
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Technical Reports (CIS) Department of Computer & Information Science 

January 1993 

The Relatedness and Comparative Utility of Various Approaches The Relatedness and Comparative Utility of Various Approaches 

to Operational Semantics to Operational Semantics 

Raymond McDowell 
University of Pennsylvania 

Follow this and additional works at: https://repository.upenn.edu/cis_reports 

Recommended Citation Recommended Citation 
Raymond McDowell, "The Relatedness and Comparative Utility of Various Approaches to Operational 
Semantics", . January 1993. 

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-93-16. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/453 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F453&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/453
mailto:repository@pobox.upenn.edu


The Relatedness and Comparative Utility of Various Approaches to Operational The Relatedness and Comparative Utility of Various Approaches to Operational 
Semantics Semantics 

Abstract Abstract 
We examine three approaches to operational semantics: transition semantics, natural semantics, and 
reduction semantics. First we compare the style and expressive power of the three forms of semantics by 
using them to construct semantics for various language features. Program abortion, interleaving, and 
block structure particularly distinguish the three. Natural semantics was very good at specifying "large 
granularity" features such as blocks, but is apparently unable to capture interleaving because of its "small 
granularity". On the other hand, transition semantics and reduction semantics easily express "small 
granularity" features but have difficulty with "large granularity" features. Reduction semantics provide 
especially concise specifications of non-sequential control constructs such as abortion and interleaving. 
We also analyze the utility of the different approaches for two application areas: implementation 
correctness and type soundness. For these two applications, natural semantics seems to allow simpler 
proofs, although we do not generalize this conclusion to other areas. 

Comments Comments 
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-93-16. 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/453 

https://repository.upenn.edu/cis_reports/453


The Relatedness and Cornparat ive Utility of Various 
Approaches to Operational Semantics 

MS-CIS-93-16 
LINC LAB 246 

Raymond C .  McDoweII 

University of Pennsylvania 
School of Engineering and Applied Science 

Compnter and Information Science Department 

Philadelphia, PA 19104-6389 

February 1993 



The Relatedness and Comparative Utility of 
Various Approaches to Operational Semantics 

Raymond C. McDowell 

January 28, 1993 

Abstract 

We examine three approaches to operational semantics: transition seman- 
tics, natural semantics, and reduction semantics. First we compare the 
style and expressive power of the three forms of semantics by using them 
to  construct semantics for various language features. Program abortion, 
interleaving, and block structure particularly distinguish the three. Natu- 
ral semantics was very good a t  specifying "large granularity" features such 
as blocks, but is apparently unable to capture interleaving because of its 
"small granularity". On the other hand, transition semantics and reduc- 
tion semantics easily express "small granularity" features but have difficulty 
with "large granularity" features. Reduction semantics provide especially 
concise specifications of non-sequential control constructs such as abortion 
and interleaving. We also analyze the utility of the different approaches 
for two application areas: implementation correctness and type soundness. 
For these two applications, natural semantics seems to allow simpler proofs, 
although we do not generalize this conclusion to other areas. 

'This report is based on the Ph.D. Area Examination of the author. 
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1 Introduction to Operational Semantics 

The purpose of formal semantics is to rigorously specify the meaning of a 
program. In operational semantics, the meaning of a program is specified 
in terms of an execution model, that is, the semantics provide an abstract 
representation of how the program is executed on a machine. For applicative 
languages, the value resulting from a program's execution is often given as 
the meaning of the program. For imperative languages, the meaning is the 
changes made by the program to  the machine state. 

In this paper we will examine three approaches to  operational seman- 
tics: transition semantics, natural semantics, and reduction semantics. This 
section will introduce the three approaches by presenting the semantics for 
a simple language using each approach. In the second section we extend the 
language (and the semantics) presented in this section to  include additional 
features. This will allow us to compare the style and expressive power of 
the three forms of semantics. Then we will discuss applications of opera- 
tional semantics in the third section, analyzing the utility of the different 
approaches for each task. Finally, we conclude with a general summary of 
our findings. 

1.1 A Simple Imperative Language 

The language we will use to illustrate the three operational semantics tech- 
niques is a simple imperative language called Whi l e  [NN92]. The abstract 
syntax of the language is given by 

where x ranges over variables, e ranges over expressions, and s, sl, and s2 

range over statements. To simplify matters, we will not concern ourselves 
with the syntax and semantics of expressions. We will assume integer and 
boolean expressions and a semantic function 

f : E x p  + (S ta te  + Value) 

that defines the meaning of an expression. We use Exp ,  S ta te ,  and Value to  
represent the sets of all Whi l e  expressions, states, and values, respectively. 
A state a is a mapping of variables to values, so if 



then 

We will also not concern ourselves with typing of expressions; we will assume 
that all expressions are well- typed. 

1.2 Transition Semantics 

The first form of operational semantics we will look at is transition seman- 
tics. It is also called structural operational semantics or Plotkin-style seman- 
tics because of Gordon Plotkin's seminal report about it [Plo81]. Transition 
semantics define the meaning of a program via a transition relation + 
between machine configurations. A machine configuration is either 

a pair (s,a), consisting of a statement s and a state a, or 

a state a. 

The transition relation describes the individual steps in the evaluation of a 
program. If (s, a) - (sl, a') this indicates that one step of the execution of 
statement s from the state a results in the new state a'. The statement s' 
represents the computation remaining to be done for the complete execution 
of s. A transition of the form (s, a) - a' represents the final step of 
execution. The transition relation is defined by a set of rules and axioms. A 
transition semantics for While is given in Table 1; this is a slightly modified 
version of the semantics given in [NN92]. 

Only one rule will apply to a given configuration, so the derivation se- 
quence is uniquely determined by the initial statement and state. Thus we 
can express the meaning of a While program as a semantic function 

St, : Stmt + (State + State) 

where Stmt is the set of all While statements. We define 

Sts[s]o = a' if (s, a) +* 0' 

where -* is the reflexive-transitive closure of + . Note that the meaning 
of a program is a prtiak function from State to State. This is because a 
given program executing from an initial state may never reach a final state; 
it may terminate abnormally or never terminate.2 

2These possibilities will be further discussed as we investigate extensions of the language 
While. 



(x := e ,a)  - a[x H &[e]a] 

(skip, a) - a 

(ifethenslelsesz,a)-(s1,a) if&[eBa=true [if:",'""] 

(if e then sl else s2, a )  + (s2, a) if I[e]a = false [if;f,"'""] 

(while e do s ,  a )  - (s; whilee do s, a) if £[e]a = true [while:iue] 

(while e do s, a )  - a if &Belo = false [ ~ h i l e f ~ ' ~ ' ]  

Table 1: Transition Semantics for While 



Note that the transition semantics gives us a "two-dimensional" struc- 
ture from which the meaning of a program is derived [Plo81]. The "horizon- 
tal" dimension is the derivation sequence ( s ,a )  -* a'; then for each step 
in the sequence there is a "vertical" proof of the validity of the transition. 
In a corresponding manner, proofs of program properties using transition 
semantics can also be "two-dimensional". The main structure of the proof 
will be done by induction on the length of the derivation sequence; each step 
in this induction may in turn involve a proof by induction on the height of 
the derivation tree for the corresponding transition. We shall see examples 
of this sort of proof shortly. 

1.3 Natural Semantics 

Like transition semantics, natural semantics3 [Kah87] define the semantics of 
a program via a relation between machine configurations. However, natural 
semantics abstract away from the details of the computation, defining a 
relation between a configuration (s, a )  and the state a' resulting from the 
complete execution of s from a. Table 2 gives the natural semantics of 
While from [NN92]. 

Again we can define a semantic function 

S,,[S]U = a' if (s, a )  & a' 

We can see from this that a natural semantics defines meaning in terms of 
a single derivation rather than a derivation sequence. Thus i t  does not have 
the two-dimensional structure that a transition semantics does; it has only 
the "vertical" dimension of the proof of the relation (s, a )  4 a'. Correspond- 
ingly, proofs of program properties using natural semantics are usually done 
by induction on the height of the derivation tree. 

1.4 Reduction Semantics 

Reduction semantics [FH89], like transition semantics, define a relation that 
describes incremental steps in the evaluation of a program. However, reduc- 
tion semantics have a more complex system of specifying the relation than 
transition semantics. This form of semantics is based on term rewriting; the 

Just to make things really confusing, natural semantics are also sometimes referred 
to as structural operational semantics and Plotkin-style semantics, e.g. in [TofSO] and 
WFSI]. 



(sl,a) u Q' 

(if e then sl else s2, a) a' 
if &[e]a = true 

( ~ 2  7 a) u 0' if &[e]a = false 
(if e then sl else s2, a )  l,l a' 

(s,u)Uu' (whileedos,a')JJaN 
if &[e]a = true 

(while e do s, a )  4 a" 

(while e do s, a )  a if £[e]a = false 

Table 2: Natural Semantics for While 

[ i f e e l  

[if;(,"zse] 

[while;:"] 

  while^^'""] 



core of a reduction semantics is a set of axioms defining a rewriting relation 
...t between configurations. 

A set of evaluation contexts E[]  are then defined to  describe the syntac- 
tic contexts in which the ...t reductions can take place. In term rewriting 
systems, a term can be reduced if any subterm of the term matches the left- 
hand side of a rewrite rule. The evaluation contexts in a reduction semantics 
serve to restrict the subterms which are considered for matching against the 
rewrite rules. 

Finally, another set of axioms is used t o  define a relation - in terms 
of the ...t relation and the contexts E[]. It is this relation which defines the 
meaning of a program in reduction semantics. 

A reduction semantics for While is given in Table 3.* Here the ...t 
relation rewrites configurations to equivalent configurations. The evaluation 
contexts restrict this rewriting to the left-most statement; this specifies the 
left-to-right evaluation order we want for our semantics of While. 

The semantic function for the reduction semantics is defined by 

where -* is the reflexive-transitive closure of -. It is not difficult t o  see 
that this is well-defined: 

a If the program consists of a single skip statement, only Rule [skip,,] 
will apply. (The only ...t axiom that applies to skip statements is 
Rule [comp,,], which requires that the skip be followed by another 
statement .) 

a Otherwise, Rule [context,,] will apply. The ...t axiom and evaluation 
context will then be uniquely determined by the left-most statement 
of the program. 

