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A Structural Interpretation of Combinatory Categorial Grammar 

James Henderson 

Abstract 

This paper gives an interpretation of Combinatory Categorial Grammar derivations in terms 
of the construction of traditional phrase structure trees. This structural level of representation 
not only shows how CCG is related to other grammatical investigations, but this paper also 
uses it to extend CCG in ways which are useful for analyzing and parsing natural language, 
including a better analysis of coordination. 

1 Introduction 

Most investigations into natural language syntax have made extensive use of phrase structure 
trees which basically parallel predicate-argument structure. Combinatory Categorial Grammar 
(CCG, [Steedman, 19871) does not use this traditional notion of constituency but instead uses 
the functional nature of phrases to determine constituency. This approach has led to theories 
of several phenomena, particularly coordination, which traditional approaches have had difficulty 
handling. However, in abandoning traditional constituency, CCG loses a level of representation 
which has proven very useful in investigating the nature of natural languages. The loss of this 
level of representation even complicates the analysis of coordination which has been so important 
to CCG's success. This paper argues that there is a simple structural interpretation of CCG 
categories that implies extensions which allow other linguistic work to  be incorporated into a CCG 
theory, and which allow a better theory of some coordination phenomena. 

The structural interpretation of CCG is based on the observation that CCG derivations can 
be thought of as constructing a Lambek calculus ([Lambek, 19611) proof that the sentence is of 
type S. CCG categories are the minimal representation of Lambek calculus proofs, and the major 
CCG combination operations are rules which take two proofs and combine them to  produce a third. 
If this system is redefined so that it doesn't use the minimal representation, but instead encodes 
all the significant information about a proof in the proof's category, these new categories have a 
natural interpretation in terms of traditional phrase structure trees. This is because a Lambek 
calculus proof provides all the semantically significant information about the derivation history of 
its CCG category. The structural interpretation of a CCG category is a canonical representation 
of this semantically significant information about the category's derivation history. This structural 
interpretation can be expressed as a partial phrase structure tree in a formalism very similar to 
Lexicalized Tree Adjoining Grammar (LTAG, [Schabes, 19901). By adding this structural level 
of representation to CCG, the formalism can express and maintain information about the phrase 
structure of a derivation constituent, while still combining derivation constituents independently of 
that phrase structure constituency. Thus the notion of constituency used in CCG is still manifested 
in the derivation structures of this phrase structure based formalism. 

The structural representation just discussed and CCG categories are the two extremes of a con- 
tinuum which varies as more information about a Lambek calculus proof is included in the proof's 
category. The additional information is needed for such tasks as incrementally parsing posthead 



modifiers, but such information can interfere with doing coordinations. Both these situations can 
be accommodated by adding a separate operation for abstracting away from details about a proof. 
This allows a derivation to  keep information about a proof when it needs it ,  and forget information 
when that information becomes a complicating detail. In CCG the combination operations and 
the abstraction operations are conflated. By separating these operations we get an analysis of 
coordination which actually improves on that provided by CCG. In the last section this argument 
is supported by linguistic examples. 

2 CCG and Lambek Calculus 

The categories used in Combinatory Categorial Grammar are the same as the syntactic types used 
in Larrtbek calculus. These types represent the functional nature of constituents in derivations. For 
example, a transitive verb is given a category whose result is an S but which takes as arguments 
both an NP to its right and an NP to its left, written (S\NP)/NP. Lambek calculus is a proof 
system which defines what sequences of categories can be reduced to  what single categories. The 
version of CCG which is assumed here respects these definitions in that it can only derive sequences 
of categories which are reducible to the category S1.  This section presents Lambek Calculus and 
CCG, and shows why CCG derivations respect the definition of categories given in Lambek calculus. 

2.1 Lambek Calculus 

The syntactic types of Lambek calculus are either basic categories (such as NP or S) or of the form 
(X/Y), (X\Y), or (X-Y), where X and Y are syntactic types. In this notation X/Y is a type for a 
constituent which would be of type X if it combined with a constituent of type Y to its right. X\Y 
is the same except the Y is wanted on the left. X is called the result of the category and Y is the 
argument. The category X-Y is the concatenation of X and Y. 

