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THE MIXED POWERDOMAIN 

Carl A. Gunter* 

University of Pennsylvania 

Department of Computer and Information Sciences 

Philadelphia, PA 19104 U.S.A. 

December 8, 1989 

Abstract 

This paper characterizes the powerdomain constructions which have been used in the semantics 
of programming languages in terms of formulas of first order logic under a preordering of provable 
implication. The goal is to reveal the basic logical significance of the powerdomain elements by 
casting them in the right setting. Such a treatment may contribute to a better understanding of their 
potential uses in areas which deal with concepts of sets and partial information such as databases 
and computational Linguistics. This way of viewing powerdomain elements suggests a new form of 
powerdomain--called the mixed powerdomain-which expresses data in a different way from the 
well-known constructions from programming semantics. It is shown that the mixed powerdomain has 
many of the properties associated with the convex powerdomain such as the possiblity of solving 
recursive equations and a simple algebraic characterization. 

1 Introduction. 

A powerdomain is a "computable" analogue of the powerset operator. They were introduced in the 

1970's as a tool for providing semantics for programming languages with non-determinism. For such 

applications, the powerset operator was unsatisfactory for basically the same reasons that the full function 

space was unusable for the semantics of certain features of sequential programming languages (such as 

higher-order procedu~s and dynamic scoping). In the full powerset, there are too many sets and this 

causes problems for the solution of recursive domain equations. Hence, such applications call for a more 

parsimonious theory of subsets, based on a concept of non-deterministic computability. 

The study of powerdomains has revealed many interesting connections between the semantics of 

programming languages and traditional topics of mathematical research in topology and category theory. 

Moreover, there is a widening awareness of the logical properties of powerdomains. It is the goal of this 

paper to prove several results intended to deepen our understanding of the logic of powerdomains. It is 

demonstrated that each of the best known powerdomains can be characterized by considering appropriate 
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families of first order propositions under the preordering of provable implication. These families provide a 

simple logical characterization of the information-theoretic content of the elements of the powerdomains. 

Such a view may suggest methods for relating the known theory of powerdomains to work on similar 

structures which are the subject of investigations in other areas such as databases, computational linguistics 

and artificial intelligence. 

The seminal work on powerdomains and their application in programming language semantics was 

G. Plotkin's paper [Plo76] on what is often called the Plotkin powerdomain. Subsequent research by 

M. B. Smyth [Smy78] led to the discovery of two similar constructions often called the Smyth and Hoare 
powerdomains. These three powerdomains have been used widely in programming language theory, and 

they have also sparked a body of theoretical research into their properties and relationships to similar 

constructions in Mathematics. Smyth [Smy83] demonstrated a close connection between the Smyth and 

Hoare powerdomains and the concepts of upper and lower semi-continuity respectively. He also found 

that the Plotkin powerdomain was related to what is known as the Vietoris construction from topology. 

This research led Smyth to suggest the names for the three powerdomains which I will use below: upper 

(Smyth), lower (Hoare) and convex (Plotkin). The categorical significance of the powerdomains was 

demonstrated by Hennessy and Plotkin [HP79] who proved that each of the three can be seen as a left 

adjoints to appropriate forgetful functors. 

There has also been progress on understanding the powerdomains from the point of view of logic. 

Results similar to those which will be proved below have been presented by G. Winskel [Win85], who 

showed how each of the three powerdomains can be characterized using modal formulas under an inter- 

pretation in terms of non-deterministic computations. Winskel's results have a slightly different intuition 

from the ones proved below since I will generally be viewing powerdomains as partially described sets 
rather than partially described computations. Abramsky has highlighted many useful connections between 

domains, topology and logic in his work on "domains in logical form" [Abr88, Abr87, Abr891 where he 

gives a thorough treatment of the logics of the upper, lower and convex powerdomains. 

The paper is divided into nine sections. The powerdomains are defined in the second section and an 

extended example using sets of records is discussed. In the third section the intuitions about information 

discussed in the second section are characterized using first order logic. Theorems establishing a precise 

relationship for the upper and lower powerdomains are proved. In the fourth section, the convex powerdo- 

main is also characterized in terms of first order logic and a new powerdomain, the mixed powerdomain, 

is defined. Relationships between the convex and mixed powerdomains and the sandwich powerdomain 

from database theory are discussed. The mixed powerdomain is also characterized with first order formu- 

las. The fifth sections discusses domain-theoretic properties of the mixed powerdomain. It is shown that 

the mixed powerdomain can be used in recursive domain equations and comparisons are made with the 

other three powerdomains. In the sixth section it is shown that the mixed powerdomain (with emptyset) 

is characterized algebraically as the left ajoint to a forgetful functor from a category of algebras (called 

mix algebras) to the category of algebraic cpo's and continuous functions. Section seven discusses the 

mixed powerdomain as a relation on the product UD x LD of the upper and lower powerdomains. The 

eighth section shows how the Stone dual of the mixed powerdomain can be characterized using a form 

of modal logic. The ninth and final section offers conclusions. 



The paper is written in a graded fashion. The first four sections have no prerequisites other than a 

slight knowledge of first order logic. The remaining sections require knowledge of domain theory and 

some basic category theory. 

2 Sets of data. 

This section begins by providing precise definitions for the upper, lower and convex powerdomains. As 

a guide to intuition, we will then look at several examples of sets from the the powerdomains of a simple 

datatype of records. Viewing things in such a concrete fashion aids one in seeing powerdomains as 

diverse theories of partially described sets and not just as a theories of the outcomes of non-deterministic 

computations. 

Rather than follow the usual treatment which one can find in many places in the literature (see, for 

example, [Smy78] or [GS88]), I will reduce the domain-theoretic pre-requisites by working only with the 

action of the powerdomain operator on the bases of d0mains.l In this way, we may restrict our attention 

to the following simple class of directed graphs: 

Definition: A preorder is a set A together with a binary relation 2 which is reflexive and transitive. We 

may write y 5 x rather than x 2 y. We write x = y if x 2 y and x 5 y. I 

A preorder is like a poset (partial order) except the anti-symmetry axiom need not hold. Intuitively, the 

elements of a preorder A may be thought of as propositions (of first order logic, say) under the preordering 

of provable implication. If we have propositions 4 and $ in A, then we may have 4 + $I and $ + 4 
without it being the case that 4 and $ are the same proposition (although their truth values must be the 

same). For this reason and another (more important) reason mentioned below, it is more convenient to 

work with preorders than posets. 

Let (A,  2)  be a preorder and suppose P j A  is the collection of non-empty finite subsets of A. We 

define three preorderings on P j A  as follows. Suppose u, v E PYA, then 

a u 2fl v iff for every x E u there is a y E v such that x 2 y, 

a u zb v iff for every y E v there is a x E u such that x 2 y, 

a uzh v iff u ~ f l v  and u z b  v 

It is easy to check that each of these relations is, in fact, a preordering. The preorder ( P j A ,  21) is called 

the upper powerdomain of (A,  2)  and it is denoted ( A N ,  2fl) (or just A N  when the preordering is clear). 

The preorder ( P ~ A ,  zb)  is called the lower powerdomain of (A,  2)  and it is denoted ( A ~ ,  zb). Finally, 

the preorder ( P j A ,  2b) is called the convex powerdomain of (A, 2)  and it is denoted (A" zb). 
To get a few examples, let us look at the powerdomains of a simple preorder of records. Our records 

will have between zero and four fields. the available fields are name, age, soc sec and married?. 

 his way of doing things has been discussed in numerous references. The information systems of Scott [Sco82] are a 
popular tool; preorders and domains are discussed in some &tail in [Gun87]. The technique has been carried much further 

in [Abr89]. 



The a g e  and s o c s e c  fields may be filled with integers and the m a r r i e d ?  field may be filled with a 

boolean. The name field is a record with two fields: f i r s t  and s e c o n d .  Each of these fields may be 

filled with a string. The type can be named by the following expression: 

{ name = { f i r s t  = s t r i n g ,  

l a s t  = s t r i n g  1, 
a g e  = i n t ,  

s o c s e c  = i n t ,  

m a r r i e d ?  = b o o l  ) 

Here is a sample record r l :  

{ name = { f i r s t  = " J o h n u ,  

l a s t  = "Smi th"  } ,  

a g e  = 28 ,  

s o c s e c  = 439048302,  

m a r r i e d ?  = t r u e  ) 

We will assume that records may have missing fields as in the following record T Z :  

{ name = { f i r s t  = "John"  1 ,  

a g e  = 2 8  1 

The record rl is more informative than r2 because it provides more facts about the described individual 

"John". This concept of one record being more informative than another is basic to the discussion which 

follows. Records may have other relationships as well. In particular, there is an inconsistency between 

r l ,  r2 and the following record r3: 

{ name = { f i r s t  = "John" ,  

l a s t  = "Smi th"  ), 

s o c s e c  = 229068403,  

a g e  = 2,  

m a r r i e d ?  = f a l s e  ) 

We may model this collection of records and its associated information ordering as follows. First, we 

assume that we are given the types string, int and bool as flat domains. For example, the type of integers 

should contain the ordinary integers 1, -2, 0 and so on, together with a special bottom element I which 

is intended to represent "no information". The ordering on these elements is given by taking m 2 n if 

and only if n = I or m = n. For example, we do not have 28 2 2. This is what one would expect, after 

all; a record about a two year old John Smith is not less informative than a record about a 28 year old 

John Smith, these records are simply incompatible. The interpretation of strings is similar. The booleans 

are also a flat domain, but there are only three elements true, false and I .  Now, the space of records is 

the product space 

(string x string) x int x int x bool. 