The complex description of the - relation can give a complex structure 
t o  proofs of program properties using reduction semantics. However, each 
piece of the description is simple, so each piece of the proof can involve fewer 
cases. The outer level of the proof, as with transition semantics, will be by 
induction on the length of the derivation sequence. The induction steps of 
this proof, however, will use induction on the structure of the evaluation 
context E[] used in the reduction step. 

'It may seem from this example that the additional complexity of reduction semantics 
does not result in any gain over transition semantics - however, we shall see differently as 
we extend While with more advanced features. 



(x := e, a )  .u (skip, a[x ++ &[eBa]) [asg~s] 

(skip; S, 6) - (s, a )  [comp,S] 

(if e then sl else s2, a )  - (sl, a )  if &[e]a = true 

(if e then sl else s2, a )  ?.t (82 ,  a )  if &[e]a = false [i f,f,"'""] 

(while e do s, a) .u (s; while e do s, a) if &[e]u = true [whilel,rdze] 

(whilee do s, a )  - (skip, a) if &[e]a = false 

(E[s],a) w (E[st], 0') if (s, a )  - (st, ut) [contextTs] 

(skip, a )  H a [skipm] 

Table 3: Reduction Semantics for While 



1.5 Equivalence Theorems 

In this section we illustrate the proof techniques mentioned earlier by proving 
the three semantics of While to  be equivalent. We do this by showing that 
both the natural semantics and the reduction semantics are equivalent to  
the transition semantics. But first we need to prove a useful lemma about 
the transition semantics for While: 

Lemma 1 If (sl;s2,a) -k a' then there exist a state a" and natural 
numbers kl and k2 such that (s l ,a)  -kl a" and (s2,aU) -k2 a' where 
kl + k2 = k. 

Proof: We prove this by induction on the length k of the derivation sequence 
(31; s2,a) -k a'. 

basis: If k = 0 then the result holds vacuously. 

induction: We prove the result holds for k > 0, assuming it holds for all 
natural numbers less than k. If we consider the first transition step 
of the derivation sequence, the proof of the transition must end with 
either Rule [cornp!,] or Rule [cornP~,]. We look at each case in turn: 

Rule [ c ~ r n ~ ~ ~ ]  :] We can write the derivation sequence as 

Applying the induction hypothesis to  the latter part of the deriva- 
tion sequence yields state a" and numbers kl and k2 such that 
(s;,a1) -lei a" and (s2,uU) a' where kl + k2 = k - 1. 
Putting this together with the premise of Rule [cornp~,] we have 
our result: 

and 

where (kl + 1) + k2 = k. 

Rule [c~rnp:~]: In this case the derivation sequence is of the form 

Thus our result is immediate; from the premise of the rule we have 
(sl, a )  - a" and from the latter part of the derivation sequence 
we have (s2, a") -k-l a ' , where clearly 1 + (k - 1) = k. 



Now we show the equivalence of the transition and natural semantics of 
While .  

Theorem 2 For every statement s of While ,  Sts[s] = Sns[s]l. 

Proof: This is a modified presentation of the proof in [NN92]. We need to  
show that for every statement s and states a and a', 

(+) We prove this direction by induction on the length k of the derivation 
sequence ( s ,  a) -+* a'. 

basis: If k = 0 then the result holds vacuously. 

induction: We proceed by induction on the height h of the derivation tree 
for the first transition in the derivation sequence. 

basis: If h = 0 then the transition is derived from of one of the ax- 
false ioms [asgts], [skipts], [i f,t,'"e], [i f ts 1 ,  or [while,f,alse]. 

The proof for the axioms [asgts], [skipts], and [ ~ h i l e g ~ ~ ~ ]  are 
immediate. We show the proof for Axiom [i f;t,TUe] only. 

Axiom [i f;t,rue]: Assume that &[e]a = true and that 
( i f  e then sl else 8 2 ,  a )  - ( s l ,  a )  -+* a' 

The outer induction hypothesis applied t o  the derivation se- 
quence (sl , a )  -* a' yields (sl , a )  6 a'. Thus 

( i f  e then  sl else s2, a )  .U. a' 
holds by Axiom [i fz]. 

induction: We now assume that h > 0 and consider the last rule 
in the derivation tree. We will show the proof for Rule [cornp&] 
only. 

Rule [ ~ o r n ~ ~ ~ ] :  If we apply Lemma 1 to 
( s l ;  S g ,  a )  -k a' 

we get a state a" and derivation sequences ( s l , a )  -kl a" 
and (s2,  a") h k 2  a' where kl + kg = k. The outer induc- 
tion hypothesis applied to each of these smaller derivation 
sequences yields (sl , a )  J. a" and (sg , a") 4 a'. Rule [comp,,] 
then gives us 

(s1; s2,a) JJ a'. 



(e) We prove this direction by induction on the height h of the derivation 
tree for (s, a)  4 a'. 

basis: If h = 0 the result is immediate. 

induction: For h > 0 we consider the last rule in the derivation tree. We 
will show only the cases for the rules [comp,,] and [i fz]. 
Rule [camp,,]: Assume that (sl; sz, a") $ a'. By applying the induc- 

tion hypothesis to the premises (sl , a) 4 a" and (s2, a") 4 a' we 
get (sl,u) -* a" and (sz,ut') -* a'. Thus 

(sl; s2,a) -* (s2, a") -* a' 

Rule [i fe]: Assume that E[e]la = true and that 

(if e then sl else s2, a) lJ a' 

The induction hypothesis applied to the rule premise (sl, a) l,l a' 
yields (sl, a) +* a'. By Rule [i f l ~ ~ ~ ]  we have 

(if e then sl else sz, a)  - (sl,a) 

Thus 
I (if e then sl else 8 2 ,  a)  - ( ~ 1 ,  a) -* a 

Finally, we prove the equivalence of the transition and reduction seman- 
tics. 

Theorem 3 For every statement s of While, Sts[s] = STs[[s]. 

Proof: We need to show that for every statement s and states a and a', 

(+) We prove this direction by induction on the length k of the derivation 
sequence (s,a) -* a'. 

basis: If k = 0 then the result holds vacuously. 



induct ion:  If k > 0 then the derivation sequence contains a t  least one 
transition, i.e. it is of the form 

where 7 is a configuration. We claim that the transition ( s ,  a )  + y 
has a corresponding derivation sequence (s, a )  H* y. This is all we 
need to  prove, since then by the induction hypothesis on 7 -+* a' we 
have y -* a', so 

We prove the claim by induction on the height h of the derivation tree 
for the transition ( s ,  a )  - y. 

basis: If h = 0 then the transition is derived from of one of the axioms 
false 

[asgts], [skipts], [i f:Lue], [if,, 1 ,  [while:iue], or [whi1eclSe]. The 
proof for the axioms [skipts], [i  f j l u e ] ,  [ i  f;fsa'se] and [ ~ h i l e : ~ " ~ ]  are 
simple. We show the proof for Axiom [asgt,] only. 

Axiom [asgt,]: The transition is of the form 
( x  := e , a )  + a[x  H E[e]a] 

Thus Axiom [context,,] applies via Axiom [asg,,] with the 
empty context [ I ,  giving 

( x  := e,  a )  - ( s k ip ,  a [ x  H £[e ]a] )  
Finally, using Axiom [skip,,] we obtain 

( x  := e,  a )  - ( s k ip ,  a [ x  H f[e]la]) H a [ x  H f [ e ] a ]  

induct ion:  If h > 0 then the last rule of the proof is either Rule 
[comp~,] or Rule [cornp:,]. We show only the proof for Rule 
[comp:Sl. 
R u l e  [cornp:,]: Assume the transition is of the form 

(s1; S 2 ,  a )  + ( ~ 2 , ~ l )  

Applying the inner induction hypothesis to  the premise of 
the rule we obtain ( s l ,  a )  -* al .  The last reduction in this 
sequence must be by Axiom [skip,,], so 

(s1,u)  -* ( s k ip ,  01) 

Every reduction in this sequence must be by Axiom [context,,]; 
by expanding the context E [ ]  in each reduction to E [ ] ;  s2 we 
obtain 

(s1; S 2 , 0 )  -* ( sk ip;  S 2 , 0 1 )  



Since 

s2,  ~ 1 )  ( ~ 2 7  01 )  

by Axiom [context,,] via Axiom [comp,,] and the empty con- 
text [ ] ,  we have 

( $ 1 ;  8 2 ,  0 )  H*  ( sk ip;  ~ 2 , ~ l )  - ( S Z ,  01) 

(e) We prove this direction by induction on the length k of the derivation 
sequence ( s ,  a )  -* a'. 

basis: If k = 0 then the result holds vacuously. 

induct ion:  We proceed by case analysis of the rule used to obtain the first 
reduction in the derivation sequence. 

Axiom [skip,,]: Immediate. 

Axiom [context,,]: We claim that if ( s ,  a )  H ( s 2 ,  az) then either5 

( 3 , ~ )  - (s2,a2); Or 
( s Z ,  a2 )  H (s3, 03) by Rule [context,,] via Rule [comp,,] and 
( s ,  0 )  - (337 03); or 
s2 = sk ip  and ( s , a )  - 0 2 .  

This is all we need to  prove, since 

if ( s ,  a )  - ( s2 ,  a2 ) ,  then applying the induction hypothesis 
t o  ( s2 ,  0 2 )  H*  a' we get ( S Z ,  02 )  -* a'; 
if ( s2 ,  0 2 )  I-+ ( S Q ,  03) and ( s ,  a )  - (s3,  a3),  then applying 
the induction hypothesis to (s3,  a3) H *  a' we get 

(s3, ~ 3 )  -* 0' 

if s2 = sk ip  and ( s ,  a )  + a2, then ( s k ip ,  a2 )  - a:! b y  Ax- 
I iom [skip,,] SO a2 = a' and we have ( s ,  a )  - a . 

We prove our claim by induction on the structure of the context 
E [ ]  used in the reduction ( s ,  a )  I-+ ( s 2 ,  a2).  

E = [I: Straightforward case analysis of the - axioms. 