Lambek calculus is a Gentzen style proof system which uses one axiom and a set of inference 
rules to deduce subtype relationships. The sequents are of the form A 3 X, where A is a sequence 
of types and X is a single type. This sequent means that a sequence of things with the types and 
order specified in A are of the type X. The one axiom of the system is X 3 X, which expresses the 
trivial equivalence of identical types. The inference rules are as given below. The sequent(s) above 
the line are the antecedents of the rule and the sequent below is the consequent. For example, the 
/L rule should be read "if A is of type Y and r,X,A is of type Z, then I',X/Y,A,A is of type Z". 
The Cut rule is not actually needed, since any theorem which can be proved with the Cut rule 
can also be proved without it. This Cut elimination result means that if A is of type X, then any 
reductions which X can participate in, A can participate in in the same way. The fact that this is 
true is why we can interpret this calculus as proving syntactic subtype relationships. 

/L: 
A -+ Y r,x,n + z 

\L : 
A 3 Y r,X,A -+ Z 

/R: 
A,Y 3 X Y,A -+ X 

r,X/Y,A,A -+ Z r,A,X\Y,A 3 Z A + X/Y \R: A 3 X\Y 

.L: 
A,X,Y,A 3 Z A - t X  A 3 Y  

-R: Cut: A + x r,x,n + Y 
A,X.Y,A 3 Z A,A 3 X-Y I',A,A -t Y 

'Most of the recent linguistic work done in CCG uses operations which actually violate the Lambek calculus 
definition of categories. However the core operations, function application and order preserving function composition, 
do not. These are the only operations allowed in the version of CCG being assumed here. 



2.2 Combinatory Categorial Grammar 

In CCG, grammars associate words with categories. These categories are the types defined in Lam- 
bek calculus. A CCG derivation maps each word in the sentence to  one of its categories, and then 
combines these categories until the category S is produced. Several rules to combine categories have 
been proposed in CCG, but the primary ones are function application and order preserving function 
composition. The four cases of these rules are "X/Y Y + X", "Y X\Y + X", "X/Y Y/Z + X/Z", 
and "Y\Z X\Y + X\Z". With these combination rules coordination can largely be handled with 
the simple rule "X and X + X". Intuitively, two derivation structure constituents can coordinate 
if they can perform the same syntactic function in a sentence. By analyzing coordination in terms 
of these derivation structure constituents rather than in terms of traditional semantically deter- 
mined constituents, CCG is able to treat many cases of "nonconstituent coordination" as simple 
constituent coordination. For example in the CCG derivation given below, "Barbie pushed" and 
"Ken rode" are each constituents even though they include a subject and only part of a verb phrase. 
Each derivation step in the example is shown as a line with the categories which fit the left side of 
the rule above the line and the result of the rule application below the line. 

Barbie pushed and Ken rode the tonka 

S/(S\NP) (S\NP)/NPcomp S/(S\NP) (S\NP)/NP camp NP/N N 
S/NP S/NP NP 

app 

coord 
S /NP 

All the CCG rules being used here are theorems of Lambek calculus. Thus, for example, there 
is a Lambek calculus proof for the sequent X/Y,Y+X. Using this proof, a proof for the sequent 
A+X/Y and a proof for the sequent I'+Y can be combined to produce a proof for the sequent 
A, r+X.  This combination can be done using two applications of the Cut rule as follows: 