Of course, a record is interpreted in this space without regard to the order of its fields according to some 

convention perhaps (e.g. the first two strings are for the first and last names respectively; the first integer 

is the age and the second is the social security number). Missing record fields are interpreted as I. 

Records are ordered coordinate-wise. A pair of records r ,  r' is consistent if there is a record r" such that 

r" 2 r and r" 2 r'. Otherwise r and r' are inconsistent. Many of the sets in the powerdomain of our 

space of records will contain pairs of inconsistent records. 

Our family of records is the raw material out of which we can build collections of data about some 

set of "real world entities". Some of our records probably make no real sense under any circumstances. 

For example: 

{ name = { f i r s t  = "John",  

l a s t  = "Smi th"  ),  

a g e  = 2,  

m a r r i e d ?  = t r u e  ) 

will probably not find its way into any useful database of records. There will also be pairs of records 

which are unlikely to be found together in the same database: 

{ s o c s e c  = 229068403,  

a g e  = 2 ) 

{ s o c s e c  = 229068403,  

a g e  = 2 8  ) 

Moreover, most data items will be only partial descriptions (as is the case with most of the examples 

above). The question we need to answer is the following: how does a set of records provide a partial 

description of a set of real world entities? 

Consider the following set s of records 

{ name = { f i r s t  = "Mary" ), 

a g e  = 2 ) 

{ name = { f i r s t  = "Todd" 1 ,  
a g e  = 2 1 

{ name = { f i r s t  = "John"  ), 

a g e  = 2 ) 

which might be the database for a small nursery. When should we say of another set of records that it 

is more informative than the set of records above? Here is a first possibility sl: 

'1 hope the reader will pardon my loose use of this term. It is not my intent to expound a serious theory of databases. The 
examples are meant to suggest the propositional consequences of the powerdomain orderings. 



{ name = { f i r s t  = "Mary" ), 

age = 2  ) 

{ name = { f i rs t  = "Todd" }, 

a g e  = 2  ) 

{ name = { f i r s t  = "John",  

l a s t  = "Smi th"  1 ,  
age = 2  ) 

{ name = f i r s t  = " B e t h "  ] 

a g e  = 3  ) 

This set seems more informative because it lists more of the children in the nursery and provides slightly 

more information about those who are enrolled (since we now have John's last name). In the lower 

powerdomain (pre)-ordering, zb, the set sl is greater (more informative) than s. But consider the following 

set s2 of records: 

{ name = { f i r s t  = "Mary" ), 

s o c s e c  = 439234970,  

a g e  = 2 ) 

{ name = { f i r s t  = " J o h n u ,  

l a s t  = "Smi th"  ),  

s o c s e c  = 429238406,  

a g e  = 2 ) 

{ name = { f i r s t  = "John1', 

l a s t  = "Smi th"  }, 

s o c s e c  = 229068403,  

age = 2  ) 

This seems more informative than s because it provides more information about the children in the class 

and eliminates the name of a child (Todd) who will not actually be attending. In the upper powerdomain 

ordering, zfi, the set s2 is greater than s. However, it is not greater than s in the lower powerdomain 

ordering. Conversely s2 is not greater than s in the upper powerdomain ordering. 

These two alternative extensions should point out how the ordering of partial information suggests 

the intuitive significance of the set of records s. In the first case, under the lower ordering, s might 
be a list of children who have been enrolled in the nursery; more may enroll later. In the second case 

(under the upper ordering) s might be the list of all children who are on a waiting list; some children 

may drop off of the list but no new ones may enter (since the deadline for such entries has passed). In 



either case, a further refinement of the individual records through the addition of new fields results in a 

more informative set of records. 

It is important to note that powerdomains are only preorderings and not posets (i.e. partial orderings). 

If the record 

{ name = { l a s t  = "Smi th"  ) 

a g e  = 2 ) 

is added to sl, there is no change in the intended meaning of the set of records with respect to the lower 

preordering. In other words, if s', is the larger set, then sl zb s', and also s', zb sl. This is not true of 

the upper preordering. In that preordering, sl 2# si, but si sl. The following set of records 

{ name = { f i r s t  = "John",  

l a s t  = "Smi th"  ), 

s o c s e c  = 229068403,  

a g e  = 2 } 

I name = { f i r s t  = John" ) 

a g e  = 2 } 

would not change, under either powerdomain ordering, if the following record were added: 

{ name = { f i rs t  = "John",  

l a s t  = "Smi th"  } 

a g e  = 2 } 

It may seem odd that we would allow in sz the possibility that a single record might split into two 

records as the record for John did. This seems more reasonable in other cases, however. For example, 

the singleton set of records containing only the record 

{ a g e  = 2 } 

would indicate under the upper ordering that we are talking about a nursery of two year olds (whose 

names we do not yet know). In the lower ordering, this database would indicate only that there will be 

some two year old in the nursery (but there may also be some children of other ages). It is also possible 

for two data items to merge to form a new data item. For example, the following set of records: 

{ name = { f i r s t  = "Mary" ) ) 

{ name = { f i r s t  = "John"  ), 

a g e  = 2 ) 



{ name = { last = "Smith" 1 
socsec = 229068403 } 

{ socsec = 429238406 } 

is less descriptive (in either lower or upper ordering) than the set of records s:! above. 

We will look at some more examples of this kind when we get to the discussion of the convex ordering 

in a later section. 

3 Powerdomains and logic. 

Let us now try to relate the intuitions and preorderings discussed in the previous section to formulas of 

an appropriate logic. For this discussion first order predicate logic will be used because it is simple, 

well-known and seems to be sufficient for the job at hand. After some motivation, the upper and lower 

powerdomain operators on preorders will be precisely related to certain operations on collections of first 

order formulas. 

In the examples provided in the previous section, we thought of sets of records as partial descriptions 

of sets of real world entities. However, one may dually think of a set of records as describing a set of 

"situations" compatible with the set of records. Each record can be treated as a predicate over a collection 

of individuals. For example, the record 

{ name = { first = "John" } } 

is satisfied by individuals whose first name is "John". More concretely, we might think of individuals as 

total records (i.e. records with all fields filled in) for the example of the previous ~ec t ion .~  If we view 

things this way, can we think of sets of records as predicates too? First of all, we must ask what is being 

predicated by a set of records. The answer seems clear: sets of individuals. Hence, a set of records 

should be considered a predicate over sets of individuals or, put succinctly, a second order predicate. 

This seems to justify a leap into second order logic for a description of powerdomains. We expect to 

find that the different powerdomain orderings give rise to different second order predicates. However, a 

first order formula may be considered a second order predicate if it contains a unary predicate symbol. 

Suppose we are given a distinguished unary predicate symbol W and a collection of predicate symbols U. 
In a given model, a formula like U(x) might be asserting that x is a two year old. With this interpretation, 

a first order formula such as 

# z vx. W(x) + U ( x )  

asserts that everyone in the interpretation of W is a two year old. Hence # itself becomes a predicate of 

W. Of course, there will be many predicates defined by first order formulas in this way, but which of 

them (if any) correspond to the elements of the powerdomains? 

31t will not always be intuitively reasonable to view things in this way, although it works well for the example at hand. 

8 



Let us attempt to work out an example similar to those in the previous section. Recall the set s of 

records: 

{ name = { f i r s t  = "Mary" ), 

age = 2 } 

{ name = { f i r s t  = "Todd" 1, 
age = 2 1 

{ name = { f i r s t  = "John" 1 ,  
age = 2 1 

Let M,  T and J be unary predicate symbols for having first name "Mary", "Todd" and "John" respectively. 

Under the lower powerdomain ordering, what is this collection of records telling us about the set of children 

in our hypothetical nursery? The first record of s seems to assert that there is a child named "Mary" in 
the nursery. If W is a predicate symbol which we are interpreting as the children in the nursery, this can 

be represented by the formula 

35. W(x) A M ( x )  

which we may express more succinctly as W n M # 0. Actually, the first record expresses a bit more 

than this. Let 0 be a predicate which is being interpreted as the set of all two year olds. Then the first 

record says: W n M fl 0 # 0. In summary, s corresponds to the following proposition: 

As an exercise, the reader may express sl in this way and show that the resulting proposition implies the 

one above. 

Now, what about the upper powerdomain ordering? Under this ordering, each record expresses a 

range of possibilities. The three records together assert that the children of the nursery (or those on its 

waiting list if that is preferred interpretation) are all named "Mary", ''Todd" or "John". More specifically, 

a child on the waiting list must be a two year old "Mary", a two year old "Todd" or a two year old 

"John". However, this does not preclude the possibility that there is no "Todd" who is actually waiting 

for entry. If W is a new unary predicate symbol to be interpreted as the individuals in the nursery, then 

this assertion may be summarized as 

vx. W(x) + 9 (1) 

where 9 is the disjunction 

The formula (1) may also be expressed with set-theoretic notation: 



Again, the reader may find it instructive to express sz in this way and check that the resulting proposition 

implies this one. 

It is tempting, at this point, to "think semantically" and try to view the powerdomains in terms of 

sets of individuals. This can be misleading, however. Given a predicate symbol U ,  let [ U ]  be the 

interpretation of U in a fixed model. In particular, for the upper ordering, we may have 

without it being the case that the [U;] C [Vj] or [V,] c [U;] for any pair of predicate symbols Ui and 

Vj. It seems, therefore, that although the formulas 

and 

$ =  w G VlU...UVm 

define the same family of predicates, this does not follow from the ordering under inclusion of the sets 

[ U ]  for unary predicate symbols U of the language. For afrxed model, the interpretations of the predicates 

4(W)  and $ ( W )  may have more relationships than one can "obtain" from the ordering of the sets [ U ] .  
One may place some ad hoc assumptions on the model to make things work out better. However, the 

treatment which I provide below uses nun-standard models to hide this problem. 