E = E'; sl: We know by Axiom [context,,] that there exist state- 
ments s' and s; such that s = E [s'], s~ = E [s;], and 

'Note that in essence we are creating a bisimulation between transition semantics - 
configurations and reduction semantics configurations. This idea is discussed further in 
Section 3.1. 



Thus (E1[s' ] ,a)  H (E'[sh],az),  and by  the induction hy- 
pothesis either 

a (E'[sl] , a )  -+ (E1[s!J, a2 ) ,  in which case 

(E[sl l ,  a )  ---+ (E[ s i l ,  0 2 )  

by Rule [camp:,]; 
(E1[s ; ] ,  0 2 )  H (s:, 03)  and (E1[s l ] ,  a )  + (s:, a3) ,  in 
which case 

(E[s/21, (72)  - (4; S 1 , ~ 3 )  
and 

( E [ s l ,  a )  - (4; Sl, 0 3 )  

E1[s!J = skip and (E1[s'] ,  a )  - 0 2 ,  in which case 

(E[sl l ,  0 )  - (31, ~ 2 )  

and 

(E[s i l ,  0 )  - (s1,az)  



2 Expressiveness of Operational Semantics 

In this section we explore the expressive power of the three forms of opera- 
tional semantics. We do this by extending the language While introduced in 
the last section, and comparing the ease with which the different approaches 
to  semantics capture the meaning of the new language constructs. 

2.1 Abortion 

First we add an abortion command to  the language. This command stops 
the execution of the complete program. We will explore several alternatives 
of what this means, but first let us give the syntax for While with the new 
command. 

s ::= x:=eIskipIsl;sz  Iifethenslelses21 
while e do s I abort 

2.1.1 Sticky Semantics 

The initial semantics we will consider for our extended language is given by 
the same rules as the semantics for While without the abort command. 
Thus in the transition and reduction semantics, abort results in a "stuck" 
configuration, since no rule applies. Similarly, in natural semantics, abort 
results in no relation holding. Hanne and Flemming Nielson conclude that 
abort is semantically equivalent to  while true do skip in natural se- 
mantics, since both statements fail to converge to a value [NN92]. But for 
transition semantics they conclude that the two are distinguished: one re- 
sults in a stuck configuration and the other in an infinite derivation. This 
distinction is accurate, but relies on their choice of definition for semantic 
equivalence.6 They define two programs to  be semantically equivalent with 
respect to a transition semantics if, when started in the same state, both 
terminate in the same state or both have infinite derivation sequences. For 
natural semantics, they define two programs to be semantically equivalent 
only if they both converge to the same final state. Note, however, that since 
we have not changed the semantics, the equivalence results from Section 1.5 
still hold. So if we instead define two programs to  be semantically equivalent 
with respect to  a semantics if the semantic function returns the same value 
for both programs, none of the semantics distinguish looping from abortion. 

6 . .  . and on their semantics, a s  we'll see shortly. 



(abort ,  a) - (a) [abortts] 

Table 4: Extension to Transition Semantics for Abnormal Termination 

Table 5: Extension to Natural Semantics for Abnormal Termination 

The definition of semantic equivalence we choose to use will largely depend 
upon our focus. If we are primarily concerned with the specification of the 
meanings of programs: the definition derived from the semantic function is 
appropriate. If we are interested in proving properties of a program based 
on the derivation of its meaning, then a definition based on the relation -, 
4, or - is appropriate. 

2.1.2 Abnormal Termination Semantics 

With the semantics given in the last section, abortion and looping were 
indistinguishable at the level of the semantic function; the function only 
gives a result for normally terminating programs. However, it is possible for 
the semantic function to give values for all terminating programs by having 
the function return both a final state and a termination s t a t u ~ . ~  To do this, 
of course, we must change our semantics. 

Tables 4,5, and 6 provide additional rules for the transition, natural, and 

'This may seem like wanting a formal semantics just for its own right. But in fact we 
may want it to avoid ambiguity or lack of precision in a language specification, even if we 
do not intend to formally manipulate the semantics. 

'To be fair to the Nielsons, they do qualify their conclusion with this possibility. 



( E  [abort], a) - (a) [abort,,] 

Table 6: Extension to  Reduction Semantics for Abnormal Termination 

reduction semantics of While with abortion for this purpose. Basically, the 
abort command results in its state being tagged; commands occurring after 
an abortion have no effect. The semantic functions must now be changed to 
recognize the tagged state. The new semantic functions are defined by 

(normal, a') if (s, a) -* a' 
(abnormal, a') if (s, a) -* (a') 

(normal, a') if (s, a) -U. a' 
sns [ ~ ] a  = (abnormal, a') if (s, a)  J. (a') 

(normal, a') if (s, a) -* a' 
S,[s]a = (abnormal, a') if (s, a) -* (a') 

2.1.3 Exit Semantics 

Another way to view the abort command is as a way to specify normal 
termination from an arbitrary point in the p r ~ g r a m . ~  The rules specifying 
the transition semantics and natural semantics are the same for exit and 
abnormal termination semantics. The reduction semantics change slightly 
as shown in Table 7. The new semantic functions are defined by 

S,[sja = a' if (s, a) J. a'or (s, a) 4 (a') 

Note that the transition and natural semantics must still distinguish be- 
tween normal and "abnormal" termination in the rules in order to avoid the 
statements following the abort from having an effect on the state. These 
semantics continue to  consider each statement after the abort, until the end 

'exit would be a more usual name than abort for the command with this meaning. 

16 



(E [abort], a) - a [exit,,] 

Table 7: Extension to  Reduction Semantics for Exiting Termination 

of the program is reached. In the reduction semantics this is not necessary 
because of its use of evaluation contexts rather than proof rules; in particu- 
lar, a conclusion of an outer rule cannot be used as a premise. Thus at the 
outer level we can specify that the "execution" of the program should halt 
when an abort command is encountered; the semantic function is now the 
same as it was for the original transition semantics for While .  

2.1.4 Conclusions 

Since transition semantics and reduction semantics specify the "small steps" 
of execution with their relations, they allow the distinction between looping 
and abnormal termination to be reflected at the level of that relation. By 
abstracting away from the details of computation, natural semantics also 
abstracts away from this distinction, leaving it in the derivation tree. With 
any of these forms of semantics, abnormal termination may be encoded into 
the state to raise its visibility to the relation or semantic function level. 

In this section we have also seen that the bilevel rules and evaluation con- 
texts of reduction semantics seem to allow easier specification of aberrations 
from the normal sequential flow of control. 

2.2 Non-Determinism 

We now turn to  another language construct: non-deterministic choice. The 
syntax for our language with this feature is given by 

s ::= x:=eIskipIsl;s21ifethenslelses21 

while  e d o  s I sl o r  s2 

The command sl or s2 can result in the execution of sl or in the execution of 
s2; either one is okay. The extensions to  our semantics for this construct are 
given in tables 8, 9, and 10.'' Note that non-determinism in the language 

''The extensions to the transition and natural semantics for non-determinism are taken 
from [NN92]. 



(s1 01 ~ 2 , g )  --+ ( 5 2 , ~ )  [or&] 

Table 8: Extension to Transition Semantics for Non-Determinism 

Table 9: Extension to Natural Semantics for Non-Determinism 

results in non-determinism in the semantics. Whereas before the form of 
the program uniquely determined the derivation tree or sequence, now more 
than one rule may be applicable at any given time. Also note that it is now 
possible for a program to have different meanings depending on the choices 
made. Thus to  keep our semantic function well-defined we must allow it to 
return a function mapping a state to a set of states: 

S : Stmt -+ (State + P(State)) 

where P ( X )  is the power-set of X. The new definitions for the semantic 
functions are 

Non-determinism also introduces the possibility of a choice between a 
terminating and non-terminating branch, e.g. 

((x := 2; x := x + 2) or (while true do skip)) 



Table 10: Extension to  Reduction Semantics for Non-Determinism 

The Nielsons observe that the natural semantics give only 

(((x := 2; x := x + 2) or (while t r u e  do skip)), a) lJ a[x  I+ 41 

whereas the transition semantics (and reduction semantics) give two deriva- 
tion sequences: one finite and the other infinite [NN92]. Thus they conclude 
that with natural semantics non-determinism suppresses looping, if possible, 
while transition semantics does not suppress looping. 

This also is a superficial analysis1': in natural semantics looping is ex- 
pressed as an infinite derivation tree - such a derivation tree is still possible 
for the given statement. In transition semantics (and reduction semantics) 
looping is expressed as an infinite derivation sequence, which we've already 
mentioned can occur with the above statement. The difference is the level 
a t  which the looping appears. For natural semantics, it is in the proofs of 
the lJ relation, so the relation doesn't hold for infinite loops.12 Since looping 
appears in the derivation sequence for transition and reduction semantics, 
the + or t+ relation emphatically holds in the case of an infinite loop 
- an infinite chain of derivations is formed. At the level of the semantic 
function, all three semantics are still equivalent; that is, given a statement 
and state, all three functions return the same (perhaps empty) set of states. 
Only choices resulting in termination are reflected in the result of the se- 
mantic function. In that sense, all three semantics suppress looping, and 
only statements that always loop return an empty set of states. In this case, 
whether our desire is to simply specify in a formal manner the meaning of 
non-deterministic programs, or we wish also to use the semantics to  prove 
properties of a program in the language, all three semantic styles are equally 
useful in capturing non-determinism. 

''Also at issue is whether the suppression of looping is a desirable characteristic. We 
may wish our semantics to reflect the possibility of looping. 

''Note that this makes the .lJ relation only semi-decidable, while the + and - rela- 
tions are decidable. Of course, -+* and w* are only semi-decidable . . . 



2.3 Parallelism 

Our third extension to  the language While is to  introduce a command 
that allows the execution of (compound) statements to be interleaved. Our 
syntax is now 

s ::= x := e I skip I sl; s2 I if e thensl elses2 I 
while e do s 1 sl par s2 

Tables 11 and 12 extend the basic transition and reduction semantics for 
While to include this feature.13 Note that the use of contexts allow a very 
concise specification of interleaving in the reduction semantics. The Nielsons 
give the following strawman extension for the natural semantics of While: 

They then conclude: 

However, it is easy to  see that this will not do because the 
rules only express that either sl is executed before s2 or vice 
versa. This means that we have lost the ability to  interleave the 
execution of two statements. Furthermore, it seems impossible 
to  be able t o  express this in the natural semantics because we 
consider the execution of a statement as an atomic entity that 
cannot be split into smaller pieces. 

