crocker82)b]

[DEC82a]

[DEC82b]

Allman, E., "SENDMAIL - An Internetwork Mail

Router", Unpublished Manuscript. March
1983.

Allman, E., "Sendmail Installation and
Operation Guide", Technical Report, Computer
Science Department, University of California
at Berkeley, March 1983.

Crocker, D.H., Vittal, J.J., Pogran, K.T.,
and Henderson, D.A. Jr., "Standard for the
Format of ARPA Network Text Messages". RFC

733, NIC 41952, In [Feinler78]. November
1977.

Crocker, D.H., Szurkowski, E.S., and Farber,
D.J., "An Internetwork Memo Distribution
Capability -~ MMDF", Proceedings of the
Sixth Data Communications Symposium, Pacific
Grove, CA. November 1979

Crocker, D.H., MMDF Documentation Package,
Department of Electrical Engineering,
University of Delaware, Newark, Delaware.
March 1982,

Crocker, D.H., "Standard for the Format of
Arpa Internet Text Messages". RFC 822,
Network Information Center, SRI

International, Menlo Park, California.
August 1982,

DECnet-VAX User’s Guide, Digital Equipment
Corporation, Maynard, Massachusetts,
Massachusetts. May 1982,

VAX-11 Pascal Language Reference Manual,
Digital Equipment Corporation, Maynard,
Massachussetts. October 1982,

38

[Feinler78]

[Landweber81]

[Per182]

[Postel82]

[Schimp £81]

[Su82]

[Szurkowski80]

Feinler, E., and Postel, J. (eds.), ARPANET
Protocol Handbook, NIC 7104, Network
Information Center, SRI International, Menlo
Park, California. 1978.

Landweber, L.H., and Solomon, M., "Multiple
Networks in CSNet", CSNet Design Note DN-1.
November 1981.

Perl, S., "Mail User’s Guide, Version 2.0",
Technical Report MS-CIS-82-21, Computer and
Information Science Department, University

of Pennsylvania, Philadelphia, Pennsylvania.
August 1982

Postel, J.B., "Simple Mail Transfer
Protocol". RFC 821, Network Information
Center, SRI International, Menlo Park,
California. August 1982,

Schimpf, X.M., "Construction Methods of LR
Parsers", Masters Thesis, Computer and
Information Science Department, University

of Pennsylvania, Philadelphia, Pennsylvania.
May 1981.

Su, Z., Postel, J., "The Domain Naming
Convention for Internet User Applications".
RFC 819. Network Information Center, SRI
International, Menlo Park, California.
August 1982,

Szurkowski, Edward S., "MMDF Dial-up Link

Protocol", CSNet Design note DN-4, April
1980.

39

APPENDIX A

DATA TYPES

The following ©Pascal type definitions are wused in the
descriptions of the PMDF subroutine packages:

alfa = PACKED ARRAY[1l..ALFA SIZE] OF char;

vstring = RECORD
body: alfa;
length: integer;
END;

bigalfa = PACKED ARRAY [l..BIGALFA SIZE] OF char;

bigvstring = RECORD
body: bigalfa;
length: integer;
END;

vstringptr = “vstring;
vstringlptr = “vstringl;
vstringl = RECORD
link: vstringlptr;
val: wvstring;

END;

short_alfa = PACKED ARRAY[1l..SHORTALFA SIZE] OF char;

shortvstring = RECORD
length: integer;

body: short_alfaj;

END;
rp_replyval = 0..255; (* PMDF reply
rp bufstruct = RECORD (* PMDF reply

rp_val: rp_replyval;
rp_line: vstring;
END;

di_bit = 0..1;

di_packet_type 0..9;

1

mm channel ptr “mm_channel;

ch _chancode = char;
aliasptr = “alias;
entryptr = “entry;

alias = RECORD
link: aliasptr;
val: shortvstring;
member: entryptr;
END;

entry = RECORD
link: entryptr;
val: shortvstring;
END;

hostptr = “hostentry;
hostentry = RECORD;
link: hostptr;
val: shortvstring;
official: shortvstring;
END;

mm channel = RECORD
Tink: mm_channel ptr;
address_list: vstringlptr;
chancode: ch chancode;
host table: hostptr;
official hostname: vstring;
END;

value *)

structure ¥*)

RP_USER
RP_AOK
RP_MOK
RP_OK
RP_NDEL
RP_FCRT
RP_FOPN
RP_NO
RP_NOOP
RP_EOF

RP_AGN

]

APPENDIX B

MMDF STATUS CODES

216
96;

