
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

April 1990

Teleoperation in the Presence of Communication Delays Teleoperation in the Presence of Communication Delays

Janez Funda
University of Pennsylvania

Thierry Simeon
Laboratorie d'Automatique et d'Analyse des Systemes (LAAS)

Richard P. Paul
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Janez Funda, Thierry Simeon, and Richard P. Paul, "Teleoperation in the Presence of Communication
Delays", . April 1990.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-90-27.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/531
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F531&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/531
mailto:repository@pobox.upenn.edu

Teleoperation in the Presence of Communication Delays Teleoperation in the Presence of Communication Delays

Abstract Abstract
Modern industrial processes, public service needs, and research interests have established a clear need
to perform work remotely [12][4]. Teleoperators were developed with the advent of nuclear industry in the
mid 1940's and have been since used extensively to perform work in hazardous environments (nuclear,
chemical), undersea (resource exploration, waste management, pollution monitoring), and in the outer
space (sample acquisition, satellite deployment/repair). Sophisticated systems have been designed and
built to meet these needs, providing the human operator with high bandwidth and high fidelity visual and
kinesthetic feedback information about the task in progress [22] [32] [16] [6].

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-90-27.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/531

https://repository.upenn.edu/cis_reports/531

Teleoperation in the Presence
of Communication Delays

MS-CIS-90-27
GRASP LAB 213

Janez Funda
Thierry Simeon
Richard P. Paul

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104

April 1990

Teleoperation in the Presence of

Communication Delays

Janez Funda t

Thierry Simeon t

Richard P. Paul t

t Grasp Laboratory, University of Pennsylvania, Philadelphia, U.S.A.

Laboratorie d'Automatique e t d'hnalyse des Systemes (LAAS), Toulouse, FRANCE

Contents

1 Introduction 1

Outline of the proposed solution 3

. 2.1 Modeling the environment 3

. 2.2 Controlling the motion of the slave 4

. 2.3 Generating kinesthetic feedback 5
. 2.4 Aiding the operator 5

. 2.5 Generating remote slave motion commands 6

. 2.6 Using task information 7

. 2.7 Error handling and model consistency 8
. 2.8 Applications 9

3 The graphical simulator 10

. 3.1 The model 10
. 3.2 The simulation technique 10

4 Distance computation and collision detection 12

. 4.1 Distance computation 13

. 4.2 Collision avoidance 15

. 4.3 Contact type determination 15

. 4.4 Constraint information 16

5 Operator's motion analysis 18

. 5.1 Classification of allowable motions 18
. 5.2 Freespacemotion 19

. 5.3 Contact motion 20
. 5.3.1 Types of contact 20

. 5.3.2 Constraint normals 22
. 5.3.3 Kinesthetic feedback 23

. 5.3.4 Types of contact motions - overview 23
. 5.3.5 'Freeze' mode 24

. 5.3.6 'Slide' mode - single contact 25
. 5.3.7 'Slide' mode - multiple contacts 26

5.3.8 'Pivot mode - single contact 28

5.3.9 'Pivot mode - multiple contacts 33

5.4 Pushing . 36

5.4.1 Single-contact pushing . 36

5.4.2 Multiple-contact pushing . 38

6 Filtering of operator's motions 38

7 Generation of symbolic slave commands 4 1

7.1 Types of motions . 42

7.2 Task frame specification . 43

7.3 Motions to keep contact . 43

7.4 Motions t o change contact . 45

7.4.1 Sliding case . 45

7.4.2 Pivoting case . 45

8 The experimental hardwarelsoftware test bed 48

9 Preliminary results and discussion 5 1

A Appendix 1

A . l Notation . i

A.2 Coordinate frames and rotational matrices i

A.3 Mapping rotations between frames ii

A.4 Displacement of a point due to motion of the frame ii

List of Figures

. Interpretation of the force/torque sensor readings

. Overview of the proposed solution

. Types of polyhedral contacts

Constraint normals for the three types of polyhedral features
. Single-cont act sliding

. Multiple- contact sliding

. Tangential and contact frames

. Computing AO, of the contact frame

. Single- contact pivoting - line contact

. Single-contact pivoting - plane contact

. Multiple-contact pivoting

. Single-cont act pushing

. Trajectory filter - the "closeness test"

. Changes of contact during a sliding motion

Transition between two vertexlface contacts
The hardware architecture of the experimental testbed

. The operator's station

1 Introduction

Modern industrial processes, public service needs, and research interests have estab-

lished a clear need to perform work remotely [12][4]. Teleoperators were developed

with the advent of nuclear industry in the mid 1940's and have been since used ex-

tensively to perform work in hazardous environments (nuclear, chemical), undersea

(resource exploration, waste management, pollution monitoring), and in the outer

space (sample acquisition, satellite deployment/repair). Sophisticated systems have

been designed and built to meet these needs, providing the human operator with

high bandwidth and high fidelity visual and kinesthetic feedback information about

the task in progress [22] [32] [16] [6].

A problem occurs, however, when teleoperation is attempted in a situation where

the response from the slave manipulator is delayed (with respect to the command

issued from the master) due to a large physical separation and/or insufficient com-

munication link capacity [8] [lo]. Given that neurological control of normal human

movements operates at approximately 5 Hz [34], communication delays between the

master and the slave in excess of one second greatly impair the operator's ability

to perform work [8][13]. It has been shown, in fact, that supplying the operator

with delayed force feedback can be counter-productive, as it does not correspond to

the current situation and thus does not provide the feedback that the operator ex-

pects. This problem is particularly severe when the operator wishes to be in contact

with the environment and expects to rely on the kinesthetic feedback information

to adjust her motions.

Overcoming communication delays has been recognized as one of the central

areas of research in telerobotics for some time [34]. Among the proposed approaches

to solve the problem are

a slowing down the motion so as to minimize the effect of the delay [9]

a adopting a "move-and-wait" strategy whereby the operator performs a small

incremental motion and then waits for the delayed remote-site feedback to

confirm the success of the motion before proceeding [9]

a strengthening the slave arm and the objects which it manipulates in order

to avoid damage (e.g., underwater "remotely operated vehicles", ROV's, for

off-shore oil exploration)

formally modelling up-link and down-link delays by augmenting the dynamic

state-space model of the system (environment + slave) - delays are modelled

as delay lines on the output and introduce (a potentially large number of)

additional states [16]

using predictive visual (graphical) displays to allow the operator to "be ahead"

of the slave [25][2]

relying on autonomous, sensor-driven, preprogrammed contact motion primi-

tives at the slave site [32]

None of the above approaches by itself, however, has proven to be entirely satis-

factory. Of course, a totally autonomous manipulative capability would solve the

problem, but its realization is beyond the state of the art in robotics.

We believe that a predictive visual display of the remote environment is an essen-

tial component of a successful man-machine system for teleoperation in the presence

of delays. However, we also recognize the necessity of providing the operator with

some sense of real-time "kinesthetic feel" for slave-environment interactions. We

thus propose to combine a graphical simulation of the slave world with real-time

estimated kinesthetic feedback which is computed on the basis of a geometrical

analysis of polyhedral object interactions in the simulated remote world. We then

propose to analyze (on-line) the observed (operator supplied) motion trajectories of

the simulated slave and extract a stream of task-oriented motion primitives (e.g.,

guarded and compliant moves in the task space) to be sent to the slave. These

elementary motions are then executed at the slave site under the supervision of the

local sensory and control modules and the status of their execution is reported back

to the operator's station.

Therefore, the essential paradigm of the proposed solution is teleprogramming

the remote slave, as illustrated in Figure 2. Section 2 below introduces the essential

modules of the proposed conceptual architecture, whereas Sections 3-7 address

separate components in more detail. The graphical simulation model and simulation

technique are described in Section 3. Section 4 offers some detail on the manner in

which distances between objects in the simulated (slave) environment are monitored

and collisions, as well as contact types, are identified. In Section 5 we introduce the

envisioned operator-machine interface and describe the manner in which we compute

a real-time approximation to the (delayed) actual kinesthetic feedback. Section 6

proposes a simple 6-d.0.f. filter to smooth the operator supplied motion trajectories,

whereas Section 7 describes the methodology for partitioning the task in progress

and generating symbolic command strings for the remote slave. Section 8 describes

the hardware and software experimental testbed which is being used to test these

ideas. Finally, Section 9 presents a discussion of some preliminary results and future

directions.

2 Outline of the proposed solution

2.1 Modeling the environment

We will assume in this work that we are manipulating in an apriori unknown envi-

ronment. The initial description of the environment is obtained through the use of

sensors, such as vision or dense range data, producing a high-level three-dimensional

scene description consisting of object features such as planes, edges, vertices, etc.

The process of extracting this information is within the state of the art of computer

vision [3][15][33]. Moreover, it has been demonstrated that such descriptions can

be converted to polyhedral CAD-type models [14][25]. We propose to display such

a CAD image of the environment (including the slave manipulator) and interface a

6 d.0.f. input device (master) to the simulator, such that the images of the slave

manipulator and any objects that it may be manipulating could be moved under

the control of the operator.

Because the environment is assumed unstructured and we must rely on an ide-

alized and simplified approximation of the actual environment, we can not predict

a l l work situations (due to model incompleteness), nor can we predict the outcome

of a particular action exactly (due to model inaccuracy). Therefore, we are unable

to construct detailed, robust and reliable plans of action ahead of time. Instead, we

propose to keep the operator in the control loop at all times, and let her define the

plan incrementally as she interactively programs the slave robot actions by moving

the master.

Figure 1: Interpretation of the force/torque sensor readings.

2.2 Controlling the motion of the slave

(t , r)

Incremental positional/orientational information can be specified to the (simulated)

slave manipulator in a variety of ways. We propose the use of a general 6 d.0.f.

force/torque sensor mounted at the tip of the master manipulator, whose force and

torque readings are (through a series of filters and amplifiers) interpreted as posi-

tional and orientational information, respectively (Figure 1). The pair (f, T) is the

&vector of raw forces and torques as read from the sensor. This information is then

filtered/smoothed and appropriately scaled to become the positionaJ/orientational

displacement of the master (operator's hand). The rotation r is interpreted as

roll/pitch/yaw (RPY) parameters.

The so obtained incremental displacement1

F/T sensor
L

is interpreted as master handle (sensor-based frame) displacement. The motion

(t'9 r ')

of the master manipulator is then computed by mapping this handle displacement

into the master's end-effector frame (T6,) and using it as an incremental Cartesian

(f 9

b 6-D scaling

positional displacement with respect to the end-effector frame.

6-D filtering

The motion of the slave simulator is coupled to the motion of the master by

establishing a correspondence of motion between the master's handle frame and the

slave's end-egector frame (T6,). In general, due to the fact that the master and

slave manipulators will be kinematically dissimilar (and will therefore have different

workspace volumes), this correspondence will not be a straight-forward one-to-one

positional/orientational equivalence of motion. Instead, another level of scaling for

translational motions will be needed to account for the workspace volume differences.

'We use the term incremental displacement instead of diflerential displacement, since we deal

with discrete rather than instantaneous changes in displacement.