r + Y  X / Y , Y  +xCut  
A -+ X/Y X/Y, r + x 

Cut 
A , r + X  

The same technique can be used for any CCG combination rule "X Y -, Z" to combine a proof 
of A+X and a proof of r + Y  to produce a proof of A,r+Z.  Given this fact, CCG categories can 
be interpreted as incomplete representations of Lambek calculus proofs, and CCG combination 
rules can be interpreted as combining two proofs to produce a third. A category X can be used to 
represent any proof which has X on the right side of its theorem. A combination rule "X Y + Z" 
ensures that any proof represented by X can be combined with any proof represented by Y to  
produce a proof represented by Z. Furthermore, if X represents a proof with theorem A+X and 
Y represents a proof with theorem r+Y,  then the proof which Z represents has theorem A,I'+Z. 
Thus if we assume initial categories in a CCG derivation represent the trivial proofs of the form 
X+X, then whenever a derivation combines a list of categories A, the resulting category represents 
a proof with the left side of the theorem being A. Therefore the S category which results from a 
derivation represents a proof of A-+S ,  where A is the initial sequence of categories for the sentence. 
A simple example of a CCG derivation is given below with the whole theorem of the proofs shown, 
rather than just the right hand side of the theorem. 

Barbie rode the tonka 

S/(S\NP) + S/(S\NP) (S\NP)/NP + (S\NP)/NP 
comp NP/N + NP/N N + N 

S/(S\NP), (S\NP)/NP -, S/NP NP/N, N -t NP 
aPP 

S/(S\NP), (S\NP)/NP, NP/N, N + S aPP 



3 Full Encodings of Proofs 

The previous discussion of CCG showed that a CCG derivation can be characterized as constructing 
a proof that the initial sequence of categories for the sentence is of type S. However, the only 
information which a derivation maintains about the proof being constructed is the right hand side 
of the theorem. This raises the question of whether that one category is all a formalism needs to  
represent about a sequence of words in order to characterize natural language syntax. Clearly there 
are many different proofs which have the same right hand side of their theorem. Is it reasonable 
to  put all these proofs in the same equivalence class? To address this issue this section presents 
a formalism where only semantically equivalent proofs of a given theorem are put in the same 
equivalence class. In other words, all information about a proof of a theorem which might be 
pertinent to  the semantic interpretation of the sentence is represented in the categories of the 
formalism. This is the other extreme of the approach taken in CCG, where only the information 
which is necessary to ensure the existence of a proof for the desired theorem is represented in 
categories. This alternative approach is particularly interesting because such a representation of 
Lambek calculus proofs has a direct interpretation in terms of traditional phrase structure trees2. 
This connection with phrase structure based linguistic investigations shows how insights from each 
representation can be applied to the other. It also inspires the extensions to  CCG to  be discussed 
in the following section. 

3.1 The Formalism 

The semantic interpretation of a constituent is dependent on the categories assigned to  the words 
of the constituent, and the unifications done between the semantic interpretations of the basic 
categories in those categories. If the constituent "rode tonkas" is given the sequence of categories 
"(S\NP)/NP, NP" and the derivation proves the theorem "(S\NP)/NP, NP + S\NPV, then the se- 
mantic interpretations of the second two NP's have been unified in the semantics of this constituent. 
For other theorems it is not so easy to tell what semantic interpretations have been unified. For 
some semantically ambiguous constituents it is actually impossible to tell from the syntactic cate- 
gories alone. For this reason this formalism's representation of proofs includes information about 
what basic categories in a theorem have their semantic interpretations unified. This is notated 
using integer subscripts. To determine these subscripts all that needs be done is redefine the basic 
categories of Lambek calculus to include integer subscripts. This does not change the calculus in 
any way except to  record information about the proof in the theorem. Now the axioms are all of 
the form Xi+Xi, or some more complex category with the same subscripts on both sides. This 
ensures that basic categories which have their semantic interpretations unified will have identical 
subscripts. In addition, all subscripts must be distinct unless an axiom requires that they be identi- 
cal. The new formalism uses theorems with subscripts to represent proofs, and this representation 
of proofs plays the role of categories. 

As an example of how subscripts work in this Lambek calculus notation consider the proof of 
type raising given below. Note that the two S7s on the right hand side of the theorem have identical 

'[Konig, 19891 gives a proof that a single syntactic tree can be constructed for any set of semantically equivalent 
Lambek Calculus proofs. Konig uses her syntactic tree representation to define a normal form for Lambek Calculus 
proofs, thus allowing more efficient parsing by avoiding constructing semantically equivalent proofs. She does not 
discuss how this structural representation relates to CCG or coordination. Any such normal form approach to 
eliminating spurious ambiguity will have difficulty handling coordination because the "spuriousn derivations are 
necessary in order to construct some constituents which can be coordinated. Similarly, [Hepple, 19911 uses normal 
form derivations in a categorial grammar style formalism to avoid the spurious ambiguity problem, and thus he would 
have the same problem if he were to try to parse coordinations. 



subscripts, and the NP's on the left and right side have identical subscripts. 