To crystalize this discussion by proving some theorems, it is necessary to be somewhat more formal 

about the ground rules. Some notation is helpful. Fix a first order language C of unary predicate symbols 

and a set T  of formulas of the form U C V where U and V are unary predicates in the language. Given 

a set of formulas a, the theory T  induces a preordering on the formulas of by provable implication. 

In other words, the induced preorder has, as its elements, formulas 4 E and it is preordered by taking 

4 2 4' iff T  I- 4 -+ 4'. For the remainder of this paper, fix the theory T  and assume that W  is a new 

unary predicate symbol not in the language of T.  It will simplify matters to assume that U C V is in T  

whenever T k U c V. Let A be the preorder which T  induces on formulas of the form U ( x )  where U 

is a unary predicate symbol of C. Then we have the following: 

Theorem 1 The preorder which T  induces on formulas of the form 

is exactly the upper powerdomain of A. 

Proof: Suppose we are given formulas 

It is not at all difficult to see that if, for each predicate U;, there is predicate Vj such that U; C Vj is in 

the theory T ,  then 

T I - + + $ .  



What is less obvious is the fact that this is the only way such an implication can be proved. Suppose 

we know that T t- 4 -+ +. By the Soundness Theorem for First Order Logic, we laow that 

Suppose that (2) holds, but there is a predicate U; such that U; Vj is not in T for any V,. We 

demonstrate a contradiction. Define a model A of T U (4) as follows. The universe of A is the set of 

predicate symbols of L (this does not include W). If U is a predicate symbol of L, it is interpreted in A 
as the set of predicate symbols V E L such that U g V is in T. The predicate symbol W is interpreted as 

the set {Ul, . . . , U,}. Let [U] be our notation for the interpretation of a predicate symbol U. I claim that 

A T u (4). If U c V is in T and U' E [U], then U' c U is in T so U' c V is in T. Thus U' E [V] 
and it follows that [U] [V] as desired. That A 4 follows immediately from the interpretation of W. 
On the other hand, I also claim that A $. Since there is no V, such that U; C V, is in T, the element 

U; is not in [Vl] U . . - U [V,] and therefore W [Vl] U - .  . U [Vm]. I 

Theorem 2 The preorder which T induces on formular of the form 

is exactly the lower powerdomain of A. 

Proof: D e h e  formulas 
cj1=(WnU1 # O ) A . . . A ( W n U n  # 0 )  
+I= (W nVl # 0) A . . - A  (W nV, # 0) 

If, for each V, there is a predicate U; such that U; Vj is in T, then it is easy to show that 

Conversely, if this holds then we also have 

Suppose that (3) holds, but there is a predicate Vj such that U; C V, is not in T for any U;. I will 

demonstrate a contradiction. Let A be the model of T given in the proof of Theorem 1. Obviously 

A I= 4'. However, [V,] n [W] is the emptyset since there is no U; in [V,]. I 

4 Other powerdomains? 

In this section I will look at a few more second order predicates such as the ones which were used to 

characterize the upper and lower powerdomains in the previous section. I begin by discussing the convex 

ordering and its information-theoretic significance using sets of records. A logical characterization of the 

convex powerdomain is then provided and a correspondence theorem similar to Theorems 1 and 2 will 

be given. I will then define a close relative of the sandwich powerdomain of Buneman, Davidson, Ohori 

and Watters [BDW88, B086, BJ0891 which has been used used for the semantics of databases. 

Under the convex ordering, none of the three sets of records s, s l ,  s2 given earlier are related. The 

following set s3 satisfies s3 >h s: 



{ name = { f irst  = "Mary" 1, 
s o c s e c  = 4392349703,  

a g e  = 2  1 

{ name = { f i r s t  = "Todd", 

l a s t  = "Smi th"  ), 

s o c s e c  = 923799210,  

a g e  = 2  1 

{ name = { f irst  = "John",  

l a s t  = "Smi th"  1, 
s o c s e c  = 429238406,  

a g e  = 2  ) 

{ name = { f i r s t  = "John",  

l a s t  = "Smi th"  1 ,  
s o c s e c  = 229068403,  

a g e  = 2  ) 

Note that no new names were added in s3 as we added the name "Beth" in sl (although the two John 

Smith's were disambiguated), and no names were removed from s as we removed "Todd" in sp. On the 

other hand, the records of ss are considerably more specific than those in s. For example, if we assume 

that now two children have the same social security number, then no further refinement of s3 will have 

more or less than four children. (However, sets with multiple names associated with the same social 

security number are permitted in the convex powerdomain.) As with the other powerdomains, it is easy 

to produce examples which show that the convex powerdomain of a poset may not satisfy ad-symmetry. 

The following can be proved by combining the proofs of Theorems 1 and 2: 

Theorem 3 The preorder which T induces on formulas of the form 

is exactly the convex powerdomain of A. I 

The convex powerdomain is generally considered to be more "natural" than the upper and lower 

powerdomains; this view is supported, for example, by the categorical characterizations of the three 

powerdomains [HP79, GS881 as well as considerations from the semantics of concurrency. However, 

when one views the three powerdomains from the standpoint of this paper, the convex powerdomain 

seems to entail a peculiar assumption. Each of the records in a database under the convex ordering must 

convey both upper and lower information; or, to put it another way, the upper and lower information 

conveyed by the database must be conveyed by the same set of predicates. We are permitted to use 



formulas of the form 
( W E  Ul U . . . U  U , )A  

( W n U l  # 0 ) ~ . . . ~ ( w n u ,  +0) 
but not formulas of the the more general form 

(W c U I ~ . - . ~ U m ) A  

(W n U; # 0 ) ~ . - . n ( W n  U; # 0 )  ( 5 )  

While it makes perfectly good sense to make a restriction to formulas as in (4), it also seems reasonable, 

in some circumstances, not to make this restriction. The use of formulas such as those in (5) in the theory 

of databases has been discussed in several publications [BDW88, B086, BJ0891 using an operator known 

as the sandwiches powerdomain. Although questions about the categorical and topological significance 

of sandwiches are only beginning to be investigated, their information-theoretic significance and potential 

applications suggest interesting lines of investigation. I now define an operator which has a strong kinship 

to the sandwiches domain and demonstrate a logical characterization for it. 

Definition: Let (A, 2) be a preorder. A mix (on A) is a pair (u ,  v )  E P j A  x P j A  such that v 2; u. We 

define the mixed powerdomain M O A  to be the set of mixes on A under the pre-order given by taking 

( u ,  v )  2 ( u l ,  v l )  iff u >tf u' and v  zb vl. As with other preorders, we write x 5 y if y 2 x. We also write 

x ~ y i f z 5 y a n d x k y . I  

As aside on uniformity of notation, we might have written A(;>~) for M O A  by analogy to the notations 

A~ and A ~ .  Similarly, ? ( M y b )  would be another possible notation for 2. The reason for the superscript 0 

on the symbol M will be explained in section 5. 

The choice of preordering on the pairs ( a ,  v )  E M O A  is unsurprising. It is slightly less clear why 

only pairs ( u ,  v )  with v ?# u are used. To understand this restriction and get a feeling for the mixed 

powerdomain, it is best to look at some examples. Rather than representing elements of the mixed 

powerdomain with a pair of sets of records it is convenient to write a set of records which are tagged to 

indicate whether they belong in the first or second coordinate of the pair. I will use a tag # for the records 

in the first coordinate (since this looks like the tf sign) and a tag b for records in the second coordinate 

(since this looks like a b sign). Forget, for the moment, about the condition that v zfl u and consider the 

following set of (tagged) records t: 

b{ name = { first = "Mary" I 1 

b{ name = { first = "Todd" 1 1 

b{ name = { first = "John" 1 1 

# {  age = 2 1 

This is very similar in information content to the set of records s which were considered earlier. It 

describes a group of two year olds which must include a "Mary", a "Todd" and a "John". Here is another 

set of records tl similar to s l :  



Figure 1: A mixedpowerdomain element (u,  v) is illustrated above. The elements of the set u are indicated 
as closed circles (dots). They determine a shaded upper set within which the elements of v must lie. The 

elements of v are represented as open circles. 

b{ name = { f i r s t  = "Mary" ), 

age = 2 ) 

b{ name = { f i r s t  = "Toddw }, 

age = 2 } 

b{ name = { f i r s t  = "John", 

l a s t  = "Smith" 1, 
age = 2 } 

b{ name = { first  = "Bethw } 

age = 3 ) 

# {  age = 2 1 

# {  age = 3 ) 

which allows that the nursery is now enrolling three year olds as well as two year olds. However, the 
following set of records is nonsense: 

b{ name = { f i r s t  = "Mary" 1, 
age = 2 ) 



b{ name = { first = "Todd" 1, 
age = 2 ) 

b{ name = { first = "John", 

last = "Smith" ), 

age = 2 ) 

b{ name = { first = "Beth" ) 

age = 3 } 

# {  age = 2 1 

because Beth is incorrectly recorded as a three year old or the new admissions policy has not be properly 

entered. In order for a set of mixed records such as these to make sense, it is essential that, for each 

b-record, there is a #-record which applies to it. Otherwise, the set of mixed records is "inconsistent." As 

another example, a dating service may have a database d: 

b{ name = { first = "Sharon" }, 

age = 26, 

married? = false) 

b{ name = { first = "David" 1, 
age = 28, 
married? = false) 

b{ name = { first = "Mabel" ), 

age = 58, 

married? = false) 

b{ name = { first = "Lee" 1, 

age = 55, 

married? = false1 

# {  married? = false ) 

but trouble may arise from adding a record such as 

b{ name = { first = "John" 1 
age = 30, 

married? = true 1 

The sandwiches powerdomain is defined to include records like t above; t is not in the mixed 

powerdomain because the b-records are missing their age fields. 



