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Abstract 

This paper exposes the common order-theoretic proper- 
ties of the structures manipulated by the version space al- 
gorithm [Mit78] and the assumption-based truth mainte- 
nance system (ATMS) [dK86a, dK86bI by recasting them 
in the framework of convex spaces. Our analysis of version 
spaces in this framework reveals necessary and sufficient 
conditions for ensuring the preservation of an essential 
finite representability property in version space merging. 
This analysis is used to formulate several sufficient condi- 
tions for when a language will allow version spaces to be 
represented by finite sets of concepts (even when the uni- 
verse of concepts may be infinite). We provide a new con- 
vex space based formulation of complltations perJormed by 
an ATMS which extends the expressiveness of disjunctions 
in the system. This approach obviates the need for hyper- 
resolution in dealing with disjunctions and results in sim- 
pler label-update algorithms. The semantics of the label- 
update algorithms is established using the order-theoretic 
characterization of the algorithms. 

1 Introduction 

This paper arose out of the observation that the version 
space algorithm and the ATMS label-update algorithms 
operate on very similar structures. The version space al- 
gorithm learns concept descriptions from examples. Cen- 
tral to this algorithm is the notion of all concept descrip- 
tions consistent with a given set of positive and negative 

*An extendend abstrad of this paper appears in: Ninth National 
Conference on Artificial Intelligence, Anaheim, CA. July 
1991, pp. 500-505. 

examples. The assumption-based truth maintenance sys- 
tem for recording dependencies during reasoning main- 
tains labels for a proposition which encode all environ- 
ments in which that proposition is true. 

This gives rise to two questions: one, what is the pre- 
cise nature of the relationship between the structures em- 
ployed by these algorithms taken from two different prob- 
lem areas, and second: are the computations performed 
by the two algorithms related, and what special proper- 
ties of these structures do they depend on? Our aim is 
to find a common mathematical basis in order to deter- 
mine applicability conditions for the algorithms, and to 
cast the computations done in a form that reveals new, 
more efficient implementations. 

We Erst show that the version space of a concept is a 
special case of a convex space. We re-express the com- 
putation performed by the version space merging opera- 
tion in terms of lattice operations on convex spaces. The 
mathematics of these structures is then brought to bear 
on the question'of ensuring that finite representability is 
preserved under the merging operation. We derive a nec- 
essary and sufficient condition, called the M W property 
which identifies the class of concept languages for which 
version spaces arising from finitely many observations are 
finitely representable. Mitchell [Mit78] calls such concept 
languages admissible. The M W property is the first con- 
dition on admissibility that captures both finite and infinite 
concept languages. We also show that extended version 
spaces described in Mitchell's thesis can be treated within 
the same mathematical framework, and we provide a rig- 
orous account for the construction of these spaces. 

We then recast the label-update algorithms in the ATMS 
also as lattice operations on a convex space. This help 
us to establish a simple semantics for both the basic and 
extended ATMS algorithms. An important result is a new 



algorithm for computing labels that handles complex dis- 
junctions such as choose({A, B, C}, { D ,  E, F)), which 
stands for either A, B, and C are true, or D, E, and F are 
me. This algorithm is a natural extension of de Kleer's 
original ATMS algorithm and does not require hyper- 
resolution rules to compute minimal, consistent, sound 
and complete labels. We also identify several easy-to- 
detect conditions under which label updates can be done 
efficiently. 

The paper is structured as follows. In Section 2 we 
introduce the mathematics of ordered spaces and closure 
operators on them. In Section 3 we present the basic the- 
ory of convex spaces: finite representability and the M W 
properties, the isomorphism between convex spaces and 
their boundary set representations, as well as algorithms 
for computing meets and joins of convex spaces and their 
boundaries. The version space and extended version space 
are formulated in terms of convex spaces in Section 4, 
and we present three admissibility results for concept lan- 
guages. In Section 5, we perform a similar analysis of 
the ATMS algorithm and show that the label computa- 
tion performed by the disjunction-free ATMS is akin to 
the boundary set updates of the version space algorithm. 
We extend the class of disjunctions expressible within the 
ATMS and use a new closure operator to derive a new 
label-update algorithm which is more efficient in general, 
and does not rely on hyper-resolution rules. We then show 
that these ATMS algorithms have a simple and consistent 
semantics. 