2.3 Generating kinesthetic feedback

Having obtained an initial graphical description of the world, we then monitor the

position of the slave arm (and any object it may be carrying) for contacts with the

environment. This collision checking must be performed in real time and is used to

prevent interpenetration of colliding objects (their motion is stopped on contact),

thus modifying the intended motion of the (simulated) slave manipulator. In order

for the system to feel natural to the operator, the positional/orientational corre-

spondence between the master device and the slave must be preserved at all times,

including on contact with the environment as well as while one or more contacts

persist. We therefore need an input device, that is itself movable in space and back-

drivable, such as a specially designed teleoperator master arm or a backdrivable

general purpose robot manipulator. Such a device enables us to not only specify

the desired positional/orientational displacement to the slave arm, but also gives

the operator a sense of three-dimensional manipulation as it follows the operator's

hand through space. More importantly, however, backdriving the master arm to

correspond to the state of the simulated slave arm provides the operator with the

ability to explicitly feel the constrained d.0.f. of the motion of the slave (and thus

master) and therefore allows the operator to kinesthetically "feel" contacts between

objects, examine shapes of objects, follow their contours, etc. This capability of

combining graphical object interference detection with backdriving the master de-

vice represents a crucial feature of the proposed system. It provides the operator

with a strong sense of telepresence (i.e., a simulated sense of force reflection in real

time), despite the communication delays, which cause the actual feedback to be

delayed and therefore not usable for direct reflection to the operator. This is signif-

icant since kinesthetic feedback has been shown to be essential in any teleoperation

activity [12].

2.4 Aiding the operator

The operator can now move the slave manipulator in the simulated world, come

into contact with the environment and "feel" in a very natural way any constraints

that the geometry of the task world may be imposing onto pthe motion of the slave.

Moreover, we propose that the system provide a set of elementary classes of motion,

which are natural, convenient and easy to perform, yet powerful enough to allow the

operator sufficient flexibility in performing tasks. This is particularly cruicial during

contact motion, when the operator may wish to concentrate on a certain subset of

motion parameters (e.g., sliding, reorienting), and be aided by the system in keeping

other parameters constant. The system can also assist the operator by biasing the

interpretation of her motions towards preserving achieved contacts (for instance, to

aid in feature tracking), while still allowing arbitrary changes of or departures from

the current contact state. We will address these issues in more detail in Section 5.

2.5 Generating remote slave motion commands

We next attempt to interpret the positional and force information accumulated by

the simulator to extract a stream of elementary motion commands that are to be

commanded to the slave robot. In view of this, we first filter the gathered infor-

mation and eliminate the (presumably unintended) noise in the data. We then an-

alyze this filtered information of positional/orientational parameters, contact state

changes, and forces/torques exerted onto the environment to produce a sequence of

symbolic instructions to the slave. Again, as our model of the slave world is only

approximate, the nature of these instructions must reflect and accommodate possi-

ble discrepancies between the model and the actual world. While this is not critical

during free space motion, it is vitally important when attempting to establish or

maintain contact with the environment. Consequently, for the case of contact mo-

tion, we propose to generate instructions of the type "move along a given direction

until contact" (guarded motion), or "move along a given feature while maintaining

contact in some direction" (compliant motion). There will be also a class of motions

(such as tight tolerance part mating, fine precision adjusting motions) which may

be difficult to perform using an incomplete model and approximate kinesthetic feed-

back. Such motions are therefore best executed by the slave autonomously, under

local sensor supervision and local high-bandwidth feedback processes. We will have

more to say about symbolic command string generation in Section 7.

2.6 Using task information

The process of interpreting the operator's actions in the simulated world can be a

difficult one in the absence of any other information about the nature of the task

in progress. For instance, a sequence of rapid contact changes may be interpreted

either as noisy data or a purposeful action, such as tapping, scraping, or rocking.

Similarly, a highly irregular path of an object during a sliding motion could be

taken as unintended (and therefore would be filtered out or smoothed) or it could

correspond to a motion such as polishing or sanding (in which case it should be

kept intact). In order to disambiguate between such interpretations, the system

needs additional information about the task, such as a description of the type of

expected primitive motions (e.g., pick and place, polishing, pounding). Moreover,

the graphical simulator should be supplied with some information as to which objects

are expected to come into contact during a given task to avoid having to monitor

every pair of objects for a possible collision.

These are but a few examples of why high-level task information may be essential

for correct interpretation of operator's intent and efficient internal computations. We

feel that the design of the structure, organization, and content of such a task-level

database is a significant research problem in itself. Consequently, we may not be

able to address this aspect of the proposal fully in the preliminary stages of the

project. However, we envision the task related information being gathered in the

following manner

- by loading and using a preexisting task database

- by querrying the user (operator) prior to the manipulation to extract the

essential features of the task to be performed

- by maintaining an on-line dialogue with the operator to allow her to augment

and modify the current task information while the task is in progress, as well

as to allow the command stream generator to request additional information

from the operator when her intent is still unclear

This would allow on-line refinement of the task description and should greatly ex-

pand the repertoire of tasks that the system could interpret correctly and thus issue

appropriate motion commands to the remote slave.

2.7 Error handling and model consistency

We now have a system, where a human operator can essentially teleprogmm a re-

mote slave robot, overcoming the communication delay problem by using real-time

simulated visual and kinesthetic feedback. Of course, while all is well in the simu-

lated world, various things may go wrong in the actual work environment. The slave

can detect such error conditions by not reaching an expected motion-terminating

condition, by hitting an obstacle, by seeing excessive or premature motor torques,

etc. Upon detecting such a condition, the slave can signal the occurrence of an error

state to the operator's station, which in turn can alert the user through a variety of

visual or audio means (e.g., flashing the display, synthesized voice warnings, etc.).

It is then up to the operator to plan corrective actions. First, the operator's station

based model of the world must be updated to properly reflect the current situation.

This can be done through gathering and reconciling information from a variety of

remote site based sensors (e.g., video cameras, range finders, etc.) and/or purpose-

ful exploratory motions on the part of the operator (if this is possible) to find or

correct certain model parameters. Then, the operator can attempt to correct the

problem and proceed with the task.

It is important to note that discrepancies between the model and the world can

also arise due to effects of external environmental agents, i.e., other than slave's

actions. Such changes may not be discovered through the actions of the slave, but

may cause problems at a later stage in the manipulation. What is needed, therefore,

is a rather sophisticated environment updating mechanism, which continuously (in

reasonable intervals) checks at least the local portions of the environment model

(i.e., in the immediate work area), but can also be brought into action by request

from the operator under her control. The latter facility is important not only for

situations when the slave has entered an error state, but also when the operator

wishes to verify poorly recovered or uncertain features of the workspace.

We believe that the problem of ensuring consistency between the model and the

world is a very critical one to successful operation of the proposed system and again

represents a challenging research topic in its own right. We will in this work restrict

ourselves to some general comments on how this problem may be solved and will

not attempt to provide a detailed solution.

Another feature of the system, thus, is that by keeping the operator in the con-

trol loop, she can take on the responsibility of handling error conditions. This is

significant, since anticipating various possible error states and planning for their

recovery by introducing various exception handling routines plagues conventional

robot programming. Clearly, not all possible error states can be anticipated, espe-

cially in a situation where the environment is unstructured and we only have an

approximate model of it. Moreover, programming exception handlers can easily be-

come a self-defeating enterprise as corrective actions for every error may themselves

involve errors. This system therefore eliminates the need to write elaborate robot

manipulator programs taking on the impossible task of accounting for all possible

errors.

2.8 Applications

We believe that a system, such as the one outlined above, will facilitate teleoperation

with time delay allowing a very natural interaction between the operator and an

image of the task involving both visual and kinesthetic feedback. The system will

also allow for considerable time delays limited only by the extent that the operator

is allowed to move ahead of actual execution.

Application of such technology to undersea manipulation would free us from the

need to maintain wide bandwidth communications between an operator and the

vehicle. While it appears possible to eliminate vehicle tethers based on energy con-

siderations [24], it is still impossible to eliminate the tether based on manipulation

control considerations due to the delays in bringing acoustic signals to the surface.

Operators must either be in the vehicle or in a surface ship at the end of a tether.

With the proposed technology it would be possible to drop a submersible from a

plane together with an acoustic relay buoy and then to control operations at the

ocean bottom remotely over a radio link from either the plane or the shore. The

principal cost saving is, of course, the elimination of the need for a surface ship

maintaining station during the entire underwater operation. Secondary cost savings

relate to the elimination of the tether and the possibility of working in environments

in which the tether might become tangled, as well as the possibility of using more

than one submersible in the same working area when the control of tethers becomes

impossible.

Cost justification for work in shallow space relate to the possibility of eliminating

the need for an astronaut on EVA to perform the task, vastly reducing the cost

involved.

3 The graphical simulator

3.1 The model

We propose to adopt a polyhedral, boundary-representation based graphical model

of the world. While other representations are clearly possible (e.g., CSG, gener-

alized cylinders), polyhedra3 models are widely used and consequently a variety of

algorithms exist for polyhedral analysis. Perhaps the most important advantage,

however, is the convenience of polyhedral models for contact analysis, which is a

central requirement and feature of this work.

An important component of the graphical simulator is an exact kinematic model

of the slave manipulator (and any attached equipment). This simulated slave robot

must accurately reflect the kinematic limitations of the actual slave (i.e., joint range

limitations) and the simulator software must ensure this. Moreover, there should be

no need for the slave and the master manipulator to bear any structural or kinematic

resemblance to each other. While this significantly complicates the control of the

system (space transformations, two sets of singular configurations, reindexing), it is

an important feature of a general purpose teleprogramming software system.

3.2 The simulation technique

A key decision in this work has been to use a kinematic simulation of the motion of

the slave and the manipulated objects. The simulation therefore does not account

for the dynamic effects of either the slave robot or the environment. Moreover, the

slave (plus any held object) are the only moving parts in the environment during

each simulation time slice. Consequently, dynamic changes in the environment,

other than the slave's state, must be related to the operator's station through the

environment updating mechanism (Section 2.7), rather than direct simulation. This

applies to the dynamic changes caused by the slave (i.e., dropping or tipping an

Sensors c3
Supervision

~ornrnuni&tion Delay

Figure 2: Overview of the proposed solution.

object), as well as those produced by external environmental agents (i .e . , winds,

water currents). While the choice of a kinematic simulation may seem restrictive,

we feel that it is the most practical approach for the following reasons

since only approximate information about the world is available, we can not

expect to have complete information about the masses, centers of mass, in-

ertias, frictional parameters, etc. about the objects in the environment ; yet,

these are essential parameters for a dynamic simulation

r in many environments and situations a rigid-body dynamic model may not be

adequate; we may be manipulating on a soft ocean bottom, or we may have

erroneous confidence in the hardness of the objects in the slave world

a dynamic simulation of both the robot and the environment represents a

significant computational burden; in all but the simplest cases it in fact may

not be computable in real time

r due to model uncertainty, only rough predictions based on dynamic computa-

tions are possible; such approximate, unreliable results do not justify the time

spent in computation

r unmodelable and unpredictable external agents (water turbulence, buoyancy

effects) may contribute to the dynamic state of the world, further diminishing

the utility of a costly dynamic simulation

Clearly, a kinematic simulation leaves much to be desired, but under the circum-

stances we feel that it is a more reasonable and more practical choice than a full

dynamic simulation of both the slave manipulator and the environment.