An example of a derivation in this new notation is given below. As the derivation proceeds 
semantic interpretations are unified, and thus subscripts are set equal. This requires substituting 
one subscript for another in the result of each combination. When the derivation is done the 
resulting theorem shows the correct pattern of semantic interpretation coreference. 

Barbie rode the tonka 

comp 
NP6/N7 + NP6/N7 N8 N8 app 

NP6/N7, N7 NP6 

For the moment the combination operations for this formalism are the same as those for CCG, 
only translated so as to use to the new representation of categories. Thus this formalism is just a 
notational variant of CCG. The new notation is important for two reasons. As will be discussed in 
the following subsection, this notation provides a structural interpretation of CCG, which allows 
work in traditional phrase structure to be related to work in CCG. This notation is also important 
because it provides the additional information necessary to extend the operations of CCG in desir- 
able ways. These extensions will be discussed in the next section, along with motivating examples 
for these extensions. 

3.2 The Structural Interpretation 

To show the structural level of representation which is implicit in the formalism just defined, this 
subsection presents another formalism which is essentially equivalent to the previous one. The only 
difference is that types are restricted to not be greater than second order. As is argued below, the 
additional expressiveness of these formalisms makes greater than second order categories unneces- 
sary for natural language. This new formalism is very similar to both Lexicalized Tree Adjoining 
Grammar ([Schabes, 19901) and Structure Unification Grammar ([Henderson, 19901). Instead of 
Lambek calculus proof theorems, this formalism represents categories as tree fragments. As in 
the previous formalism, the operations which combine tree fragments are equivalent to operations 
which combine Lambek calculus proofs. And just as the previous formalism had to produce a proof 
that the initial sequence was of type S, a derivation is successful if it produces a complete tree with 
root S. 

The tree fragments of this formalism can be defined by giving a translation from the extended 
theorem notation used above. Examples of such translations are shown in figure 1, where the 
theorems in the first line of the derivation have been translated into the trees in the first line of 
the combination. The subscripts are shown in the trees to illustrate the correspondences with 
the theorems. Each nonterminal node in a tree fragment corresponds to a distinct subscript in 
the equivalent theorem. The label of the node is the same as the basic categories which have the 
subscript. There are also terminals for each word in the constituent. Parent-child relationships 
(here called immediate dominance relationships) are determined by the categories on the left side of 
the theorem. The parent of a terminal is the innermost result of its associated type. For any node 
which corresponds to the subscript of an argument of a type or to the subscript of a result of an 
argument of a type, its parent is the innermost result of the type. These links manifest argument- 
result relationships. The right hand side of the theorem shows what other things are needed before 
the derivation can be complete. A node which corresponds to an argument or to the result of an 



argument on the right hand side is specified in the tree as a substitution node. This means that a 
substitution must take place at  this node before the derivation is completed. First order arguments 
on the right hand side are represented with dominance relationships. Dominance is the transitive 
closure of immediate dominance, and before the derivation is over all dominance relationships must 
be replaced by chains of immediate dominance relationships. For every first order argument on the 
right hand side there is a dominance relationship from the node which represents the result of the 
argument down to  each node which represents an argument of the argument. Finally, these trees 
are completely ordered, so no links can cross and no node can change to a different side of another 
node. The ordering of nodes in the tree is determined by the directionality of slashes and ordering of 
arguments on the left hand side of the theorem. The nodes which represent arguments of rightward 
slashes are on the right side of the terminal and those which represent arguments of leftward 
slashes are on the left side. The first arguments correspond to the closest nodes to  the terminal 
and the last arguments correspond to the farthest away. The directionality of slashes in first order 
arguments is represented with a notation on dominance relationships which specifies whether they 
must be instantiated from the left or from the right. For leftward slashes the dominance relationship 
must be instantiated from the right, and for rightward slashes the dominance relationship must be 
instantiated from the left3. 

