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1 Introduction 

Modern industrial processes, public service needs, and research interests have estab- 

lished a clear need to perform work remotely [12][4]. Teleoperators were developed 

with the advent of nuclear industry in the mid 1940's and have been since used ex- 

tensively to perform work in hazardous environments (nuclear, chemical), undersea 

(resource exploration, waste management, pollution monitoring), and in the outer 

space (sample acquisition, satellite deployment/repair). Sophisticated systems have 

been designed and built to meet these needs, providing the human operator with 

high bandwidth and high fidelity visual and kinesthetic feedback information about 

the task in progress [22] [32] [16] [6]. 

A problem occurs, however, when teleoperation is attempted in a situation where 

the response from the slave manipulator is delayed (with respect to the command 

issued from the master) due to a large physical separation and/or insufficient com- 

munication link capacity [8] [lo]. Given that neurological control of normal human 

movements operates at  approximately 5 Hz [34], communication delays between the 

master and the slave in excess of one second greatly impair the operator's ability 

to perform work [8][13]. It  has been shown, in fact, that supplying the operator 

with delayed force feedback can be counter-productive, as it does not correspond to 

the current situation and thus does not provide the feedback that the operator ex- 

pects. This problem is particularly severe when the operator wishes to be in contact 

with the environment and expects to  rely on the kinesthetic feedback information 

to adjust her motions. 

Overcoming communication delays has been recognized as one of the central 

areas of research in telerobotics for some time [34]. Among the proposed approaches 

to  solve the problem are 

a slowing down the motion so as to minimize the effect of the delay [9] 

a adopting a "move-and-wait" strategy whereby the operator performs a small 

incremental motion and then waits for the delayed remote-site feedback to 

confirm the success of the motion before proceeding [9] 

a strengthening the slave arm and the objects which it manipulates in order 

to avoid damage (e.g., underwater "remotely operated vehicles", ROV's, for 



off-shore oil exploration) 

formally modelling up-link and down-link delays by augmenting the dynamic 

state-space model of the system (environment + slave) - delays are modelled 

as delay lines on the output and introduce (a potentially large number of) 

additional states [16] 

using predictive visual (graphical) displays to  allow the operator to  "be ahead" 

of the slave [25][2] 

relying on autonomous, sensor-driven, preprogrammed contact motion primi- 

tives at  the slave site [32] 

None of the above approaches by itself, however, has proven to be entirely satis- 

factory. Of course, a totally autonomous manipulative capability would solve the 

problem, but its realization is beyond the state of the art in robotics. 

We believe that a predictive visual display of the remote environment is an essen- 

tial component of a successful man-machine system for teleoperation in the presence 

of delays. However, we also recognize the necessity of providing the operator with 

some sense of real-time "kinesthetic feel" for slave-environment interactions. We 

thus propose to combine a graphical simulation of the slave world with real-time 

estimated kinesthetic feedback which is computed on the basis of a geometrical 

analysis of polyhedral object interactions in the simulated remote world. We then 

propose to analyze (on-line) the observed (operator supplied) motion trajectories of 

the simulated slave and extract a stream of task-oriented motion primitives (e.g., 

guarded and compliant moves in the task space) to be sent to the slave. These 

elementary motions are then executed at the slave site under the supervision of the 

local sensory and control modules and the status of their execution is reported back 

to  the operator's station. 

Therefore, the essential paradigm of the proposed solution is teleprogramming 

the remote slave, as illustrated in Figure 2. Section 2 below introduces the essential 

modules of the proposed conceptual architecture, whereas Sections 3-7 address 

separate components in more detail. The graphical simulation model and simulation 

technique are described in Section 3. Section 4 offers some detail on the manner in 

which distances between objects in the simulated (slave) environment are monitored 



and collisions, as well as contact types, are identified. In Section 5 we introduce the 

envisioned operator-machine interface and describe the manner in which we compute 

a real-time approximation to the (delayed) actual kinesthetic feedback. Section 6 

proposes a simple 6-d.0.f. filter to smooth the operator supplied motion trajectories, 

whereas Section 7 describes the methodology for partitioning the task in progress 

and generating symbolic command strings for the remote slave. Section 8 describes 

the hardware and software experimental testbed which is being used to test these 

ideas. Finally, Section 9 presents a discussion of some preliminary results and future 

directions. 

2 Outline of the proposed solution 

2.1 Modeling the environment 

We will assume in this work that we are manipulating in an apriori unknown envi- 

ronment. The initial description of the environment is obtained through the use of 

sensors, such as vision or dense range data, producing a high-level three-dimensional 

scene description consisting of object features such as planes, edges, vertices, etc. 

The process of extracting this information is within the state of the art of computer 

vision [3][15][33]. Moreover, it has been demonstrated that such descriptions can 

be converted to polyhedral CAD-type models [14][25]. We propose to display such 

a CAD image of the environment (including the slave manipulator) and interface a 

6 d.0.f. input device (master) to the simulator, such that the images of the slave 

manipulator and any objects that it may be manipulating could be moved under 

the control of the operator. 

Because the environment is assumed unstructured and we must rely on an ide- 

alized and simplified approximation of the actual environment, we can not predict 

a l l  work situations (due to model incompleteness), nor can we predict the outcome 

of a particular action exactly (due to model inaccuracy). Therefore, we are unable 

to construct detailed, robust and reliable plans of action ahead of time. Instead, we 

propose to  keep the operator in the control loop at all times, and let her define the 

plan incrementally as she interactively programs the slave robot actions by moving 

the master. 



Figure 1: Interpretation of the force/torque sensor readings. 

2.2 Controlling the motion of the slave 

( t , r )  

Incremental positional/orientational information can be specified to  the (simulated) 

slave manipulator in a variety of ways. We propose the use of a general 6 d.0.f. 

force/torque sensor mounted at the tip of the master manipulator, whose force and 

torque readings are (through a series of filters and amplifiers) interpreted as posi- 

tional and orientational information, respectively (Figure 1). The pair (f, T) is the 

&vector of raw forces and torques as read from the sensor. This information is then 

filtered/smoothed and appropriately scaled to become the positionaJ/orientational 

displacement of the master (operator's hand). The rotation r is interpreted as 

roll/pitch/yaw (RPY) parameters. 

The so obtained incremental displacement1 

F/T sensor 
L 

is interpreted as master handle (sensor-based frame) displacement. The motion 

(t'9 r ' )  

of the master manipulator is then computed by mapping this handle displacement 

into the master's end-effector frame (T6,) and using it as an incremental Cartesian 

( f 9  

b 6-D scaling 

positional displacement with respect to the end-effector frame. 

6-D filtering 

The motion of the slave simulator is coupled to  the motion of the master by 

establishing a correspondence of motion between the master's handle frame and the 

slave's end-egector frame (T6,). In general, due to the fact that the master and 

slave manipulators will be kinematically dissimilar (and will therefore have different 

workspace volumes), this correspondence will not be a straight-forward one-to-one 

positional/orientational equivalence of motion. Instead, another level of scaling for 

translational motions will be needed to account for the workspace volume differences. 

'We use the term incremental displacement instead of diflerential displacement, since we deal 

with discrete rather than instantaneous changes in displacement. 



2.3 Generating kinesthetic feedback 

Having obtained an initial graphical description of the world, we then monitor the 

position of the slave arm (and any object it may be carrying) for contacts with the 

environment. This collision checking must be performed in real time and is used to 

prevent interpenetration of colliding objects (their motion is stopped on contact), 

thus modifying the intended motion of the (simulated) slave manipulator. In order 

for the system to feel natural to the operator, the positional/orientational corre- 

spondence between the master device and the slave must be preserved at all times, 

including on contact with the environment as well as while one or more contacts 

persist. We therefore need an input device, that is itself movable in space and back- 

drivable, such as a specially designed teleoperator master arm or a backdrivable 

general purpose robot manipulator. Such a device enables us to not only specify 

the desired positional/orientational displacement to the slave arm, but also gives 

the operator a sense of three-dimensional manipulation as it follows the operator's 

hand through space. More importantly, however, backdriving the master arm to 

correspond to the state of the simulated slave arm provides the operator with the 

ability to explicitly feel the constrained d.0.f. of the motion of the slave (and thus 

master) and therefore allows the operator to  kinesthetically "feel" contacts between 

objects, examine shapes of objects, follow their contours, etc. This capability of 

combining graphical object interference detection with backdriving the master de- 

vice represents a crucial feature of the proposed system. It provides the operator 

with a strong sense of telepresence (i.e., a simulated sense of force reflection in real 

time), despite the communication delays, which cause the actual feedback to be 

delayed and therefore not usable for direct reflection to the operator. This is signif- 

icant since kinesthetic feedback has been shown to be essential in any teleoperation 

activity [12]. 

2.4 Aiding the operator 

The operator can now move the slave manipulator in the simulated world, come 

into contact with the environment and "feel" in a very natural way any constraints 

that the geometry of the task world may be imposing onto pthe motion of the slave. 

Moreover, we propose that the system provide a set of elementary classes of motion, 



which are natural, convenient and easy to perform, yet powerful enough to allow the 

operator sufficient flexibility in performing tasks. This is particularly cruicial during 

contact motion, when the operator may wish to concentrate on a certain subset of 

motion parameters (e.g., sliding, reorienting), and be aided by the system in keeping 

other parameters constant. The system can also assist the operator by biasing the 

interpretation of her motions towards preserving achieved contacts (for instance, to 

aid in feature tracking), while still allowing arbitrary changes of or departures from 

the current contact state. We will address these issues in more detail in Section 5. 

2.5 Generating remote slave motion commands 

We next attempt to interpret the positional and force information accumulated by 

the simulator to extract a stream of elementary motion commands that are to be 

commanded to  the slave robot. In view of this, we first filter the gathered infor- 

mation and eliminate the (presumably unintended) noise in the data. We then an- 

alyze this filtered information of positional/orientational parameters, contact state 

changes, and forces/torques exerted onto the environment to produce a sequence of 

symbolic instructions to the slave. Again, as our model of the slave world is only 

approximate, the nature of these instructions must reflect and accommodate possi- 

ble discrepancies between the model and the actual world. While this is not critical 

during free space motion, it is vitally important when attempting to establish or 

maintain contact with the environment. Consequently, for the case of contact mo- 

tion, we propose to generate instructions of the type "move along a given direction 

until contact" (guarded motion), or "move along a given feature while maintaining 

contact in some direction" (compliant motion). There will be also a class of motions 

(such as tight tolerance part mating, fine precision adjusting motions) which may 

be difficult to perform using an incomplete model and approximate kinesthetic feed- 

back. Such motions are therefore best executed by the slave autonomously, under 

local sensor supervision and local high-bandwidth feedback processes. We will have 

more to say about symbolic command string generation in Section 7. 