4 Distance computation and collision detect ion

The kinesthetic feedback described in Section 5 relies heavily on the detection and

analysis of the contacts which arise during the motion of the slave in the simu-

lated environment. Expected contacts will normally occur between the slave's end-

effector, tool, or an object it is currently holding, and some part of the slave world

involved in the execution of the task. We will hereafter refer to the former as the

movable object and will abbreviate it as MO. Moreover, the graphical simulator must

also provide an aid to the operator by checking that undesired collisions between

the slave arm and the environment do not occur during the motion.

Both cases can be solved by monitoring the distances between pairs of objects.

While the former requires precise models of the objects, simpler, approximate, yet

conservative models suffice for the latter. Simplified models are preferred, whenever

possible, in order to limit the computational cost of the collision checking module.

During the execution of a task, may pairs of objects may need to be monitored

for contact at each step of the simulation. Consequently, there is a definite need for

an efficient distance computation algorithm.

4.1 Distance computation

Several methods exist to compute distance2 between polyhedral objects. Because of

its efficiency we chose to implement the distance algorithm between convex sets of

points described in [ll]. The aim of this section is to summarize the main features

of this algorithm. For a more detailed description, the reader is referred to [l l] .

Let A and 3 denote the two polyhedral objects, whose distance (from each

other) we are seeking. For the purposes of the algorithm the two objects need to be

represented simply as the respective sets of vertices S(A) and S (3) . The algorithm

uses the following property of distance between the two sets

where 4 denotes the origin of the space and C = B 9 A represents Minkowsky's

difference between the sets A and 3. Instead of first computing C3, the algorithm

is based on an iterative procedure which generates sequences of elementary sets Ck

containing 1 to 4 vertices of S(C). These Ck are such that their distance to the

origin converges to the desired distance between the objects A and B.

An efficient procedure is used to compute the closest point u k of the convex hull

of these simple sets of points Ck (line segments, triangular faces, tetrahedrons) to

2Distance between two objects is defined as the smallest translation which will put them into

contact.

31f A and B have nA and nB vertices, respectively, then C can have up to nA + ne vertices.

the origin of the space. uk is obtained from the computation of the coefficients X i

of the set's barycentric representation, i .e. ,

with X i 2 0 , C Xi = 1, and xi E S(Ck) (3)

The points xi of Ck whose X i > 0 define a C; C Ck containing uk (for example, if

Ck is a triangular face defined by three vertices, then Cz can be either one of the

three line segments, or one of the three vertices of the face, depending of the number

of positive X i computed). The sequence of uk generated is such that Iluk+lll < llukll

and the norms converge to dist(A, B).

The generation of the next Cktl from the current Ck and uk is based on the

notion of a support function. The support function of a set of points X is defined

by4 hx(n) = maxXiEs(x) {n - xi) and we will use sX(n) to denote one of the xi

which verifies this maximum.

It is shown in [ll] that if llukll + hc(-uk) = 0, then dist(A, B) = IIukll. Other-

wise, the Ck+l to be checked at the next iteration is obtained from the set of vertices

S(C;) U {sc(-uk)). The interest of using this support function for the generation of

the vertices of C comes from the fact that sc(n) and hc(n) can both be computed

in O (n A $? z B) time, i-e.,

Each iteration is therefore performed in linear time in the total number of vertices

and as only a few iterations are needed for the convergence, the distance algorithm

is quasi-linear in the total number of vertices.

The overall structure of the algorithm also plays a important role in its efficiency:

The algorithm relies exclusively on simple computations (dot products and

vector additions). Moreover, the procedure used for the computation of uk

reuses many of the values already computed during the previous step. These

values are stored and each iteration needs to perform only a few additional

computations.

'In fact, this function defines for a given direction n a plane x . n = hx(n), such that all the

points of X lie on the same side of this plane.

An extra speedup is obtained by providing an initial estimation of S(Co) to

the algorithm. This feature turns out to be particularly interesting when only

small positional changes occur between two successive distance computations.

In this case, the set S(Ck) computed at the last iteration of the previous

distance computation can be used for this initial estimation. While the closest

point of C to the origin stays inside the convex hull of this set, only one

iteration will be needed to compute the new distance. Whenever changes

occur, a couple of iterations will be generally sufficient to update the new sets

of points and compute the distance.

4.2 Collision avoidance

Let XA and xg denote the closest points between two convex objects A and B. Their

distance is then given by d = I(xB - xAll. If an incremental displacement (Ap, Ar)

is applied to A, it can be shown [7] that the distance variation Ad can be expressed

as

A d = -n . AxA (5)

where n = (xg - xA)/d and AxA is the positional displacement of the point XA due

to the displacement (Ap, Ar).

Clearly, a positive Ad indicates that the motion causes the objects to be sep-

arated further apart. However, even when Ad is negative, there is no danger of

collision as long as (Ad] < d. Otherwise, the penetration factor has to be computed

and only the corresponding fraction of the offending displacement is applied in order

to stop the motion in the (non-penetrating) contact configuration.

In fact, as this distance variation computation is only valid for strictly convex

sets of points5, special steps are needed to handle changes of contact types for other

convex polyhedral sets.

4.3 Contact type determination

As mentioned before, detailed contact monitoring must be performed between pairs

of objects involving the movable object (i.e., slave's end-effector or a manipulated

5Strictly convex sets exhibit a continuous tangent along the surface.

object) and the part of the environment with which the slave is in contact. Both

objects of a such pair are declared to be in contact while the distance between them

remains zero. In this case a postprocessing step (following distance computation) is

performed to extract the features of the polyhedral models of both objects, which are

actually in contact (i.e., facei of Objectl against edgej of Object2). It is these features

that define the constraint on the motion due to the contact and therefore must be

known for the contact analysis (Section 5). Likewise, a contact feature centroid (e.g.,

edge or face center) is associated with each constraint for later reference.

4.4 Constraint information

As already mentioned, two types of collisions can occur in the system - wanted

and unwanted collisions. Wanted collisions are those that the operator intended to

achieve and will normally involve a part of the environment and the movable object.

Unwanted collisions, on the other hand, are all other collisions. Because the slave

(plus the manipulated object, if any) is the only moving object in the environment,

these collisions will normally involve a part of the slave robot accidentally coming

into contact with some part of the environment (obstacle).

Corresponding to the two types of collisions we will define two lists of ob ject pairs

(wanted and unwanted collision list). As we saw in Section 2.6, this information

must be supplied to the system either by the user or a task description module prior

to the execution of the task. At each simulation step, while the task is in progress,

the collision detection module then checks both lists for possible new or persistent

contacts. In the case of an unwanted collision, the system refuses to perform the

offending motion that would cause the collision and alerts the operator by "freezing"

the motion of the master arm and any other means necessary to unambiguously

communicate the problem to the operator (e.g., sound, altering display, console

messages, etc.). The operator can then adjust her intended motion to avoid the

collision or adopt a different strategy to accomplish the same task. Note that this

feature in a sense offers a rudimentary collision avoidance facility, where motion

adjustment and/or replanning are left to the operator.

In the case of a wanted collision, the system stops the motion short of causing the

collision, i.e., the system allows the two objects to come into contact but not inter-

penetrate (see Section 4.2). Moreover, the system extracts the relevant information

about the contact. In particular, it records what type of a geometric constraint

this contact imposes on the motion of MO and adds this information to the list

of already active constraints. This information is then used to filter commanded

incremental motions to the master (and thus indirectly to the slave), such that the

resulting (filtered) motion doers not violate any of the currently active constraints

on the motion of MO.

A constraint can be defined as a pair of contacting features (vertex, edge,face),

along with a set of parameters that uniquely define the geometry of the given con-

straint. This information will be needed both in the motion filtering process, where

it will be used to define a filtering coordinate frame (Section 5) , as well as in the

command string generation process, where i t will be used to define a task frame (Sec-

tion 7). As we will see, the following three parameters suffice to uniquely describe

the geometry of a constraint in all cases (i.e., regardless of the types of contacting

features)

the vector p connecting the slave wrist center (where the commanded mo-

tions are applied) and the contact point (feature centroid, associated with the

constraint)

the constraint normal n (see Section 5.3.2 for the definition of constraint

normal)

edge direction e , if the contact involves an edge

For convenience, d l of the above vector quantities are computed w.r.t. the common

global reference frame FB. Therefore, a constraint c; can be encoded as the quintuple

where fi and f2 belong to the set {vertex, edge,face) and correspond to the contact

features of MO and the environment, respectively. The list of all (N) currently

active constraints can thus be encoded as

Depending on what types of motions the system allows and how the filtering process

is carried out, not all of the above information may be needed in all cases. Therefore,

for reasons of compactness and efficiency, an actual implementation may condense

the information contained in C to optimize run-time performance.

5 Operator's motion analysis

5.1 Classification of allowable motions

The system operates under the premise that the operator is trying to perform use-

ful work and that her actions are therefore directed and purposeful. Because most

useful work is performed while the slave manipulator is in contact with the environ-

ment, a teleoperation system must provide a sufficiently wide range of motions both

in free space (while approachingJleaving the work area) and in contact with the

surroundings (while performing the work). At the same time the allowed motions

should be carefully partitioned and restricted to aid the operator in performing the

type of motion intended, as well as aid the subsequent automatic analysis (filter-

inglinterpretation) of operator's motions in view of extracting the corresponding

symbolic (slave) robot instructions.

A natural way to simplify general motion (both for the operator and for the sys-

tem) is to separate rotations and translations whenever possible. This is particularly

cruicial in contact motion, where the contact point is physically removed from the

wrist center, where motion is commanded. This separation gives rise to a remote

compliance center and consequently introduces complex and potentially confusing

coupling between rotational and translational parameters of the wrist and contact

frames. The choice of elementary motions should strive to eliminate such coupling

effects without compromising the flexibility and power of the system.

Another important consideration in deciding on the most convenient and effective

set of motion modes is the class of tasks that the system is expected to handle. In

view of the intended applications of our system (Section 2.8), the operator will need

to be able to perform a relatively wide range of tasks. Representative examples are :

accurate free-space motion, standard pick and place operations, basic exploratory

procedures (i . e . , surface or feature following), simple assembly/disassembly tasks,

etc.

Therefore, in view of the above considerations, we propose the following set of

elementary classes of motions

1. Free Space Motion

general motion (both rotations and translations)

freeze position (rotations + fixed position)

freeze orientation (translations + fixed orientation)

2. Contact Motion

freeze (no motion)

slide (translation along constraint features, fixed orientation)

pivot (rotational motion about contact point, fixed position)

3. Pushing

Given a set of elementary motion modes, the operator then specifies to the system

which mode she currently desires. To minimize the burden on the operator, this

motion mode selection information can be supplied to the system via a hand-held

push-button device.

In the following sections we elaborate on each type of elementary class of motions.