32;

224
169;
170;
201
138;
139;

136

(* No such user

(* Address ok

(* Message ok

(* ok

(* couldn’t deliver
(* file create err
(* file open err

(* basic no

(* no operation

(* end of file

(* try again later

(D8)
(60)
(20)
(09)
(EO)
(A9)
(AA)
(c9)
(84)
(8B)

(88)

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

APPENDIX C

mm_ PACKAGE

Global variables -

mm_local_channel: mm_channel_ptr;

The channel configuration information.

mm_alias list: aliasptr;

The alias information.

pmdf config file: text;
The file variable used to read the channel
configuration file.

pmdf alias file: text;

The file variable used to read the alias file.

External functions -

All functions return an MMDF reply code a3 dafined in
Appandix 3.

FUNCILLON mm _iaiz: ep r2plykaly’

[nicii1liz2s zha mm package.’
K b 3

FUNCTLON mm _sbinic: tp replykaly”

[nizializ=2 for s3ubmission.

TUNCTION mm w init (vianet: char; retadr: vstring):
rp_replyvalj

Initialize for the submission of a message. ‘vianet’
is the one letter channel code corresponding to the
channel submitting the message. ’retadr’ is the
return address, that is, the address to which
notification should be sent if the message cannot be
delivered.

FUNCTION mm wadr (host, adr: vstring): rp_replyval;

Write the address of one of the recipients of the
message. ‘host’ and ‘adr’ specify the address. The
return code from mm wadr is only an indication of
the accessibility of the message file. mm_rrply
must be called after mm wadr to determine if the

address was accepted.
FUNCTION mm_waend: rp_replyval;

Terminate address list.

FUNCTION mm_wtxt (buf: vstring);

Write text to the message files associated with the
selected channels.

FUNCTION mm_bigwtxt (buf: bigvstring): rp_replyval;

Write text from a bigvstring.

FUNCTION mm_wtend: rp_replyval;
Terminate text section. mm_rrply must be called after
mm_wtend to determine the final status of the message
submission.

FUNCTION mm_wkill: rp_replyval;

Prematurely terminate the submission of a message.

FUNCTION mm_rrply (reply: rp_bufstruct): rp_replyval;

Used to obtain status value and associated message
after a call to mm_wadr or mm_wtend.

FUNCTION mm_end (typ: boolean): rp replyval;

Terminate use of the mm_ package. If typ is true,
the package is terminated normally. If it is false,
all open message files are deleted and then the
package is terminated.

PROCEDURE send_manage:

APPENDIX D

mm SAMPLE SUBMISSION CODE

rp_replyval;

BEGIN

IF (rp isbad(mm init)) THEN abort _submit;
IF (rp_ “isbad(mm_ “sbinit)) THEN abort _submit;

WHILE more_messages DO
IF rp_ isbad(do a message) THEN abort_submit;

send_manage := RP OK
END;

PROCEDURE do_a_message: rp_replyval;

BEGIN

IF rp isbad(mm winit(“1’,sender)) THEN abort submit;

WHILE more addresses DO
IF rp isbad(do an address) THEN abort _submit;

IF rp_ 1sbad(mm waend) THEN abort submit,
do_a_message t= do_text;
END;

PROCEDURE do_an_address: rp _replyval;

VAR thereply: rp_bufstruct;

BEGIN

IF rp_isbad(mm wadr(host,adr)) THEN abort submit;
IF rp_ “isbad(mm rrply(thereply)) THEN abort _submit;
CASE thereply.rp val OF

RP AOK: note acceptance;

RP_NO, -

RP_USER,

RP_NDEL,
RP AGN,
RP NOOP: note failure;
OTHERWISE notg_bad_replycode;
END;

do_an_address := RP_OK;

END; -

PROCEDURE do_text: rp replyval;

VAR thereply: rp bufstruct;

BEGIN
WHILE more text DO BEGIN
get text(buffer);
IF rp_isbad(mm_wtxt(buffer)) THEN abort submit;
END;
IF rp isbad(mm wtend) THEN abort_ submit;
IF rp isbad(mm_rrply(thereply)) THEN abort submit;
CASE thereply rp val OF
RP MOK,
RP_OK: note_acceptance;
RP™NO,
RP USER,
RP NDEL,
RP AGN,
RP NOOP: note failure;
OTHERWISE note_bad replycode;
END;
do text := RP O0K;
END; -

APPENDIX E

qu_ PACKAGE

External functions -

All functions return an MMDF reply code as defined
in Appendix B.