2.6 Using task information 

The process of interpreting the operator's actions in the simulated world can be a 

difficult one in the absence of any other information about the nature of the task 

in progress. For instance, a sequence of rapid contact changes may be interpreted 

either as noisy data or a purposeful action, such as tapping, scraping, or rocking. 

Similarly, a highly irregular path of an object during a sliding motion could be 

taken as unintended (and therefore would be filtered out or smoothed) or it could 

correspond to  a motion such as polishing or sanding (in which case it should be 

kept intact). In order to disambiguate between such interpretations, the system 

needs additional information about the task, such as a description of the type of 

expected primitive motions (e.g., pick and place, polishing, pounding). Moreover, 

the graphical simulator should be supplied with some information as to which objects 

are expected to come into contact during a given task to avoid having to monitor 

every pair of objects for a possible collision. 

These are but a few examples of why high-level task information may be essential 

for correct interpretation of operator's intent and efficient internal computations. We 

feel that the design of the structure, organization, and content of such a task-level 

database is a significant research problem in itself. Consequently, we may not be 

able to address this aspect of the proposal fully in the preliminary stages of the 

project. However, we envision the task related information being gathered in the 

following manner 

- by loading and using a preexisting task database 

- by querrying the user (operator) prior to the manipulation to extract the 

essential features of the task to be performed 

- by maintaining an on-line dialogue with the operator to allow her to  augment 

and modify the current task information while the task is in progress, as well 

as to allow the command stream generator to request additional information 

from the operator when her intent is still unclear 

This would allow on-line refinement of the task description and should greatly ex- 

pand the repertoire of tasks that the system could interpret correctly and thus issue 

appropriate motion commands to the remote slave. 



2.7 Error handling and model consistency 

We now have a system, where a human operator can essentially teleprogmm a re- 

mote slave robot, overcoming the communication delay problem by using real-time 

simulated visual and kinesthetic feedback. Of course, while all is well in the simu- 

lated world, various things may go wrong in the actual work environment. The slave 

can detect such error conditions by not reaching an expected motion-terminating 

condition, by hitting an obstacle, by seeing excessive or premature motor torques, 

etc. Upon detecting such a condition, the slave can signal the occurrence of an error 

state to  the operator's station, which in turn can alert the user through a variety of 

visual or audio means (e.g., flashing the display, synthesized voice warnings, etc.). 

It is then up to the operator to  plan corrective actions. First, the operator's station 

based model of the world must be updated to  properly reflect the current situation. 

This can be done through gathering and reconciling information from a variety of 

remote site based sensors (e.g., video cameras, range finders, etc.) and/or purpose- 

ful exploratory motions on the part of the operator (if this is possible) to find or 

correct certain model parameters. Then, the operator can attempt to correct the 

problem and proceed with the task. 

It is important to note that discrepancies between the model and the world can 

also arise due to  effects of external environmental agents, i.e., other than slave's 

actions. Such changes may not be discovered through the actions of the slave, but 

may cause problems at a later stage in the manipulation. What is needed, therefore, 

is a rather sophisticated environment updating mechanism, which continuously (in 

reasonable intervals) checks at  least the local portions of the environment model 

(i.e., in the immediate work area), but can also be brought into action by request 

from the operator under her control. The latter facility is important not only for 

situations when the slave has entered an error state, but also when the operator 

wishes to  verify poorly recovered or uncertain features of the workspace. 

We believe that the problem of ensuring consistency between the model and the 

world is a very critical one to successful operation of the proposed system and again 

represents a challenging research topic in its own right. We will in this work restrict 

ourselves to some general comments on how this problem may be solved and will 

not attempt to provide a detailed solution. 



Another feature of the system, thus, is that by keeping the operator in the con- 

trol loop, she can take on the responsibility of handling error conditions. This is 

significant, since anticipating various possible error states and planning for their 

recovery by introducing various exception handling routines plagues conventional 

robot programming. Clearly, not all possible error states can be anticipated, espe- 

cially in a situation where the environment is unstructured and we only have an 

approximate model of it. Moreover, programming exception handlers can easily be- 

come a self-defeating enterprise as corrective actions for every error may themselves 

involve errors. This system therefore eliminates the need to write elaborate robot 

manipulator programs taking on the impossible task of accounting for all possible 

errors. 

2.8 Applications 

We believe that a system, such as the one outlined above, will facilitate teleoperation 

with time delay allowing a very natural interaction between the operator and an 

image of the task involving both visual and kinesthetic feedback. The system will 

also allow for considerable time delays limited only by the extent that the operator 

is allowed to move ahead of actual execution. 

Application of such technology to undersea manipulation would free us from the 

need to maintain wide bandwidth communications between an operator and the 

vehicle. While it appears possible to eliminate vehicle tethers based on energy con- 

siderations [24], it is still impossible to eliminate the tether based on manipulation 

control considerations due to the delays in bringing acoustic signals to the surface. 

Operators must either be in the vehicle or in a surface ship at the end of a tether. 

With the proposed technology it would be possible to drop a submersible from a 

plane together with an acoustic relay buoy and then to control operations at the 

ocean bottom remotely over a radio link from either the plane or the shore. The 

principal cost saving is, of course, the elimination of the need for a surface ship 

maintaining station during the entire underwater operation. Secondary cost savings 

relate to the elimination of the tether and the possibility of working in environments 

in which the tether might become tangled, as well as the possibility of using more 

than one submersible in the same working area when the control of tethers becomes 



impossible. 

Cost justification for work in shallow space relate to the possibility of eliminating 

the need for an astronaut on EVA to  perform the task, vastly reducing the cost 

involved. 

3 The graphical simulator 

3.1 The model 

We propose to adopt a polyhedral, boundary-representation based graphical model 

of the world. While other representations are clearly possible (e.g., CSG, gener- 

alized cylinders), polyhedra3 models are widely used and consequently a variety of 

algorithms exist for polyhedral analysis. Perhaps the most important advantage, 

however, is the convenience of polyhedral models for contact analysis, which is a 

central requirement and feature of this work. 

An important component of the graphical simulator is an exact kinematic model 

of the slave manipulator (and any attached equipment). This simulated slave robot 

must accurately reflect the kinematic limitations of the actual slave (i.e., joint range 

limitations) and the simulator software must ensure this. Moreover, there should be 

no need for the slave and the master manipulator to bear any structural or kinematic 

resemblance to each other. While this significantly complicates the control of the 

system (space transformations, two sets of singular configurations, reindexing), it is 

an important feature of a general purpose teleprogramming software system. 

3.2 The simulation technique 

A key decision in this work has been to use a kinematic simulation of the motion of 

the slave and the manipulated objects. The simulation therefore does not account 

for the dynamic effects of either the slave robot or the environment. Moreover, the 

slave (plus any held object) are the only moving parts in the environment during 

each simulation time slice. Consequently, dynamic changes in the environment, 

other than the slave's state, must be related to the operator's station through the 

environment updating mechanism (Section 2.7), rather than direct simulation. This 

applies to the dynamic changes caused by the slave (i.e., dropping or tipping an 
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Figure 2: Overview of the proposed solution. 



object), as well as those produced by external environmental agents ( i .e . ,  winds, 

water currents). While the choice of a kinematic simulation may seem restrictive, 

we feel that it is the most practical approach for the following reasons 

since only approximate information about the world is available, we can not 

expect to have complete information about the masses, centers of mass, in- 

ertias, frictional parameters, etc. about the objects in the environment ; yet, 

these are essential parameters for a dynamic simulation 

r in many environments and situations a rigid-body dynamic model may not be 

adequate; we may be manipulating on a soft ocean bottom, or we may have 

erroneous confidence in the hardness of the objects in the slave world 

a dynamic simulation of both the robot and the environment represents a 

significant computational burden; in all but the simplest cases it in fact may 

not be computable in real time 

r due to model uncertainty, only rough predictions based on dynamic computa- 

tions are possible; such approximate, unreliable results do not justify the time 

spent in computation 

r unmodelable and unpredictable external agents (water turbulence, buoyancy 

effects) may contribute to the dynamic state of the world, further diminishing 

the utility of a costly dynamic simulation 

Clearly, a kinematic simulation leaves much to be desired, but under the circum- 

stances we feel that it is a more reasonable and more practical choice than a full 

dynamic simulation of both the slave manipulator and the environment. 

4 Distance computation and collision detect ion 

The kinesthetic feedback described in Section 5 relies heavily on the detection and 

analysis of the contacts which arise during the motion of the slave in the simu- 

lated environment. Expected contacts will normally occur between the slave's end- 

effector, tool, or an object it is currently holding, and some part of the slave world 

involved in the execution of the task. We will hereafter refer to the former as the 



movable object and will abbreviate it as MO. Moreover, the graphical simulator must 

also provide an aid to  the operator by checking that undesired collisions between 

the slave arm and the environment do not occur during the motion. 

Both cases can be solved by monitoring the distances between pairs of objects. 

While the former requires precise models of the objects, simpler, approximate, yet 

conservative models suffice for the latter. Simplified models are preferred, whenever 

possible, in order to limit the computational cost of the collision checking module. 

During the execution of a task, may pairs of objects may need to be monitored 

for contact at each step of the simulation. Consequently, there is a definite need for 

an efficient distance computation algorithm. 

4.1 Distance computation 

Several methods exist to compute distance2 between polyhedral objects. Because of 

its efficiency we chose to implement the distance algorithm between convex sets of 

points described in [ll]. The aim of this section is to summarize the main features 

of this algorithm. For a more detailed description, the reader is referred to [ l l ] .  

Let A and 3 denote the two polyhedral objects, whose distance (from each 

other) we are seeking. For the purposes of the algorithm the two objects need to be 

represented simply as the respective sets of vertices S(A) and S ( 3 ) .  The algorithm 

uses the following property of distance between the two sets 

where 4 denotes the origin of the space and C = B 9 A represents Minkowsky's 

difference between the sets A and 3. Instead of first computing C3, the algorithm 

is based on an iterative procedure which generates sequences of elementary sets Ck 

containing 1 to  4 vertices of S(C). These Ck are such that their distance to the 

origin converges to the desired distance between the objects A and B. 