Thus we have encountered a feature which one form of semantics is not sim- 
ply less suited to  express - rather the form of semantics is not even capable 
of expressing this feature. We explore this issue further in Appendix A 
through a sequence of additional attempts to  capture parallelism with nat- 
ural semantics. 

2.4 Block Structure 

The final construct we shall consider for our language is block structure. 
This feature allows variables with limited scope. The syntax for While 

13The extension to the transition semantics for parallelism is taken from [NN92]. 



( ~ 1 7  a )  - ( s ; ,~ ' )  
(SI par 3 2 , ~ )  - (s; par s2,a1) 

( ~ 2 7 0 )  - ( 4 ,  ul) 
(s1 par SIL , a )  -- ( ~ 1  par s'2 0') 

Table 11: Extension to Transition Semantics for Parallelism 

(skip par skip, a )  ...t (skip, a)  [parw] 

Table 12: Extension to Reduction Semantics for Parallelism 



with block structure is given by 

s ::= x := e I skip I s l ;  s2 I if e then s l  else s2 I 
while e do s I begin d s end 

d ::= varx := e I dl; d2 

Each block begins with a sequence of variable declarations d. The scope 
of these variables is limited to the block itself; such a variable may only be 
referenced in the succeeding declarations and in the code s for the block. The 
body of the block may itself contain other blocks, allowing nested scopes. 

An extension to the natural semantics to encorporate block structure is 
shown in Table 13.14 A new relation J,ld is introduced for the declarations; 
the relation (d, a) Ud a' holds when a' is the extension of a to include the 
variables declared in d. Note the manipulation of the state in Rule [block,,] 
to  limit the scope of the local variables. 

The Nielsons state 

It is somewhat harder to specify a [transition] semantics for 
the extended language. One approach is to replace states with 
a structure that is similar to the run-time stacks used in the 
implementation of block structured languages. Another is t o  
extend the statements with fragments of the state. 

Indeed, blocks are more difficult to express in transition semantics and reduc- 
tion semantics than in natural semantics. This is because natural semantics 
allow us t o  deal with the block and its effects as a whole. Since transition 
and reduction semantics focus on the incremental steps of execution, block 
entry and block exit are separate in the derivation sequence. Thus we need 
to  somehow pass along the block's set of variables and state at  block entry 
time so that when the end of the block is reached its local variables can be 
removed and any global variables shadowed by them can be restored. 

Table 14 gives an extension to the transition semantics using states a that 
map from locations to values and environments p that map from variables 
t o  locations.15 This separates the issue of linking names to variables (since 
more than one variable can have the same name with block structure) from 

'*The extension to the natural semantics for block structure is a slightly modified version 
of that in [NN92]. 

15The extension to the transition semantics for block structure is patterned after the 
semantics in [Plo81]. 



( d ,  0 )  4 d  0' ( s ,  u') 4 U" 

( b e g i n  d  s  e n d ,  a )  4 at ' [DV(d)  I+ a] 

( v a r x  : = , , a )  &d a [ x  H & [ e ] a ]  

( d l ,  0 )  U d  0 1  ( d 2 , m )  U d  g2 

( d l ;  d 2 , a )  U d  0 2  

D V ( v a r  x  := e )  = { x )  

D V ( d l ;  d 2 )  = D V ( d l )  U D V ( d 2 )  

Table 13: Extension to Natural Semantics for Block Structure 



the issue of linking variables to values. Since each variable has its own 
location, an assignment to a local variable doesn't affect any global variables 
with the same name. Thus only the environment, which is concerned with 
the issue of linking names to variables, needs to be restored at block exit 
time. This is done by keeping the block's extension to  the environment 
separate from the enclosing environment. The rules of Table 1 would also 
have t o  be modified to encorporate the environment; for example, Rule 
[asgt,] would become 

p  I- (x := e, a) --, a [ p ( x )  o £ [ e ] ( a  0 p)] 

Note that the rules use a modified syntax to treat environments as decla- 
rations. This extension to  the declaration syntax is only for the use of the 
semantics; the user of the language doesn't see this change. 

For the reduction semantics in Table 15 we followed the Nielson's sug- 
gestion of replacing states a with stacks of states C. We use the notation 
a; C to  represent the result of pushing state a onto stack C. At block entry 
a new local state is pushed onto the stack for each local variable; at  block 
exit these states are removed.16 

It is clear that the natural semantics have an advantage over the tran- 
sition and reduction semantics for capturing block structure. Its level of 
abstraction makes it easier to  specify things a t  the block level. It should be 
noted, however, that techniques such as those used in the extension to  the 
transition semantics here become necessary for natural semantics as well t o  
model features such as procedures and static scoping.17 Natural semantics 
still retains an expressive advantage, but the advantage becomes less than 
that shown here. 

2.5 Expressivity Conclusions 

Natural semantics distinguishes itself from transition and reduction seman- 
tics in its abstraction away from the detailed steps of computation. As we 
have seen, this is an advantage for specifying "large granularity" features 
such as blocks, but a disadvantage for "small granularity" features such as 
interleaving. Conversely, transition semantics and reduction semantics more 
easily express "small granularity" features. 

161t is possible to collapse these states so that each block has a single state on the stack; 
this complicates the reduction semantics slightly. 

 h he interested reader is referred to [NN92] for a natural semantics of an extension of 
While with these features. 



d ::= v a r x  := e 1 p I dl ;  d2 

P I- ( d ,  0 )  -d (d', a') 
p I- ( b e g i n  d s e n d ,  a )  - ( b e g i n  d' s e n d ,  a') 

PIP7 I- ( s ,  0 )  - ( s t ,  0') 

p I- ( b e g i n  p' s e n d ,  a )  - ( b e g i n  p' s' e n d ,  a') 

P [ P l  I- ( 3 7 0 )  - 0 I 
p I- ( b e g i n  p' s e n d ,  a )  + a' 

p t- ( v a r x  := e,  a )  -d ( { x  H t ) ,  a [ t  H &[e](a  o p)])  where t is a new location [decl~,] 

P I- ( P I ;  P", a )  -d (P'[P'I] ,  0 )  [decr;sl 

p I- ( d l ,  0 )  -+d (d: 0') 

p I- ( d l ; d 2 , 0 )  +d (d:;d2,at) 

p t (x)  if x E dom(pt)  
p (x )  otherwise 

Table 14: Extension to Transition Semantics for Block Structure 



d ::= var x := e I novar ( dl ;  d2 

(begin dl ;  d2 s end, C )  - (begin dl begin d2 s end end, C )   block^,] 

(begin var x := e s end, C )  -u (begin novar s end, { x  H C[e]C);  C )  [block:s] 

(begin novar skip end, a ;  C )  - (skip, C )  [bl o ~ l c ; ~ ]  

E ::= [ I  I begin novar E end I E ;  s 

a [ x  H v ] ;  C i f x  E d o m ( a )  
(u;  C ) [ X  H V ]  = 

a ;  ( C [ x  H v ] )  otherwise 

a ( x )  if x E dom(o)  
(0; C > ( z )  = C ( x )  otherwise 

Table 15: Extension t o  Reduction Semantics for Block Structure 



Reduction semantics distinguishes itself from transition semantics (and 
natural semantics) in that its use of bilevel rules and evaluation contexts 
allow it to be more flexible and powerful. This especially shows in the speci- 
fication of non-sequential control constructs such as abortion or interleaving. 
Reduction semantics have also been used for concise semantics of exceptions 
and continuations in ML [WF91]. On the other hand, the evaluation con- 
texts and bilevel rules also give reduction semantics a subtlety that makes 
its semantic specifications more difficult to write and understand. 



3 Applications of Operational Semantics 

In this section we will explore two applications of operational semantics. 
Our intent is to  compare the utility of the three approaches to  operational 
semantics for these applications. 

3.1 Implementation Correctness 

The first application we will look at is the correctness verification of a lan- 
guage implementation. We will provide an implementation of While via 
a translation into the assembly language of an abstract machine. Then we 
shall proceed to  prove that for any While program, the semantics of the 
assembly language translation is the same as that of the original program. 

The abstract machine that we will use has configurations of the form 
(C, E , S ) ,  where C is code (a  sequence of instructions), E is an evaluation 
stack (a list of values), and S is the machine's storage (a  mapping from 
variables t o  values).ls The machine's instructions are given by 

I ::= FETCH-2  I STORE-x 1 NOOP I 
BRANCH(C,  C) I LOOP(C, C) 

Additional instructions are necessary to compute expression values, but we 
shall not be concerned with that here. Sequences of instructions are built 
using the : operator: 

and the :: operator is used to  append two sequences: 

In order to  accomplish our task of proving an implementation correct, we 
will need a formal semantics for this assembly language. Thus we define in 
Table 16 the D relation between abstract machine configurations. If y y', 
then one step of execution transforms configuration y into configuration 7'. 
Note that the machine halts with a configuration of the form (E, E, S). The 
semantic function for the machine is defined by 

C,, : Code + (State -+ State) 

''The abstract machine we are using comes from [NN92]. 



(FETCH-x : C, E, S )  D (C, S(x) : E, S )  [f etcham] 

(STORE-x : C, 2 : E, S)  D (C, E, S[X o z ] )  [stoream ] 

( N O O P  : C, E, S) D (C, E, S) [ n o o ~ a m ]  

(BRANCH(Cl ,C2)  : C, t : E, S )  D (CI :: C, E, S )  if t = true [branch:ze] 

(BRANCH(C1,  C2) : C, t : E, S )  D (C2 :: C, E ,  S) if t = false [branch{$e] 

(LOOP(Cl,C2) : C, E, S) D 
(Cl :: (BRANCH(C2 :: (LOOP(C1, C2) : E), N O O P )  : C),  E, S )  [aoo~am] 

Table 16: Abstract Machine Semantics 

Cam[C] S = S' if (C, E ,  S )  t>* (E, E, St) 

where C o d e  is the set of all sequences of machine instructions. 
We now specify the translation from Whi l e  to  our machine language. 