Figure 2: A sandwich (a, v) is illustrated above. The elements of the set u are indicated as closed circles 
(dots). They determine a shaded upper set. The elements of v are represented as open circles; each element 
of v is required to have an upper bound in the shaded region. 

Definition: A sandwich is a pair 

(u,v) E P j A  x PjA 

such that there is a set w E P;A such that w 21 u and w zb v. The sandwich powerdomain of A is the 

set of sandwiches under the ordering (u, v) 2 (ul, vl) iff u (IH u1 and v zb v' 

Obviously, any mix is a sandwich. Unfortunately, the logical interpretation of the sandwich powerdomain 

in the sense of this paper does not seem to be straight-forward. 

To characterize the mixed powerdomain logically, it is necessary to generalize from formulas such as 

(4) to a set of formulas such as (5). It is easiest to do this for a subset of the mixes which is isomorphic 

to the mixed powerdomain. Suppose (u, v) E MOA. Since u ( ~ n  v, we have u U v E u. In particular, 

(u U v, v) is a mix which is equivalent to (u,v). Since we are only really interested in the equivalence 

classes of mixes, we might therefore have included this condition our earlier definition of the mixed 

powerdomain. However, this would have complicated the examples slightly, since some elements would 

need to be listed twice. 

Recall that T is a set of formulas of the form U C V where U and V are unary predicates in a fixed 

first order language C. A is the preorder which T induces on formulas of the form U(s) where U is a 

unary predicate symbol of C. 

Theorem 4 The preorder which T induces on formulas of the fonn 

is isomorphic to the mixed powerdomain of A. 



Proof: Suppose we have formulas 

and define 

We must show that 

w ~ u l u . - ~ u u m u u ; u . . . u u : ,  
4% (W n U; # 0 ) ~ . . - ~ ( w  nu:, # 0) 

$ = W  cvlu~-~uv-uv;u.-~uv; ' 

$' = (W nv; # @ ) A  ... ~ ( w n V ; #  0) 

if and only if 

1. for each predicate symbol U E U U U' there is a predicate symbol V E V U V' such that U V  is 
in T, and 

2. for each predicate symbol V  E V' there is a predicate symbol U E V such that U C V  is in T, and 

As with the earlier proofs of this kind, the harder part of the proof is showing that (6) implies items (1) 

and (2). As before, we utilize the Soundness Theorem to prove each of these items by contradiction. 

Define a model A of T U {q5,b1} as follows. The universe of A is the set of predicate symbols of C (this 

does not include the distinguished predicate symbol W). If U is a predicate symbol of C, it is interpreted 

in A as the set of predicate symbols V  E C such that U  C V  is in T. The predicate symbol W is 

interpreted as the set {Ul,. . . , U,, U;, . . . , UL}. That A is a model of T U {4,4'} follows immediately 

from the definitions. 

Now, suppose that (1) fails. Then there is some U such that 

Since U E [W], it follows that [W] [Vl] U . . . U [V,] U [V.] U . . . U [V,'] and therefore A does not 

satisfy $. Suppose that (2) fails. Then there is some such that U,! 6 [YlJ for each U,!. To get the 

desired contradiction, we want to use a new model A' which is the same as A except [W] = Ui, . . . , U;. 
Clearly, A' T u (4, qS). But [Vj'] n [W] = 0  so A' i+ fr'. 

5 The mixed powerdomain. 

One is led to ask whether the mixed powerdomain, which has been motivated by a logical interpretation 

above, really enjoys the nice technical properties that the usual powerdomain operators do. The answer 

to this question is "yes" and it is the purpose of this section to provide a rigorous demonstration of this. I 



will try to keep the discussion as self-contained as possible, but the reader will need to know some domain 

theory in order to follow. Most of the necessary results can be found in [SP82], [Gun871 and [GS88]. 

The first step is to show how to define a continuous mixed powerdomain functor on the category 

of algebraic cpo's. This functor will take finite posets to finite posets, and hence it cuts down to a 

continuous functor on bifinite  domain^.^ In the next section, we will look at algebraic cpo's that have a 

bottom element; this will be explicitly stated when it is needed. 

Given a pre-order A and x C A, let Is = {b E A I b a for some a E x). A subset x C A is 

an ideal if it is directed and x = is. For a pre-order A, let idl(A) be the algebraic cpo of ideals on A, 

ordered by subset inclusion. For an algebraic cpo D, let K D  be the basis of compact elements of D. 

The following lemma is a quite useful way to define functions between algebraic cpo's: 

Lemma 5 Let A be a preorder and suppose E is an algebraic cpo. I f f  : A -t E is monotone, then there 

is a unique continuous fiznction f' which completes the following diagram 

In particular, a continuous function f  : D -r E between algebraic cpo's D and E is uniquely determined 

by its restriction to l i D .  I 

Now, we define M D  = id l (MO(KD)) .  If f  : D -+ E is a continuous function between algebraic 

cpo's D and E, we define 

where f * ( u )  and f * ( v )  are the images of u and v  respectively under the function f. We omit the proof 

that this makes sense and M (  f )  is a continuous function from M D into M E .  Suppose g : E -+ F is 

another continuous function. 

Since M (idD) = idM(D), where idD and i d M p )  are the identity maps on D and M ( D )  respectively, it 

follows that M is an endofunctor on the category of algebraic cpo's with continuous functions. Indeed, 

we have the following 

4Bifinite domains are called "profinite domains" in [Gun87]. 
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Lemma 6 If f 5 g ,  then M (  f )  5 M  (g).  I f  M is a directed subset of D + E ,  then M ( V  M )  = 

V M ( M ) .  1 

Hence, the methods discussed in [SP82] can be used to show that M  defines a continuous functor on 

algebraic cpo's (with continuous functions or embeddings). 

If a pre-order A satisfies the ascending chain condition (i.e. A  has no infinite chains xo 5 xl 5 x2 5 
- . .), then id1 (A )  S A. In particular, M  (R) Z M  ' ( R )  for the domain R of records discussed in Section 2. 

Now that the mixed powerdomain has been established as a continuous functor on bifinite domains, we 

may conclude that it can be used in any of the domain equations that are used with other powerdomains. 

This leaves a shopping list of questions about its technical similarity with the other operators: 

1. Is the mixed powerdomain also closed on smaller categories, such as the bounded complete algebraic 

cpo's (Scott domains)? 

2. Are the other powerdomains embedded in the mixed powerdomain? 

3. Can the mixed powerdomain be used for the semantics of non-deterministic programming languages? 

4. How is the mixed powerdomain related to the sandwiches powerdomain? 

5.  Do any of the topological and freeness theorems that hold for the upper, lower and convex power- 

domains have an analog that holds for the mixed powerdomain? 

I will provide at least a partial answer to each of these questions. 

Notation: Given a pre-order A and a subset u  & A, define 

TU = { X  E A I x 2 y for some y E 21) 

J U  = { X  E A  I x 5 y for some y E u)  I 

Proposition 7 If A  is afrnite pre-order, then M A  is isomorphic to the poset M A  ofpairs (u ,  v )  such that 

u  is an upper set, v  is a lower set and v  = L(u n v )  under the ordering (u ,  v )  5 (u', v') iff u  C u' and 

v  c v'. 

Proof: Given a mix (u, v), the pair f ( (a ,  v ) )  = ( t u ,  l v )  is an element of MA. To see this, suppose 

x E i v ,  then there is a y E v  such that x 5 y. Since u  zfl v, we know that y E Tu SO x E ~ ( T u  n Iv). 

Since ru n l v  is clearly a subset of Jv, it follows that J ( t u  fl Lv) = Jv. Now, given (u ,  v )  E M A ,  

the pair g((u, v ) )  = (u ,  t u  n J v )  is a mix. It is straight-forward to check that f o g and f o g are both 

identities. I 

Perhaps the most striking property of the mixed powerdomain is an anomaly which it shares with the 

convex powerdonlain: it does not preserve the property of bounded completeness. For example, the poset 

displayed in Figure 3 is bounded complete, but its mixed powerdomain is not.5 This fact, and the close 

similarity between the logical characterizations of the mixed and convex powerdomains, lead one to ask 

5The example is due to Peter Buneman. 
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Figure 3: The four elements indicated in the picture on the right show that the mixed powerdomain of the 
bounded complete domain pictured on the left is not bounded complete. The two mixes at the bottom have 

no least upper bound, since the two mixes indicated above them are minimal upper bounds. 

Upper Lower 

Figure 4: Upper and lower powerdomains of the truth value cpo. 

whether these operators might actually be isomorphic. Given a preorder A, it is clear that there is a nice 

monotone map from ~b into M'A defined by u H (u, u). This map is an order-embedding, i.e, for each 

u, v E A ~ ,  
u zb v iff (u, u) 5 (v, v). 