An efficient procedure is used to compute the closest point u k  of the convex hull 

of these simple sets of points Ck (line segments, triangular faces, tetrahedrons) to 

2Distance between two objects is defined as the smallest translation which will put them into 

contact. 

31f A and B have nA and nB vertices, respectively, then C can have up to nA + ne vertices. 



the origin of the space. uk is obtained from the computation of the coefficients X i  

of the set's barycentric representation, i .e. ,  

with X i  2 0 , C Xi  = 1, and xi E S(Ck) (3) 

The points xi of Ck whose X i  > 0 define a C; C Ck containing uk (for example, if 

Ck is a triangular face defined by three vertices, then Cz can be either one of the 

three line segments, or one of the three vertices of the face, depending of the number 

of positive X i  computed). The sequence of uk generated is such that Iluk+lll < llukll 

and the norms converge to dist(A, B). 

The generation of the next Cktl from the current Ck and uk is based on the 

notion of a support function. The support function of a set of points X is defined 

by4 hx(n) = maxXiEs(x) {n - xi) and we will use sX(n)  to denote one of the xi 

which verifies this maximum. 

It is shown in [ll] that if llukll + hc(-uk) = 0, then dist(A, B) = IIukll. Other- 

wise, the Ck+l to be checked at the next iteration is obtained from the set of vertices 

S(C;) U {sc(-uk)). The interest of using this support function for the generation of 

the vertices of C comes from the fact that sc(n) and hc(n) can both be computed 

in O ( n A  $ ? z B )  time, i-e., 

Each iteration is therefore performed in linear time in the total number of vertices 

and as only a few iterations are needed for the convergence, the distance algorithm 

is quasi-linear in the total number of vertices. 

The overall structure of the algorithm also plays a important role in its efficiency: 

The algorithm relies exclusively on simple computations (dot products and 

vector additions). Moreover, the procedure used for the computation of uk 

reuses many of the values already computed during the previous step. These 

values are stored and each iteration needs to perform only a few additional 

computations. 

'In fact, this function defines for a given direction n a plane x . n = hx(n),  such that all the 

points of X lie on the same side of this plane. 



An extra speedup is obtained by providing an initial estimation of S(Co) to 

the algorithm. This feature turns out to  be particularly interesting when only 

small positional changes occur between two successive distance computations. 

In this case, the set S(Ck) computed at the last iteration of the previous 

distance computation can be used for this initial estimation. While the closest 

point of C to the origin stays inside the convex hull of this set, only one 

iteration will be needed to compute the new distance. Whenever changes 

occur, a couple of iterations will be generally sufficient to update the new sets 

of points and compute the distance. 

4.2 Collision avoidance 

Let XA and xg denote the closest points between two convex objects A and B. Their 

distance is then given by d = I(xB - xAll. If an incremental displacement (Ap,  Ar) 

is applied to A, it can be shown [7] that the distance variation Ad can be expressed 

as 

A d  = -n . AxA ( 5 )  

where n = (xg - xA)/d and AxA is the positional displacement of the point XA due 

to the displacement (Ap, Ar). 

Clearly, a positive Ad indicates that the motion causes the objects to be sep- 

arated further apart. However, even when Ad is negative, there is no danger of 

collision as long as (Ad] < d. Otherwise, the penetration factor has to be computed 

and only the corresponding fraction of the offending displacement is applied in order 

to stop the motion in the (non-penetrating) contact configuration. 

In fact, as this distance variation computation is only valid for strictly convex 

sets of points5, special steps are needed to handle changes of contact types for other 

convex polyhedral sets. 

4.3 Contact type determination 

As mentioned before, detailed contact monitoring must be performed between pairs 

of objects involving the movable object (i.e., slave's end-effector or a manipulated 

5Strictly convex sets exhibit a continuous tangent along the surface. 



object) and the part of the environment with which the slave is in contact. Both 

objects of a such pair are declared to  be in contact while the distance between them 

remains zero. In this case a postprocessing step (following distance computation) is 

performed to  extract the features of the polyhedral models of both objects, which are 

actually in contact (i.e., facei of Objectl against edgej of Object2). It is these features 

that define the constraint on the motion due to the contact and therefore must be 

known for the contact analysis (Section 5). Likewise, a contact feature centroid (e.g., 

edge or face center) is associated with each constraint for later reference. 

4.4 Constraint information 

As already mentioned, two types of collisions can occur in the system - wanted 

and unwanted collisions. Wanted collisions are those that the operator intended to  

achieve and will normally involve a part of the environment and the movable object. 

Unwanted collisions, on the other hand, are all other collisions. Because the slave 

(plus the manipulated object, if any) is the only moving object in the environment, 

these collisions will normally involve a part of the slave robot accidentally coming 

into contact with some part of the environment (obstacle). 

Corresponding to  the two types of collisions we will define two lists of ob ject pairs 

(wanted and unwanted collision list). As we saw in Section 2.6, this information 

must be supplied to the system either by the user or a task description module prior 

to the execution of the task. At each simulation step, while the task is in progress, 

the collision detection module then checks both lists for possible new or persistent 

contacts. In the case of an unwanted collision, the system refuses to perform the 

offending motion that would cause the collision and alerts the operator by "freezing" 

the motion of the master arm and any other means necessary to unambiguously 

communicate the problem to the operator (e.g., sound, altering display, console 

messages, etc.). The operator can then adjust her intended motion to avoid the 

collision or adopt a different strategy to accomplish the same task. Note that this 

feature in a sense offers a rudimentary collision avoidance facility, where motion 

adjustment and/or replanning are left to the operator. 

In the case of a wanted collision, the system stops the motion short of causing the 

collision, i.e., the system allows the two objects to come into contact but not inter- 



penetrate (see Section 4.2). Moreover, the system extracts the relevant information 

about the contact. In particular, it records what type of a geometric constraint 

this contact imposes on the motion of MO and adds this information to the list 

of already active constraints. This information is then used to filter commanded 

incremental motions to the master (and thus indirectly to the slave), such that the 

resulting (filtered) motion doers not violate any of the currently active constraints 

on the motion of MO. 

A constraint can be defined as a pair of contacting features (vertex, edge,face), 

along with a set of parameters that uniquely define the geometry of the given con- 

straint. This information will be needed both in the motion filtering process, where 

it will be used to define a filtering coordinate frame (Section 5 ) ,  as well as in the 

command string generation process, where i t  will be used to define a task frame (Sec- 

tion 7). As we will see, the following three parameters suffice to uniquely describe 

the geometry of a constraint in all cases (i.e., regardless of the types of contacting 

features) 

the vector p connecting the slave wrist center (where the commanded mo- 

tions are applied) and the contact point (feature centroid, associated with the 

constraint) 

the constraint normal n (see Section 5.3.2 for the definition of constraint 

normal) 

edge direction e ,  if the contact involves an edge 

For convenience, d l  of the above vector quantities are computed w.r.t. the common 

global reference frame FB. Therefore, a constraint c; can be encoded as the quintuple 

where fi and f2 belong to the set {vertex, edge,face) and correspond to the contact 

features of MO and the environment, respectively. The list of all (N) currently 

active constraints can thus be encoded as 



Depending on what types of motions the system allows and how the filtering process 

is carried out, not all of the above information may be needed in all cases. Therefore, 

for reasons of compactness and efficiency, an actual implementation may condense 

the information contained in C to optimize run-time performance. 

5 Operator's motion analysis 

5.1 Classification of allowable motions 

The system operates under the premise that the operator is trying to perform use- 

ful work and that her actions are therefore directed and purposeful. Because most 

useful work is performed while the slave manipulator is in contact with the environ- 

ment, a teleoperation system must provide a sufficiently wide range of motions both 

in free space (while approachingJleaving the work area) and in contact with the 

surroundings (while performing the work). At the same time the allowed motions 

should be carefully partitioned and restricted to aid the operator in performing the 

type of motion intended, as well as aid the subsequent automatic analysis (filter- 

inglinterpretation) of operator's motions in view of extracting the corresponding 

symbolic (slave) robot instructions. 

A natural way to simplify general motion (both for the operator and for the sys- 

tem) is to separate rotations and translations whenever possible. This is particularly 

cruicial in contact motion, where the contact point is physically removed from the 

wrist center, where motion is commanded. This separation gives rise to a remote 

compliance center and consequently introduces complex and potentially confusing 

coupling between rotational and translational parameters of the wrist and contact 

frames. The choice of elementary motions should strive to eliminate such coupling 

effects without compromising the flexibility and power of the system. 

Another important consideration in deciding on the most convenient and effective 

set of motion modes is the class of tasks that the system is expected to handle. In 

view of the intended applications of our system (Section 2.8), the operator will need 

to  be able to perform a relatively wide range of tasks. Representative examples are : 

accurate free-space motion, standard pick and place operations, basic exploratory 

procedures ( i . e . ,  surface or feature following), simple assembly/disassembly tasks, 



etc. 

Therefore, in view of the above considerations, we propose the following set of 

elementary classes of motions 

1. Free Space Motion 

general motion (both rotations and translations) 

freeze position (rotations + fixed position) 

freeze orientation (translations + fixed orientation) 

2. Contact Motion 

freeze (no motion) 

slide (translation along constraint features, fixed orientation) 

pivot (rotational motion about contact point, fixed position) 

3. Pushing 

Given a set of elementary motion modes, the operator then specifies to the system 

which mode she currently desires. To minimize the burden on the operator, this 

motion mode selection information can be supplied to the system via a hand-held 

push-button device. 

In the following sections we elaborate on each type of elementary class of motions. 

5.2 Free space motion 

In free space we want to give the operator the maximum possible maneuverabil- 

ity. At the same time we want to aid the operator preserve positional/orientational 

parameters that she wishes to keep constant during a significant portion of a ma- 

nipulation task. For instance, if the operator has achieved the desired approach 

orientation, then the system should allow her to freeze (lock) it and subsequently 

concentrate on translational motion of the slave robot (and MO) only. Similarly, 

situations may arise (e.g., screwing, valve adjusting), where the operator has posi- 

tioned the slave end-effector and wishes to freeze the position and concentrate on 

grasping or turning the desired feature. Therefore, we provide three corresponding 

elementary free space modes of motion. One could proceed further and introduce 



single d.0.f. motion modes restricting the operator's motion to translations along 

a single direction at a time or rotations about a single axis. However, we have de- 

cided against such facilities as they increase the burden on the operator of having to 

mentally keep track of some task-based coordinate frame in which these restrictions 

would be specified, all at  a dubious benefit to the operator's ability to perform tasks 

more easily or more efficiently. 