We do this via a function 

Is : Stmt + C o d e  

We shall assume the existence of a translation function for expressions:19 

TE : Exp -t C o d e  

The translation function for statements is given in Table 17. 
We will now prove the correctness of this translation; that is, we will 

prove that for any Whi l e  program, the semantics of the program is pre- 
served by the translation. For convenience, we define the following semantic 
function 

stt-[s] = (Cam 0 Is) [sI 
Since we have not specified the semantics of expressions in W h i l e  nor their 
translation t o  the machine language, we shall assume the following lemma.20 

lgThe curious reader is referred to [NN92] for a definition of this function. 
''See [NN92] for a proof of this lemma. 



Ts[skip] = NOOP : E (2) 

Ts[if e then sl else s2] 
= l ~ [ e ]  :: (BRANCH(Ts[sl], Ts[s2]) : E) (4) 

Table 17: Translation of While Statements 

Lemma 4 For every expression e in While and storage mapping S, 

(TE [[el , € 7  S )  * ( € 7  &[ells : € 7  S) 

We first prove the correctness of the implementation with respect to  the 
natural semantics for While. 

Theorem 5 For every statement s of While, S,,[s] = St,[sj. 

Proof: This is a modified presentation of the proof in [NN92]. We have to 
show that for all states a and a' 

E = E and (s,a) 4 a' H (Ts[s]],~,a) r>* ( E , E , ~ )  

( J )  We prove this direction by induction on the height h of the derivation 
tree for (s, a) 4 a'. 

basis: If h = 0 then the tree consists of one of the axioms [asg,,], [skip,,], 
or  while^^'""]. We shall only show the proof for Axiom [asg,,] 

Axiom [asg,,]: We are given (x := e, a)  4 a[x w &[ego]. From (1) 
we have 

TS[x := e] = TE[e] :: (STORE-x : E )  



In general, given (Cl, E, S) D* (C:, El, St), we can conclude 
(Cl :: C2, E, S) D* (Ci :: C2, El, St) for any C2. Thus, applying 
Lemma 4, we get 

We can then apply Axiom [store,,] to get 

induction: For h > 0 we proceed by case analysis of the last rule in the 
derivation tree. We only show the proofs for the rules [compn,] and 
[i fze]. 
R u l e  [camp,,]: We are given 

(s1;s27u) u 
From (3) we have TS[s1; s2] = TS[s1] :: TS[s2]. The applica- 
tion of the induction hypothesis to  the premises (sly a) a" and 
(s2, a") 4 u t  yields 

(%[~111, €7  0 )  D* (€7 €7 all) 

and 

(%[~2] ,  € 7  all) D* (€7 € 7  0') 

Thus 

(Ts [~ i ]  :: Ts[s2D7 E7 6 )  D* (%[32]I7 c7 a'') 

D* ( € 7 € 7 a 1 )  

R u l e  [i fze]: We are given 

(if e t h e n s l  elses2, a )  4 a' 

and &([e]o = true. Equation (4) gives us 

Ts[if e t h e n  s l  else s2] 
= 7 ~ [ e ]  :: (BRANCH(Ts[s1], Ts[s2]) : r )  

Applying Lemma 4 yields 



Since &[e]a = true, Axiom [b~anch",',"~] gives 

(BRANCH(%[si], %[~2]) : E, &[e]u : E, a )  I> (r[S[si], E, 0) 

Now by applying the induction hypothesis to the premise (sl ,  a )  J.l a' 
of Rule [i fz] we get 

(%[~1], €7 6 )  D* (€7 €7 0') 

Thus putting it all together, 

(+) We prove this direction by induction on the length k of the computation 
sequence 

basis: If k = 0 then the result holds vacuously. 

induction: For k > 0 we proceed by case analysis of the statement s. We 
show the proof only for assignment, composition, and if statements. 

S t a t emen t  x := e: By (1) we have 

Ts[x := e] = TE[e]l :: (STORE-x : E) 

We are given 

(&[el :: (STORE-x : E), E, a) Dk (6, E, a') 

We claim without proof that a result analogous to  Lemma 1 holds 
for the abstract machine semantics. Thus there exists a machine 
configuration of the form (E, El, a") such that 

and 

(STORE-x : E, E', a") D k2 (E, E, a') 

where k1 + k2 = k. From Lemma 4 we get that E' = £[e]a : E and 
a" = a. Then by Axiom [store,,], E = E, and a' = a[x I+ &[e]a]. 
It now follows from Axiom [asg,,] that 

(x:=e,a).l,la' 



Statement sl;  s2: We are given that 

(GBs11 : :G[s2] ,  E ,  0 )  bk ( € 7  E ,  a l )  

There must be a configuration ( 6 ,  El, a") such that 

and 

( 7 3 ~ 2 1 ,  El, a") D k2 ( E ,  E ,  a') 

where kl + k2 = k. The induction hypothesis applied to  these 
computation sequences yields El = c ,  ( s l , a )  4 a", E  = E ,  and 
(s2,  a") 4 a'. Thus 

by Rule [camp,,]. 
Statement i f  e  then sl else s2: By (4)  

Ts[if e  then sl else s2]l 
= TE[[e] :: (BRANCH(Tsl[sl] ,  Tsl[s2]l) : E )  

We are given that 

('&~l[e] :: (BRANCH(ls[s l] l ,  lsl[s2]) : E ) ,  E ,  a )  pk ( E ,  E ,  a') 

Thus there must be a configuration of the form ( E ,  El, a") such 
that 

and 

(BRANCH(G[s l l ] ,  G [ s 2 ] )  : E ,  El, a") bk2 ( E ,  E ,  a') 

where kl + k2 = k. By Lemma 4, El = &[e]a : E and a" = a. I f  
&[e]a = true then we have 

The application of the induction hypothesis to  the latter part of 
this computation sequence yields E = E and ( s l , a )  4 a'. Thus 
Rule [i fee] gives 

( i f  e then sl else s2, a )  4 a' 

The case for &[e]a = false is similar. 



Since we proved the three semantics equivalent in Section 1.5, we can 
now conclude that the implementation of While is correct with respect to 
all three semantics. However, since our purpose is to  compare the utility of 
each approach to the task, we will also directly prove the correctness with 
respect to transition and reduction semantics. 

Theorem 6 For every statement s of While, Sts[s] = St,[s]. 

Proof (sketch): We have to show that for all states a and a' 

E = E and (s, a) -* a' -3 (%is], E, a) D* (E, E ,  a') 

We first define the following bisimulation relation between configurations of 
the transition semantics and those of the abstract machine semantics: 

(+) We claim that if yts xts yam and yts - y;, then there exists a con- 
I figuration y:, such that yam b+ y:, and y,, xts y:,. By an induction on 

the length of the derivation sequence (s, a) -* a', this claim extends to se- 
quences of transition steps, completing the proof in this direction. We prove 
the claim by induction on the height h of the derivation tree of yts - yls. 

basis: If h = 0 then the tree consists of one of the axioms [asgts], [skipts], 
false false 

[if:",'""], [i fts 1, [while:iue], or [while,, 1. We shall only show the 
proof for [asgts] and [i f:t,Tue]. 

Axiom [asgt,] : We are given that 

(x := e,u) - a[x H &l[e]a] 

By (1) Ts[x := e] = TE[e] :: (STORE-x : E). Lemma 4 gives us 

(TE[e] :: (STORE-x : E), E ,  a) 
D* (STORE-x : E, £l[e]a : E, a) 

Finally 

(STORE-x : E, &[e]a : E, a) D (E, E, a[x I+ &l[e]a]) 

by Axiom [store,,]. 



Axiom [i f,lue]: We are given that 

(if e t h e n  s l  else s 2 ,  a )  ---t (SI, 0 )  

and &[e]a = true. By (4) 

Ts [if e t h e n  sl else s2] 
= TE[e] :: (BRANCH(Ts[sl], Ts[s2]) : E )  

Lemma 4 gives us 

Finally, since &[e]a = true, Axiom [b~anch",',"~] gives us 

induction: For h > 0 we proceed by case analysis of the last rule in the 
derivation tree. We only show the proof for Rule [compFs]. 

Axiom [compL]: We are given that 

By (3) TS[s1;s2] = Ts[s1] :: ?.s[~2]- Applying the induction 
hypothesis to the premise (sl, a )  - a' yields 

(+) Assume that -yts =ts and 

1 2 k 
Yam D Yam D . . . D Yam 

where k > 1 and only and ytm have empty evaluation stacks. We claim 
k that there exists a configuration y:, such that ~ t ,  - y:, and y:, mtS yam. 

Again this claim extends by induction to complete the proof in this direc- 
tion. The claim is proven by case analysis of the statement in yts. The 
proofs of each case are similar to those in the (+) direction, except we must 
also demonstrate that no intermediate yi, has an empty stack. As long as 
expression evaluation doesn't leave an empty stack at intermediate stages, 
the proof is straightforward. 

The proof of correctness with respect to reduction semantics is similar 
in approach to  that for transition semantics, but is much more complex. 
To establish a bisimulation relation between configurations of transition se- 
mantics and configurations of abstract machine semantics, we would need 



(2 := e ,  a )  - (noop, a[x &[e]a]) [ a s g T S ]  

(skip, a )  - (noop, a )  [ S ~ ~ P T S ]  

(noo~;  s 7  a )  - ( ~ 7  4 [ c o m p T S ]  

(if e then sl else s2, a )  .u (sl , a )  if E[e]a = true [ifyt2‘e] 

(if e then sl else s p ,  a )  - (SZ, a )  if E[e]a = false [i f,f,"'""] 

(while e do s,  a )  .u (s; while e do s, a )  if E[e]a = true [while?"] 

(while e do s, a )  - (noop, a )  if E[e]a = false [ ~ h i l e ! ~ ' ~ ~ ]  

if ( s  a )  .u ( s t  a )  [context,,] 

(noop, a )  H a OOPT ,I 

Table 18: Modified Reduction Semantics for While 



to  distinguish between skip commands in the original while  program and 
those introduced by the - relation. To do this we could change all occur- 
rences of skip in the - and - axioms to a new statement (say noop) and 
add the axiom 

(skip, a) ...t (noop, a) 

The resulting semantics is shown in Table 18; the equivalence of this se- 
mantics with that of Table 3 is easily shown. We can now establish the 
bisimulation relation 

(s, u) xrs (TS[s], E, a) if s # E [noop] for any context E. (6) 

Note that, in contrast with the bisimulation for transition semantics, there 
are configurations on both sides that do not occur in the relation. 