FUNCTION qu_init: rp replyval;

Initialize the qu_ package.

FUNCTION qu_rinit (filename: vstring;
VAR return_address: vstring;
chancode: char): rp_replyval;

Initialize for the reading of a message file.
“"filename’ is the name of the message file to be
processed. ‘return_address’ is set by qu_rinit to the
return address which is read from the message file.
‘chancode’ is the one letter channel code of the
channel whose message file is being read.

FUNCTION qu_radr (VAR addr: vstring):
rp_replyval;

Read the next address and return it in ‘addr’. RP_EOF
is returned when there are no more addresses.

FUNCTION qu rtxt (VAR line: bigvstring):
rp replyval;

Read the next line from the message file and return it
in ‘line’. RP_EOF is returned when there is no more
text.

FUNCTION qu_rend: rp_replyvalj

Terminate reading of a message and delete the
corresponding message file.

FUNCTION qu rkill: rp replyvalj;

Terminate reading of a message but do not delete the
corresponding message file.

FUNCTION qu_end: rp_replyval;

Terminate use of the qu_ package.

APPENDIX F

di_ PACKAGE

External Functions -
PROCEDURE di_init (progtype: di_bit);

Initialize the di package. ‘progtype’ should be 0 for
the MASTER program and 1 for the SLAVE program and is
used to set the origin bit in packets correctly.

PROCEDURE di_snd_xpath;

Send an XPATH packet to remote host and receive an
XPATHACK packet in return.

PROCEDURE di_snd_rpath;

Send an RPATH packet to remote host and receive an
RPATHACK packet in return.

PROCEDURE di_rcv_xpath;

Receive an XPATH packet from remote host and send an
XPATHACK packet in return.

PROCEDURE di rcv_rpath;

Receive an RPATH packet from remote host and send an
RPATHACK packet in return.

PROCEDURE di_snd_escape;

Send an ESCAPE packet to remote host and receive an
ESCAPEACK packet in return.

PROCEDURE di_rcv_escape;

Receive an ESCAPE packet to remote host and send an
ESCAPEACK packet in return.

PROCEDURE di_ packet read (VAR packet: vstring;
typ: di_packet_type;
timelimit: integer;
checkeof: boolean;
expected length: integer);

Read a packet from the remote host. ’‘typ’ indicates
the type of packet expected. The program is aborted
if the packet is not read within ‘timelimit’ seconds.
If ’checkeof’ is true, the packet must have the
"end-of-segment" bit set. If ‘expected_length’ is
non-zero, then the packet must contain exactly
‘expected length’ characters. The packet is returned
in “packet’. All correctly received packets are
automatically acknowledged by di_packet_read.

PROCEDURE di_ packet_convert (packet: vstring;
buf: vstring);

Converts all escaped character in ‘packet’ to the
correct untranslated character and places the result
in “buf’. The packet header is also removed.

PROCEDURE di_read_record (VAR buffer: vstring);

Reads packets from the remote host until one is read
with the "end-of-segment" flag set. The concatenation
of all the packet bodies is returned in ‘buffer’.

PROCEDURE di_ packet_encode (VAR packet: vstring);

Escapes all characters in ‘“packet’ that cannot be
directly transmitted to the remote host.

PROCEDURE di packet write (packet: vstring;
packlen: integer;
typ: di packet type;
endofrecbit: di bit;
ackwait: integer);

Transmits a packet to the remote host. The packet 1is
in “packet’ and contains ‘packlen’ characters. Its
type is filled in from “typ’, the "end-of-segment"
flag is set if ‘endofrecbit’ is true, and the checksum
is calculated and inserted into the packet header.
After writing the packet, di write_packet will wait up
to ‘ackwait’ seconds for an acknowledgement. If the
time expires with no acknowledgement, the packet is
retransmitted. Several retries are attempted.

PROCEDURE di_transchar (VAR packet: vstring; ch: char;
VAR bytelen: integer);

Buffers one character, “ch’ for transmission to the
remote host. The character is escaped if necessary.
‘packet’ contains the packet that is being built by
successive calls to di transchar. When ‘packet’
becomes full, it is transmitted using di_packet_write.
‘pbytelen’ is incremented by the number of characters
buffered.

APPENDIX G

CONFIGURATION FILE FORMAT

The configuration file contains one entry for each
defined channel. Entries are separated by one blank line.
The first line of an entry contains the one letter channel
code for the channel. The second line contains the official
host name. The third and subsequent lines may contain
synonyms for the official host name and host name/official
host name pairs for the hosts whose mail is relayed using

this channel.