Therefore we feel that the above free space motions provide a reasonable com- 

promise between convenience (for the operator) and functionality. Finally, in view 

of Eq.(l), the three motion modes are realized in a straightforward fashion as follows 

a general motion: Ad = ( t  , r) 

a freeze position: Ad = ( 0 ,  r) 

a freeze orientation: Ad = ( t ,  0) 

5.3 Contact motion 

5.3.1 Types of contact  

When the movable object is in contact with the (simulated) environment, its motion 

(and therefore the motion of the slave manipulator) is restricted, depending on the 

type of contact. Figure 3 lists the types of contacts that we will consider in this 

work [31]. Let us emphasize again that we are concerned with rigid polyhedral 

contacts only. A few notes about Figure 3 are in order. It is easy to see that convex 

vertexlvertex and vertexledge contacts are highly transient contact types and will 

rarely occur in practice . However, as pointed out in [31], the two types of contacts 

can be significant and persistent when one of the contacting features is concave. 

Following the work of Sawada et. al. and recognizing that vertices and edges can 

be either convex or concave, we generalize the contacts involving these two features 

to include both cases. This is reflected in Figure 3 by juxtaposing the two cases, 

separating them with a vertical dashed line. 

We will in the following sections have the occasion of referring to adjacent, as 

well as high or low order contacts. All of these terms are to be interpreted in view 

of Figure 3. We will define an adjacent contact to be one which can be reached in 

one contact change from the current state. Also, we will say that a contact c; is 
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Figure 3: Types of polyhedral contacts. 



higher (of higher order) than contact cj, if c; offers fewer remaining d.0.f. of motion 

than cj. 

5.3.2 Constraint normals 

In Section 4.4 we discussed the nature of the constraint information maintained by 

the graphical simulator and passed to the master's Cartesian level servo module. 

Recall that for each active constraint this information includes an associated unit 

normal direction. We now offer a convention to unambiguously define this constraint 

normal in each contact type. 

We will let the constraint normal in each case be directed away from the en- 

vironment contact feature and towards the movable object (MO), i.e., the normal 

specifies the direction against which MO can not move. Referring to Figure 3, it 

seems natural to consider the geometry of both contacting features in determining 

the direction of this normal. Still, different conventions may prove to be equally 

plausible and practical. We will choose to let the higher-order feature in each case 

dominate the choice and will break the ties in favor of the environment feature. The 

only exception to this rule will be the edgeledge point contact (see Figure 3), where 

the normal is most naturally defined by the cross-product of the two edge directions. 

In keeping with the above convention, then, the constraint normal direction for a 

facelface planar contact is given by the face normal of the environment plane. Sim- 

ilarly, for the two line contacts involving only edges, as well as for the vertexlvertez 

point contact, the environment feature determines the normal. In all remaining 

contact types (except the already mentioned edgeledge contact), the higher-order 

feature (regardless of which object it belongs to) determines the axis (but not nec- 

essarily the direction) of the constraint normal. 

Finally, the normals for each of the three elementary polyhedral features are 

defined in a straightforward fashion as illustrated in Figure 4.6 Note that this defi- 

nition assumes that all face normals in our polyhedral models are outward pointing. 

'The asterisk (*) in Figure 4 denotes that the corresponding vector is of unit magnitude. 
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n =(n,+ n,)' 

Figure 4: Constraint normals for the three types of polyhedral features. 

5.3.3 Kinest hetic feedback 

As we saw in Section 3, the graphical simulator maintains the current constraint 

information on the motion of the movable object. Thus, following the initial motion 

that caused a particular contact (and cause the new constraint to be reflected in the 

constraint information) the intended (i.e., operator specified) motion of the mov- 

able object (MO) can be checked against the active constraints and appropriately 

modified (i.e., filtered). Therefore, in the context of a purely kinematic simulation, 

we propose to provide (simulated) kinesthetic feedback to the operator by filtering 

the intended motion of MO, bringing it into compliance with the existing geometric 

constraints. By applying this filtered motion to the master manipulator as well (i.e., 

backdriving the master manipulator appropriately), the operator holding the master 

feeb these constraints as resistance to motion. 

The filtering must be relatively simple, intuitively natural to the operator, fast 

to compute and as general as possible, given the above requirements. Simplicity 

and computational speed are necessitated by the requirement that the kinesthetic 

feedback be provided to the operator in real time. 

5.3.4 Types of contact motions - overview 

As indicated in Section 5.1, we propose three types of restrictions on the contact 

motion. For the case of fine precision motions, where even slight unintended changes 

in position/orientation of MO caused by an impact (contact with a new constraint) 



are unacceptable, we provide the trivial freeze mode (no motion at all). In other 

words, all commanded motion of MO following a new contact is ignored until the 

operator selects a higher-order contact motion mode. Two such modes are provided. 

In slide mode, the operator can slide MO along the constraining feature(s) (sur- 

faces, edges) in the permissible directions (i.e., the directions not violating any of 

the constraints). The orientation of MO remains fixed for the duration of motion 

in this mode. The system attempts to help the operator maintain contact with the 

environment but will allow the operator to break the contact if she clearly indicates 

such intent. A cruicial feature of the way we propose to handle contact motion is to 

require decisive actions on the part of the operator to transition to a lower-level con- 

tact. This aids the operator in preserving high-order contacts (which are presumed 

preferred), while still allowing her to transition to an arbitrary adjacent contact. 

We will analyze this class of motions in the case of a single constraint, as well as in 

a situation where multiple constraints are acting on MO simultaneously. 

Alternatively, the operator can adjust the orientation of MO or transition be- 

tween adjacent contacts by rotating or pivoting about the contact point (pivot 

mode). In this mode the contact point is not allowed to translate (slide) along 

or depart from the constraint feature. As the contact type (between MO and the 

environment) changes, the contact point moves on the surface of MO and with it the 

pivoting point about which rotational motions are computed. This allows a variety 

of reorienting and contact changing motions of MO. Again, motion analysis will be 

performed on the commanded displacements so as to aid the operator perform the 

desired changes of orientation. We will provide a restricted version of this motion 

modality to the operator also in situations where multiple constraints are restricting 

the motion of MO. 

In the following sections we detail the proposed approach to contact motion 

analysis in free space as well as in contact. 

5.3.5 'Freeze' m o d e  

This trivial mode (Ad = (0,O)) is included solely to prevent unwanted slippage 

and twists of MO w.r.t. the environment upon the initial (or new) contact. This 

mode is thus the default contact mode, entered automatically when a new contact 
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Figure 5: Single-contact sliding. 

is detected. 

5.3.6 'Slide' mode  - single contact 

In the case of a single contact, the constraint information, as defined in Section 4.4, 

specifies the unit constraint normal 'n. Given the desired motion of the slave wrist 

( ~ ' d  = ( ~ t ,  'r)) , we compute the corresponding allowable subset of translational 

motion nBd' as follows7 

a B d '  = (Bt' , 0) (8) 

where 

I , otherwise 

Figure 5 illustrates a typical situation for single-contact sliding, where w.p. and 

c.p. denote the slave wrist center and the contact point, respectively. Note that 

choosing c a positive value, the operation of Eq.(9) above will filter out not only 

the component of the commanded translation against the constraint normal n;, but 

also the component along n; (i.e., away from the contact) if its magnitude is smaller 

than E (Figure 5). This, in effect, provides an illusion of contact surface tension, 

i.e., with a proper choice of r the operator is forced to exert a decisive, deliberate 

pull away from the contact in order to break it.' 

'Note that the translational displacement of MO is the same as the commanded translational 

displacement of the slave wrist, despite the offset between the two. 
'A reasonable value for 6 may be half the maximum (positive) incremental displacement expe- 



Figure 6: Multiple-contact sliding. 

5.3.7 'Slide' mode  - multiple contacts 

In case of multiple contacts, the constraint information contains a list of constraint 

normals Bn;7 which are currently restricting the motion of the movable object (MO). 

In general, these constraint normals will not be mutually orthogonal and we must 

approach the filtering process with caution. We will in the following refer to a 

constrained direction as the negative of the corresponding constraint normal n;, as 

defined in Figure 4, and denote it as iii. 

Figure 6 illustrates a typical situation, where MO is in contact with two non- 

orthogonal  constraint^.^ In this situation the operator should be able to slide MO 

along both constraining surfaces, break either contact and slide along the other 

contact's environment feature (surface), or even break both contacts and transition 

to free-space motion. 

Again we will assume that the commanded incremental slave wrist motion is 

given as ABd = ( 8 t , ~ r ) .  The analysis of the multi-contact case centers on iden- 

tifying the primary constrained direction ii,, i.e., the one which is "closest to" the 

desired translational motion t. The measure of closeness is the projection o f t  along 

a unit direction ha. Given this closest fii ( i . e . ,  ii,), we then construct an orthogo- 

nal filtering frame 3j7, such that 5, is one of its axes, and the cross product with 

rienced by the system during normal operation. 
9A two-constraint example has been chosen for illustrative convenience. The discussion and 

results of this section apply to higher-multiplicity contacts a s  well. 



any other constrained direction iij gives its second orthogonal axis. This choice of 

a filtering coordinate frame is adopted because a commanded translational motion 

t in a multi-constraint case will normally give rise to a sliding motion along the 

constraint feature, whose associated constrained direction is closest to t .  

Having constructed the filtering frame, we then express both the commanded 

motion Bt and the constrained directions 'fir, in this frame (i.e., =t,*iik) and 

filter the commanded slave wrist motion accordingly. The sequence of steps below 

formalizes the filtering procedure and supplies the necessary details. 

1. for all ci E C, compute the projections pi = ('t 'iii) 

2. let Biip = 'iii, for which pi is most positive over C 

3. construct the filtering frame FF, 

where cj E {C - {c,)), i.e., Biij # Biip ; 

construct the rotational matrix B ~ F  from FF (see Section A.2) 

4. map Bt into FF, i .e. ,  =t = ( ' ~ F 1 - l  * Bt 

5. for each c E C, filter Ft w.r.t. c, 

r map Bii into FF, i.e., ~ f i  = (BR=)-' * ~ i i  

filter each component of Ft in turn, i.e., 

A ( ~ t , ~ i i ,  x) ,  A ( ~ t , * i i ,  y), A ( ~ t , ~ i i ,  I) 

6. map filtered Ft back into FB, i.e., 't' = B ~ F  * Ft 

Procedure 1: Multi-constraint sliding motion filter. 