T h e o r e m  7 For every statement s of While ,  S,,[s]l = St , [ s ] .  

P r o o f  (sketch): We want to show that for all states a and a' 

( J )  Assume that y,?, x , ,  yam and 

where k > 1 and only 7:, and 7:s contain statements that are noop-free. 
We claim that there exists a configuration 7: ,  such that yam b+ y:, and 
k y,, x,, y:,. This claim extends by induction on the length of the derivation 

sequence to complete the proof in this direction. Since y:, is noop-free, the 
reduction 7:, - 7 ;  cannot be by Axiom [noop,,]. Thus we prove the claim 
by structural induction on the context E used in Axiom [context,,] to  derive 
this reduction. 

basis: We are given that E = [I and proceed by case analysis of the 
statement in 7:,. We shall only show the proof for x := e and 
if e t h e n  s l  else 52. 



Sta t emen t  x := e: By Axiom [asg,,] 

(x := e, a )  - (noop, a[x H f[e]a]) 

Now Axiom [noop,,] applies to  give 

Since a[x H &[e]a] does not contain any occurrences of noop, it 
is y:3. By (I), Ts[x := e] = TE[e] :: (STORE-x : 6 ) .  Applying 
Lemma 4, we get 

We can then apply Axiom [store,,] to get 

(STORE-x  : E, &[e]a : E, a) D (E, E, a[x w &[e]a]) 

Since 

a[x &[eBal xr3 ( 5  E, a[x ++ f[ellal) 

we are done. 

S t a t emen t  if e t h e n s l  elses2: We will assume &[e]a = true; the 
case for &[e]a = false is similar. By Axiom [i f,2Lue] 

(if e t h e n  sl else ~ 2 ,  a )  ++ ( ~ 1  a )  

Since if e t h e n  sl elses2 is noop-free, sl must be, so y:, = (sl ,  a ) .  

BY (417 

Ts[if e t h e n  sl else s2]1 
= TEl[e] :: (BRANCH(Ts[sl], TS[s2]) : 6 )  

Applying Lemma 4 and then Axiom [branch:,""] we get 

induction: The proof for context E = E'; s follows directly from the in- 
duction hypothesis. 

((T) Assume that y,, x,, yam and 

1 2 k Yam p Yam D . . . I> Yam 



where k > 1 and only y:, and y,k, have empty evaluation stacks. We claim 
k that there exists a configuration y:, such that y,, -+ y:, and y;, x,, y,,. 

Again this claim extends by induction to complete the proof in this direc- 
tion. The proof of this claim is similar to the analogous one for transition 
semantics. 

The Nielsons comment 

. . . [the bisimulation approach] relies on the two semantics 
proceeding in lock-step: that one is able to  find configurations in 
the two derivation sequences that correspond to one another (as 
specified in the bisimulation relation). Often this is not possible 
and then one has to raise the level of abstraction for one of the 
semantics. This is exactly what happens when the [transition] 
semantics is replaced by the natural semantics: we do not care 
about the individual steps of the execution but only on the result. 

The proof for reduction semantics showed that the lock-step can be some- 
what flexible; in the worst-case the two semantics would only correlate a t  
the beginning and end of the program. Of course, the proof complexity in- 
creases with the length of the derivation sequences between corresponding 
configurations, so the natural semantics does have an edge here. 

Note that what we have really done is introduced yet another kind of 
operational semantics - abstract machine semantics - and proven an equiv- 
alence result for it, like those in Section 1.5. Often it is desirable to  have 
several different semantics for a language, because each is better for certain 
purposes. For example, the abstract machine semantics would be useful 
in guiding or checking a language implementation on an actual machine. 
There are, of course, "non-operational" semantics as well, such as denota- 
tional semantics and axiomatic semantics. One would like to  be certain that 
all the semantics being used for a given language are equivalent. While it is 
difficult to generalize based on the examples here, it appears that the natu- 
ral semantics lead to simpler equivalence proofs than the other operational 
semantics. 

3.2 Type Soundness 

Type soundness is a relationship between a type system and a semantics 
for a given language. If the type system and semantics are sound and the 
type system associates a type r with an expression, then the meaning of the 
expression according to the semantics will have type T .  



The type system of Whi l e  is straightforward. Thus for this section we 
introduce an expression-based language Exp.  The abstract syntax for the 
language is given by 

where c ranges over constants, x ranges over variables, and e, e l ,  and e2 
range over expressions. Included among the constants are the operators :=, 
ref, and !. The reference operator ref applied to  a value evaluates to a 
new location containing that value. The dereference operator ! applied to a 
location evaluates to  the value in that location. The assignment operator := 
applied to  a location and a value changes the location to contain the value. 

The types of E x p  are defined by 

where n ranges over type constants (such as int, bool, etc.), a ranges over 
type variables, and T, TI, and 72 range over types. 

Type schemes capture the notion of polymorphic types, and are defined 

by 

7 )  ::= T 1 va.7) 

We use FTV(7)) to specify the free type variables of type scheme +. A 
substitution S is a map from type variables to types; we shall also apply 
substitutions to types, meaning by this that the substitution is applied to 
all type variables in the type. We say that a type scheme 7 )  = V a l . .  .a,.r 
generalizes a type T' (written 7 )  + TI) if there exists a substitution S with 
domain {al, . . . , a,} such that S(T) = TI. 

Finally, we introduce type environments that map from variables to type 
schemes: 

I' : Var -, Typescheme  

to give type bindings to free variables. The type inference system in Table 19 
gives type judgements of the form r D e : T, indicating that expression e has 
type T in type environment I'.21 

We must be careful how we infer types in a language such as Exp with 
both references and polymorphism. The problem is illustrated by the fol- 
lowing example:22 

l e t x  = ref(fny => y ) i n ( f n z  => (!x)true)(:= x ( f n n  => ( + I n ) ) )  

21This type inference system is from [TofSO]. 
"This example is from [WF91]. 



I? b el : r1 r [x  I+ Closer(rl)] D e2 : 72 
if el is non-expansive [letyy"p"e] 

I' b l e t x = e l i n e 2  : ~ 2  

I' D el  : TI r [x  H AppCloser(rl)] D e2 : 72 
if e l  is expansive 

I' D l e t x  = e l i n e 2 : r 2  [let;y"p"el 

Closer(r) = V a l  . . . a,.r where {al, . . . , a,) = FTV(r )  \ FTV(I') 

AppCloser(r) = V a l  . . . an.r 
where {al, . . . , a n )  = (FTV(r)  \ FTV(I')) f l  AppTypeVar 

Table 19: Type Inference System for Exp 



If the type of z is generalized to Va.(a t a) ref, then x will be treated as hav- 
ing type (int -+ int)  ref during the assignment and type (bool t bool) ref 
during the dereference. The result is that the above expression is well-typed, 
even though it evaluates to (+ 1 true) .  

To avoid this we ensure that stored values are not used p ~ l y m o r ~ h i c a l l y . ~ ~  
Thus we divide our type variables into two disjoint sets: applicative type 
variables {t, tl, . . .) and imperative type variables {u, ul,  . . .}. Imperative 
type variables will range over types of values that are (perhaps) stored in 
one of the locations; applicative type variables will range only over types of 
values that we a,re certain are not stored in any location. We will use the 
term imperative type to describe a type containing no applicative type vari- 
ables. Thus for a value to be stored, it must have an imperative type. We 
also require substitutions to map imperative type variables to  imperative 
types. 

Similarly, we distinguish between expressions whose evaluation might 
introduce new locations, which we call expansive, and expressions which 
definitely do not, which we call non-expansive. For our purposes it suffices 
to  consider function applications and let expressions to be expansive and all 
other expressions (viz., all values) to be non-expansive. The type inference 
rules for let treat non-expansive and expansive expressions differently. The 
types of non-expansive expressions are fully generalized (Rule while 
the types of expansive expressions are only generalized over applicative type 
variables (Rule [Iet:y"p"e]). This latter restriction prevents the types of any 
new locations introduced in the expansive expression from being generalized. 

The types of the language constants are give by a function 

TypeOf : Const  -t Typescheme  

where 

TypeOf(ref) = Vu.u -+ u ref (8) 

TypeOf (!) = Vt.t ref -t t (9) 

Typeof(:=) = Vt.t ref t t + t (10) 

Note that (8) ensures that every value stored has an imperative type. 
We also extend the type inference system to  apply to  configurations with 

the following definition: 

23See [TofgO] and [WF91] for further information and references on this problem and 
its solution. 



Definition 8 r b (e, a )  : r if the type inference system extended with the 
axioms I' D el : u1 ref,. . .,I' b t, : u, ref, where {el,. . . ,en) is the domain 
of a and 211,. . . , U, are new imperative type variables, proves r b e : T and 
I' DU(!;): u;,for 15 i 5 n. 

In expression based languages, the meaning of a program is defined in 
terms of its evaluation as well as the changes it makes to the machine state. 
Thus our semantic functions will have type 

& : Exp + (S ta te  + Value x Sta t e )  

Mads Tofte gave a natural semantics for Exp using environments such 
as those introduced in Section 2.4 and proved the soundness of the type 
inference system of Table 19 with respect to  those semantics [TofgO]. His 
proof is quite complex, however, and required the invention of a new proof 
technique. 

Andrew Wright and Matthias Felleisen later presented a much simpler 
type soundness proof for a reduction semantics which uses value substitution 
rather than environments [WF91]. Following this lead, Tables 20, 21, and 
22, contain transition, natural, and reduction semantics for Exp using value 
substitution. The corresponding semantic functions are 

C,,[e]u = (v, a') if (e, a )  4 (v, a') 

frs [e]u = (v, a') if (e, a )  -* (v, a') 

We now proceed to prove type soundness with respect to each of these 
semantics. We will need the following lemma about value substitution and 
types.24 

L e m m a  9 If I'[x I-+ V a l . .  .an.r] b e : TI, {al , .  . .,a,,)nFTV(I') = 0, and 
r b v : r, then r D e[v/x] : r'. 