5.2 Free space motion

In free space we want to give the operator the maximum possible maneuverabil-

ity. At the same time we want to aid the operator preserve positional/orientational

parameters that she wishes to keep constant during a significant portion of a ma-

nipulation task. For instance, if the operator has achieved the desired approach

orientation, then the system should allow her to freeze (lock) it and subsequently

concentrate on translational motion of the slave robot (and MO) only. Similarly,

situations may arise (e.g., screwing, valve adjusting), where the operator has posi-

tioned the slave end-effector and wishes to freeze the position and concentrate on

grasping or turning the desired feature. Therefore, we provide three corresponding

elementary free space modes of motion. One could proceed further and introduce

single d.0.f. motion modes restricting the operator's motion to translations along

a single direction at a time or rotations about a single axis. However, we have de-

cided against such facilities as they increase the burden on the operator of having to

mentally keep track of some task-based coordinate frame in which these restrictions

would be specified, all at a dubious benefit to the operator's ability to perform tasks

more easily or more efficiently.

Therefore we feel that the above free space motions provide a reasonable com-

promise between convenience (for the operator) and functionality. Finally, in view

of Eq.(l), the three motion modes are realized in a straightforward fashion as follows

a general motion: Ad = (t , r)

a freeze position: Ad = (0 , r)

a freeze orientation: Ad = (t , 0)

5.3 Contact motion

5.3.1 Types of contact

When the movable object is in contact with the (simulated) environment, its motion

(and therefore the motion of the slave manipulator) is restricted, depending on the

type of contact. Figure 3 lists the types of contacts that we will consider in this

work [31]. Let us emphasize again that we are concerned with rigid polyhedral

contacts only. A few notes about Figure 3 are in order. It is easy to see that convex

vertexlvertex and vertexledge contacts are highly transient contact types and will

rarely occur in practice . However, as pointed out in [31], the two types of contacts

can be significant and persistent when one of the contacting features is concave.

Following the work of Sawada et. al. and recognizing that vertices and edges can

be either convex or concave, we generalize the contacts involving these two features

to include both cases. This is reflected in Figure 3 by juxtaposing the two cases,

separating them with a vertical dashed line.

We will in the following sections have the occasion of referring to adjacent, as

well as high or low order contacts. All of these terms are to be interpreted in view

of Figure 3. We will define an adjacent contact to be one which can be reached in

one contact change from the current state. Also, we will say that a contact c; is

point contact
..y;y:7<*

. . . . , . @$$$jj ::+>.:$,,.,: plane contact

Figure 3: Types of polyhedral contacts.

higher (of higher order) than contact cj, if c; offers fewer remaining d.0.f. of motion

than cj.

5.3.2 Constraint normals

In Section 4.4 we discussed the nature of the constraint information maintained by

the graphical simulator and passed to the master's Cartesian level servo module.

Recall that for each active constraint this information includes an associated unit

normal direction. We now offer a convention to unambiguously define this constraint

normal in each contact type.

We will let the constraint normal in each case be directed away from the en-

vironment contact feature and towards the movable object (MO), i.e., the normal

specifies the direction against which MO can not move. Referring to Figure 3, it

seems natural to consider the geometry of both contacting features in determining

the direction of this normal. Still, different conventions may prove to be equally

plausible and practical. We will choose to let the higher-order feature in each case

dominate the choice and will break the ties in favor of the environment feature. The

only exception to this rule will be the edgeledge point contact (see Figure 3), where

the normal is most naturally defined by the cross-product of the two edge directions.

In keeping with the above convention, then, the constraint normal direction for a

facelface planar contact is given by the face normal of the environment plane. Sim-

ilarly, for the two line contacts involving only edges, as well as for the vertexlvertez

point contact, the environment feature determines the normal. In all remaining

contact types (except the already mentioned edgeledge contact), the higher-order

feature (regardless of which object it belongs to) determines the axis (but not nec-

essarily the direction) of the constraint normal.

Finally, the normals for each of the three elementary polyhedral features are

defined in a straightforward fashion as illustrated in Figure 4.6 Note that this defi-

nition assumes that all face normals in our polyhedral models are outward pointing.

'The asterisk (*) in Figure 4 denotes that the corresponding vector is of unit magnitude.

22

n =(n,+ n,)'

Figure 4: Constraint normals for the three types of polyhedral features.

5.3.3 Kinest hetic feedback

As we saw in Section 3, the graphical simulator maintains the current constraint

information on the motion of the movable object. Thus, following the initial motion

that caused a particular contact (and cause the new constraint to be reflected in the

constraint information) the intended (i.e., operator specified) motion of the mov-

able object (MO) can be checked against the active constraints and appropriately

modified (i.e., filtered). Therefore, in the context of a purely kinematic simulation,

we propose to provide (simulated) kinesthetic feedback to the operator by filtering

the intended motion of MO, bringing it into compliance with the existing geometric

constraints. By applying this filtered motion to the master manipulator as well (i.e.,

backdriving the master manipulator appropriately), the operator holding the master

feeb these constraints as resistance to motion.

The filtering must be relatively simple, intuitively natural to the operator, fast

to compute and as general as possible, given the above requirements. Simplicity

and computational speed are necessitated by the requirement that the kinesthetic

feedback be provided to the operator in real time.

5.3.4 Types of contact motions - overview

As indicated in Section 5.1, we propose three types of restrictions on the contact

motion. For the case of fine precision motions, where even slight unintended changes

in position/orientation of MO caused by an impact (contact with a new constraint)

are unacceptable, we provide the trivial freeze mode (no motion at all). In other

words, all commanded motion of MO following a new contact is ignored until the

operator selects a higher-order contact motion mode. Two such modes are provided.

In slide mode, the operator can slide MO along the constraining feature(s) (sur-

faces, edges) in the permissible directions (i.e., the directions not violating any of

the constraints). The orientation of MO remains fixed for the duration of motion

in this mode. The system attempts to help the operator maintain contact with the

environment but will allow the operator to break the contact if she clearly indicates

such intent. A cruicial feature of the way we propose to handle contact motion is to

require decisive actions on the part of the operator to transition to a lower-level con-

tact. This aids the operator in preserving high-order contacts (which are presumed

preferred), while still allowing her to transition to an arbitrary adjacent contact.

We will analyze this class of motions in the case of a single constraint, as well as in

a situation where multiple constraints are acting on MO simultaneously.

Alternatively, the operator can adjust the orientation of MO or transition be-

tween adjacent contacts by rotating or pivoting about the contact point (pivot

mode). In this mode the contact point is not allowed to translate (slide) along

or depart from the constraint feature. As the contact type (between MO and the

environment) changes, the contact point moves on the surface of MO and with it the

pivoting point about which rotational motions are computed. This allows a variety

of reorienting and contact changing motions of MO. Again, motion analysis will be

performed on the commanded displacements so as to aid the operator perform the

desired changes of orientation. We will provide a restricted version of this motion

modality to the operator also in situations where multiple constraints are restricting

the motion of MO.

In the following sections we detail the proposed approach to contact motion

analysis in free space as well as in contact.

5.3.5 'Freeze' m o d e

This trivial mode (Ad = (0,O)) is included solely to prevent unwanted slippage

and twists of MO w.r.t. the environment upon the initial (or new) contact. This

mode is thus the default contact mode, entered automatically when a new contact

(b)

Figure 5: Single-contact sliding.

is detected.

5.3.6 'Slide' mode - single contact

In the case of a single contact, the constraint information, as defined in Section 4.4,

specifies the unit constraint normal 'n. Given the desired motion of the slave wrist

(~ ' d = (~ t , 'r)) , we compute the corresponding allowable subset of translational

motion nBd' as follows7

a B d ' = (Bt' , 0) (8)

where

I , otherwise

Figure 5 illustrates a typical situation for single-contact sliding, where w.p. and

c.p. denote the slave wrist center and the contact point, respectively. Note that

choosing c a positive value, the operation of Eq.(9) above will filter out not only

the component of the commanded translation against the constraint normal n;, but

also the component along n; (i.e., away from the contact) if its magnitude is smaller

than E (Figure 5). This, in effect, provides an illusion of contact surface tension,

i.e., with a proper choice of r the operator is forced to exert a decisive, deliberate

pull away from the contact in order to break it.'

'Note that the translational displacement of MO is the same as the commanded translational

displacement of the slave wrist, despite the offset between the two.
'A reasonable value for 6 may be half the maximum (positive) incremental displacement expe-

Figure 6: Multiple-contact sliding.

5.3.7 'Slide' mode - multiple contacts

In case of multiple contacts, the constraint information contains a list of constraint

normals Bn;7 which are currently restricting the motion of the movable object (MO).

In general, these constraint normals will not be mutually orthogonal and we must

approach the filtering process with caution. We will in the following refer to a

constrained direction as the negative of the corresponding constraint normal n;, as

defined in Figure 4, and denote it as iii.

Figure 6 illustrates a typical situation, where MO is in contact with two non-

orthogonal constraint^.^ In this situation the operator should be able to slide MO

along both constraining surfaces, break either contact and slide along the other

contact's environment feature (surface), or even break both contacts and transition

to free-space motion.

Again we will assume that the commanded incremental slave wrist motion is

given as ABd = (8 t , ~ r) . The analysis of the multi-contact case centers on iden-

tifying the primary constrained direction ii,, i.e., the one which is "closest to" the

desired translational motion t. The measure of closeness is the projection o f t along

a unit direction ha. Given this closest fii (i . e . , ii,), we then construct an orthogo-

nal filtering frame 3j7, such that 5, is one of its axes, and the cross product with

rienced by the system during normal operation.
9A two-constraint example has been chosen for illustrative convenience. The discussion and

results of this section apply to higher-multiplicity contacts a s well.

any other constrained direction iij gives its second orthogonal axis. This choice of

a filtering coordinate frame is adopted because a commanded translational motion

t in a multi-constraint case will normally give rise to a sliding motion along the

constraint feature, whose associated constrained direction is closest to t .

Having constructed the filtering frame, we then express both the commanded

motion Bt and the constrained directions 'fir, in this frame (i.e., =t,*iik) and

filter the commanded slave wrist motion accordingly. The sequence of steps below

formalizes the filtering procedure and supplies the necessary details.

1. for all ci E C, compute the projections pi = ('t 'iii)

2. let Biip = 'iii, for which pi is most positive over C

3. construct the filtering frame FF,

where cj E {C - {c,)), i.e., Biij # Biip ;

construct the rotational matrix B ~ F from FF (see Section A.2)

4. map Bt into FF, i .e. , =t = (' ~ F 1 - l * Bt

5. for each c E C, filter Ft w.r.t. c,

r map Bii into FF, i.e., ~ f i = (BR=)-' * ~ i i

filter each component of Ft in turn, i.e.,

A (~ t , ~ i i , x) , A (~ t , * i i , y), A (~ t , ~ i i , I)

6. map filtered Ft back into FB, i.e., 't' = B ~ F * Ft

Procedure 1: Multi-constraint sliding motion filter.

The core of the filtering process is Step 5, where each constrained direction ii is in

turn rotated into the filtering frame and the components of the commanded motion

are filtered according to the A operator. This operator is defined as follows

t, , if (f i x = 0) or (t, . sgn(fi,)) 5 - 6 A(t, ii, x) : t , =
0 , otherwise

(10)

Therefore, any constrained components of the commanded motion are zeroed. Also,

small components away from the constrained orthogonal directions are zeroed as

well, providing a sense of surface tension as in the single-contact case above.'' Hav-

ing performed the filtering operation on Ft, we then rotate the filtered commanded

displacement back into the reference frame (Step 6) and assemble the final filtered

motion of the slave wrist as a B d ' = (~ t ' , 0) .