APPENDIX H

MESSAGE FILE FORMAT

The form of the filenames of messages files is:

<chancode><{process-id><time>.<{retry-count>

where, <chancode> is the one letter channel <code of the
messages channel, <process—-id> a 4-digit representation of
the process identification or job number of the process that
submitted the message, <time)> is the low order 4 hexadecimal
digits of the system time and <retry-count> is normally "O0O"
but can take on other values if needed in order to ensure

the uniqueness of a filename.

Each message file is in the following format:

m;return address of sender of the message
address of recipient 1

address of recipient 2

“A~A (two control-A’s)

message line 1

message line 2

“AAAA"A (five control-A’s)

The "end-of-text" sentinel (five —control-A’s) was

included so that partial written messages (possibly

resulting from system crashes) could be easily detected.

A BNF description

follows:

<Address-1list>

<Address>

{Group>

<Mailbox-list>

<{Mailbox>

<Route-addr>

<Route-list>

{Route>
{Addr-spec>

{Local-part>

APNDIX I

RFC 822 DRESS PARSER

of an C 822 standard address
-> {dress>

-> <{dress> , <Address-list>
-> <ilbox>

-> <oup>

-> {rase> <{Mailbox~-list> ;
-> {rase> : ;

-> lilbox>

-> <lilbox> , <Mailbox-list>
-> {Air-spec>

-> {Plase> <Route-addr>

-> < ddr-spec> >

-> < oute-list> <Addr-spec> >
-> {Rcte>

-> {R¢te> , <Route-list>

=-> @ <omaind>

-> {L¢al-part> @ <Domain>

-> <Wagd>

-> {Lgal-part> . <Word>

-
[
—

list

<Domain> -> {{~domain>

-> {t-domain> . <Domain>
<{Sub-domain)> -> Al
{Phrase> -> <wd>

-> {Fase> <Word>
{Word> -> Al

-> QUEDSTRING

An ATOM is a string otharacters not containing blanks
or special characters sucas periods, colons, semicolons,
angle brackets, quotes, andommas.

A QUOTEDSTRING 1is asequence of ASCII characters
enclosed in double quotes.

The parser is defined: follows:

FUNCTION ap parse (VAR:ring: bigvstring):
ap_adess list ref;

Parses “string’ into:s component fields according
to the RFC 822 standd. NIL is returned if the
address is illegal.

The data structure retund by “ap parse’ is defined as
follows:

ap_addr_kind = (ap_mabox_kind,ap_group_kind);
ap_mbx_kind = (ap_sime kind,ap_full kind);

ap_address_list ref = "ap_address_list;
ap_address_ref ~ap address;
ap_mailbox ref “ap mailbox;
ap_mailbox list ref "ap mailbox_list;
ap_group ref “ap _group;
ap_route_addr_ref “ap_route_addr;
ap_route list ref “ap route_list;
ap_domain ref "ap_domain;
ap_addr_spec_ref “ap_addr_spec;

]

ap_address_list REC
next: ap_address_ 1li.
elem: ap_. address re
strpos: 1nteger,
END;

ap_address RECORD

CASE kind:
ap _mailbox kind:
ap_group_ kind:
END;

RECORD

ap mailbox

CASE kind:
ap_simple_ kind:
ap_full kind:
fulladdr:
END;

ap_mailbox list REC
next: ap mailbox 11

mbox: ap:mailbox:re
END;

RECORD
vstring ref;
ap_mailbox 1i

ap_group
name:
list:
END;

ap_route_addr
routes: ap_route 1li
addr: ap_ addr spec
END;

ap_route_ list
next: ap_route list
elem: ap domain ref
END;

ap_addr_spec RECORD

local: vstring_ref;
dmn: ap_domain_re
END;

ap_domain RECORD

D

_ref;

(* position of this address *)
(* in the original string *)

ap_addr_Id OF

Tbx: ap_mailbox_ref);
¢p: ap_group_ref);

ap_mbx _kindF
T (ade
(nan:
ap_route_ﬁdr_ref);

ap_addr_spec_ref);
vstring ref;

D
¢ ref;
]

s ref;

RECORD

s ref;
rf

RECORD

ef;

£

next: ap_domain ref;
elem: vstring_ref;
END;

I-3

	PMDF - A PASCAL-Based Memo Distribution Facility
	Recommended Citation

	PMDF - A PASCAL-Based Memo Distribution Facility
	Abstract
	Comments

	tmp.1193271077.pdf.h2SMz