2 Mathematical Background 

In this section we develop some of the basic mathemat- 
ical theory of ordered spaces and closure operators on 
them. The intuition that is captured by order structures 
is a qualitative notion of i@ormation content. Roughly 
speaking, the orders that we use express the notion that 
one item is more informative than another. Closure oper- 
ators are certain special functions that describe operations 
that increase the information content of the items that they 
manipulate. Thus the common order-theoretic mathemat- 
ical structures of the systems that we analyze correspond 
to common intuitions about how these systems represent 
and manipulate information. 

The viewpoint that one can understand the mathemat- 
ics of data items, and programs that manipulate them, 
in terns of ordered structures is primarily due to Dana 
Scott [Sco76, Sco821 in his work on programming lan- 
guage semantics. It is in [Sco82], that one sees the ba- 

sic intuition relating the order structure to information 
content spelled out precisely. A rich subject, known as 
domain theory has arisen from his work; see for exam- 
ple the recent review article by Gunter and Scott [GSgO]. 
A rather more daunting but very informative reference 
is [GHK*80]. Our treatment is intended to be, for the 
most part, self contained. 

Closure operators first appeared in the work of Moore 
in his study of lattices. Scott's original paper on data types 
already contains a discussion of closure operators though 
they are used by him for a completely different purpose. 
The idea that processes that increase information content 
can be modeled by closure operators appears in [JPF%9] 
and [SRPgl] in the context of constraint programming. 

Order Structures. 

We begin by recapitulating some basic definitions. A 
partially ordered set (or "poset" for short) is a set P to- 
gether with a binary relation 5 which is transitive, re- 
flexive and anti-symmetric. We assume that the reader is 
familiar with the concepts, least upper bound also called 
"join" or "sup", written as V in infix form or V in prefix 
form and greatest lower bound, written as A or A and 
also called "meet" or "inf". A lattice is a poset in which 
every finite subset has a least upper bound and a greatest 
lower bound together with some equations that describe 
how meets and joins interact. The classical example of 
a lattice is the powerset of a set X, i.e. the collection 
of all subsets of X ordered by inclusion; usually written 
P(X). A sublattice, S, of a lattice L, is a lattice that has 
as its underlying set a subset of L and the the meet and 
join operations are those of L restricted to the subset. It 
is important to keep in mind the distinction between the 
sublattices and subsets of lattices that happen to be lat- 
tices. In the case of a sublattice we mean that when we 
compute the meet or join of two elements in the sublat- 
tice we get the same result as when we compute the meet 
or join in the original lattice. This need not be true in a 
subset that happens to be a lattice. We will see examples 
of both situations. 

As is usual in the study of algebraic structures, an im- 
portant role is played by structure preserving functions. A 
function f, from a poset (P ,  5 )  to another poset (PI, 5') 
is said to be monotone (or monotonic) if whenever x 5 y 
then f (x) 5' f (y). Intuitively one thinks of the elements 
of an ordered space as being ordered by information con- 
tent. Functions then stand for operations that produce 
some output given some input information. It is clear 
that for most reasonable notions of transforming informa- 
tion, better input information should result in better output 



information. The collection of monotone functions forms 
a lattice in its own right. The ordering is given by f 3 g 
if, for all x in L, f ( x )  3 g(x). It is of course possible 
to define other orderings on functions but this one is the 
most widely used and is commonly called the extensional 
ordering. 

If one has a function f from L to itself, then an x  in 
L such that f ( x )  = x  is called a fixed point of f .  The 
following theorem is an elementary special case of much 
more general theorems, but is all that we shall need in 
this paper. 

Theorem 1 Any monotonefunction f from afrnite lattice 
L ,  with a least element I ,  to itself has a leastfrxed point. 

Proofi Consider the set S = { I ,  f (l), f ( f  (l)), . . .}. 
Since L is finite there are only finitely many distinct ele- 
ments in this set. Since f is monotone and I is the least 
element we have the following ordering among the mem- 
bers of S, I 5  f ( l )  5 f ( f ( l ) )  5 ... ; in other words 
for any member a of S we have a 5 f (a). Let x be the 
largest element of S. Now, by the definition of S, f (x) 
is in S but f ( x )  is larger than x, on the other hand, x is 
the largest element of S thus f ( x )  = x. Suppose that u is 
another fixed point of f .  Now I 5 u, by definition of I. 
Using the monotonicity of f ,  we have f (l) 5 f ( u )  = u, 
and by applying f repeatedly we see that all the elements 
of S are less than u. Thus, in particular, x is less than u, 
i.e. x  is the least fixed point of f .  