Observe that a filtering frame is constructed even in the case where the original

commanded motion does not violate any constraints, i.e., when all p; in Step 1

are negative. This is done so that the filtering of small components away from the

constraint features in Step 5 (which must be done in this case as well) is performed in

an orthogonal frame. The requirement that filtering be done only w.r.t. orthogonal

axes is cruicial.

Finally, for clarity, various optimizations of the above procedure have been omit-

ted (in particular, in Step 5). Any implementation must consider these carefully.

5.3.8 'Pivot m o d e - single contact

Comput ing t h e motion

As mentioned before, in this single contact mode the contact point is stuck in

contact and can not be moved (i.e., slid along a contact feature or pulled away

from the contact). Only rotations of MO about the contact point are allowed. The

class of allowed motions and the nature in which these motions are computed are

intended to give the operator the feel of manipulating in a "sticky" environment, as

well as allowing the operator to concern herself with the orientational parameters

of MO alone, while keeping the contact point position fixed.

The input to the filtering module are the commanded (operator supplied) motion

of the slave wrist (ABd) and the current constraint information C (Section 4.4).

Let the commanded motion be given as a displacement/RPY pair. Our task is to

compute the rotational motion of the contact frame (centered at the contact point),

based on the supplied slave wrist motion and subject to the above assumptions.

Toward this aim we will define two coordinate frames (with the same orientation)

as illustrated in Figure 7. In the figure, is the constraint normal, the vector Bp

10 The same c value may be used both in single and multiple-contact situations.

Figure 7: Tangential and contact frames.

denotes the (directed) distance between the slave wrist center point (w.p.) and the

contact point (c.p.), and .ir labels the constraint feature (plane in this case). The

first frame FT (tangential frame) is defined such that its 2-y plane is tangential to

the surface of the sphere centered at c.p. and having radius (pl. For convenience,

we will define a second frame 3~ (contact frame) with the same orientation as FT,

but slid along the p vector, such that its origin coincides with the contact point,

z.e.,

37'=3c = { B ((~ x n) x P)', B (- ~ X .)* , B (- ~) *) (11)

The rotational matrix B ~ T , specifying the orientation of the frame FT w.r.t. 3~3, is

again derived directly from the above definition of the two frames (see Section A.2).

In fact, since the orientations of the frames FT and FC are identical, we have

B ~ T = B ~ C .

We will describe the (rotational) motion of the contact point in terms of the mo-

tion of the contact frame FC due to the (operator supplied) motion of the wrist-based

tangential frame FT. In an attempt to kinematically simulate the rotational motion

of MO, whose contact point is stuck in contact, and at the same time minimize the

complexity of motion analysis, we propose to compute the rotational motion of 3~

as follows

(a) rotational motion of w.p. about the z-axis of FT corresponds directly to the

rotational motion of c.p. about the z-axis of FC

(b) translational motion of w.p. (along the x-y plane of FT) is used to compute

Figure 8: Computing Ae, of the contact frame.

the remaining two orthogonal rotational displacements of Fc

In (b), the rotational displacement of Fc (about its x and y axes) is approximated

by considering the components of the commanded translational vector Tt (i.e., Bt

rotated into the FT frame) projected onto the x, y axes of FT. For the case of

computing the incremental rotation AO, about the y-axis of Fc7 we have

Figure 8 illustrates the ~ituation.' '*'~

An important detail that must be noticed here is that the translational vector

Bt will only cause pivoting (rotation about c.p.) if it lies below the x-y plane of the

tangential frame FT, i.e., if

B p) > 0 (13)

Therefore, the RPY rotation of 3: due to the (rotational and translational) motion

of FT, under the assumption of stiction, is

"The y-axes of both TT and 3~ frames are directed out of the page.
12Note that the approximation of equating the tangential projections of the displacement vector

t with the corresponding great arc segments along the sphere surface is equivalent to assuming that

sin(A0) = A@, as sin(A0) = A0 = Tt,/lPI in Figure 8 . It is easy to verify that this approximation

is quite good for -7r/6 < A0 < x / 6 , which is more than sufficient for our purposes.

The superscripts on the right hand side of the above equation indicate, that the

corresponding displacement and RPY parameters have been rotated into the FT

coordinates. See Appendix A for details.

The computed rotational motion of the contact point (and thus MO) as given

by Eq.(14), is designed to provide a natural feel to the operator, as she is forced

to introduce translational motion at the slave wrist to achieve rotational (pivoting)

motion at the contact point. In the absence of a full dynamic model, the generated

model is only approximate, of course, but nevertheless it has an intuitive basis and

should feel natural to the operator.

Filtering

Having computed the rotational motion of the contact point based frame FC,

we now filter this motion on the basis of the contact type. The filtering is done

primarily to discard small (presumably unintended) rotational components and has

the effect of biasing (the interpretation of) operator's motions towards higher order

contact types. In the following paragraphs we will outline the filtering procedure.

In order to filter the rotational motion of Fc, we will first define a contact point

based filtering frame FF, which is particularly convenient for the given constraint

type. We will then express the intended motion of the contact point in this frame

(FF) and perform the filtering w.r.t. its coordinates. In each case the filtering frame

will be constructed in terms of the geometric parameters supplied by the constraint

information, i.e., the constraint normal wrist-to-contact vector (Bp), and

the edge direction (Be) (see Section 4.4). The input motion of the collision point

ncdl = (~ , ~ r ') is as computed in Eq.(14) above.

(a) Point Contacts: A filtering frame need not be specified in this case as all three

orthogonal rotations are permissible in all point contacts (see Figure 3). Therefore,

no filtering is necessary.

(b) Line Contacts: A line contact always involves an edge (at least one, see

Figure 3), and it is this edge direction (Be), together with the constraint normal

(Bn), that defines the most convenient filtering frame, i.e.,

Figure 9: Single-contact pivoting - line contact.

where Be and B n are assumed to be of unit magnitude. The specification of the

rotational matrix B ~ F follows immediately (see Section A.2). Figure 9 illustrates

the case of an edge/ face line contact.

Filtering of the contact point motion a c d ' can now be achieved as a two-stage

process:

1. map the motion (RPY rotation) of the contact point from FC (Cr') into 317

(I7#), using 'RF = (B R ~) * B ~ F (see Section A.3)

2. filter out small rotations about (e x n) tending to destroy the edge contact,

z.e.,

Fr" = (T (~T:) , F ~ k , I7r;) (16)

where the T operator is defined as follows13

0 , i f [x I < <
T(x) =

x , otherwise

(c) Plane Contacts: The only representative of this class of contacts is the

faeelface contact (see Figure 3). Here, the filtering frame can be defined as fol-

13The T operator is a simple bidirectional threshold filter zeroing out rotations whose magnitude

is smaller than E ((> 0). A good candidate value fore E may be half of the maximum magnitude

of an incremental rotational displacement normally experienced by the system. This forces the

operator to indicate a decisive rotation about the edge in order to break the edge contact.

Figure 10: Single-contact pivoting - plane contact.

lows

and the rotational matrix B ~ F can be constructed as before. Figure 10 illustrates

the situation.

Again, a two-stage filtering procedure is employed. The given rotational mo-

tion of the contact point is mapped from FC into FF (via the rotational matrix

' R F) . The second filtering stage in this case attempts to remove from Fr' small

destabilizing rotations about the x and y-axes of the filtering frame, i.e.,

Postprocesing

Having computed the filtered motion of the pivoting contact point, we must

now produce the corresponding motion of the slave wrist in the reference (FB)

coordinates, as this is the motion ultimately commanded to the slave manipulator.

This is accomplished by mapping the filtered contact point motion aFd" = (0 , Fr'f)

into FB coordinates aBd" (see Section A.3) and computing the corresponding FB

displacement of the slave wrist as described in Section A.4.

5.3.9 'Pivot mode - multiple contacts

In this section we extend the results of Section 5.3.8 to accommodate a restricted,

but useful subset of multi-constraint pivoting motions. The restrictions are imposed

Figure 11: Multiple-contact pivoting.

both to aid the operator perform simple and intuitive multi-contact rotations, as

well as to keep the geometrical and numerical complexity of the motion analysis

low.

A typical situation that this motion mode is intended to address is one, where

the operator has brought the movable object into a multiple contact and wishes

to align MO w.r.t. the environment so as to obtain a higher order (i.e., more

stable) contact type. Figure 11-a illustrates an example, where MO has been slid

along a surface (facelface contact) against a wall (vertexlface contact). This mode

will allow the operator to rotate the object into a stable configuration w.r.t. the

environment (i.e., edgelface wall contact, Figure 11-b) and align MO for subsequent

sliding along either or both of the constraining surfaces.

It is clear, that in view of the intended applications of this motion mode, the

only practical situations will involve two constraints. Also, we will assume that

realigning motions either preserve or raise the order of existing contacts. Finally,

as any pivoting multi-constraint motion will involve sliding of the moving object

along one of the constraints, we will require that one of the contacts be a facelface

contact.

While the imposed conditions may seem restrictive, the allowed motions still

span a sizable set of useful realignment motions that may be needed in a practi-

cal application. For instance, most two-constraint situations will arise by sliding

the movable object against a second constraint, where the single-constraint sliding

motion will be performed in a facelface contact state for obvious reasons of con-

venience and stability. Similarly, upon encountering a second constraint, the most

likely subsequent motion (if any) is one where the object is pivoted about this new

contact into a higher order multiple contact state.

In order to compute the allowed motion of MO in a two-contact situation, we will

again make use of the notion of a primary constraint, and label the two contacts

as primary (c p) and secondary (c,) contact. By convention, we will refer to the

mandatory facelface contact as the secondary contact. The motion of MO will then

be computed as a pure rotation about the contact point associated with the primary

contact, and filtered such that it will not violate the secondary constraint. Clearly,

if any rotation is to take place, the primary contact must be of a lower order (e.g.,

vertex/ face, edge/ face, faceledge, etc) than the secondary contact. Moreover, if

the primary constraint forms a line contact (see Figure 3), then motion will only

be possible if the corresponding edge direction is parallel to the secondary contact

normal ns (see Figure 11).

Once again, let the original commanded motion of the slave wrist be given by

aBd = (Bt,Br). Assuming that the above set of conditions is satisfied, we identify

the primary constraint cp and compute rotational motion Cr' about its associated

contact point as in Section 5.3.8 (Eq.(14)). This contact-frame based RPY rotation

must then be filtered so as to retain only the rotation about the axis parallel to the

normal of the secondary constraint. We therefore define a filtering frame FF, such

that one of its axes (e.g., r) coincides with this normal direction, i.e.,

and map the rotation Cr' into this frame to obtain Fr' (see Section A.3). The filtered

rotation is then obtained trivially as

The remaining task is to compute the corresponding motion aBd' of the slave wrist

in the reference frame coordinates. This is accomplished in a straightforward fashion

as described at the end of the previous section.

5.4 Pushing

5.4.1 Single-contact pushing

It has been established that pushing motions are difficult to analyze and predict

accurately [29][28][20][21][19]. This is due primarily to the fact that the motion of a

pushed object depends critically on the complex interaction between the microscopic

features of the two sliding surfaces. This in turn accounts for continuously changing

frictional properties of the sliding contact, making reliable predictions of the result-

ing motions impossible without a detailed knowledge of the surface textures and the

resulting distribution of the support forces.