Barbie said Ken squeaks 

S1 

Barbie said Ken squeaks 

key: 
X+ X is a substitution node 

X immediately dominates Y 
Y 

X dominates Y 
(< instanciated from right, 
> instanciated from left) 

Figure 1: 

The combination of two tree fragments always involves the substitution of the root of one of 
the trees for a node in the other. These substitutions can only occur at substitution nodes, but any 
tree fragment can be substituted as long as the root has the same label as the substitution node. 
If the substitution node has any dominance relationships below it, then the tree being substituted 
must have its own substitution nodes at which the dominated nodes can be substituted. This is 
the case in the example combination shown in figure 1. Also, such a secondary substitution node 
must be on the left side of the tree if the dominance link must be instantiated from the right, 
and on the right side of the tree if the dominance link must be instantiated from the left. Such 
a combination instantiates the dominance relationships involved, so they can be removed from 
the resulting tree. This instantiation of dominance relationships is analogous to  adjunction in 
Lexicalized Tree Adjoining Grammar, and a dominance relationship is analogous to an obligatory 
adjunction constraint. Substitutions which do not involve dominance relationships are the same as 

3Having this notation on dominance relationships is not natural, but it is necessary to represent the directionality 
of their corresponding slashes. There are reasons to believe that having to specify the directionality of these slashes 
is actually a handicap, and thus should not be represented. 



substitutions in LTAG. The tree which results from a combination must have all the nodes in the 
same order as they were in the two original trees, and the order of the terminals must be the same 
as their order in the sentence. 

This formalism constitutes a structural interpretation of CCG because its derivations are all 
equivalent to CCG derivations. As an example of the equivalence, the tree combination shown in 
figure 1 is equivalent to the CCG combination "S/(S\NP) S\NP -+ S". A tree fragment is equivalent 
to the theorem which it is a translation of, and a theorem is equivalent to the CCG category on its 
right hand side. From this fact we can see that the root of the tree is the innermost result of its 
equivalent CCG category, the substitution nodes without dominance relationships are the zeroth 
order arguments to the CCG category, and the substitution nodes with dominance relationships 
are the results of the first order arguments, with the argument's arguments being the dominated 
nodes. Whether a tree combination is equivalent to application or composition depends on whether 
the tree being substituted has substitution nodes which are not used in the combination. If the 
substituted tree has no substitution nodes after the combination, then the combination is equivalent 
to application. If a node in the substituted tree is still a substitution node after the combination, 
then the combination is equivalent to composition. If the tree combination does not instantiate 
dominance relationships, then the argument which is filled in the equivalent CCG combination is 
zeroth order. If the tree combination does instantiate dominance relationships, then the primary 
argument is first order. Thus the combination in figure 1 is equivalent to  function application for 
a first order argument, as was indicated above. 

The only CCG derivations which can't be done in this formalism are those which involve types 
which are greater than second order, as was mentioned above. New types of structural relationships 
could be defined which express higher order types, but that does not seem necessary for natural 
language. The only situations where higher order types are used in CCG is for modifiers of modifiers 
of first order types. For example in "Barbie very quickly became disillusioned", "very" has the 
category ((S\NP)/(S\NP))/((S\NP)/(S\NP)), which is third order. If the ability this formalism has 
to express the internal structure of constituents is used in the categories assigned in the grammar, 
then basic categories like VP, AP, and P P  can be introduced, and modifiers of modifiers can be 
given categories like AP/AP or PP/PP. In this example if we introduce VP and AP categories we 
can give "quickly7' the category "APl, (VP2\AP1)/VP3 -t VP2/VP3" and give "very" the category 
"AP4/AP5 -t AP4/AP5". One of the new rules to be introduced in the next subsection could then 
be used to  combine these categories to produce "AP1/AP5, AP5, (VP2\API)/VP3 -t VP2/VP3". 
This is an example of how the insights of phrase structure based linguistic investigations can be 
applied to a CCG style formalism through the above structural interpretation. 