The iterative process used in the proof of this theorem is 
the idea behind techniques to search for least fixed points. 

Closure Operations on Lattices. 

A very important class of monotone functions are clo- 
sure operators. They occur throughout this paper to rep 
resent processes that correspond to adding information or 
"completing" a collection in some way. Therefore, it will 
be convenient to develop some general properties of clo- 
sure operations. 

Definition: Given a lattice L and a monotone function 
f : L --i L, f is called a closure operation if it satisfies 
the following properties: 

C1. x f ( x )  for any x, in L, and 

Note that if x  is in L, then C2 says that f ( x )  is a fixed 
point of f .  Intuitively, C1 says that f increases informa- 
tion and C2 says that adding the same information twice 

is no different from adding it once. We frequently say 
that f is a closure operator on L. 

There are many familiar examples of closure opera- 
tions. For instance, consider a language L of propositions 
over a fixed alphabet of proposilional atoms. Let i= stand 
for the usual notion of entailment between propositions. 
Consider the lanice P(L) .  Now consider the function 
T : P(L)  - P(L)  defined by T ( S )  = { r j  E L ( u 
4 ,  u S). Thus T ( S )  adds to a set all the propositions 
that are entailed by it. It is easy to see that this is a 
closure operator. This is, in fact, a very typical closure 
operator. Other examples from mathematics are the sub- 
group generated by a subset of a group, the span of a set 
of elements in a vector space and the closure of a set in 
a topological space. 

Another example of a closure operator that will be of 
interest later, is defined as follows: 

Definition: Given any poset P, a subset C P is said to 
be downward closed if p E C and pi 3 p implies pi E C. 
Furthermore, given any subset S C_ P, the downward 
closure of S is the set 1 S = { p  E P ( 3pi E S, p 3 p'). 

The operation 1 is a closure operation on subsets of P. 
Note that a set C is downward closed if, and only if, it is 
a fixed point of this operation, that is C = 1 C.  

Indeed, it is a general fact that the image of a closure 
operation (i.e. CL( f ) )  is exactly its set of fixed points. 
Moreover a closure is uniquely determined by its set of 
fixed points. In our subsequent discussion we will often 
be more interested in the fixed points of a closure op- 
eration than in the closure operation itself. In fact, one 
reason for our interest in closure operations is the set of 
properties that the fixed points of such an operator pos- 
sess. In particular, we can use the following Lemma. For 
any poset P, let T x for the set {u E L I x  5 a}. 

Lemma 2 Suppose that f is a closure operator on a lat- 
tice L. 

I .  Then f is uniquely determined by its image according 
to the formula 

f ( x )  = min ( t x n C L ( f ) )  

where min(S) means the smallest element of S. 

2. I f X  isasubset of CL( f ) ,  then A X  isalso in CL(f) .  

3. (CL(f);  ~f , ~ f )  forms a lattice where: 



for each X C C C ( f ) .  2. f  (U S )  = smallest element in CC( f )  containing 
us. 

Proof: 1. Note that f ( x )  is in the set t x n CC( f ) .  Ac- 
cording to C1, x  f  (x), i.e. f  ( x )  E t ( ~ ) ,  whereas 
by C2, f  ( x )  is a fixed point of f ,  in other words, The following lemma will be pivotal in our subsequent 

f ( x )  E C C ( f ) .  Now suppose that u is any other ele- discussion of closed sets. 

merit of f 2 n C L ( f  1- In other words, X 5 u and is a ~ w m a  4 r f  f : p ( p )  + ~ ( p )  is closve operation 
fixed point of f .  BY monotonicity of f 7 f (+I 5 f (u); s i, a sdset  of CL( f  ), such that f  (U S )  = U S ,  then 
but, u is a fixed point of f  so f ( x )  5 u. Thus f ( x )  is 
indeed the least element of the set. I .  u s =  v s ,  

2. First, we have X  5 f  ( A  X ) ,  since f  is a closure 
operator. Next, by monotonicity of f ,  f  ( A  X )  5 u for 2. (V S )  A C' = V ( C  A C') ,  VC' € C C ( f ) .  
any u in X. Thus, by definition of greatest lower bound, C E S  

f ( A X )  5 A { f ( u )  I u E X } .  The elements of X  are all 
fixed points of f  so { f ( u )  1 u E X }  = /\ X .  In short we Proof: 1. Immediate from the definition of join in 

have f ( A X )  = A X .  c L ( f  1. 
3. The result for meets is immediate from (2) above. 