In order to facilitate rudimentary pushing operations and yet generate instruc-

tions which can be executed successfully and reliably under the slave's local super-

vision, we provide a simple pushing mode, where the operator can indicate to the

system that she wishes to push an object through a certain distance along a straight-

line trajectory. We naturally require that the object to be pushed be in a facelface

contact with some supporting surface and that the task information (Section 2.6)

indicate that this object is in fact pushable. We also require that the slave establish

a face/ face contact with the pushed object (PO). The requirements of a straight-line

pushing motion and a planar pushing contact (between PO and the slave) minimize

the possibility of slippage along the pushing contact or unexpected twists of the

pushed object in the actual environment.

One more requirement restricting the operator's choice of the pushing contact

and aimed at eliminating slipping errors in the remote environment, is that the

pushing contact plane have a "reasonable" orientation w. r. t. the sliding surface.

We quantify this condition by introducing a pushing frame

centered at the contact point associated with the pushing contact, and requiring

that the pushing contact normal np be nearly parallel (within to the sliding

direction ds = (n, x n,)* (see Figure 12), i.e.,

(np d,) < cos a,,, (23)

''The optimal value of a,,, will depend on the frictional parameters of a particular pushing

contact. A reasonable "generic" value, however, may be around 30'.

sliding contact

/

Figure 12: Single-contact pushing.

where ii, = -n,.

In order for pushing motion to take place, the operator must first establish a

faeelface contact with some environment object. We propose that the operator

signal her intent to push the object by exerting a significant (and therefore easily

identifiable) threshold force ft against it. If this object is identified as pushable, the

system then enters the pushing mode. In this mode, the graphical simulator rigidly

attaches the pushed object to the slave at the point of pushing contact and filters

commanded slave wrist motions so as to move in a straight line along the sliding

surface. Given a commanded motion a B d of the slave wrist, we therefore compute

the translational motion of the pushed object as follows

where

0 , otherwise

Note that the pushed object moves only if the commanded incremental translational

displacement has a positive component along the sliding direction. Otherwise, zero

displacement is applied to the object (and thus the slave), unless this pull away

from the pushing contact exceeds the threshold force ft, signalling that the operator

wishes to exit the pushing mode.

Whereas every precaution has been taken to ensure that pushing motion com-

mands generated at the operator's station are simple and easily executable by the

slave, things can still go wrong. In particular, as the operator's station relies on a

kinematic simulation of the slave world, error conditions such as the pushed object

tipping over in the remote world can not be predicted and detected ahead of time.

Avoiding such situations is thus left to the operator who can draw on her approx-

imate knowledge of the relevant dynamic parameters or simply on her intuition in

choosing a reasonable pushing contact.

5.4.2 Multiple-contact pushing

In order to enhance the versatility of the system, we again extend the single-

constraint pushing motion mode to multi-contact situations. The intended func-

tionality of this mode is essentially identical to multi-constraint pivoting motions

(Section 5.3.9). Again we envision this class of motions being used primarily to

push and align an object with respect to two simultaneously active environmental

constraints. Consequently, the analysis of such aligning pushing motions is therefore

analogous to the double-constraint rotational motion case, with the movable object

in this case being the pushed object together with the (rigidly attached) slave's

end-effector or tool, if any.

6 Filtering of operator's motions

In this section we describe a simple filtering procedure, which is applied to the

positional data generated by the graphical simulator. The aim of this filtering stage

is to smooth the observed slave trajectories and eliminate the undesired noise in the

data.

The input to this module is the motion of the slave as computed in Section 5.

As we have seen, various filtering steps have already been applied to the operator-

generated motions so as to avoid object penetration and to force the operator to

clearly indicate her intent to break (or reduce the order of) an existing contact. We

will therefore assume that all the contact changes contained in the incoming data

(i.e., generated by the kinesthetic feedback module) were intended by the operator

and that there is no further need to detect and to eliminate transient changes of

contact type.

During the same contact state (i.e., the same set of elementary contacts), the

information available from the graphical simulator is the trajectory of the slave end-

effector along the unconstrained degrees of freedom defined by this contact state.

This trajectory 7 is initially represented by the discrete set {pi : 0 < i 5 n),

where pa = (t;,r;) describes the position and orientation of the frame 3.9~ (the

frame attached to the slave wrist) at the i-th step of the simulation, and n is the

number of discrete positional data acquired since the generation of the last command

stream.15

This trajectory needs to be filtered for two reasons:

a The positional data will be inherently noisy due to the way in which this infor-

mation is acquired, i.e., operator-guided motions of the master. The filtering

will eliminate small oscillations and deviations introduced by the operator and

the sensor readings.

a More importantly, this trajectory has to be represented in a more con~pact

fashion in order to reduce the number of motion commands to be sent to the

remote slave.

Given the set describing 7 and two thresholds ct, E , , the filtering algorithm

produces an approximate trajectory I, , composed of straight-line translations and

rotations of 3.947, such that I, stays inside the space tunnel defined by 7 and by

the radii ct and Er (for the translational and rotational components, respectively).

The algorithm starts with the simpliest approximation of 7 , i.e., the straight-

line segment between the initial generalized positionf6 po and the final one p,.

If this approximation is "close enough" to 7 , the algorithm simply returns this

straight-line motion. Otherwise, an intermediate position p j in 7 is added to the

representation of ?; and the two line segments Seg(po,pj) and Seg(pj,pn) are

respectively checked against the corresponding portions {pi : 0 < i 5 j) and

15Generation and partitioning of the command streams will be adressed in Section 7.
'=We use the term generalized position to denote the 6-vector of positional and orientational

parameters.

Figure 13: Trajectory filter - the "closeness test".

{pi : j 5 i 5 n) of the original trajectory 7 . The same process is iteratively

applied to each segment which needs to be refined and the algorithm converges to an

approximation of 7 by a polygonal path including generally only a few intermediate

points. Clearly, the larger the space tunnel defined by the radii ct and cr around 7
, the fewer intermediate positions will be returned.

A line segment Seg(pil , p ~) of I, is considered to be a good approximation of

the corresponding part of 7 defined by the set {pi : il 5 i 5 i2), if all the pi verify

where t (resp. r) denotes the closest point on Seg(t;, , t;,) (resp. Seg(ril, rj,)) to

t i E 7 (resp. r;). Figure 13 illustrates the process.

Several approaches can be adopted for the selection of the intermediate position

to be introduced after each non-terminal iteration of the algorithm. The point on 7
which is farthest from the current approximation I, is in general a good candidate.

However, the drawback of this method is that it requires the computation of all

distances between the points pi E 7 and the line segment Seg(pil, pc) , il < i < i2.

Consequently, a binary subdivision method offers a much more efficient approach:

as soon as the algorithm finds a pi which does not satisfy the "closeness test" of

Eq.(26) for a given line segment of I, , it immediately introduces a new generalized

position vector pj, where j = max (y , i) , and cuts this segment into Seg(p;, , pj)

and S e g (~ j , pi,).

Clearly, this method will sometimes produce a slightly larger number of inter-

mediate positions than the former approach. Notice, however, that the algorithm

will at each step at least halve the complexity of the problem.

This filtering procedure must be applied to all six components of the positional

information in the case of a general motion in free space. However, both in the

case of free-space motion with frozen orientation (resp. position), as well as in the

case of sliding (resp. pivoting) contact motion, only positional (resp. orient ational)

motion parameters need to be filtered. Moreover, in each motion mode, only the

components corresponding to the free degrees of freedom defined by the contact type

need this filtering stage. For example, during a sliding motion along a plane whose

normal coincides with the z axis of the reference frame FB, only the components of

translational motion along B x and B y will need to be filtered.

7 Generation of symbolic slave commands

In this section we detail our approach to using the sequence of contact state changes

(Section 5) and the filtered slave trajectory information within each contact state

(Section 6) to extract a stream of symbolic commands to the remote slave.

The commands which will be issued to the slave by the system can be classified

into two groups. The first group is composed of low-level commands, essentially

encompassing guarded and compliant motions. These commands will be generated

to execute simple tasks such as free-space navigation, pick and place operations,

motion into contact with the environment, contour following, etc.

The high-level class of motions, on the other hand, contains more specific special-

purpose operations such as tight tolerance part mating, fine-precision motions, etc.

Even if the operator were able to perform a complex insertion in the simulated

world, the observed sequences of contacts clearly would not be reproducible by the

slave, due to the environment modeling errors. Therefore, such tasks can not be

decomposed into elementary motions and must be executed autonomously by the

slave under local sensory supervision. In this case, the graphical simulator need

only identify that the operator wishes to perform a high-level operation (either by

using the information provided by the task model or by interpreting the operator's

motion information directly). The system then gathers the relevant parameters of

the task and sends this information to the remote slave, where the information is

used to instantiate a local special-purpose procedure.

A new stream of commands is issued after each addition or deletion of a new

contact. However, there is also a maximum time (e.g., on the order of the transmis-

sion delay) after which a new stream is automatically generated even if the same

contact state persists. This is done to avoid increasing the delay and to prevent

accumulation of the positional information to be processed.

In this section, we restrict our analysis to the generation of the low-level com-

mands and discuss the algorithms used to transform the contact-state and positional

information provided by the graphical simulator and by the kinesthetic feedback

module in order to produce a stream of guarded and compliant motion commands

to be executed by the slave.

7.1 Types of motions

An important issue that must be addressed when generating these commands re-

sults from the presence of uncertainties in the world model used by the graphical

simulator. During free space motion, simple positioning commands will generally be

sufficient to be executed safely by the slave. However, as soon as the task involves

interactions between the robot and its environment, these discrepencies may cause

a failure during the command execution. This problem has been studied extensively

during the last decade [18][35] and various methods of using the forces and torques

occurring during the contact motion to suitably adapt the robot's trajectory have

been proposed. In an hybrid force-position approach [17][27][18] the free directions

of the motion are controlled in position (or velocity), while the directions constrained

by the contacts are controlled in force. This hybrid mode of control allows two addi-

tional sets of robot commands: guarded motions and compliant motions. A guarded

motion is generally used when approaching a surface to avoid excessive forces after

the contact is established. A compliant motion is then required to move along one

or more constrained surfaces while maintaining a given force (or torque) constraint

in the directions normal to constraining surfaces.

The following section describes how the positioning and contact information

provided by the graphical simulator can be translated into a stream of such hybrid

control motions.

7.2 Task f r a m e specif icat ion

In order to facilitate convenient specification of guarded and compliant motions

of the slave manipulator, we will define a task frame 3', such that its position

and orientation is closely related to the constraints imposed by the geometry of

the current contacts. For each type of elementary contact, the task frame 3~ =

{p ; n,, n,, n,} is defined in the following manner:

a Its origin p coincides with the centroid of the contact feature.

r n, is aligned with the constmint normal (see Section 5.3.2).

a For the three types of contact where an edge is involved (see Figure 3), n,

is aligned with the direction of this edge. For the other cases, an arbitrary

direction lying in the contact plane is chosen.

r n, is obtained by n, x n,

More work needs to be done to identify the optimal choice of task frame coordi-

nates for the case of multiple-constraint motions!!