Could this be an isomorphism? Let me attempt an intuitive answer to this question before actually 

providing a rigorous proof. Consider the truth value cpo T displayed in Figure 4. The upper and lower 

powerdomains of T are also displayed there with equivalent elements identified and representatives of the 

equivalence classes tagging the nodes. In the upper powerdomain, the set {t, f) is a partial description 

with three possible "refinements". In the lower powerdomain, the set {t) can be seen as a partial element 

with two possible refinements. The mixed powerdonlain element ({t , f ), {t)) can be seen as a partial 

element which has three possible refinements, namely itself (which I'm counting as a refinement for 

now) and the total mixed elements ({t), { t ) )  and ({t, f) ,  {t, f)). These last two elements are total 

descriptions of the sets {t) and {t, f}. I claim that there is no counterpart to this partial description in 

the convex powerdomain. The only potential candidate is the set (0, t}, but the order-embedded element 

((0, t), (0, t)) is strictly less less than ({t, f}, {t}) in the mixed powerdomain and has the partial element 

(0, {t, f}) as a refinement, whereas this element is incomparable to ( { t ,  f), {t)). The reader may find 

it helpful to go through this discussion while looking at the Hasse diagrams of the convex and mixed 



Convex Mixed 

Figure 5: The convex and mixed powerdomains of the truth value cpo are not isomorphic. The order- 
embedded image of the convex powerdomain in the mixed powerdomain is indicated with open circles in 

the figure on the right. The two points not in the image of this order-embedding are indicated with closed 
circles. 

powerdomains of T which appear in Figure 5. In any case, it is clear from the pictures (which are 

my rigorous proof) that these posets are not isomorphic since the convex powerdomain has 7 elements 

whereas the mixed powerdomain has 9. 

To use the mixed powerdomain for the semantics of programming languages, it is essential to define 

a collection of auxiliary functions such as those ordinarily associated with the powerset operation. There 

are two such operations which are of primary interest. The mixed powerdomain union is a function 

U : M " A X M " A + M  "A. If u = (uu, ub)  and v = (vn, v b )  are elements of M"A, their union is 

defined as follows: 

ubl v = (UHU v8,ub U vb) .  

To see that this makes sense, we must first show that u tl v is an element of the mixed powerdomain of 

A. Suppose x E ub U vb. If x E ub, then there is an element x' E u8 such that x' 5 x because u# 5tf ub. 

Since a similar fact holds for elements of vb,  it follows that u tl v is indeed an element of MoA. To see 

that the union is also monotone, suppose v 2 w for some w E MoA. To show that u M v 2 u bl w ,  we 

must show that 

ud U v# 2fl .fl u wfl (7) 

and 
b b b b  b u U v  2 u U w .  

For the former inequation, suppose x E ufl U wit We must show that there is an x' E ufl U v# such that 

x' 5 x. If x E ul ,  then this is immediate since we can take x' = x. If x E wfl, then there is an a' E vfl 

such that x' 5 x because of the mixed powerdomain ordering. This establishes inequation 7; a similar 

argument may be used to show inequation 8. To show the monotonicity of M in the other argument is 

also similar. The mixed powerdomain singleton is a function 4.1 : A -t MoA given by taking 



for each x E A. The proof that this is well defined and monotone is straight-forward. Of course, the 

union and singleton can be be defined as continuous functions 

using Lemma 5 on the basis K D  of D. 

In some sense, the mixed powerdomain is "larger" than each of the upper, lower and convex pow- 

erdomains on those preorders A  that have an element I which satisfies I 5 x for each x E A. To see 

tliis, define f :  if + M O A  by f ( u )  = ( u ,  (1)). This function extends to a continuous embedding from 

the upper powerdomain into the mixed powerdomain. Similarly, g : + M O A  extends to a continuous 

embedding embedding from the upper powerdomain into the mixed powerdomain. 

On the other hand, the mixed powerdomain of D may be viewed as a certain kind of open subset of 

the convex powerdomain of D. To see this, first recall the definition of the Scott topology on a cpo: 

Definition: Let D be a cpo. A set U C D is Scott open if 

1. U = TU and 

2. whenever M C D is directed and V M E U, then M fl U # 0. ( 

The following is a basic fact about the poset of open subsets: 

Lemma 8 Let D be a algebraic cpo. Then the poset OD of Scott open subsets of D ordered by subset 
inclusion is an algebraic lattice such that U E K D  iff there is afrnite set u C_ K D  such that U = ru. I 

We can now express the desired embedding property: 

Proposition 9 There is an order-embedding from M D  into the Scott open subsets of CD. 

Proof: Let f : M ' ( l i ~ )  +- l iO(CD) be given by 

By Lemma 8, the value of f on a pair ( u ,  v )  is, in fact, a compact open subset because 

f ( u , v )  = T{w ( v  c w G u u v } .  

Moreover, f is clearly monotone. Now, suppose f ( u ,  v )  = f (u' ,  v'). We must show that ( u ,  v )  ;; (u' ,  vl). 

Since ( u  U v, u u v )  E f (u l ,  v'), we must have u' z# u U v. But u U v Z N  u, so u' $ U.  A similar argument 

shows that u zfl uf.  We also have ( v ,  v )  E f(u1, v') SO v' zb v and a similar argument for v zb v'. By 

Lemma 5,  the monotone function f extends to a unique continuous function f' : M D  -t R(CD). The 

function f 1  will be an order-embedding since f is. ) 



6 Algebraic characterization of the mixed powerdomain. 

One of the most challenging problems for new powerdomain constructions has been the discovery of the 

appropriate algebraic stuctures to capture the essential features of the new powerdomains. In the case of the 

convex powerdomain, the first intuitions-as described in [Plo76]-ame from the semantics of parallel 

computation. Although [Plo76] describes all of the relevant algebraic operations, it was only later, in 

[HP79] that the convex powerdomain was characterized in terms of these operations together a simple set of 

equational axioms which they satisfy. At the same time, the upper and lower powerdomains were also thus 

characterized using the same algebraic signature but additional inequational axioms. Such characterizations 

are now treated as a standard element of the general methodology of semantics (see [Hen881 as an 

example of this). Unfortunately, no characterization of this kind has yet been found for the sandwiches 

powerdomain and this remains an open question. However, in this section, I will demonstrate an algebraic 

characterization of the mixed powerdomain in terms of a kind of structure called a mix algebra. 

One problem which has arisen in the study of powerdomains for concurrency is how to derive a 

powerdomain which includes an emptyset element. This was missing from our earlier discussion where 

we always assumed that sets were non-empty. If we were to allow the emptyset as an element of the 

convex powerdomain, for example, we would have the problem that it is unrelated to other elements under 

the convex ordering. In particular, a powerdomain with emptyset would not have a least element. Given 

the importance of least elements for the solution of recursive equations, this straight-forward approach to 

adding an emptyset is unsatisfactory for the semantics of programming languages. The problem is generaly 

rectified by "adding the emepty set onto the side" of the convex powerdomain. So the emptyset element is 

related only to the least element. This approach seems acceptable in the sense that it makes a reasonable 

semantics possible, but it makes a mess of the algebraic characterization of the powerdomain. The simple 

problem is this, if we add an axiom which says that the least element is less than the empty element, the 

the least elenlent is part of our signature and is therefore preserved by any of the homomorphisms which 

we construct. But this is not desirable since there may well be terms in the language whose intended 

interpretation is non-strict (i.e, does not send the least element of its domain to the least element of its 

range). In fact, it can be shown that this problem has no acceptable solution with the simplest signature 

and axioms; we sketch a proof of this impossibility later. 

Another goal of this section is to show how the problems with the algebraic properties of powerdomains 

with emptyset can resolved by using the mixed powerdomain with emptyset. To anticipate the basic idea, 

consider the nature of the emptyset as a piece of partial information about a set. The information content of 

the emptyset as upper information is quite different from its significance as lower information. In the upper 

powerdomain ordering, the emptyset is totally descriptive-it means that the set being described has no 

members. On the other hand, in the lower powerdomain ordering, the emptyset is totally nondescriptive- 

it means that no element is known to be in the set being described. In the case that the underlying domain 

has a least element I, even the singleton set {I) is more informative under the lower ordering than the 

emptyset. Now, in the mixed powerdomain with emptyset, the mix ({I ) ,  0) is the least element. Even 

the element ({I), {I)) is more informative, since this latter element describes only non-empty sets! In 

the mixed powerdomain, the emptyset (0,0) is a total (maximal) element which describes the unique set 



with no members. 

A mix algebra (with unit) is a preorder N together with a monotone binary operation * : N x N -+ N, 

a monotone unary operation q : N -+ N and a constant e  E N  which satisfy the following nine axioms 

1. associativity: ( r  * s )  * t  N r  * ( S  * t )  

2. commutativity: r  * s  = s  * r  

3. idempotence: s  * s  = s  

4. unit: e * s  ;J s  * e  = s  

5. O(s * r )  ;J ( 0 s )  * (Or)  

A homomorphism between mix algebras M and N is a monotone function f : M -+ N such that f ( r  * s )  = 
( f  ( r ) )  4 ( f  ( s ) )  and f (Or)  = q f ( r )  and f ( e )  = e. A continuous mix algebra is a mix algebra ( N ,  *, 0 ,  e) 

where N is an algebraic cpo and *, are continuous. A homomorphism of continuous mix algebras is 

a continuous homomorphism of mix algebras. 

As the reader is probably aware, the first four axioms are the axioms for a semi-lattice with unit. 

Given a mix algebra N, the binary operation * on N induces a semi-lattice pre-ordering E given by r  c s  

iff r  * s  ;J s. It is important not to confuse this subset ordering with the ordering s of partial information 

since these orderings will rarely coincide. Note, in particular, that axiom (7) says that q is a closure 

operation with respect to c. 