The core of the filtering process is Step 5, where each constrained direction ii is in 

turn rotated into the filtering frame and the components of the commanded motion 

are filtered according to the A operator. This operator is defined as follows 

t, , if ( f i x  = 0) or (t, . sgn(fi,)) 5 - 6  A(t, ii, x)  : t ,  = 
0 , otherwise 

(10) 



Therefore, any constrained components of the commanded motion are zeroed. Also, 

small components away from the constrained orthogonal directions are zeroed as 

well, providing a sense of surface tension as in the single-contact case above.'' Hav- 

ing performed the filtering operation on Ft, we then rotate the filtered commanded 

displacement back into the reference frame (Step 6) and assemble the final filtered 

motion of the slave wrist as a B d '  = ( ~ t ' ,  0 ) .  

Observe that a filtering frame is constructed even in the case where the original 

commanded motion does not violate any constraints, i.e., when all p; in Step 1 

are negative. This is done so that the filtering of small components away from the 

constraint features in Step 5 (which must be done in this case as well) is performed in 

an orthogonal frame. The requirement that filtering be done only w.r.t. orthogonal 

axes is cruicial. 

Finally, for clarity, various optimizations of the above procedure have been omit- 

ted (in particular, in Step 5). Any implementation must consider these carefully. 

5.3.8 'Pivot m o d e  - single contact 

Comput ing  t h e  motion 

As mentioned before, in this single contact mode the contact point is stuck in 

contact and can not be moved (i.e., slid along a contact feature or pulled away 

from the contact). Only rotations of MO about the contact point are allowed. The 

class of allowed motions and the nature in which these motions are computed are 

intended to give the operator the feel of manipulating in a "sticky" environment, as 

well as allowing the operator to  concern herself with the orientational parameters 

of MO alone, while keeping the contact point position fixed. 

The input to the filtering module are the commanded (operator supplied) motion 

of the slave wrist (ABd) and the current constraint information C (Section 4.4). 

Let the commanded motion be given as a displacement/RPY pair. Our task is to 

compute the rotational motion of the contact frame (centered at the contact point), 

based on the supplied slave wrist motion and subject to the above assumptions. 

Toward this aim we will define two coordinate frames (with the same orientation) 

as illustrated in Figure 7. In the figure, is the constraint normal, the vector Bp 

10 The same c value may be used both in single and multiple-contact situations. 



Figure 7: Tangential and contact frames. 

denotes the (directed) distance between the slave wrist center point (w.p.) and the 

contact point (c.p.), and .ir labels the constraint feature (plane in this case). The 

first frame FT (tangential frame) is defined such that its 2-y plane is tangential to 

the surface of the sphere centered at c.p. and having radius (pl. For convenience, 

we will define a second frame 3~ (contact frame) with the same orientation as FT, 

but slid along the p vector, such that its origin coincides with the contact point, 

z.e., 

37'=3c = { B ( ( ~  x n )  x P)', B ( - ~  X . )* ,  B ( - ~ ) * )  (11) 

The rotational matrix B ~ T ,  specifying the orientation of the frame FT w.r.t. 3~3, is 

again derived directly from the above definition of the two frames (see Section A.2). 

In fact, since the orientations of the frames FT and FC are identical, we have 

B ~ T  = B ~ C .  

We will describe the (rotational) motion of the contact point in terms of the mo- 

tion of the contact frame FC due to the (operator supplied) motion of the wrist-based 

tangential frame FT. In an attempt to kinematically simulate the rotational motion 

of MO, whose contact point is stuck in contact, and at the same time minimize the 

complexity of motion analysis, we propose to compute the rotational motion of 3~ 

as follows 

(a) rotational motion of w.p. about the z-axis of FT corresponds directly to the 

rotational motion of c.p. about the z-axis of FC 

(b) translational motion of w.p. (along the x-y plane of FT) is used to compute 



Figure 8: Computing Ae, of the contact frame. 

the remaining two orthogonal rotational displacements of Fc 

In (b), the rotational displacement of Fc (about its x and y axes) is approximated 

by considering the components of the commanded translational vector Tt (i.e., Bt 

rotated into the FT frame) projected onto the x, y axes of FT. For the case of 

computing the incremental rotation AO, about the y-axis of Fc7 we have 

Figure 8 illustrates the ~ituation.' '*'~ 

An important detail that must be noticed here is that the translational vector 

Bt will only cause pivoting (rotation about c.p.) if it lies below the x-y plane of the 

tangential frame FT, i.e., if 

B p )  > 0 (13) 

Therefore, the RPY rotation of 3: due to the (rotational and translational) motion 

of FT, under the assumption of stiction, is 

"The y-axes of both TT and 3~ frames are directed out of the page. 
12Note that the approximation of equating the tangential projections of the displacement vector 

t with the corresponding great arc segments along the sphere surface is equivalent to assuming that 

sin(A0) = A@, as sin(A0) = A0 = Tt,/lPI in Figure 8 .  It is easy to verify that this approximation 

is quite good for -7r/6 < A0 < x / 6 ,  which is more than sufficient for our purposes. 



The superscripts on the right hand side of the above equation indicate, that the 

corresponding displacement and RPY parameters have been rotated into the FT 

coordinates. See Appendix A for details. 

The computed rotational motion of the contact point (and thus MO) as given 

by Eq.(14), is designed to provide a natural feel to the operator, as she is forced 

to introduce translational motion at the slave wrist to achieve rotational (pivoting) 

motion at the contact point. In the absence of a full dynamic model, the generated 

model is only approximate, of course, but nevertheless it has an intuitive basis and 

should feel natural to the operator. 

Filtering 

Having computed the rotational motion of the contact point based frame FC, 

we now filter this motion on the basis of the contact type. The filtering is done 

primarily to discard small (presumably unintended) rotational components and has 

the effect of biasing (the interpretation of) operator's motions towards higher order 

contact types. In the following paragraphs we will outline the filtering procedure. 

In order to filter the rotational motion of Fc, we will first define a contact point 

based filtering frame FF, which is particularly convenient for the given constraint 

type. We will then express the intended motion of the contact point in this frame 

(FF) and perform the filtering w.r.t. its coordinates. In each case the filtering frame 

will be constructed in terms of the geometric parameters supplied by the constraint 

information, i.e., the constraint normal wrist-to-contact vector (Bp), and 

the edge direction (Be) (see Section 4.4). The input motion of the collision point 

ncdl = ( ~ , ~ r ' )  is as computed in Eq.(14) above. 

(a) Point Contacts: A filtering frame need not be specified in this case as all three 

orthogonal rotations are permissible in all point contacts (see Figure 3). Therefore, 

no filtering is necessary. 

(b) Line Contacts: A line contact always involves an edge (at least one, see 

Figure 3), and it is this edge direction (Be), together with the constraint normal 

(Bn), that defines the most convenient filtering frame, i.e., 



Figure 9: Single-contact pivoting - line contact. 

where Be and B n  are assumed to be of unit magnitude. The specification of the 

rotational matrix B ~ F  follows immediately (see Section A.2). Figure 9 illustrates 

the case of an edge/ face line contact. 

Filtering of the contact point motion a c d '  can now be achieved as a two-stage 

process: 

1. map the motion (RPY rotation) of the contact point from FC (Cr') into 317 

(I7#), using 'RF = ( B R ~ )  * B ~ F  (see Section A.3) 

2. filter out small rotations about (e x n) tending to destroy the edge contact, 

z.e., 

Fr" = (T (~T: ) ,  F ~ k ,  I7r;) ( 16) 

where the T operator is defined as follows13 

0 , i f [ x I < <  
T(x) = 

x , otherwise 

( c )  Plane Contacts: The only representative of this class of contacts is the 

faeelface contact (see Figure 3). Here, the filtering frame can be defined as fol- 

13The T operator is a simple bidirectional threshold filter zeroing out rotations whose magnitude 

is smaller than E (( > 0). A good candidate value fore E may be half of the maximum magnitude 

of an incremental rotational displacement normally experienced by the system. This forces the 

operator to indicate a decisive rotation about the edge in order to break the edge contact. 



Figure 10: Single-contact pivoting - plane contact. 

lows 

and the rotational matrix B ~ F  can be constructed as before. Figure 10 illustrates 

the situation. 

Again, a two-stage filtering procedure is employed. The given rotational mo- 

tion of the contact point is mapped from FC into FF (via the rotational matrix 

' R F ) .  The second filtering stage in this case attempts to remove from Fr' small 

destabilizing rotations about the x and y-axes of the filtering frame, i.e., 

Postprocesing 

Having computed the filtered motion of the pivoting contact point, we must 

now produce the corresponding motion of the slave wrist in the reference (FB)  

coordinates, as this is the motion ultimately commanded to the slave manipulator. 

This is accomplished by mapping the filtered contact point motion aFd" = ( 0 ,  Fr'f) 

into FB coordinates aBd" (see Section A.3) and computing the corresponding FB 

displacement of the slave wrist as described in Section A.4. 

5.3.9 'Pivot mode - multiple contacts 

In this section we extend the results of Section 5.3.8 to accommodate a restricted, 

but useful subset of multi-constraint pivoting motions. The restrictions are imposed 



Figure 11: Multiple-contact pivoting. 

both to  aid the operator perform simple and intuitive multi-contact rotations, as 

well as to keep the geometrical and numerical complexity of the motion analysis 

low. 

A typical situation that this motion mode is intended to address is one, where 

the operator has brought the movable object into a multiple contact and wishes 

to align MO w.r.t. the environment so as to obtain a higher order (i.e., more 

stable) contact type. Figure 11-a illustrates an example, where MO has been slid 

along a surface (facelface contact) against a wall (vertexlface contact). This mode 

will allow the operator to rotate the object into a stable configuration w.r.t. the 

environment (i.e., edgelface wall contact, Figure 11-b) and align MO for subsequent 

sliding along either or both of the constraining surfaces. 

It is clear, that in view of the intended applications of this motion mode, the 

only practical situations will involve two constraints. Also, we will assume that 

realigning motions either preserve or raise the order of existing contacts. Finally, 

as any pivoting multi-constraint motion will involve sliding of the moving object 

along one of the constraints, we will require that one of the contacts be a facelface 

contact. 