We first prove type soundness for the transition semantics: 

T h e o r e m  10 If b ( e , a )  : r and (e ,a)  -+* (v,a'), then b(v,ul)  : T .  

"Since this lemma is used in all three of the soundness proofs, its proof is not relevant 
to our comparison. The interested reader is referred to [WF91] for a proof. 



( ( f n x  => e)v ,  a )  -+ ( e [ v / x ] ,  a )  [ f  nts] 

( r e f  v ,  a )  - ( l ,  o[l H v ] )  where l is a new location [re f t s ]  

( ! f ,  a )  + ( a ( f ) , a )  [derefts] 

((:= l l ) ~ 2 , 0 )  - (02, ~ [ f l  H v21) [asgtsl 

( e l ,  a )  + (e:,  al> 
( le t  s = el i n  e2, a )  - ( le t  x  = el in  e2,a1) 

( l e t  x  = vl in e2, a )  + ( e z [ v l / x ] ,  a )  [let?S] 

Table 20: Transition Semantics for Exp 



( e ,  0 )  u ( v ,  0') 

(ref e ,  a )  4 (1 ,  a'[t H v ] )  

( e l ,  0 )  u ( ~ 1 , ~ l )  (e2[v1 /x l ,  0 1 )  u ( ~ 2 , 0 2 )  
(let x = el  i n  e2, a )  4 (02, a2) 

where t is a new location [ re fns ]  

v  ::= c J t I f n x = > e I  : = t  

Table 21: Natural Semantics for Exp 



-- - 

( ( f n x  => e ) v ,  a )  - ( e [ v / x ] , a )  [ f  n T S ]  

( r e f  v ,  a )  - (t, a[! H v ] )  where t is a new location [ref,,] 

017 0 )  - (4117 0 )  [derefrs] 

((:= e ) ~ ,  U )  I., ( v ,  v ] )  [asgTS] 

( l e t  x  = v in e ,  a )  - ( e [ v / x ] ,  a )  [let,,] 

(E[eI ,a )  ct (E[e?,  0') if ( e ,  a )  - (e', a') 

Table 22: Reduction Semantics for Exp 



Proof: This theorem follows from Lemma 11 by a simple induction on the 
length of the derivation sequence (e, a) +* (v, a'). 

Lemma 11 If I' b (e,, u )  : r, and (e,, a )  + (e',, a'), then I' D (e', , a') : r,. 
If, furthermore, I' D (eb, a) : r b ,  then I' D (eb, a') : r b .  

Proof: By Definition 8, the type inference system extended by 

I' D ti : u; ref (11) 

for all ti E dom(a) proves r D e, : r, and 

for all ti E dom(a). We claim that if we further extend the type inference 
system with an axiom of the form of (11) for each t; E dom(ui) \ dom(u), 
then I' D e/, : r, and r D a1(t;) : u; are provable in this system, for all 
ti E dom(af). Once we have proved this claim, it only remains to show that 
if I' b eb : q, is provable in the type inference system as extended for a, then 
it is also provable using the system as further extended for a'. But since the 
type inference system as extended for a' includes all rules in the system as 
extended for a ,  this is immediate. 

We prove the above claim by induction on the height of the proof of 
(e,, a )  -+ (eb, a'). We perform a case analysis of the last rule in the proof. 
We show only some of the cases; the remainder are similar and no more 
difficult. 

Rule [asgt,]: We are given I' D (:= tl)v2 : r,, so by the structure of the 
typing rules 

and I' b v2 : 7,. Since e: is v2, it only remains to  show 

for all t; E dom(a). Since el E dom(u), this follows from (12) as long 
as ul is r,. But this is true by the structure of the typing rules, since 
(1 3) holds. 



Rule [reft,]: We are given I' D ref v : T ~ ,  so by the structure of the typing 
rules, T, is of the form uref, and I' D v : u. If we further extend the 
type inference system with the axiom I' D t : uref, then, since eb is t, 
it only remains to  show 

for all ti E dom(u[t I+ v]). Since t is new, this follows for all 
ti E dom(o) from (12), and since I' D v : u, I' D a[t v](t): u. 

Rule [let:,]: We are given I' D let z = el i n  e2, : ra,  SO by the structure of 
the typing rules I' D el : T' and either 

el is non-expansive and I'[x H Closer(rl)] D e2 : Ta; or 

el is expansive and I'[x c-, AppCloser(rl)] b e2 : ra. 

By the premise (el, a) - (ei, a') of Rule [let:,] we know that el is 
not a value, and so is expansive; thus we do not need to consider the 
non-expansive case any further. Thus, by the induction hypothesis on 
the premise, I' D ei : T I ,  I' D ct(t i)  : ui, and 

are provable, for all ti E dom(a1), in the type inference system as 
extended for a'. This latter judgement implies 

Therefore, whether ei is expansive or non-expansive, 

by either Rule [letTy";] or Rule [let;y"&.]. 

Rule [let:,]: We are given I' I> let x = vl inez : ra, so by the structure of 
the typing rules I' b vl : r' and either 

vl is non-expansive and I'[x c-, Closer(rl)] D e2 : ra; or 

vl is expansive and I'[x H AppCloser(rl)] D e2 : T,. 



Since vl is a value, it is non-expansive and we need only consider that 
case. Thus by Lemma 9, I' D e2[vl/z] : r,. Since this rule does not 
change the state, I' D a(t i )  : u; holds for all ti E dom(a) by (12). 

Now we prove type soundness for the natural semantics. 

Theorem 12 If b ( e , a )  : r and (e ,a)  (v,al), then D(v,af) : r. 

Proof: Type soundness with respect to  the natural semantics is an imme- 
diate corollary of Lemma 13. 

Lemma 13 If I' D (e,, g) : T, and (e,, 0 )  U (va, a'), then r D (va, a') : ra. 

If, furthermore, I' D (eb, a )  : r b ,  then D (eb, 0') : r b .  

Proof: By Definition 8, the type inference system extended by 

I' D t; : ~i ref (14) 

for all ti E dom(a) proves r D e, : r, and r b a(t;) : u; for all 1; E dom(a). 
We claim that if we further extend the type inference system with an axiom 
of the form of (14) for each ti E dom(af) \ dom(a), then I' D v, : T, and 
r D af(t;) : u; are provable in this system, for all t; E dom(af). Once we 
have proved this claim, it only remains to show that if r D eb : r b  is provable 
in the type inference system as extended for a, then it is also provable using 
the system as further extended for a'. But since the type inference system 
as extended for a' includes all rules in the system as extended for a, this is 
immediate. 

We prove the above claim by induction on the height of the proof of 
(e,, a )  .& (v,, a'). We perform a case analysis of the last rule in the proof, 
again showing only the more difficult or illustrative cases. 

Rule [asg,,]: We are given r D (:= el)e2 : so by the structure of the 
typing rules I' D el : r, ref and I' D e2 : r,. By induction on the first 
premise (el, a )  .& (el, 01) of Rule [asg,,], the judgements I' btl : r, ref, 
I' b e2 : r,, and I' b al (1;) : u; are provable, for all 1; E dom(al ), using 
the type inference system as extended for 01. Induction on the second 
premise (e2, a l )  4 (02, u2) now yields that 

r D el : ra ref (16) 



are provable, for all ti E dom(a2), using the type inference system as 
extended for 0 2 .  Since tl E dom(a2), we do not further extend the 
system for a2[ll H v2]. Since v, is just v2, it only remains to  show 
that I' p a2[tl H v2](ti) : U; for all t; E dom(a2). This follows from 
(15) and (17) as long as u1 is 7,. But this is true by the structure of 
the typing rules, since (16) holds. 

Rule [ref,,]: We are given I' b ref e : Ta7 so by the structure of the typing 
rules ra is of the form u ref, and I' b e  : u. By the induction hypothesis 
on the premise (e, a) .(I. (v, a'), the judgements 

and 

are provable, for all 1; E dom(a1), in the type inference system as 
extended for a'. If we further extend the type inference system with 
the axiom I' b t : u ref, then, since v, is t ,  it only remains to  show 

for all ti E dom(at[t H v]). Since ! is new, this follows from (18) and 

(19). 

Rule [let,,]: We are given I' D let x = el in e2 : T,, so by the structure of 
the typing rules I' D el : T' and either 

el is non-expansive and I'[x H Closer(rt)] D en : ra; or 

el is expansive and I'[x H AppCloser(r1)] D es : r,. 

implies 



so the latter holds in either case. Thus by the induction hypothesis 
on the first premise (el, a )  (VI, a l ) ,  the judgements I' D vl : T', 

I' D al(t;) : u;, and 

are provable for all !; E dom(a2) using the type inference system as 
extended for al. By Lemma 9, I' D e2[vl/x] : T,. The induction 
hypothesis on the second premise (e2[vl/x], a l )  J,l (v2,a2) then yields 
I' D v2 : T, and I' D a2(ti) : u; for all ti E dom(02) using the type 
inference system as extended for 0 2 .  

Finally, we present a type soundness proof for the reduction semantics. 

Theorem 14 If D(e,a) : T and (e,a) w* (v,al), then b(v,a ')  : r. 

Proof: This theorem follows from Lemma 15 by a simple induction on the 
length of the derivation sequence (e, a )  H* (v, a'). 

Lemma 15 If I' D (e,, a) : T, and (e,, a )  w (eh, a'), then I' D (eh, a') : r, . 
Furthermore, if I' D (eb, a )  : r b ,  then I' D (eb, a') : r b .  

Proof: By Definition 8, the type inference system extended by 

I' D ti : u; ref (20) 

for all ti E dom(a) proves I' D e, : T, and I' D a([;) : u; for all ti E dom(a). 
We claim that if we further extend the type inference system with an axiom 
of the form of (20) for each !; E dom(at) \ dom(a), then I? D e', : T, and 
I' D a1(ti) : u; are provable in this system, for all ti E dom(al). Once we 
have proved this claim, it only remains to show that if J? b eb : r b  is provable 
in the type inference system as extended for a, then it is also provable using 
the system as further extended for a'. But since the type inference system 
as extended for a' includes all rules in the system as extended for a, this is 
immediate. 