Whenever a new task frame needs to be specified, an assignment command is

sent to the slave. This command must specify the 3-dimensional vectors p , n, and

n,. In general, this task frame will not have a fixed relation with respect to the

reference frame or to the end-effector frame. Depending of the contact type, each

of these vectors can be defined either with respect to the base frame FB or with

respect to the slave's wrist frame FSw.

This assignment of the task frame coordinate frame axes could be specified with

the following syntax:

AssignFrame (orig vl : BaseFrame ;

diry v 2 : WristFrame ;

dim VQ : BaseFmme)

7.3 M o t i o n s t o k e e p c o n t a c t

Two types of commands are issued to specify the compliant motions. The first one

specifies the directions in which the robot has to comply and the forces/torques

to be applied during the motion. The later describes the positional displacements

along the remaining degrees of freedom. Because the task frame has been chosen to

be aligned with the constraints imposed by each contact geometry, the specification

of the compliants commands becomes straightforward.

For the case of sliding motions, regardless of the contact type, the translational

motion along the x and y directions of TT, will be position controlled while a force

will be specified along the z-axis to maintain the contact.

In point-contact pivoting mode (see Figure 3), any rotational motion around the

contact point is allowed and the three axes are therefore position controlled. Line

contacts will require that zero torque be maintained about the contact-plane axis

perpendicular to the edge direction. Finally, the only allowed rotation in a planar

contact is the rotation about the constraint normal direction (task frame z-axis)

and zero torques must therefore be commanded about the other two axes. In all

cases a force must also be maintained along the z-axis to maintain contact.

The force to be exerted will be specified by a symbolic value in order to indicate

what the intended result of this force is (for example FStiction or FSliding). The

actual values of these forces will depend on the physical parameters of the task

(e.g., contact surface friction, etc.) and will be determined by the slave manipulator

control software.

For example, during an edgelface contact, the following sequence of conzmands

will be generated to execute a simple translational motion through a distance d in

the direction of this edge, followed by a rotational motion through an angle of a

around the constraint normal direction:

Comply (fz F~liding ; tx 0)
Move (y d)

Comply (fz Fstiction ; tx 0)
Twist (rz a)

where both forces are positive and FstiCtion is presumably larger than Fslading.

44

Figure 14: Changes of contact during a sliding motion.

7.4 Motions to change contact

Both sliding and pivoting motions can cause a change of contact. Sliding motions

can result only in the introduction of a new contact or deletion of a current one.

Pivoting motions, on the other hand, will generally cause a change of the current

contact type (for example, a transition from a vertex/ face to an edge/ face contact).

Whenever such changes are observed in the simulated world, the command gen-

erator must specify one (or more) terminating conditions for each of the correspond-

ing motions. Normally, a motion will be terminated when certain (specified) forces

and/or torques exceed their respective thresholds. However, a maximum displace-

ment must also be provided to stop the motion in case the guarded motion does not

encounter the expected terminating condition (usually a contact).

7.4.1 Sliding case

When sliding motion along a given direction encounters a new contact (see Figure 14-

a), it has to be stopped when a force discontinuity occurs along this direction. Figure

14-b, however, illustrates a situation where a different terminating condition needs

to be specified. The mobile object is being slid along a surface and the motion should

be stopped when the boundary of the sliding surface is reached. In this and similar

situations, termination of the motion corresponds to the occurrence of a positional

discontinuity on the axis which was controlled in force during sliding.

7.4.2 Pivoting case

Figure 15: Transition between two vertezlface contacts.

When a change of the contact type occurs, this transition can be characterized by

a discontinuity of the torques about the contact edges. For example, figure 15-a

illustrates a situation where a vertex of the mobile object is in contact with a planar

surface of the environment. A rotational motion around the contact point pl is then

applied to put the edge e in contact with this face, while exerting a positive force f

along -n. In the frame defined by {pl ; (e x n)*, (e x n)* x n, n), the component r,

of the torque acting on pl remains null while this point remains in contact with the

surface. However, when the transition occurs and the vertex pz comes into contact

with the supporting plane, this torque 7, will suddenly increase to f . l (where 1 is

the length of the edge) and the contact can thus be detected.

In fact, we will show that this variation of torque remains constant, indepen-

dently of the position of the coordinate frame in which the torques are expressed.

This provides an easy way to detect such transitions directly from the torques mea-

sured in the frame of the FIT sensor, mounted at the slave manipulator's wrist.

Independence of the torque measurement site:

Figure 15-b illustrates a situation similar to the one shown in Figure 15-a, i.e., an

edge e of the movable object in contact with a plane by one of its vertices. However,

this time we assume that the torques are to be expressed relative to a coordinate

frame with the same orientation as before but whose origin has been moved from

P1 to P.

The torque acting at p due to the reaction force f = (0,0, f)T, applied at the

point of contact, is expressed in the frame {p ; (e x n)*, (e x n)* x n, n) as follows

where r is the vector from p to the point of contact. During a contact with p l , the

components of this vector rl = ppl are

l1 . cos a1 . sin Dl
ll . (sin a1 . sin 0 - cos a1 . cos P1 . cos 0)

-Il . (cos a1 . cos 0 + cos a1 . cos pl . sin 0)
-

where a1 is the angle between plp and its projection plpl onto the plane n whose

normal is obtained by a rotating n through Rot(x, 0) (see Figure 15-b). P1 denotes
-

the angle between plpf and the edge e.

Similarly, during a contact with the point p2, the vector r 2 = pp.L is given by

l2 cos a 2 - sin P2

r 2 = [12 . (sin a 2 sin 0 + cos a2 . cos p2 cos 8)

-12 . (- cos a 2 - cos 0 + cos a 2 . cos ,B2 - sin 8)

The transition from contact pl to contact p2 occurs for 8 = 0. Computing the

values of the two torques just before and after the edgelface contact gives

The variation of the torque across the contact then is

i 11 . cos a1 . c0sp1 + 12 . cos a 2 . COS p2
A 7 = 7 2 - 7 1 = f ' ~ ~ ~ ~ ~ ~ a ~ ~ s i n P ~ - l ~ ~ c o s a ~ ~ s i n P ~

0

It is easy to see from Figure 15 that

I
11 . cos a1 . cos P1 + l2 . cos a2 . cos P2 = 1 , and

11 . cos a1 . sin ,Bl = 12 - cos a2 sin P2

Unirnation MMCS
Controller

Figure 16: The hardware architecture of the experimental testbed.

and the change of contact therefore introduces a discontinuity on r, only. Moreover,

the magnitude of this discontinuity is given by f - I , regardless of where the torques

are measured.

8 The experimental hardwarelsoftware testbed

The hardware architecture of our experimental setup is illustrated in Figure 16.

The master manipulator in our scenario is a Unimation Puma 250 manipulator.

It provides a backdrivable 6 d.0.f. "joystick" with a sufficient operating volume to

afford the operator a true sense of spatial positioning and orienting. Digital hardware

control for the master is provided by the Modular Motor Control System (MMCS)

[5]. This system was designed and built at the laboratory as an experimental PC-

bus based general purpose digital motor controller capable of controlling up to 16

independent actuators simultaneously. The MMCS hardware is interfaced to the

original (factory-supplied) controller, whose sole remaining function is to provide

power and the front panel interface. Finally, a custom-designed PC/VME adaptor

connects MMCS's backbone to the VME bus.

Mounted a t the wrist of the master is a 6 d.0.f. force/torque sensor (LORD Corp.,

Figure 17: The operator's station.

LTS-200) enclosed within a Uwhiffle-balln handle for convenient grasping by the

operator (see Figure 17). The sensor is read over a serial line (RS-232) and provides

information at a rate of approximately 30 Hz". These readings are interpreted as

incremental displacement/RPY Cartesian motion parameters of the sensor/handle

assembly, and thus (through a transformation) of the master manipulator.

The computational engine of the system is JIFFE - a very fast, very-long-

instruction-word floating point scalar processor delivering 20 red M o p s of com-

putational power [I]. The proceseor has a standard VME interface and physically

resides inside the Sun cage. It is fully C-programmable and supports most of the es-

sential U N M operating system facilities. JIFFE runs both the low-level joint servo

code for the master at 500 Hz (PD control loop + gravity feed-forward), as well

as the Cartesian level servo code, which runs at 30 Hz (Cartesian setpoint com-

'?There is a substantial variation about this nominal bandwidth, largely due to the unpredictable
UNIX-incurred delays in servicing the serial port accumulating incoming data.

putation and filtering as described in Section 5)18. It communicates with the Sun

(model 31160) via JIFFE-resident shared memory and (via the Sun and ethernet

connection) with the Iris graphical workstation. The Sun currently serves mostly

as the accumulator and processor of the force/torque information from the sensor

and as an intermediary between JIFFE and the Iris. In later stages of the system

design and implementation, the Sun will provide a console for an on-line task-level

dialogue with the operator (see Section 2.6).

The incremental Cartesian displacements are appropriately scaled into the re-

mote slave's workspace and sent (via ethernet) to the Iris, which tries to realize

them in the simulated slave environment. In case of a collision (see Section 4), the

offending motion is appropriately modified so as to stop colliding objects in a con-

tact but non-penetrating configuration. The new constraint information is added

to the existing set of constraints and communicated back to JIFFE, which in turn

filters subsequent operator-supplied motion demands so as to not violate any of the

current constraints on the motion of the slave (see Section 5). This filtered motion

is then applied both to the graphical model of the slave and the master manipulator,

thus providing a sense of kinesthetic feedback to the operator.

The link between JIFFE and the Iris is a bidirectional communication channel

conveying filtered incremental Cartesian motions one way and newlupdated con-

straint information the other way. The link is implemented as a standard UNIX

socket communication channel (between the Sun and the Iris) and has a round-trip

latency of only a few miliseconds. The graphical workstation is a 16 MIPS Personal

Iris 4D-25 with a hardware turbo graphics option to boost its drawing speed. Even

so, its ability to render shaded graphical images of modest complexity (e.g. , the slave

manipulator plus an object) lags far behind its scalar number crunching capacity.

We are able to obtain refresh rates of about 7 Hz for low complexity environments

and only partial shading. However, it is now within the realm of possibility to obtain

fully shaded graphic displays of relatively complex scenes at video rates using the

latest Silicon Graphics hardware [2].

The software modeling environment for 3-D manipulation of articulated figures

was provided by the Computer Graphics Laboratory at the University of Pennsyl-

"The Cartesian servo loop bandwidth is limited only by the rate at which force/torque sensor

can provide new information, and not by the JIFFE's computational capacity.

vania [30].

9 Preliminary results and discussion

The current implementation of the system allows the operator to move the master

and control the motion of the graphical model of the slave. The simulated slave

can be brought into contact with the environment and the master is appropriately

backdriven to provide a kinesthetic sense of contact to the operator. Recent ex-

periments have shown that purely translational and sliding tasks can be performed

with confidence and ease both for single and multiple constraining surfaces. The

kinesthetic feedback to the operator feels natural and allows her to easily identify

motion constraints and the shape of the constraining surfaces without looking at

the display.

We are currently implementing the rotational (pivoting) contact motion mode.

This should be completed in the near future and the resulting system should offer a

versatile 3-dimensional 6 d.0.f. input device that will allow the operator to perform a

variety of probing tasks, exploratory procedures, surface following and identification

tasks, etc.