While the imposed conditions may seem restrictive, the allowed motions still 

span a sizable set of useful realignment motions that may be needed in a practi- 

cal application. For instance, most two-constraint situations will arise by sliding 

the movable object against a second constraint, where the single-constraint sliding 

motion will be performed in a facelface contact state for obvious reasons of con- 



venience and stability. Similarly, upon encountering a second constraint, the most 

likely subsequent motion (if any) is one where the object is pivoted about this new 

contact into a higher order multiple contact state. 

In order to compute the allowed motion of MO in a two-contact situation, we will 

again make use of the notion of a primary constraint, and label the two contacts 

as primary ( c p )  and secondary (c,) contact. By convention, we will refer to  the 

mandatory facelface contact as the secondary contact. The motion of MO will then 

be computed as a pure rotation about the contact point associated with the primary 

contact, and filtered such that it will not violate the secondary constraint. Clearly, 

if any rotation is to take place, the primary contact must be of a lower order (e.g., 

vertex/ face, edge/ face, faceledge, etc) than the secondary contact. Moreover, if 

the primary constraint forms a line contact (see Figure 3), then motion will only 

be possible if the corresponding edge direction is parallel to the secondary contact 

normal ns (see Figure 11). 

Once again, let the original commanded motion of the slave wrist be given by 

aBd = (Bt,Br).  Assuming that the above set of conditions is satisfied, we identify 

the primary constraint cp and compute rotational motion Cr' about its associated 

contact point as in Section 5.3.8 (Eq.(14)). This contact-frame based RPY rotation 

must then be filtered so as to retain only the rotation about the axis parallel to the 

normal of the secondary constraint. We therefore define a filtering frame FF, such 

that one of its axes (e.g., r )  coincides with this normal direction, i.e., 

and map the rotation Cr' into this frame to obtain Fr' (see Section A.3). The filtered 

rotation is then obtained trivially as 

The remaining task is to compute the corresponding motion aBd' of the slave wrist 

in the reference frame coordinates. This is accomplished in a straightforward fashion 

as described at the end of the previous section. 



5.4 Pushing 

5.4.1 Single-contact pushing 

It has been established that pushing motions are difficult to analyze and predict 

accurately [29][28][20][21][19]. This is due primarily to the fact that the motion of a 

pushed object depends critically on the complex interaction between the microscopic 

features of the two sliding surfaces. This in turn accounts for continuously changing 

frictional properties of the sliding contact, making reliable predictions of the result- 

ing motions impossible without a detailed knowledge of the surface textures and the 

resulting distribution of the support forces. 

In order to facilitate rudimentary pushing operations and yet generate instruc- 

tions which can be executed successfully and reliably under the slave's local super- 

vision, we provide a simple pushing mode, where the operator can indicate to the 

system that she wishes to push an object through a certain distance along a straight- 

line trajectory. We naturally require that the object to be pushed be in a facelface 

contact with some supporting surface and that the task information (Section 2.6) 

indicate that this object is in fact pushable. We also require that the slave establish 

a face/ face contact with the pushed object (PO). The requirements of a straight-line 

pushing motion and a planar pushing contact (between PO and the slave) minimize 

the possibility of slippage along the pushing contact or unexpected twists of the 

pushed object in the actual environment. 

One more requirement restricting the operator's choice of the pushing contact 

and aimed at eliminating slipping errors in the remote environment, is that the 

pushing contact plane have a "reasonable" orientation w. r. t. the sliding surface. 

We quantify this condition by introducing a pushing frame 

centered at the contact point associated with the pushing contact, and requiring 

that the pushing contact normal np be nearly parallel (within to the sliding 

direction ds = (n, x n,)* (see Figure 12), i.e., 

(np d,) < cos a,,, (23) 

''The optimal value of a,,, will depend on the frictional parameters of a particular pushing 

contact. A reasonable "generic" value, however, may be around 30'. 



sliding contact 
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Figure 12: Single-contact pushing. 

where ii, = -n,. 

In order for pushing motion to take place, the operator must first establish a 

faeelface contact with some environment object. We propose that the operator 

signal her intent to push the object by exerting a significant (and therefore easily 

identifiable) threshold force ft against it. If this object is identified as pushable, the 

system then enters the pushing mode. In this mode, the graphical simulator rigidly 

attaches the pushed object to the slave at the point of pushing contact and filters 

commanded slave wrist motions so as to move in a straight line along the sliding 

surface. Given a commanded motion a B d  of the slave wrist, we therefore compute 

the translational motion of the pushed object as follows 

where 

0 , otherwise 

Note that the pushed object moves only if the commanded incremental translational 

displacement has a positive component along the sliding direction. Otherwise, zero 

displacement is applied to the object (and thus the slave), unless this pull away 



from the pushing contact exceeds the threshold force ft, signalling that the operator 

wishes to exit the pushing mode. 

Whereas every precaution has been taken to  ensure that pushing motion com- 

mands generated at the operator's station are simple and easily executable by the 

slave, things can still go wrong. In particular, as the operator's station relies on a 

kinematic simulation of the slave world, error conditions such as the pushed object 

tipping over in the remote world can not be predicted and detected ahead of time. 

Avoiding such situations is thus left to the operator who can draw on her approx- 

imate knowledge of the relevant dynamic parameters or simply on her intuition in 

choosing a reasonable pushing contact. 

5.4.2 Multiple-contact pushing 

In order to enhance the versatility of the system, we again extend the single- 

constraint pushing motion mode to multi-contact situations. The intended func- 

tionality of this mode is essentially identical to multi-constraint pivoting motions 

(Section 5.3.9). Again we envision this class of motions being used primarily to 

push and align an object with respect to two simultaneously active environmental 

constraints. Consequently, the analysis of such aligning pushing motions is therefore 

analogous to the double-constraint rotational motion case, with the movable object 

in this case being the pushed object together with the (rigidly attached) slave's 

end-effector or tool, if any. 

6 Filtering of operator's motions 

In this section we describe a simple filtering procedure, which is applied to  the 

positional data generated by the graphical simulator. The aim of this filtering stage 

is to smooth the observed slave trajectories and eliminate the undesired noise in the 

data. 

The input to this module is the motion of the slave as computed in Section 5. 

As we have seen, various filtering steps have already been applied to the operator- 

generated motions so as to avoid object penetration and to force the operator to 

clearly indicate her intent to  break (or reduce the order of) an existing contact. We 

will therefore assume that all the contact changes contained in the incoming data 



(i.e., generated by the kinesthetic feedback module) were intended by the operator 

and that there is no further need to detect and to eliminate transient changes of 

contact type. 

During the same contact state (i.e., the same set of elementary contacts), the 

information available from the graphical simulator is the trajectory of the slave end- 

effector along the unconstrained degrees of freedom defined by this contact state. 

This trajectory 7 is initially represented by the discrete set {pi : 0 < i 5 n), 

where pa = (t;,r;) describes the position and orientation of the frame 3.9~ (the 

frame attached to the slave wrist) at  the i-th step of the simulation, and n is the 

number of discrete positional data acquired since the generation of the last command 

stream.15 

This trajectory needs to be filtered for two reasons: 

a The positional data will be inherently noisy due to the way in which this infor- 

mation is acquired, i.e., operator-guided motions of the master. The filtering 

will eliminate small oscillations and deviations introduced by the operator and 

the sensor readings. 

a More importantly, this trajectory has to be represented in a more con~pact 

fashion in order to reduce the number of motion commands to be sent to the 

remote slave. 

Given the set describing 7 and two thresholds ct, E , ,  the filtering algorithm 

produces an approximate trajectory I,  , composed of straight-line translations and 

rotations of 3.947, such that I, stays inside the space tunnel defined by 7 and by 

the radii ct and Er (for the translational and rotational components, respectively). 

The algorithm starts with the simpliest approximation of 7 , i.e., the straight- 

line segment between the initial generalized positionf6 po and the final one p,. 

If this approximation is "close enough" to 7 , the algorithm simply returns this 

straight-line motion. Otherwise, an intermediate position p j  in 7 is added to the 

representation of ?; and the two line segments Seg(po,pj) and Seg(pj,pn) are 

respectively checked against the corresponding portions {pi : 0 < i 5 j )  and 

15Generation and partitioning of the command streams will be adressed in Section 7. 
'=We use the term generalized position to denote the 6-vector of positional and orientational 

parameters. 



Figure 13: Trajectory filter - the "closeness test". 

{pi : j 5 i 5 n) of the original trajectory 7 . The same process is iteratively 

applied to each segment which needs to be refined and the algorithm converges to an 

approximation of 7 by a polygonal path including generally only a few intermediate 

points. Clearly, the larger the space tunnel defined by the radii ct  and cr around 7 
, the fewer intermediate positions will be returned. 

A line segment Seg(pil , p ~ )  of I, is considered to be a good approximation of 

the corresponding part of 7 defined by the set {pi : il 5 i 5 i2), if all the pi verify 

where t (resp. r) denotes the closest point on Seg(t;, , t;,) (resp. Seg(ril, rj, )) to 

t i  E 7 (resp. r;). Figure 13 illustrates the process. 

Several approaches can be adopted for the selection of the intermediate position 

to be introduced after each non-terminal iteration of the algorithm. The point on 7 
which is farthest from the current approximation I, is in general a good candidate. 

However, the drawback of this method is that it requires the computation of all 

distances between the points pi E 7 and the line segment Seg(pil, pc) ,  il < i < i2. 

Consequently, a binary subdivision method offers a much more efficient approach: 

as soon as the algorithm finds a pi which does not satisfy the "closeness test" of 

Eq.(26) for a given line segment of I, , it immediately introduces a new generalized 

position vector pj, where j = max (y , i) , and cuts this segment into Seg(p;, , pj) 

and S e g ( ~ j ,  pi,). 

Clearly, this method will sometimes produce a slightly larger number of inter- 

mediate positions than the former approach. Notice, however, that the algorithm 

will at each step at least halve the complexity of the problem. 



This filtering procedure must be applied to all six components of the positional 

information in the case of a general motion in free space. However, both in the 

case of free-space motion with frozen orientation (resp. position), as well as in the 

case of sliding (resp. pivoting) contact motion, only positional (resp. orient ational) 

motion parameters need to be filtered. Moreover, in each motion mode, only the 

components corresponding to the free degrees of freedom defined by the contact type 

need this filtering stage. For example, during a sliding motion along a plane whose 

normal coincides with the z axis of the reference frame FB, only the components of 

translational motion along B x  and B y  will need to be filtered. 