We prove the above claim by induction on the structure of the evaluation 
context E[] used in the reduction step (e, ,  a )  - (e',, a'). As is our custom, 
we show only the more difficult and illustrative cases in this proof. 

E = [ I :  The proof proceeds by a case analysis of the rule used to  prove 
(e,, a )  -+ (eh, a'). The proof for Rules [f nTs]? [ref,,], [deref,,], [asgTS], 
and [let,,] are identical to the proofs for the corresponding rules [f nts], 
[ ~ e f ~ ~ ] ,  [dere fts], [asgts], and [let;s] in Lemma 11 for transition seman- 
tics. 



E = let x = E' in e: Let e, = E[el] and e', = E[ei]. We are given I? D e, : T,, 

so by the structure of the typing rules I' D Et[el] : r' and either 

Er[el] is non-expansive and I'[x w Closer(rt)] D e : r,; or 

Et[el] is expansive and I'[x H AppCloser(rt)] D e : 7,. 

Since (E[el] , a) H (E[e',], a'), 

Thus el is not a value, and so neither is Et[el]; E1[el] is therefore 
expansive and we do not need to consider the non-expansive case any 
further. By (21) and Rule [context,,], (E1[el], a )  ++ (Et[e;], a'). By 
the induction hypothesis, I' D E'[e;] : T', r D at(!;) : ui, and 

are provable for all !; E dom(a1) using the type inference system as 
extended for a'. This latter judgement implies 

I'[x w Closer(rl)] D (e, a') : ra 

Therefore, whether Et[e;] is expansive or non-expansive, 

I' D let x = E1[e;] in e : r, 

holds by either Rule [let?;] or Rule [let:y"p"e]. 

It is clear that the three type soundness proofs are very similar. The 
proofs for the transition and reduction semantics are almost identical, al- 
though the cases are arranged differently in the two proofs. Each case in the 
proof for natural semantics makes more appeals to the induction hypothesis, 
since the rules in the natural semantics have more premises. However, this is 
counter-balanced by correspondingly more rules and/or evaluation contexts 
in the transition and reduction semantics, resulting in more cases for those 
proofs. On the other hand, the natural semantics does hold a slight edge 
over the transition and reduction semantics in that the proof for natural 
semantics avoids the induction over the length of the derivation sequence, 
albeit a simple one. It is significant to note that the vast difference in com- 
plexity between Tofte7s proof and Wright and Felleisen7s proof is not due to 
Tofte7s use of natural semantics or Wright and Felleisen7s use of reduction 
semantics. Rather, it is a consequence of Wright and Felleisen7s use of value 
substitution rather than environments. 



4 Conclusion 

This paper has compared three forms of operations semantics from the per- 
spectives of expressiveness and utility. We found that the expressive power of 
the three varied with the language. Natural semantics was very good a t  spec- 
ifying "large granularity" features such as blocks, but is apparently unable to  
capture interleaving because of its "small granularity". On the other hand, 
transition semantics and reduction semantics easily express "small granular- 
ity" features but have difficulty with "large granularity" features. Reduction 
semantics provided especially concise specifications of non-sequential control 
constructs such as abortion and interleaving. In terms of utility, the natural 
semantics seemed to  allow simpler proofs for the two applications we looked 
at. 

There is certainly much more investigation that can be done in this mat- 
ter. Additional and more advanced features can be used to further explore 
the comparative expressiveness of the approaches to semantics. Certainly 
other applications can be used to  get a better idea of the utility of the se- 
mantics. Finally, the scope of the comparison can be expanded to include 
other criteria and other forms of semantics. But hopefully the start in this 
paper will prove enlightening and provide a basis for further investigation. 



A In Pursuit of a Natural Semantics for Paral- 
lelism 

In this appendix we make further attempts to  construct a natural semantics 
for interleaving. Through this endeavor we hope to gain a better under- 
standing of why this form of semantics cannot express this feature. 

Consider the extension to the natural semantics of While given in Ta- 
ble 23.25 Since a natural semantics deals with the execution of a statement 
as an atomic unit, we explicitly decompose compound statements in the 
branches of the par statement. This is a bit unusual, but the semantics is 
still valid. 

Also note that several rules may be applicable for a given statement. 
Some of this is inherent in the non-deterministic interleaving of statements; 
however, even for a given interleaving, multiple proofs are possible with these 
semantics. For example, both of the following proofs execute the statements 
in the order sl , s 2 ,  sg, s 4 .  

( ~ 1 , 0 0 ) & 0 1  ( ~ 2 , 0 1 ) 4 0 2  Rule[comp,,] (s3 0 2 )  4 03 (s4 03) 6 0 4  Rul e[comp,,] 
(sl; s2,0o) 4 0 2  (53; S4,02) 4 0 4  Rule[par~,]  

( ( ~ 1 ;  ~ 2 )  Par (s3; 4, go) u 0 4  

As a result, if a program property is defined in terms of the structure of 
the derivation of the program's semantics, it is necessary to  show that this 
definition is consistent across different derivations of the same meaning. 

But even if we are willing to accept this extra non-determinism, there 
are more serious problems with this semantics. Consider the statement 

With the given rules, we can either: 

25A naive semantics would leave out the rules [par;,] and [par t , ] .  As Jon Riecke 
pointed out, the resulting semantics would assume that the ';' operator associates to the 
right [Riegl]. Thus the naive semantics would not work for all possible parsings of a 
compound statement. 



(s1 par s27 0) 4 0' ( ~ 3 ,  6') 4 6" 
(s1 par (~2; ~ 3 ) ~  0) U 0" [~ar:sl 

Table 23: Extension to Natural Semantics for Parallelism 



(s1 par (s2; (s3; ~ 4 ) ) ~  0) U 0' 
(SI par ((s2; ~ 3 ) ;  ~ 4 ) , 0 )  U 6' 

Table 24: Another Extension to Natural Semantics for Parallelism 

execute (sl; s2) first, followed by the execution of (s3; s4) par (s5; s6) 

execute (sl; s2) par (s5; s6) first, followed by the execution of (ss; s4) 

execute s5 first, followed by the execution of ((sl; s2); (s3; s4)) par s6 

execute ((sl; s2); (s3; s4)) par s5 first, followed by the execution of s6 

execute ((sl; s2); (s3; s4)) first and then (s5; s6) 

execute (s5; s6) first and then ((sl; sz); (ss; s4)) 

These rules allow us to only decompose one side of the par at a time and 
only decompose a single level of composition before making an interleaving 
commitment. Thus we cannot capture, for example, the interleaving s l ,  ss, 
327 s3, s67 s 4 .  

If we add the rules of Table 24, which allow us to associate the com- 
position operator to the right, we can overcome these  limitation^.^^ The 
following proof uses the previously excluded interleaving order. 

26As previously observed, once we can associate composition to the right, rules  pa^:,] 
and   par^,] become unnecessary. 



It seems that we are now able to arbitrarily interleave sequences of com- 
pound statements. However, we still treat the if and while statements 
as monolithic entities; we cannot interleave within the statements in the 
branches of an if statement or the body of a while statement. For example, 
if the statement whilee do(sl; s2)  was in one branch of a par statement, 
we could not interleave a statement from the other branch between s l  and 
sa in an execution of the loop body. Thus we must add additional rules that 
allow the decomposition of if and while statements in the branches of a par 
statement. Table 25 shows such rules. 

We appear t o  be very close to a solution now. But our rules do not allow 
us to decompose par statements that occur in the branches of another par 
statement. In the case of if and while statements, we just duplicated the 
usual rules for these statements in the context of a par statement. To do 
that for nested par statements, we would need to add a large number of 
rules such as 

Now each of these new rules is also a par rule that we need to  duplicate in 
the context of a par statement: 

we leave out Rule  bar^^], for example, we can't achieve the interleaving 
, ST, 3 2 ,  SQ, s4 ,  SS, sg  for the statement in the conclusion of that rule. 

It is clear that this approach requires an infinite number of rules, and this 
seems to  be the problem in general with constructing a natural semantics 
for parallelism. Since natural semantics constrains us to  only be able to 
denote the total execution of a statement, we need to be able to specify the 
atomic statement (skip or assignment) that is to be executed first. But 
there are an unbounded number of possibilities for how this statement will 
be nested in the structure of an arbitrary statement, so we cannot give a 
rule for each case. This leads us to conclude that natural semantics cannot 
express arbitrary interleaving. 



((81; s3) Par s4,a) U Q' if &[e]a = true 
(((if e then sl else s2); s3) par s4, a) a' 

( (32;  ~ 3 )  Par s4,a) u 0' if &[e]a = false 
(((if e then sl else s2); s3) par s4, a )  4). a' 

(31 par (32; s4)7 0) u 0' if &[e]la = true 
(sl par ((if e then s2 else s3); s4), a) 4 a' 

($1 par (33; s4), a) U a' if &[e]a = false 
(sl par ((if e then s2 else s3); s4), a) 4 a' 

( ~ 1  par S3, a) u 0' if &[e]a = true 
((if e then sl else s2) par s3, a) a' 

(s2 par 33, (7) u 0' if &[e]a = false 
((if e then sl else s2) par sg, a) J) a' 

( ~ 1  par s2,a) $ 0' if &[e]a = true 
(sl par (if e then s2 else s3), a) a' 

( ~ 1  par 8 3 , ~ )  4 0' if &[e]a = false 
(sl par (if e then s2 else s3), a) a' 

( ( ~ 1 ;  ((while e do sl); s2)) par ss, a) a' 
if &[e]a = true 

(((whilee do sl); s2) par s3, a) a' 

(sl par (s2; ((while e do s2); ss)), a) 4) a' if £[el0 = true 
(sl par ((whilee do s2); s3), a) 4) a' 

((sl; whilee do sl) par s2, a) 8 a' 
if £[e]a = true 

((while e do sl) par s2, a) J. a' bar;:] 

(sl par(s2; whileedos2),a) a' 
if &[e]a = true 

(sl par (while e do s2), a) 4 a' b a r 2 1  

Table 25: Yet One More Extension to Natural Semantics for Parallelism 
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