Definition: Let (A, 2) be a preorder. We define 

and define ( u ,  v )  (u', v') iff u  ~d u' and v  zb v'. Let us refer to ( M i A ,  2) as the mixed powerdomain 

with emptyset. I 

Given a domain D, define q : M i ( K D )  -. M $ ( K D )  as q : ( u , ~ )  H ( ~ ~ 0 ) .  We show that 

(K D, U , q , ( 0 , g ) )  is a mix algebra. Axioms (1)-(4) are immediate consequences of the definition of U. To 

prove (5),  let ( u ,  v )  and (u', v') be elements of M i ( K D ) .  Then U((u ,  v)U (u', v '))  = O(u U u', v  u v') = 
( u  U u', 0 )  i~ ( u ,  0 )  U (u' ,  0 )  = O(u, v )  U O(U' ,  v'). Axiom (6) is immediate from the definition of 0. For 

axiom (7), ( u ,  v )  tl (0 ( u ,  v ) )  = ( u  U u,  v  U 0 )  = ( u ,  v) .  To see axiom (8). note that 0 sb v  for any v. For 

axiom (9). ( u ,  v )  U ( ~ ( u ' ,  v')) = ( u  U u', v )  s ( u ,  v )  since u U u' sb u. 
From this proof that (KD, U, 0,  ( 0 , n ) )  is a mix algebra, it follows that (D,U, q , e )  is a continuous 

mix algebra, where tr and q are the unique continuous extensions of the corresponding operations on 

K D  and e is the principal ideal generated by (0 ,0) .  



Theorem 10 Let A be a preorder. Suppose N is a mix algebra. For any monotone f : A -+ N ,  there is 

a unique homomorphism f + : M i A  -. N which completes the following diagram: 

Proof: First of all, note that if (w, v )  is a mix, then it is equivalent to a mix of the form ( u  U v ,  v )  where 

u  and v are disjoint. If u  = {a l , . .  . ,an} and v  = {bl , .  . . , b,}, then 

Hence, if a homomorphism f +  which completes the diagram exists, then 

Degenerate cases are defined as follows: 

f+(v ,v )  = f ( b l ) *  ...* f ( b m )  

f+(u,  0 )  = II f ( a l )  * . . . * o f  (an)  

f+(0,0)  = e 

We must show that f +  is monotone and that it is a homomorphism. 

First let us show that f +  is indeed monotone. Suppose that ( u  U v ,  v )  and (u' U v', v') are mixes 

where u  n v = 0 and u' n v' = 0 and u ,  v ,  u', v' are all non-empty. Suppose that u  U v  zfl u' U v' and 

v  zb v'. Also define 
u = {a l ,  ..., a,) 

v  = {bl,.  . . , bl} 

u'= {a; , . . . , a i }  

v' = {b;, . .  ., b;} 



f + ( u  u V ,  V )  = q f ( a l )  * - . . * o f  (a,) * f  ( b l )  * . . . * f (bl) 

;; o f ( a l )  * . * q f  (a,) * o f  ( b i )  * * o f  (bl) 

* f ( b ~ )  * . - . *  f ( h )  by (7) 

5 o f ( a l )  * - . . * o f ( a , ) * o f ( b ~ ) *  . . . * o  f(br) 

*of(ai)*...*0f(al)*0f(b',>*...*of(b&) 

* f (b1)  * ... * f(b1) since u  U v  zU U' U v' 

5 o f ( a l ) * - . . * o f ( a n ) *  o f ( b l ) *  . . . * O  f (b l )  

* o f ( a ' , )  * - - .  * o f ( a ; )  * f ( b i )  * * f(b',) 

* f ( b l )  * - . - * f (bl) by (8) 

5 q f ( a l )  * . . - * q f (a,) * o f  ( b l )  * . - - * o f  (br) 

* o f ( a ; )  * o m .  * o f  (a;)  * f (b',) * * f (GI since v  sb v' 
~f(a',)*.--*~f(a;)*f(bi)*.-.*f(bk) by (9) 

= f  +(u1 U v', 21') 

Since the emptyset plays a very special role in this construction, I will now write out the proof of 

monotonicy for the degenerate cases where at least one of u ,  v ,  u', v' is empty. Suppose v  = {bl ,  . . . , b l )  # 
0 and ( u  U v ,  v )  5 (u' U v', v') as above. Then v' # 0; say v' = {b',, . . . , bh) .  If u  = 0 and u' = 

{a',, ..., a i )  # 0, then 

f+(v7 = q f ( b l )  * ... * q f(bl )  * f (b1)  * ... * f(b1) 

5 q f ( b l )  * . . . * O f  ( 4 )  
* ~ j ( a ' , )  * - * q f  (a;)  * o f  (b',) * * o f  ( b k )  

* f (b1) * . . . *  f(b1) since v  5u u' U v' 

-= q f(b1) * ... * Uf(b1) - 
* o f ( a i ) * - . . *  o f ( a ' , ) * f ( b i ) * . . - * f ( b A )  

* f (b1) * . - a  * f ( 4 )  by (8) 

< o f ( b l ) * - . . * o f ( b l )  - 
b I * ~ f ( a ' , )  * . - - * o f  (a;)  * f (b:) * - .  * f ( b L )  since v  5 v  

o f ( a ' , )  * . . a *  o f ( a ; )  * f ( b i )  * . - - *  f ( b A )  by (9) 

= f + ( u t u v ' , v ' )  

If u # 0 and u' = 0, then the argument is quite similar. Suppose v ,  v' are as above, but u  = u' = 0. 



f + (v7 v )  = O f ( b l )  * . e m *  o f @ [ )  * f ( b l )  * . . . *  f(b1) 
< O f ( b l ) *  . . . *  o f ( b 1 )  * f ( b l )  * - - *  f(b1) - 

* o f ( b i ) * . . - * o f @ ' , )  since v  5# v' 
< o f ( b l ) *  . . . *  ~ f ( b l ) * f ( b l )  * - . . *  f ( h )  - 

* o f ( b i ) * - - *  o f ( b L ) *  f (b ' , )* . . .* f (b ' , )  by (8) 

5 f ( b l ) * . . . * f ( b l )  
* of(b;)*.--*of(b',)*f(b/,)*.-.*f(b',) by (9) 

< q f ( b l )  * . . . * o f ( b ~ )  * f (b i )  * . . . * f(b;) since v  zb vf  - 
= f + ( v f ,  v') 

~ ~ ~ S ~ p p O ~ v = u ' = ~ ' = 0 a n d u # 0 , t h e n  f+(u70)=of(a1)*.-.*~f(an)*e5e=fS(0,0)b~ 

(4) and (9). suppose v = 0 but U ,  u', v' are non-empty. Then 

f+(u,  0 )  = o f  ( a * )  * . . . * o f ( a n )  

5 O f  ( a l )  * . . . * O f  (an)  
*~f(ai)*...*Of(a~)*Of(b/,)*...*Of(b',) sinceuzflu 'Uv1 

;; f + ( u ' ~ v ' , v ' )  by (8) and (9) 

The cases where v f  = 0 or u' = 0 are very similar. If u  = v  = 0, then u  = v' = 0 so there is nothing 

to prove in this case. This completes all of the degenerate cases so we may conclude that f +  is indeed 

monotone. 

To prove that f +  is a homomorphism, suppose ( u  U v ,  v )  is a mix as above. Then 

o f + ( u  u v ,  V )  = o ( ~ f  ( a l )  * . * O f  (an)  * f ( b i )  * . . . * f ( 4 ) )  
;; 00 f ( a l )  * . . . * 00 f  (an)  * o f  ( b l )  * . . * o f  (br) by (5 )  
;; o f ( a l )  * . . .*  o f ( a , ) *  o f ( b l ) * . . . *  o f ( b 1 )  by (6 )  

= f+(u  u v ,  0 )  
= f + ( o ( u u v , v ) )  

For u  = v  = 0,  note that Oe ;; e  t Oe ;; e  by (7) and (4). The other cases are all very similar to the 

proof above. I 

Corollary 11 Let D be an algebraic cpo. Suppose N is a continuous mix algebra. For any continuous 

f : D + N ,  there is a unique homomorphism f  + : M D + N which completes the following diagram: 



Proof: Let fo be the restriction of f to KD. By Theorem 10, there is a homomorphism f: : M:D -+ N 
of mix algebras such that f$ o 4.1 = fo. By Lemma 5, this homomorphism has a unique extension to a 

continuous function f+ : M D  t N which satisfies the desired diagram. This map will be a homomor- 

phism. I 

The reader familiar with category theory will naturally recognize that Corollary 11 can be restated 

as follows: The forgetful functor from the category of continuous mix algebras and continuous homomor- 

phisms to the category of algebraic cpo's and continuous functions is adjoint to the mixed powerdomain 

functor. Several other results such as this are known for powerdomains. The most interesing of these is 

Theorem 12 below. 