7 Generation of symbolic slave commands 

In this section we detail our approach to using the sequence of contact state changes 

(Section 5) and the filtered slave trajectory information within each contact state 

(Section 6) to extract a stream of symbolic commands to the remote slave. 

The commands which will be issued to the slave by the system can be classified 

into two groups. The first group is composed of low-level commands, essentially 

encompassing guarded and compliant motions. These commands will be generated 

to execute simple tasks such as free-space navigation, pick and place operations, 

motion into contact with the environment, contour following, etc.  

The high-level class of motions, on the other hand, contains more specific special- 

purpose operations such as tight tolerance part mating, fine-precision motions, etc. 

Even if the operator were able to perform a complex insertion in the simulated 

world, the observed sequences of contacts clearly would not be reproducible by the 

slave, due to the environment modeling errors. Therefore, such tasks can not be 

decomposed into elementary motions and must be executed autonomously by the 

slave under local sensory supervision. In this case, the graphical simulator need 

only identify that the operator wishes to perform a high-level operation (either by 

using the information provided by the task model or by interpreting the operator's 

motion information directly). The system then gathers the relevant parameters of 

the task and sends this information to the remote slave, where the information is 

used to instantiate a local special-purpose procedure. 

A new stream of commands is issued after each addition or deletion of a new 



contact. However, there is also a maximum time (e.g., on the order of the transmis- 

sion delay) after which a new stream is automatically generated even if the same 

contact state persists. This is done to avoid increasing the delay and to prevent 

accumulation of the positional information to be processed. 

In this section, we restrict our analysis to the generation of the low-level com- 

mands and discuss the algorithms used to transform the contact-state and positional 

information provided by the graphical simulator and by the kinesthetic feedback 

module in order to  produce a stream of guarded and compliant motion commands 

to be executed by the slave. 

7.1 Types of motions 

An important issue that must be addressed when generating these commands re- 

sults from the presence of uncertainties in the world model used by the graphical 

simulator. During free space motion, simple positioning commands will generally be 

sufficient to be executed safely by the slave. However, as soon as the task involves 

interactions between the robot and its environment, these discrepencies may cause 

a failure during the command execution. This problem has been studied extensively 

during the last decade [18][35] and various methods of using the forces and torques 

occurring during the contact motion to suitably adapt the robot's trajectory have 

been proposed. In an hybrid force-position approach [17][27][18] the free directions 

of the motion are controlled in position (or velocity), while the directions constrained 

by the contacts are controlled in force. This hybrid mode of control allows two addi- 

tional sets of robot commands: guarded motions and compliant motions. A guarded 

motion is generally used when approaching a surface to avoid excessive forces after 

the contact is established. A compliant motion is then required to move along one 

or more constrained surfaces while maintaining a given force (or torque) constraint 

in the directions normal to constraining surfaces. 

The following section describes how the positioning and contact information 

provided by the graphical simulator can be translated into a stream of such hybrid 

control motions. 



7.2 Task f r a m e  specif icat ion 

In order to facilitate convenient specification of guarded and compliant motions 

of the slave manipulator, we will define a task frame 3', such that its position 

and orientation is closely related to the constraints imposed by the geometry of 

the current contacts. For each type of elementary contact, the task frame 3~ = 

{p ; n,, n,, n,} is defined in the following manner: 

a Its origin p coincides with the centroid of the contact feature. 

r n, is aligned with the constmint normal (see Section 5.3.2). 

a For the three types of contact where an edge is involved (see Figure 3), n, 

is aligned with the direction of this edge. For the other cases, an arbitrary 

direction lying in the contact plane is chosen. 

r n, is obtained by n, x n, 

More work needs to be done to identify the optimal choice of task frame coordi- 

nates for the case of multiple-constraint motions!! 

Whenever a new task frame needs to be specified, an assignment command is 

sent to the slave. This command must specify the 3-dimensional vectors p ,  n, and 

n,. In general, this task frame will not have a fixed relation with respect to the 

reference frame or to the end-effector frame. Depending of the contact type, each 

of these vectors can be defined either with respect to the base frame FB or with 

respect to the slave's wrist frame FSw. 

This assignment of the task frame coordinate frame axes could be specified with 

the following syntax: 

AssignFrame ( orig vl : BaseFrame ; 

diry v 2  : WristFrame ; 

dim VQ : BaseFmme ) 

7.3 M o t i o n s  t o  k e e p  c o n t a c t  

Two types of commands are issued to specify the compliant motions. The first one 

specifies the directions in which the robot has to comply and the forces/torques 



to be applied during the motion. The later describes the positional displacements 

along the remaining degrees of freedom. Because the task frame has been chosen to 

be aligned with the constraints imposed by each contact geometry, the specification 

of the compliants commands becomes straightforward. 

For the case of sliding motions, regardless of the contact type, the translational 

motion along the x and y directions of TT, will be position controlled while a force 

will be specified along the z-axis to  maintain the contact. 

In point-contact pivoting mode (see Figure 3), any rotational motion around the 

contact point is allowed and the three axes are therefore position controlled. Line 

contacts will require that zero torque be maintained about the contact-plane axis 

perpendicular to the edge direction. Finally, the only allowed rotation in a planar 

contact is the rotation about the constraint normal direction (task frame z-axis) 

and zero torques must therefore be commanded about the other two axes. In all 

cases a force must also be maintained along the z-axis to maintain contact. 

The force to be exerted will be specified by a symbolic value in order to indicate 

what the intended result of this force is (for example FStiction or FSliding). The 

actual values of these forces will depend on the physical parameters of the task 

(e.g., contact surface friction, etc.) and will be determined by the slave manipulator 

control software. 

For example, during an edgelface contact, the following sequence of conzmands 

will be generated to execute a simple translational motion through a distance d in 

the direction of this edge, followed by a rotational motion through an angle of a 

around the constraint normal direction: 

Comply ( fz F~liding ; tx 0 ) 
Move ( y d )  

Comply ( fz Fstiction ; tx 0 ) 
Twist ( rz a ) 

where both forces are positive and FstiCtion is presumably larger than Fslading. 

44 



Figure 14: Changes of contact during a sliding motion. 

7.4 Motions to change contact 

Both sliding and pivoting motions can cause a change of contact. Sliding motions 

can result only in the introduction of a new contact or deletion of a current one. 

Pivoting motions, on the other hand, will generally cause a change of the current 

contact type (for example, a transition from a vertex/ face to an edge/ face contact). 

Whenever such changes are observed in the simulated world, the command gen- 

erator must specify one (or more) terminating conditions for each of the correspond- 

ing motions. Normally, a motion will be terminated when certain (specified) forces 

and/or torques exceed their respective thresholds. However, a maximum displace- 

ment must also be provided to stop the motion in case the guarded motion does not 

encounter the expected terminating condition (usually a contact). 

7.4.1 Sliding case 

When sliding motion along a given direction encounters a new contact (see Figure 14- 

a), it has to be stopped when a force discontinuity occurs along this direction. Figure 

14-b, however, illustrates a situation where a different terminating condition needs 

to be specified. The mobile object is being slid along a surface and the motion should 

be stopped when the boundary of the sliding surface is reached. In this and similar 

situations, termination of the motion corresponds to the occurrence of a positional 

discontinuity on the axis which was controlled in force during sliding. 

7.4.2 Pivoting case 



Figure 15: Transition between two vertezlface contacts. 

When a change of the contact type occurs, this transition can be characterized by 

a discontinuity of the torques about the contact edges. For example, figure 15-a 

illustrates a situation where a vertex of the mobile object is in contact with a planar 

surface of the environment. A rotational motion around the contact point pl is then 

applied to put the edge e in contact with this face, while exerting a positive force f 

along -n. In the frame defined by {pl ; (e x n)*, (e x n)* x n, n), the component r, 

of the torque acting on pl remains null while this point remains in contact with the 

surface. However, when the transition occurs and the vertex pz comes into contact 

with the supporting plane, this torque 7, will suddenly increase to f . l (where 1 is 

the length of the edge) and the contact can thus be detected. 

In fact, we will show that this variation of torque remains constant, indepen- 

dently of the position of the coordinate frame in which the torques are expressed. 

This provides an easy way to detect such transitions directly from the torques mea- 

sured in the frame of the FIT sensor, mounted at the slave manipulator's wrist. 

Independence of the torque measurement site: 

Figure 15-b illustrates a situation similar to the one shown in Figure 15-a, i.e., an 

edge e of the movable object in contact with a plane by one of its vertices. However, 



this time we assume that the torques are to be expressed relative to  a coordinate 

frame with the same orientation as before but whose origin has been moved from 

P1 to  P. 

The torque acting at p due to the reaction force f = (0,0, f)T, applied at the 

point of contact, is expressed in the frame {p ; (e x n)*, ( e  x n)* x n, n )  as follows 

where r is the vector from p to the point of contact. During a contact with p l ,  the 

components of this vector rl = ppl are 

l1 . cos a1 . sin Dl 
ll . (sin a1 . sin 0 - cos a1 . cos P1 . cos 0) 

-Il . (cos a1 . cos 0 + cos a1 . cos pl . sin 0) 
- 

where a1 is the angle between plp and its projection plpl  onto the plane n whose 

normal is obtained by a rotating n through Rot(x, 0) (see Figure 15-b). P1 denotes 
- 

the angle between plpf  and the edge e. 

Similarly, during a contact with the point p2, the vector r 2  = pp.L is given by 

l2 cos a 2  - sin P2 

r 2  = [ 12 . (sin a 2  sin 0 + cos a2 . cos p2 cos 8) 

-12 . (- cos a 2  - cos 0 + cos a 2  . cos ,B2 - sin 8) 

The transition from contact pl to contact p2 occurs for 8 = 0. Computing the 

values of the two torques just before and after the edgelface contact gives 

The variation of the torque across the contact then is 

i 11 . cos a1 . c0sp1 + 12 . cos a 2  . COS p2 
A 7 = 7 2 - 7 1 = f '  ~ ~ ~ ~ ~ ~ a ~ ~ s i n P ~ - l ~ ~ c o s a ~ ~ s i n P ~  

0 

It  is easy to  see from Figure 15 that 

I 
11 . cos a1 . cos P1 + l2 . cos a2 . cos P2 = 1 , and 

11 . cos a1 . sin ,Bl = 12 - cos a2 sin P2 
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Figure 16: The hardware architecture of the experimental testbed. 

and the change of contact therefore introduces a discontinuity on r, only. Moreover, 

the magnitude of this discontinuity is given by f - I ,  regardless of where the torques 

are measured. 