The second follows immediately from the fact that 
f (V X )  is the least fixed point of f  above V X .  We 
omit the checking of the various equations satisfied by 
meets and joins in lattices. 0 

Although the set of fixed points of a closure operator 
forms a lattice in its own right, it may not be a sublattice 
of the original lattice on which the closure operator is 
defined. So some care must be take about the &fference 
between the operations ~f and ~f on the closed sets ver- 
sus the meet and join operations on the original lattice. It 
is easy to see that the operations ~f and vf satisfy the 
associative, commutative and absorptive properties. For 
the rest of this paper, we will omit the superscripts in the 
join and meet operations when the context makes obvious 
the closure operation that we are discussing. 

Many of the lattices that we consider below are pow- 
erset lattices of some set. In other words, we have some 
set X  and we consider the set of subsets of X  ordered 
by inclusion, i.e P ( X ) .  A closure operator on this lattice 
takes a subset of X  to what is called a closed subset of 
X .  What the phrase "closed subset" means varies as one 
considers different closure operators. All the general the- 
ory that we have established for closure operators applies 
here. The closed subsets form a lattice as we have already 
noted in the previous lemma but in the special case of a 
subset lattice the meets and joins can be defined in terms 
of union and intersection. We have the following special 
instance of Lemma 2 

Lemma 3 I f f  : P ( P )  - P ( P )  is a closure operation, 
then for any subset S C C ( f ) ,  

2. Let X  = (V S )  A C'. By 1. above, we have X  = 
(U S )  A C' = (U S )  n C'. By distributivity of n and 
U, we get X  = U,,,(C f l  C') .  But X  = f  ( X ) ,  so 
by 1. again, we get X  = V,,, (C A C'). 

If we are working with closed sets, then the third part of 
Lemma 2 says that we can substitute meet for intersection. 
Moreover, if the result of a union is closed, then Lemma 4 
says that we can substitute join for union and attain a 
limited form of distributivity. We will see later that it is 
desirable to substitute meet and join for intersection and 
union respectively in order to tap useful properties of the 
lattice operations. However, this requires that every union 
operation produce a closed set. One way of achieving this 
is to restrict the possible combinations of the operands for 
the union operation so that the results are always closed, 
another is to restrict the universe of closed sets so that 
every union of closed sets is a closed set. In the discussion 
below, we will see that the theory of extended version 
spaces falls into the former category and the theory of 
ATMS's falls into the latter. 

Common Fixed Points of Closure Operations. 

The next crucial property that we wish to establish is 
how one finds least fixed points for closure operators. 
Now any closure operator is a monotone function and 
thus has a least fixed point if the lattice has a least ele- 
ment. Closure operators enjoy a special property that is 
not shared by arbitrary monotone functions. Any fam- 
ily of closure operators has a least common fixed point. 
Furthermore, this least common fixed point can be calcu- 
lated by iterating all the closure operators in the family 
sufficiently often. The next theorem makes this precise. 



Theorem 5 Suppose that { f, I i E I }  is a family of clo- 
sure operators on L indexed by some arbitrary set I .  Sup- 
pose that L is finite and has a least element I .  Let a be 
an infinite sequence of members of I such that every ele- 
ment of I appears in every suffw of a. Let u[n] be the nth 
element of a. Consider the set 

The least upper bound of S ,  call it x ,  is the least common 
fixed point of all the closure operators { f ;  ( i E I ) .  

Proof: We need a convenient notation for sequences of 
fis composed together. We write a, for the length n 
prefix of u. We write j,, for the composition j,[,] o 
futn-ll o . . . o fo[ll. First, note that the elements are 
written in increasing order because all the fi are closure 
operators. Second, because L is finite, the least upper 
bound is attained at some finite stage, i.e. for some n the 
least upper bound of S is fu[n]( fu[*-l]( .  . . ( f u [ l ] ( l ) ) ) )  
or, using our notation, fun Consider any of the closure 
operators, say ji. We claim that f i ( x )  is less than x. To 
see this consider any rn greater than n such that u[rn] = i, 
we know there must be such an m from the assumption 
on a. Now we have x = fun ( 1 )  3 fa,  (1), the later 
inequality follows from the assumption that all the fi are 
closure operators. But f j  ( x )  = f j  o fun (1) 5 f j  o . . . o 
fun (1) = fu, ( 1 ) .  The inequality again follows from 
the fact that closure operators increase their arguments. 
But notice that f u , ( l )  is in the set S and that a: is the 
least upper bound of S, so j i ( x )  f,, (1) 5 x ,  Since 
fi is a closure operator we must have x 5 f ; ( x ) ,  in other 
words, x = f i (x) .  Thus, x is a fixed point of any of the 
closure operators in our set. Suppose that u is any other 
common fixed point, we have, by an easy induction on 
m, that for all m, f u , ( l )  5 u; using the monotonicity 
of the fi and the fact that I u. Thus, -u is an upper 
bound for S and, since x is the least upper bound, x 5 u. 