4 Extensions to CCG 

So far the only justification for adding more information about Lambek calculus proofs to  the 
categories of CCG is that it provides a phrase structure level of representation for CCG. This 
additional information has not been used in any combination operations. Also, the question of how 
coordination should be done with these expanded categories has not been addressed. This section 
first discusses combination rules which make use of the additional information in categories, then 
shows how the addition of abstraction operations allow the coordination rule "X and X + X" to 
be maintained. 

In addition to providing a structural interpretation for CCG categories, viewing CCG derivations 
as constructing a Lambek calculus proof also has the advantage that the proof which results from 
a derivation provides all the semantically significant information about that derivation. Thus, 



because the expanded categories of the new formalism represent all the semantically significant 
information about a proof, the expanded categories also represent all the semantically significant 
information about the derivation4. This means that not only can a combination rule extend previous 
derivations to  derive another category, it can also modify previous derivations. Such a technique 
is used in [Pareschi and Steedman, 19871 to parse CCG efficiently in spite of the proliferation of 
semantically equivalent derivations in CCG. Because there are often many different ways to  derive 
a given sentence in CCG, if a parser has to explore all possible ways it will not be efficient. An 
example of this difficulty is the problem of parsing posthead modifiers incrementally. For example 
in the sentence "Barbie likes jewelry with diamonds", after combining "jewelry" with "Barbie likesn 
the resulting category is S. Thus when "with" is reached there is no NP for it to  combine with. To 
parse this sentence "jewelry" has to  be combined with "with" before it is combined with "Barbie 
likes". With the expanded categories described above the NP for "jewelry" is still represented on 
the left side of the theorem which results from combining "Barbie likes" with "jewelry". Thus 
a single operation can calculate the affect of undoing the combination of "jewelry" with "Barbie 
likes", combining "jewelry" with "with", and then recombining the result with "Barbie likes". A 
rule for doing this operation is as follows: 

A , X i i Y  F+(Xj \Xk) /Z  cornpad 

A, xk, rt + Y/Z 

where I" is r with i substituted for j. The Z in this rule is there because "with" has another 
argument which needs to be passed on, as is done in composition. The real work in this rule is done 
by changing subscripts. First, the subscript of the Xi in the left antecedent needs to  be changed to 
k to represent the fact that it now fills the argument slot for Xj\Xk. Second, the Xj in I' (which is 
the argument for the result of Xj\Xk) needs to have its subscript changed to i t o  represent the fact 
that it is now filling the Xi argument role in A (previously filled by the Xi in the left antecedent). 
Hence Xi is changed to Xk and r is changed to I". Another rule can be defined without the Z to 
allow for simple posthead modifiers. 

The structural correlate of these new operations is analogous to optional adjunctions in LTAG. 
If a tree has a substitution node which has the same label as the root of the tree, then this tree can 
be adjoined at a node with the same label in another tree. The subtree under the node where the 
adjunction takes place is removed and substituted for the substitution node in the adjoined tree, 
and the result is substituted at the node where the adjunction takes place. The former substitution 
is the same as changing the i subscript to k, and the later substitution is the same as changing the 
j subscript to i. The biggest difference between this operation and adjunction in LTAG is that it 
can adjoin any tree with the requisite substitution node, whereas in LTAG the adjoined tree must 
be specified in the grammar as an auxiliary tree. 