8 The experimental hardwarelsoftware testbed 

The hardware architecture of our experimental setup is illustrated in Figure 16. 

The master manipulator in our scenario is a Unimation Puma 250 manipulator. 

It provides a backdrivable 6 d.0.f. "joystick" with a sufficient operating volume to  

afford the operator a true sense of spatial positioning and orienting. Digital hardware 

control for the master is provided by the Modular Motor Control System (MMCS) 

[5].  This system was designed and built at the laboratory as an experimental PC- 

bus based general purpose digital motor controller capable of controlling up to 16 

independent actuators simultaneously. The MMCS hardware is interfaced to  the 

original (factory-supplied) controller, whose sole remaining function is to  provide 

power and the front panel interface. Finally, a custom-designed PC/VME adaptor 

connects MMCS's backbone to  the VME bus. 

Mounted a t  the wrist of the master is a 6 d.0.f. force/torque sensor (LORD Corp., 



Figure 17: The operator's station. 

LTS-200) enclosed within a Uwhiffle-balln handle for convenient grasping by the 

operator (see Figure 17). The sensor is read over a serial line (RS-232) and provides 

information at a rate of approximately 30 Hz". These readings are interpreted as 

incremental displacement/RPY Cartesian motion parameters of the sensor/handle 

assembly, and thus (through a transformation) of the master manipulator. 

The computational engine of the system is JIFFE - a very fast, very-long- 

instruction-word floating point scalar processor delivering 20 red M o p s  of com- 

putational power [I]. The proceseor has a standard VME interface and physically 

resides inside the Sun cage. It is fully C-programmable and supports most of the es- 

sential U N M  operating system facilities. JIFFE runs both the low-level joint servo 

code for the master at 500 Hz (PD control loop + gravity feed-forward), as well 

as the Cartesian level servo code, which runs at 30 Hz (Cartesian setpoint com- 

'?There is a substantial variation about this nominal bandwidth, largely due to the unpredictable 
UNIX-incurred delays in servicing the serial port accumulating incoming data. 



putation and filtering as described in Section 5)18. It communicates with the Sun 

(model 31160) via JIFFE-resident shared memory and (via the Sun and ethernet 

connection) with the Iris graphical workstation. The Sun currently serves mostly 

as the accumulator and processor of the force/torque information from the sensor 

and as an intermediary between JIFFE and the Iris. In later stages of the system 

design and implementation, the Sun will provide a console for an on-line task-level 

dialogue with the operator (see Section 2.6). 

The incremental Cartesian displacements are appropriately scaled into the re- 

mote slave's workspace and sent (via ethernet) to the Iris, which tries to  realize 

them in the simulated slave environment. In case of a collision (see Section 4), the 

offending motion is appropriately modified so as to stop colliding objects in a con- 

tact but non-penetrating configuration. The new constraint information is added 

to the existing set of constraints and communicated back to JIFFE, which in turn 

filters subsequent operator-supplied motion demands so as to not violate any of the 

current constraints on the motion of the slave (see Section 5). This filtered motion 

is then applied both to the graphical model of the slave and the master manipulator, 

thus providing a sense of kinesthetic feedback to the operator. 

The link between JIFFE and the Iris is a bidirectional communication channel 

conveying filtered incremental Cartesian motions one way and newlupdated con- 

straint information the other way. The link is implemented as a standard UNIX 

socket communication channel (between the Sun and the Iris) and has a round-trip 

latency of only a few miliseconds. The graphical workstation is a 16 MIPS Personal 

Iris 4D-25 with a hardware turbo graphics option to boost its drawing speed. Even 

so, its ability to render shaded graphical images of modest complexity (e.g. ,  the slave 

manipulator plus an object) lags far behind its scalar number crunching capacity. 

We are able to obtain refresh rates of about 7 Hz for low complexity environments 

and only partial shading. However, it is now within the realm of possibility to obtain 

fully shaded graphic displays of relatively complex scenes at  video rates using the 

latest Silicon Graphics hardware [2]. 

The software modeling environment for 3-D manipulation of articulated figures 

was provided by the Computer Graphics Laboratory at the University of Pennsyl- 

"The Cartesian servo loop bandwidth is limited only by the rate at which force/torque sensor 

can provide new information, and not by the JIFFE's computational capacity. 



vania [30]. 

9 Preliminary results and discussion 

The current implementation of the system allows the operator to move the master 

and control the motion of the graphical model of the slave. The simulated slave 

can be brought into contact with the environment and the master is appropriately 

backdriven to provide a kinesthetic sense of contact to the operator. Recent ex- 

periments have shown that purely translational and sliding tasks can be performed 

with confidence and ease both for single and multiple constraining surfaces. The 

kinesthetic feedback to the operator feels natural and allows her to easily identify 

motion constraints and the shape of the constraining surfaces without looking at 

the display. 

We are currently implementing the rotational (pivoting) contact motion mode. 

This should be completed in the near future and the resulting system should offer a 

versatile 3-dimensional 6 d.0.f. input device that will allow the operator to perform a 

variety of probing tasks, exploratory procedures, surface following and identification 

tasks, etc. 

An important issue that arose during the preliminary experimentation with the 

system is that of reindexing the master. In our case the problem is perhaps even 

more acute as a general purpose manipulator is employed as the master device, 

and as such is not designed to meet the requirements of a versatile master. In 

particular, we found that due to a large number of kinematic motion singularities, 

a relatively small workspace volume around any given initial "home" position can 

be used for maneuvering. We have considered a variety of approaches to solve this 

problem. Perhaps the simplest solution is to offload the responsibility to reindex to  

the operator. In this scenario, the operator needs to identify that she is approaching 

a singular configuration (on the master) and reindex the manipulator accordingly. 

Reindexing could be done by hitting a switch or pressing a pedal, which in turn would 

put the arm in a free, gravity compensated mode and allow the operator to reposition 

the master to an arbitrary new (presumably singularity-free) configuration before 

resuming position (or velocity) servo mode. Clearly, the drawback of this approach 

lies in burdening the operator with having to be concerned with the kinematics and 



the current state of the master. This is unacceptable as the operator's full attention 

may be required to control the task in progress. 

In an effort to make the details of the implementation of the master device trans- 

parent to  the operator, we next considered a reindexing scheme with a continuous 

drift back to  the home position. The farther from home the operator has moved the 

master, the more strongly the master would tend to drift back. We implemented 

this scheme such that the magnitude of the restoring drift was exponentially re- 

lated to the distance (for translations) and twist amplitude (for rotations) from 

the home position. Whereas this eliminated the need for operator's intervention in 

the reindexing process, it significantly impaired the spatial resolution of the mas- 

ter's motion, which in turn obscured the kinesthetic feedback effects during contact 

motion. 

A third approach that we considered was one where the master would monitor its 

own motions and alert the operator (by beeping, for instance) when it is approaching 

a singular configuration. It would then decouple its motions from the simulator 

display, return to the home position, and alert the operator that she may proceed 

with the task. 

While this third approach has not been implementationally verified, it may well 

offer the best compromise between the existing requirements and constraints. This 

may be especially true if this approach is combined with the first method, thus 

allowing the operator to  change the home configuration dynamically (at will) during 

the execution of the task. 

Our current goal is to complete the implementation of the kinesthetic feedback 

features as described in Section 5, implement a satisfactory reindexing scheme, and 

concentrate our efforts on the problem of automatically partitioning the task in 

progress and extracting the relevant parameters to generate a stream of robust 

elementary task-level instructions to  the remote slave. 



A Appendix 

A. l  Notation 

Both 3 and 6-dimensional vector quantities are denoted as boldface (lower-case) 

characters with an optional preceding superscript indicating the coordinate frame 

with respect to which they are given, i.e., a, Bn, etc. 

A coordinate frame is specified by a triple of mutually orthogonal unit vectors, 

with an optional indication of the frame's origin, i.e., 

Rotational matrices are denoted by upper-case boldface letters with optional 

superscripts and subscripts indicating which two coordinate frames they relate, e.g., 

the matrix B~~ describes the orientation of frame .FF w.r.t. 3'~. 

Finally, we occasionally use the following non-standard vector notation 

A.2 Coordinate frames and rotational matrices 

Let 3;1 be a coordinate frame and let Ay and Az be two mutually orthogonal unit 

vectors, expressed in FA'S coordinates. Then the two vectors can be thought of as 

defining a second coordinate frame 

whose origin is coincident with and whose orientation w.r.t. FA is given by 

the rotational matrix 

Moreover, the rotational matrix A ~ B  can be used to map (rotate) an arbitrary 

vector B r  expressed in FB's coordinates into its corresponding description in FA 

coordinates, i .e . ,  

= A ~ B  + Bv ( 5 )  



Likewise, 

B V = B ~ A t A ~  

where B ~ n  = (ARB)-'. 

A.3 Mapping rotations between frames 

Let FA and FB be two arbitrary coordinate frames and let Ar  = 0 . Ak* denote 

a rotation expressed in coordinates. The same rotation can be expressed in 

frame FB as 

B r = ( ? . B k * = o . ( B ~ A * A k * )  z B R A * l r  (7) 

Alternatively, if the rotation Ar is expressed as a triple of roll/pitch/yaw parame- 

ters, i .e. ,  Ar = (O,,  O,, O,), the equivalent rotation expressed w.r.t. FB's coordinates 

is obtained by 

assembling a rotational matrix representing *r 

A~ = RPY~OM (Ir) 

transforming this matrix to FB7s coordinates 

extracting the new triple of RPY parameters 

See [26] for a detailed discussion of the RPYtoM and MtoRPY conversion operators. 

For the linear-algebraic basis of these operations, the reader is referred to [23]. 

A.4 Displacement of a point due to motion of the frame 

Let 3 be a coordinate frame undergoing a translational and rotational motion 

Ad3 = ( t , r ) .  Then the resulting displacement of a point located at p w.r.t. the 

origin of 3 is 

A d p = ( t + ( R * p ) - p , r )  (11) 

where R = RPYtoM(r), and Adp is given w.r.t. to the original frame 3. 
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