An important issue that arose during the preliminary experimentation with the

system is that of reindexing the master. In our case the problem is perhaps even

more acute as a general purpose manipulator is employed as the master device,

and as such is not designed to meet the requirements of a versatile master. In

particular, we found that due to a large number of kinematic motion singularities,

a relatively small workspace volume around any given initial "home" position can

be used for maneuvering. We have considered a variety of approaches to solve this

problem. Perhaps the simplest solution is to offload the responsibility to reindex to

the operator. In this scenario, the operator needs to identify that she is approaching

a singular configuration (on the master) and reindex the manipulator accordingly.

Reindexing could be done by hitting a switch or pressing a pedal, which in turn would

put the arm in a free, gravity compensated mode and allow the operator to reposition

the master to an arbitrary new (presumably singularity-free) configuration before

resuming position (or velocity) servo mode. Clearly, the drawback of this approach

lies in burdening the operator with having to be concerned with the kinematics and

the current state of the master. This is unacceptable as the operator's full attention

may be required to control the task in progress.

In an effort to make the details of the implementation of the master device trans-

parent to the operator, we next considered a reindexing scheme with a continuous

drift back to the home position. The farther from home the operator has moved the

master, the more strongly the master would tend to drift back. We implemented

this scheme such that the magnitude of the restoring drift was exponentially re-

lated to the distance (for translations) and twist amplitude (for rotations) from

the home position. Whereas this eliminated the need for operator's intervention in

the reindexing process, it significantly impaired the spatial resolution of the mas-

ter's motion, which in turn obscured the kinesthetic feedback effects during contact

motion.

A third approach that we considered was one where the master would monitor its

own motions and alert the operator (by beeping, for instance) when it is approaching

a singular configuration. It would then decouple its motions from the simulator

display, return to the home position, and alert the operator that she may proceed

with the task.

While this third approach has not been implementationally verified, it may well

offer the best compromise between the existing requirements and constraints. This

may be especially true if this approach is combined with the first method, thus

allowing the operator to change the home configuration dynamically (at will) during

the execution of the task.

Our current goal is to complete the implementation of the kinesthetic feedback

features as described in Section 5, implement a satisfactory reindexing scheme, and

concentrate our efforts on the problem of automatically partitioning the task in

progress and extracting the relevant parameters to generate a stream of robust

elementary task-level instructions to the remote slave.

A Appendix

A. l Notation

Both 3 and 6-dimensional vector quantities are denoted as boldface (lower-case)

characters with an optional preceding superscript indicating the coordinate frame

with respect to which they are given, i.e., a, Bn, etc.

A coordinate frame is specified by a triple of mutually orthogonal unit vectors,

with an optional indication of the frame's origin, i.e.,

Rotational matrices are denoted by upper-case boldface letters with optional

superscripts and subscripts indicating which two coordinate frames they relate, e.g.,

the matrix B~~ describes the orientation of frame .FF w.r.t. 3'~.

Finally, we occasionally use the following non-standard vector notation

A.2 Coordinate frames and rotational matrices

Let 3;1 be a coordinate frame and let Ay and Az be two mutually orthogonal unit

vectors, expressed in FA'S coordinates. Then the two vectors can be thought of as

defining a second coordinate frame

whose origin is coincident with and whose orientation w.r.t. FA is given by

the rotational matrix

Moreover, the rotational matrix A ~ B can be used to map (rotate) an arbitrary

vector B r expressed in FB's coordinates into its corresponding description in FA

coordinates, i .e . ,

= A ~ B + Bv (5)

Likewise,

B V = B ~ A t A ~

where B ~ n = (ARB)-'.

A.3 Mapping rotations between frames

Let FA and FB be two arbitrary coordinate frames and let Ar = 0 . Ak* denote

a rotation expressed in coordinates. The same rotation can be expressed in

frame FB as

B r = (? . B k * = o . (B ~ A * A k *) z B R A * l r (7)

Alternatively, if the rotation Ar is expressed as a triple of roll/pitch/yaw parame-

ters, i .e. , Ar = (O,, O,, O,), the equivalent rotation expressed w.r.t. FB's coordinates

is obtained by

assembling a rotational matrix representing *r

A~ = RPY~OM (Ir)

transforming this matrix to FB7s coordinates

extracting the new triple of RPY parameters

See [26] for a detailed discussion of the RPYtoM and MtoRPY conversion operators.

For the linear-algebraic basis of these operations, the reader is referred to [23].

A.4 Displacement of a point due to motion of the frame

Let 3 be a coordinate frame undergoing a translational and rotational motion

Ad3 = (t , r) . Then the resulting displacement of a point located at p w.r.t. the

origin of 3 is

A d p = (t + (R * p) - p , r) (11)

where R = RPYtoM(r), and Adp is given w.r.t. to the original frame 3.

References

[I] R. L. Andersson. Computer architectures for robot control: a comparison

and a new processor delivering 20 real Mflops. In Proceedings of the IEEE

International Conference on Robotics and Automation, pages 1162-1167, 1989.

[2] A. K. Bejczy and W. S. Kim. Predictive displays and shared compliance con-

trol for time-delayed telemanipulation. In IEEE International Workshop on

Intelligent Robots and Systems, July 1990. Ibaraki, Japan.

[3] C. I. Connolly, J. L. Mundy, J. R. Stenstrom, and D. W. Thompson. Matching

from 3-D range models into 2-D intensity scenes. In IEEE First International

Conference on Computer Vision, pages 65-72, 1987.

[4] Robert W. Corell. Closing summary. In The Fifth International Symposium

on Unmanned, Untethered Submersible Technology, pages 618-625, Marine Sys-

tems Engineering Laboratory, University of New Hanpshire, June 1987.

[5] Peter I. Corke. A new approach to laboratory motor control: The modular motor

control system. Technical Report, University of Pennsylvania, Philadelphia, PA,

1989.

[6] Ballard R. D. A last long look at Titanic. National Geographic, 17016, Decem-

ber 1986.

[7] B. Faverjon and P. Tournassoud. A local based approach for path planning of

manipulators with a high number of degrees of freedom. In IEEE International

conference on Robotics and Automation, 1987.

[8] W. R. Ferrell. Delayed force feedback. IEEE Trans. Human Factors in Elec-

tronics, 449-455, October 1966.

[9] W. R. Ferrell. Remote manipulation with transmission delay. IEEE Trans.

Human Factors in Electronics, 1965. HFE-6, 1.

[lo] W. R. Ferrell and T. B. Sheridan. Supervisory control of remote manipulation.

IEEE Spectrum, 81-88, October 1967. 4-10.

[l l] E.G. Gilbert, D.W. Johnson, and S.S Keerthi. A fast procedure for computing

the distance between objects in three-space. In IEEE International conference

on Robotics and Automation, 1987.

[12] Ray C. Goertz. Manipulators used for handling radioactive materials. In E. M.

Bennett, editor, Human Factors in Technology, chapter 27, McGraw Hill, 1963.

[13] Black J. H. Factorial study of remote manipulation with transmission time

delay. Master's thesis, MIT, Department of Mechanical Enginnering, 1971.

[14] S. Hayati and B. Wilcox. Manipulator control and mechanization: a telerobot

sub-system. In G. Rodriguez, editor, Proceedings of the Workshop on Spuce

Telerobotics, pages 219 - 227, JPL, July 1987.

[15] Martin Herman. Generating detailed scene descriptions from range images. In

IEEE International Conference on Robotics and Automation, pages 426-431,

1984.

[16] G. Hirtzinger, J. Heindl, and K. Landzettel. Predictive and knowledge-based

telerobotic control concepts. In IEEE International Conference on Robotics

and Automation, pages 1768-1777, 1989.

[17] Hirochika Inoue. Computer controlled bilateral manipulator. Bulletin of the

Japanese Society of Mechanical Engineers, 14(69):199-207, 1971.

[18] Matthew T. Mason. Compliance and force control for computer controlled

manipulators. IEEE Transactions on Systems, Man and Cybernetics, SMC-

11(6):418-432, June 1981.

[19] Matthew T. Mason. Mechanics and planning of manipulator pushing opera-

tions. The International Journal of Robotics Research, 1986.

[20] Matthew T. Mason. On the scope of quasi-static pushing. In Robotics Research:

The Third International Symposium, October 1985.

[21] Matthew T. Mason and J. K. Salisbury. Robot hands and the mechanics of

manipulation. MIT Press, Cambridge, Massachusetts, 1985.

[22] NASA. Flight Telerobotic Servicer, Tinman Concept, In-house Phase B Study

- Final Report. Technical Report, Goddard Space Flight Center, Greenbelt,

MD, September 1988. Volumes I and 11.

[23] Evar D. Nering. Linear algebra and matrix theory. John Wiley & Sons, Inc.,

New York, 2 edition, 1970.

[24] Marilyn Niksa. Aluminum-oxygen batteries as power sources for submersibles.

In The Fifth International Symposium on Unmanned, Untethered Submersible

Technology, pages 121-127, Marine Systems Engineering Laboratory, University

of New Hanpshire, June 1987.

[25] M. Noyes and T. B. Sheridan. A novel predictor for telemanipulation through

a time delay. In Proceedings of the 20th Annual Conference on Manual Control,

Moffett Field, CA: NASA Ames Research Center, 1984.

[26] Richard P. Paul. Robot Manipulators: Mathematics, Programming, and Con-

trol. MIT Press Series in Artificial Intelligence, MIT Press, Cambridge, Mas-

sachusetts, 1981.

[27] Richard P. Paul and Bruce Shimano. Compliance and control. In Proceedings

of the Joint Automatic Control Conference, pages 694-699, 1976.

[28] M. A. Peshkin and A. C. Sanderson. The motion of a pushed, sliding workpiece.

IEEE Journal of Robotics and Automation, April 1988.

[29] M. A. Peshkin and A. C. Sanderson. Planning robotic manipulation strategies

for sliding objects. In Proceedings of the IEEE International Conference on

Robotics and Automation, pages 696-701, 1987.

[30] Cary B. Phillips and Norman I. Badler. Jack: a toolkit for manipulating ar-

ticulat ed figures. In Proceedings of A CM/SIGGRA PH Symposium on User

Interface Software, Banff, Alberta, Canada, 1988.

[31] C. Sawada, H. Ishikawa, K. Kawase, and M. Takata. Specification and gener-

ation of a motion path for compliant motion. In Proceedings of IEEE Interna-

tional Conference on Robotics and Automation, pages 808-815, 1989.

[32] F. Schenker, R. French, and A. Sirota. The NASA/JPL telerobot testbed : an

evolvable system demonstration. In IEEE International Conference on Robotics

and Automation, March 1987.

[33] David R. Smith and Takeo Kanade. Autonomous scene description with range

imagery. Computer Vision and Graphics Image Processing, 31, September 1985.

[34] Lawrence Stark. Telerobotics: display, control, and communication problems.

IEEE Journal of Robotics and Automation, RA-3(1), February 1987.

[35] Daniel E. Whitney. Historical perspective and state of the art in robot force

control. The International Journal of Robotics Research, 6(1), 1987.

	Teleoperation in the Presence of Communication Delays
	Recommended Citation

	Teleoperation in the Presence of Communication Delays
	Abstract
	Comments

	tmp.1187712571.pdf.NUuqo