One problem with the way the above rule for attaching posthead modifiers was formulated in 
the theorem notation is that it can only apply to categories on the right edge of the left side of the 
theorem. This is because in order to enforce ordering constraints there can't be any types to  the 
right of the X;. This means modifiers can only attach at the lowest node in the tree, unlike the 
way it was specified for the structural version. For example, a prepositional phrase can't modify 
a transitive verb with this rule because the object of the verb will get in the way. Of course 
the presence of an object makes no difference for the attachment of a prepositional phrase, so 
we should be able to  ignore the object and do the attachment. The ability to ignore insignificant 

- - - - - -  

'Note that this is information about the derivation, not simply information about the semantics. CCG has a very 
elegant representation of semantic information, but semantic information would not be sufficient for our purposes. 
The extensions being discussed need to be sensitive to syntactic level constraints such as word order, which are not 
represented in the semantics. Including word order information in the semantic representation would be very strange, 
since word order is not pertinent to semantic interpretation. 



details is also crucial to CCG's analysis of coordination. CCG has the ability to abstract away from 
details about a constituent and make coordination dependent only on the constituent's syntactic 
type. The new formalism as it has been described so far never abstracts. All information which 
is known at one point in a derivation is recorded in all subsequent points in the derivation using 
the left sides of theorems. In CCG, abstraction is always done as soon as possible, since CCG 
only records the information which is necessary to  ensure a valid proof that the sentence is of type 
S. A compromise can be found between these two extremes by providing an abstraction operation 
which is independent from the combination operations. Thus a derivation can combine constituents 
without losing any potentially important information, and can still abstract when the information 
obscures the necessary generalization. 

The simplest abstraction operation for this formalism is as follows: 

This operation abstracts away from the existence of the Y, and in doing so it does not jeopardize 
the validity of the final proof. Given any proof with the representation " 0 ,  A,  X, I', A + W", a 
proof with the representation "0, A, X/Y;, Y;, r ,  A + W" can be constructed with the following 
step: 

x/Y;, Y, -, x O, A, x, r,  A + wcUt 
0, A, X/Y;, Y;, r, A + w 

Thus given the final proof of a derivation, all abstractions can be undone in reverse order to  produce 
a proof that the initial sequence of categories is of type S. Other abstraction rules can be defined 
which make use of other theorems of Lambek calculus, such as composition. The structural correlate 
of these operations removes a node from the tree and (in the case of composition abstraction) passes 
its children up to the node's parent. To be removed a node must be immediately dominated and 
not be a substitution node. 

With an abstraction operation we can make use of the rule "X and X + X" to handle coordi- 
nation. The X's in this rule are now the expanded categories of the new formalism, with the note 
that the actual subscripts aren't important, only the pattern of subscript equality. An example 
of how the abstraction rules allow this characterization of coordination to  be maintained is shown 
below. 

tonkas and red cars 
NP1 + NP1 NP2/NP3 + NP2/NP3 NP4 + NP4 

NP2/NP3, NP3 + NP2 
aPP 

app abst 
NP2 -t NP2 

coord 
NP1 + NP1 

An important question to  ask when proposing an extension to CCG is how it affects the analysis 
of coordination, which has been so important to CCG's success. Two examples are given here 
which are pertinent to this question. The first, shown in figure 2, is an ungrammatical example 
of coordination which CCG syntactic categories can not distinguish from grammatical cases. The 
attempted coordination is between "Barbie" and the phrase "Barbie said Ken". In the CCG 
derivation, "Barbie" is given a type raised NP as its category, and the constituent "Barbie said 
Ken" is combined to produce the category S/(S\NP). These categories are identical, so the CCG 
coordination rule of "X and X + X" can apply to produce the category S/(S\NP). There is no 
way this CCG analysis of coordination can distinguish between this case and the grammatical 
example "Barbie said Ken, and Bill said Joe, squeaks". The crucial information which is needed 



to  distinguish these two cases is the coreference of the semantic interpretations5. In the category 
for "Barbie said Ken" the two S's are for two different clauses, while in the category for "Barbie" 
the two S's are for the same clause. In the analysis using expanded categories this difference is 
expressed, and thus the coordination rule can not apply. Even applying abstraction operations 
cannot reduce the right category to being the same form as the left category. 