Definition: A continuous semi-lattice is an algebraic cpo N together with a binary operation * which 

satisfies the axioms (1)-(3) for mix algebras. A homomorphism of continuous semi-lattices M ,  N is a 

continuous function h : M  t N such that h(r * s )  = h(r )  * h(s).  I 

The following Theorem is proved in [HP79]: 

Theorem 12 (Hennessy and Plotkin) The convexpowerdomain is left adjoint to the forgeflu1 functor from 

the category of continuous semi-lattices (with bottom) and homomorphisms to the category of algebraic 

cpo's (with bottom) and continuous functions. I 

Definition: A continuous semi-lattice with unit is a continuous semi-lattice with a constant e which 

satisfies axiom (4) for mix algebras. A homomorphism of continuous semi-lattices M, N with unit is a 

homomorphism of continuous semi-lattices which sends the unit of M to the unit of N. I 

The following proposition appears as an exercise in [Plo82] (see Exercise 101 on page 52 of the 

chapter Nondeterminism and Parallelism): 

Proposition 13 (Plotkin) There is no left adjoint to the forge&l functor from continuous semi-lattices 

with unit and bottom to that of algebraic cpo's with bottom. I 

Proof: Suppose that there is a left adjoint to the forgetful functor and let D  be the free continuous semi- 

lattice with unit generated by the poset {x) with one element x. Let I be the semi-lattice with unit that 

has two elements I, x with I 5 x and I * x = I. Let f be the map from {x} to I which sends x to 

I. We demonstrate a contradiction by showing that for no map u is there a unique homomorphism f+ 
which completes the diagram 



Now, let T be the poset with three distinct elements e ,  x, I with I $ e  and I $ x. This poset can be 

given the structure of a semi-lattice with unit e  by defining x * I = I. Since D is freely generated by 

{x}, there is a homomorphism g : D -t T which sends the image of x under u to x E T. If e  is the unit 

of D, then g(e) = e. Since g is monotone, this means u(x) is incomparable to e in D and, consequently, 

g(l) = I. Now, consider the map h : T -+ I which sends the elements of T constantly to e = x and 

the map k : T -+ I which sends I to I. The situation can be pictured as follows: 

...................... t 

Both of these maps are homomorphisms so we must have f +  = h o g = k o g. But this is clearly false, 

since the two compositions are not equal. ( 

Proposition 14 The mixed powerdomain is left adjoint to the forgefil functor from the category of con- 
tinuous mix algebras with bottom to the category of algebraic cpo's with bottom. 

Proof: This is immediate from Corollary 11 since the mixed powerdomain of a algebraic cpo D has a 

least element given as the principal ideal generated by ({I},$). 1 

The big union function is the unique homomorphism which completes the following diagram 

where id is the identity function. It can be calculated as follows. Suppose (U U V, V) E M ~ ( M ! D )  
where 

U = { ( U I U V I , V I ) , . . . , ( U ~ U V ~ , ~ ~ ) }  
v = {(ui u v; , vi), . . . , (uk u vh, vk)} 

and U n V = 0 and u; n v; = 0 for 1 5 i 5 n and ui n v; = 0 for 1 5 j 5 m. Then 



The degenerate cases can be expressed similarly. 

7 Mixes as a relation. 

It is tempting to wonder how the mixed powerdomain of a domain D is related to the product U D  x CD 

of its upper and lower powerdomains. It seems that it must be order isomorphic to some subset of this 

product, can we characterize the subset simply? What closure properties does it have (if any)? This 

section discusses the answers to these questions. 

Let us extend our notation for the mixed powerdomain to the other powerdomains, by writing UD, 

CD, and CD for id l ( (K~) t f ) ,  i d l ( ( ~ ~ ) ~ )  and id l ( (K~)k)  respectively. Of course, given a pre-order A, 

we could also use the notations U'A, COA and COA for ~ n ,  Ab and Ah respectively, but I will not do so 

in this paper.6 

For any algebraic cpo D,  there is an evident order-embedding L : M O ( K D )  + ( K D ) ~  x ( K D ) ~  

given by the inclusion map. By Lemma 5, this map extends to an order-embedding from the mixed 

powerdomain of D into the product UD x CD of the upper and lower powerdomains. What do ideals in 

this order-embedded image look like? They are pairs (r, s )  which are "generated" by mixes (u, v) such 

that u E r and v E s. This is a binary relation w on UD x CD which can be described succinctly as 

follows: 

Definition: For an algebraic cpo D,  define a binary relation w on UD x C D  by r w s iff for every u E r 

and v E s, there is a v' E s such that u 5 1  v' and v zb v'. I 

Recall the following definitions for the singleton and union operations on the upper and lower pow- 

erdomains: 
ax)" {u I 3a E u. a E x) 

uzkb = {u I Va E u. a E z) 

r b l ~ s = { w ~ u ~ v 2 t f w f o r s o m e ~ ~ r a n d v ~ s )  

In general, I will put in the superscripts only to emphasize the types of the operations-usually the type 

will be clear from the context. 

Theorem 15 Let D and E be a algebraic cpo's. For any continuow f : D + UE,  the map fl : UD + U E  

given by 

f ( r )  = U{f (al)  u". . ~ " ( a ~ )  I {al, . . . , an)  E r) 

is the unique continuous, uU-preserving function which completes the following diagram: 

'Warning: this is at variance with the notation in [GS88] where, for example, Dn is used for UD. The depth in which 

notation is being used in this paper demands a more discriminating use of symbols for the various operators than was needed 

in [GS88]. 



Theorem 16 Let D and E  be a algebraic cpo's. For any continuous f : D -, L E,  the map f : L D t L E 
given by 

f ( r )  = U { f ( a l ) u b  ...ub f(a,) I {al,...,a.) E r )  

is the unique continuous, ~ ~ - ~ r e s e r v i n ~  function which completes the following diagram: 

Proposition 17 Let D and E  be an algebraic cpos. Then 

1 .  4xkn w 4xkb for each x E D.  

3. i f f  : D t U E  and g : D + LE satisjfy f ( x )  w g(x )  for each x E D, then f ( r )  w i j(s)  whenever 
r w s . 1  

Proof: 1. Let w = ( u  n x )  U v. Since w C x and x is an ideal, there is an a E x such that b z a for 

each b E w. Now { a )  E 4 x 1 ~  and u zfl { a )  and v zb {a) .  

2. Suppose u E r u n  r' and v E s tlb sf .  B y  the definitions of the union operations in the repective 

powerdomains, there are elements p E r,  p' E r', q E s, and q' E s f  such that u zn p u and 
v zb q U q'. Since r w s,  there is a w E s such that p z# w and q zb w. Similarly, since r' w sl, 

there is a w' E s f  such that p1 zfl w' and q' zb wl. Now, p u zfl w u w' and q u q' zb w u w' so 
u zn w U w' and v zb w U wl. Since w U w' E s U s', we are done. 

3. Let u E f ( r )  and u E ij(s). By the definitions of f and 8, there are sets u' = {a l , .  . . , a,) E r and 

V' = {bl,  . . . , bm) E s such that 



Since r w s, there is a w = {cl,. . . ,cl) E s such that u' zfl w and v' zb w. Thus u E r' = 

f (cl)ufl . . .tlfl f ( q )  and v E s' = g(cl)tlb . . .tlb g(cl). But f(c;) w g(ci) for each i 5 1, so r' w s' 

by part (2) above. Now u E r' and v E s' so there is some w' E s' such that u zfl w' and v zb w'. 
But s' C g(s) so we are done. I 

8 Normal forms and Stone duality. 

An approach to the logical characterization of powerdomains-different in several regards from the one 

which was proposed earlier in this paper-utilizes the fact that domains have a topological structure. If we 

view an open subset of a domain as a "property", then the fact that a domain has a To (Scott) topology tells 

us that each element is uniquely determined by its properties. Now, the opens of a topological space form 

a complete Heyting algebra so they support a logic of their own and any operator on domains lifts uniquely 

to a corresponding operator on an appropriate class of Heyting algebras (viz. those which correspond to 

the Scott topologies of domains). A characterization of this related operator on (appropriate) Heyting 

algebras therefore represents a vexy reasonable candidate for a logical characterization of the operator in 

question. 

Many of the basic ideas we need below are already present in the basic literature on Stone duality 

(e.g. [Joh82]). For the specific case of of operators on domains, Stone duality properties have been studied 

by a number of individuals. A thorough exploration appears in recent work of Abramsky [Abr88, Abr87, 

Abr891. The goal of this section is to show how the theory in [Abr89] applies to the mixed powerdomain. 

The idea is a quite simple variation on the techniques which deal with the convex powerdomain-the 

mixed powerdomain arises from simply dropping one of the axioms! The results in this section were 

predicted by Samson Abramsky and Steve -ckers and the proofs follow closely those which appear 

in [Abr89]. 

Definition: A coherent algebraic prelocale is a structure A = (IAJ, s,O, V ,  1, A ,  P) where 

IAI is a countable set 

r z is a binary relation on IAl 

0 and 1 are elements of \A1 

V and A are binary relations on IAJ 

P is a unary predicate 



such that the following axioms and rules are satisfied 

a ~ b  b ~ c  
(dl) a 5 a 

a 5 c  

(p2) If P ( a )  and a 5 Vie, b; then 3i E I. a 5 b; 

where a = b iff a 5 b and b 5 a. 1 

Axiom (p2) says that elements satisfying the predicate P are primes: 

Definition: An element x of a lattice L is said to be a prime if, whenever x 5 Vy=,xs;, there is some i 

such that x 5 x;. I 

The following is part of the proof of Theorem 3.2.6 in [Abr89]: 

Theorem 18 If D is a bijinite domain, then the structure 

Ploc(D) = (Kfl(D), C, 0, U,  D,  n, {Tx 1 x E KD)) 

is a prelocale. 1 

Let us refer to Ploc(D) as the prelocale determined by D. Recall from Lemma 8, that an element of 

I<L'R(D) is the upper set Tu of a finite set u of compact elements of D. 
Our goal can now be described as follows. Let D be a biflnite domain and suppose A = Ploc(D) 

is the prelocale which it determines. We will define an operator M on prelocales such that M(A) is the 

prelocale detemiined by the mixed powerdomain of D. This will be done, by defining a camer IM(A)I 
and establishing a set of axioms and rules for the order relation 5 and primality relation P on this camer. 