* Barbie and [Barbie said Ken] squeaks 

S/(S\NP) S/(S\NP) (S\NP)/S S/(S\NP) S\NP 
S/(S\NP) 

S/(S\NP) 
coord 

Ipnn 

Figure 2: 

The second example is a case where it is useful for a parser to maintain information about 
the derivation history of a pair of categories after they are coordinated. This example is shown 
in figure 3, with the coordination derivations given above the remainder of the derivations, for 
formatting reasons. The pertinent reading of this sentence is that both the belts and the shoes 
are in Barbie's wardrobe. This is another case of posthead modification, but in this case the need 
to coordinate forces the objects and the verbs to combine before the modifier can be combined 
with the objects. Otherwise only the shoes would be interpreted as being in the wardrobe. This 
problem can be solved by using a category for the NP objects which is type raised with respect 
to the NP\NP modifier, namely NP/(NP\NP). Then these categories can be composed with the 
verbs, the results can be coordinated, and the result of the coordination can apply to the posthead 
modifier, as shown in the example. Such an analysis creates nightmares for an incremental parser, 
which must type raise "the belts" long before it sees "inv6 . A more natural analysis is possible 
with the expanded categories proposed above. Because the operations for the expanded categories 
allow combinations to be done independently from abstractions, the verbs can be combined with 
the objects without losing the information about the existence of the object NP's. The resulting 
categories can then be coordinated to produce a single category with one NP which represents 
both the objects. This category can then be combined with "in her wardrobe" using one of the 

5This distinction is represented in the semantics of CCG categories, and Steedman (personal communication) has 
argued that this semantic information can be used to block this undesired coordination. This position requires the 
coordination schema to apply at  a level of representation which includes syntactic categories plus semantic coreference 
of basic categories. The CCG categories with indexes used here are exactly such a level of representation (although 
Steedman would rather CCG's syntactic/semantic distinction be maintained). If abstraction operations are always 
applied as soon as possible, the extended version of CCG presented here is equivalent to a version of CCG which adds 
semantic coreference information to the categories. Thus the only empirical difference between Steedman's position 
and the one advocated here is whether abstraction should always be done as soon a s  possible. As was argued above 
and will be argued in the next example, efficient incremental parsing requires that abstraction be delayed in some 
cases. Since Steedman is primarily concerned with competence phenomena, this is not an issue for him. 

'The affects of CCG's eager abstraction strategy can always be compensated for using type raising, as is done 
in this example. This is why a competence theory does not have to be concerned with the issue of when to do 
abstraction. However a theory which is concerned with performance constraints such as incrementality must address 
this issue, and, as is argued here, must permit abstraction to be delayed. 



operations introduced above for attaching posthead modifiers. 

likes the belts and hates the shoes 

(S\NP)/NP NP/(NP\NP) 
aPP 

(S\NP)/NP NP/(NP\NP) 

(S\NP)/(NP\NP) (S\NP)/(NP\NP) 
aPP 

word 
(S\NP)/(NP\NP) 

(S2\NP3)/NP4 NP5 + NP5 (SG\NP~)/NPS 
-t (S6\NP7)/NP8 

NPg + NPg 
(S2\NP3)/NP4 

(S2\NP3)/NP4, NP4 + S2\NP3 
aPP 

(S6\NP7)/NP8, NP8 + S6\NP7 
aPP 

word 
(S2\NP3)/NP4, NP4 S2\NP3 

Barbie likes the belts and hates the shoes in her wardrobe 

Figure 3: 

5 Conclusion 

This paper has given an interpretation of CCG derivations in terms of the construction of traditional 
phrase structure trees, and shown how this structural level of representation can be used to extend 
CCG in ways which are useful for analyzing natural language. CCG categories can be thought 
of as a representation of Lambek calculus proofs, and by incorporating more information about 
these proofs in categories it is possible to represent the semantically significant information about 
the derivation history of a category in the category itself. This added information constitutes a 
partial specification of a phrase structure tree. This structural information can be used to parse 
efficiently despite the proliferation of semantically equivalent CCG derivations. With the addition 
of an abstraction operation which is separate from the combination operations, this expanded 
formalism even improves on CCG7s analysis of coordination. It is hoped that this connection 
between Categorial Grammar representations and phrase structure representations can lead to  
other fruitful interactions between these two areas of investigation in the future. 
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