To this end, we will use the following: 

Notation: For a set S, the prelocalic expressions over S are defined as follows. Any element of S is 

a prelocalic expression over S. Constants 0 and 1 are prelocalic expressions over S. If #I and II, are 

prelocalic expressions over S then so are 4 V $I and 4 A $I. 1 

Let A be a given prelocale. The camer IM(A)I is defined to be the set of prelocalic expressions over 

S U T where 
S = (04 I 4 is a prelocalic expression over IAl) 
T = (04 I 4 is a prelocalic expression over IAl} 



Define 5 and P to be the least relations over ( M ( A ) J  which satisfy (dl)-(d4), (pl) and the following 

axioms: 

and rules 

where 0 # J C_ I. Adding another axiom 

to the axioms above yields the analogous construction for the convex powerdomain. Omitting this axiom 

weakens the facts that one can prove about normal forms in the calculus and thus generalizes from the 

convex to the mixed powerdomain. 

Let D  be a bifinite domain and let A = Ploc(D). We define a semantic function 1.1 which assigns to 

each prelocalic expression in IM(A)( a subset of the mixed powerdomain of D  as follows: 

[ma] = { x  E M ( D )  I 3 (u ,  v )  E x. u  C_ a )  

[Oa]  = { x  E M ( D )  I 3 ( u , v )  E x. v  fl a # 0 )  
I[$ v $1 = [#n u u+n 
I[# A $1 = [$I fl [$I 
[O ]  = 0 
u1n = M ( D )  

Proposition 19 For each # E IM(A)I, we have [#I E EKRMD. 

Proof: The p m f  goes by induction on the structure of 4. The interesting cases are Oa and O a  where 

a = Tu for a finite set u  = { x l , .  . . , x,) C_ K D .  

Claim: x  E Oa iff ( u ,  { x ; ) )  E x  for some i 5 n. (+) If x  E Oa, then there is a mix (u', v t )  E x 

such that u' C_ a. In other words, u  z# u'. If p E v', then there is some x; E u  such that x; 5 p 

since v' ztf u' 211 v'. Hence ( u ,  { x i ) )  j (u', v') and therefore ( u ,  { x i ) )  E x. The converse (e) 
follows immediately from the deiinitions. That [Oa] is a compact open subset of M D  now follows 

from the claim and Lemma 8. 

Let w  be the (finite) set of minimal elements of D. Claim: x  E O a  iff ( w ,  { x i ) )  E x  for some 

i 5 n. (J) If x  E Oa, then there is a mix (u', v') E x  such that v' n a # 0. Hence there is some 

p E v' and x; E u  such that x; 5 p. Thus (w, { x ; ) )  j (u f , v ' )  and therefore ( { I ) ,  u )  E x.  The 

converse (e) follows immediately from the definitions. That [Oa] is a compact open subset of 

M D  now follows from the claim and Lemma 8. 1 



Lemma 20 Let D be an algebraic cpo. An element U E QD is prime in the algebraic lattice of open 

subsets if and only if U = t x for some x E h7 D. I 

Theorem 21 The axioms and rules on (M(A)I are sound with respect to the interpretation [.]. That is 

2. I f  P (4 ) ,  then [+] is a prime in Q M  D. 

Proof: The proof of (1) is straight-forward. I will write out the most interesting case, the (0 - A )  

axiom. Suppose x E [ma A Ob] = [Oa] n [Ob], then there is a mix ( u , v )  E x such that u a and 

a mix (u' ,  v') E x such that v' n b # 0. Since x is directed, there is a mix (u",  v") E x such that 

( u ,  v ) ,  (u' ,  v') 5 (u", v"). Now U" & a n b since u,  u' zfl u". Thus v" c a n b and v" n (a  n b )  # 0 since 

v" is non-empty. Therefore x E [Oa A b]. 

Suppose that a; is a prime element of OD for each i in a finite non-empty indexing set I. Following 

axiom (P - q - 0), we must show that for any finite non-empty subset J  G I, the set 

W = [ O  V a;] n [ A  Oaj]  
; € I  j €  J 

is a prime. By Lemma 20, there are compact elements xi such that ai = Tx; for each i E I. Let 

u = {x;  I i E I )  and v = {x i  ( j  E J ) .  Since J  C I, the pair ( u , v )  is a mix. We show that 

t ( u ,  V )  = W .  Let U = UiEI  a; and suppose ( u ,  v )  5 (u', v'). Since u zfl u', we must have u' & U and 

hence ( u ' , ~ ' )  E [ O  ViEI  ail]. Since v n [Oaj]  # 0 for each aj with j  E J ,  and v' zb v, we must have 

v' n [Oaj]] # 0 for each j  E J ,  so ( u ,  v )  E [AjEJ  Oaj]. Thus (u', v') E W .  Suppose on the other hand 

that (u', v') E W .  Then (u', v') E [ O  V iEI  a;] so u' c U, so u' zfl u. Since (u', v') E [AjEJ  Oaj ]  as 

well, v' n aj # 0 for each j E J .  This means that for each xj,  there is some element x$ E v' such that 

xj c xi. But this just means that v' zb v. Hence (u', v') E t ( u ,  a)  as desired. The fact that W is prime 

now follows from Lemma 20. 1 

Lemma 22 Suppose 4, E IM(A)I. I f  P ( 4 )  and P($ )  and I[4] G [$I, then 4 5 $. 

Proof: Suppose J  I and L G K  are finite non-empty indexing sets and {ai I i E I )  and {bk I k E K )  
are sets of primes such that 

4 - ' V ~ € I  a; A AjEJ Oaj 

1CI V ~ E K  bk A A I E ~  Ob/ 

Say a; = Tx; and bk = fyk foreach i E I and k E K. Let u = {xi  I i E I )  and u l =  { x j  I j E J )  and 

. en v = {yk I k E K )  and v' = {yl I 1 E L )  Th 

u4n c [$I * t ( u ,  u') c T(v, v') 
* ( v ,  v') 5 ( u ,  u') 
* v z# u and v' zb U' 

+ Vi E 1 3 k  E K .  y; 5 xk and Vl E L 3j E J. yj  5 x/ 

=+ V i ~ I 3 k E K . a ; C b ~ a n d V l ~ L 3 j ~ J . a j C b ~  

* V i E I  ai 5 ' V j E  J AjEJ Oaj 5 A/€L Ob/ 
* 4 I 



The proof of this lemma is basically contained in the proof of Proposition 3.4.8 in [Abr89]: 

Lemma 23 For every a E JM(A)I, there are primes bl, . . . , b, E P such that a = V;=Gb;. 1 

Theorem 24 For all 4, II, E IM(A)I, # 5 + i f f  [#]I C [+]I. 

Proof: (+) is part of the Theorem 21. To prove (e), we begin by using Lemma 23 to deduce the 
existence of finite sets of primes (4; 1 i E I} and {+j 1 j E J} such that 

We may now make the following deductions: 

[#I C I[+] * UiElI[#l C uj€J(I+]I 

+ Vi E I 3 j  E J. I[#;] I[+j] by Theorem 21 
+ V i  E I 3 j  E J. 4; 5 by Lemma 22 

* ViEl# VjE.7+ 

Theorem 25 If D is a bifrnite domain, then M(Ploc(D)) 2 Ploc(M (D)). 

Proof: The map I[-] is order preserving and reflecting by Lemma 24. To see that it is also a surjection, and 

hence and isomorphism, suppose U E KR(M(D)). By Lemma 8, there are mixes XI,. . . , x, E KM(D)  
such that U = U:=, Tx;. It is easy to see from the proof of Theorem 21 that, for each i, there is some 

4; E IM(Ploc(D))( such that [#Ii = Tx;. Hence I[Vr=, #] = Uy=l[#i] = U .  

9 Conclusion. 

This paper began with a general exposition, illustrated by examples, of the intuitive logical significance of 

powerdomain elements. These intuitions were then captured by showing how an element of a powerdomain 

can be viewed as a monadic second order predicate. The form of these predicates suggested a simple 

generalization leading to a new structure which I have called the mixed powerdomain. This new operator 

was then generalized to an operator on a significant class of domains. It was shown to be distinct from any 

of the structures currently being studied and shown to have many of the basic properties which make other 

powerdomains suitable for the semantics of programs. To further understand the mixed powerdomain it 

was characterized in two further ways: 

a algebraically: by demonstrating that it was left adjoint to a forgetful functor on a class of what I 

have called mix algebras and 

a topologically: by constructing a Stone dual for the mixed powerdomain. 

Both of these treatments provide perspective on the relationship of the mixed powerdomain to other 

powerdomains which have also been characterized in these ways. 



I would like to urge that these results demonstrate that there are other interesting operators which 

modify and generalize known domain-theoretic constructions. With all of the machinery which we have 

developed for studying such constructions, it is possible to take an interesting theory of partial information 

and derive an elegant and thorough mathematical theory by allowing oneself to be guided by the variety 

of ideas for characterization and development. 

To some extent my discussion in this paper has run counter to the conventional wisdom that one 

should start with a programming application and base the development of new structures on the needs 

of solving -the problem in question. For example, the first paper on powerdomains (Plotkin's [Plo76]) 

developed the operator to model a specific programming construct. To some extent I have done this, 

since some of the inspiration for this paper derives from work on generalizing relational databases (as 

discussed in [BDW88, B086, BJ0891) and I have also discussed elsewhere the potential use of the mixed 

powerdomain in the specification of bounded non-determinism [Gun90]. Nevertheless, it is my feeling 

that a well-designed mathematical treatment of an interesting new construction which captures some of 

the central issues about the structuring of partial information is likely to find, or even create, some of its 

own applications. 
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