The upshot of this theorem is that if we wish to find the 
least common fixed point of a set of closure operators 
we need only apply each one often enough in succession, 
not necessarily in any systematic order, and we will find 
the fixed point. The appearance of the infinite sequence 
a in the proof is only to formalize the notion of "often 
enough" it need not cause alarm to those readers worried 
about the effectiveness of the process we have described. 

Q Operators. 

A closure operator which will be the focus of our atten- 
tion when we discuss assumption based truth maintenance 
systems later is defined as follows: 

Definition: Let ( P ,  5 )  be any lattice. Given any subset 
T E P ( P ) ,  the operation QT is defined on downward 
closed sets C E P ( P )  by: 

It is not difficult to check that Q T ( C )  is downward closed 
and QT is itself a closure operation. To understand the 
QT operation more "intuitively" it is helpful to think in 
terms of downward closed sets generated by elements of 
P. The principal ideal generated by p  E P is the set 4 { p )  
of elements of P that are below p. Given any downward 
closed A C P, let us say that the set { p  E A ( 3p' E 
T ,  s.t. p 3 p')  is the restriction of A by T. So, one can 
think of Q T ( C )  as the expansion of C to include those 
elements of P such that the restriclions of their principal 
ideals by T are subsets of C .  Some basic properties of Q 
are: 

Lemma6 1. QA o Q B  = QT where T = { t  E P 1 
3 t ~  E A , 3 t g  E B , t  = t~ A t g } .  

Proof: 1. Given any A, B E P ( P )  and any downward 
closed C, then for all p E P, we have p E @ A  o 
Q B ( C )  if and only if for all t A  E A, tB E B we have 
( p  A ~ A )  A t g  E C, which means p A ( t A  A t B )  E C 
which means that p E a T ( C ) .  

2. This follows immediately from 1 and the commuta- 
tivity of meets. 

Theorem 7 Given any QT,, ..., QT, and any downward 
closed C ,  F = QTl o . - o QTn (C)  is the least common 
fixed point of every QT, , 1 5 i 5 n, above C. 

Proofi Given any QT,, 1 < i 5 n and any C, by using 
the commutative and idempotent properties of o, we have: 

QT, ( F )  
= QT, 0 aTl 0 . . . 0 QT, (C)  
= QTl o . - . o QT, 0 QT, 0 . . * 0 QT, (C)  
= QT, O . . 'OQT,  O . . .OQTn(C)  
= F. 

So F is a fixed point of every QT, and F contains C .  Fur- 
thermore, given any Y E P ( P )  with the same properties, 
since C c Y, we have QT, ( C )  E QT, ( Y )  = Y .  Hence, 
by applying QT,_, , ..., QT1 succe~sively to the two sides 



of the inequality, we get F = o .. . o QT,(C) E Y .  Definition: Given any A, B E P ( P ) ,  define B(A, B)  = 
Therefore, F is the least common fixed point of every { p  E P 1 3pl  € A, 3 p 2  E B, s.t. pl 4 p 4 An 
aTi,1 < i  <n,above C.  interval (in a poset) is a set of the form 3 { p z } ) .  

Observe that o . . - o GTn is itself a closure operation. 
However, it is not true in general for the composition 
of closure operations to be a closure operation because 
idempotence usually fails. 

3 Convex Spaces 

In this section we develop some of the basic theory of 
convex spaces that we will need later. In mathematics, 
convex spaces are most familiar in the context of geom- 
etry where, for example, a subset C of the real plane 
is said t be convex if the line connecting any pair of 
points of C lies entirely within C. However, our interest 
in this paper is in convex spaces in a poset A subset 
C contained in a poset P is said to be a convex space 
if, whenever pl 5 p 5 p2 and pl , p a  E C ,  then p E C .  
In this section we focus on analyzing the purely order- 
theoretic characteristics of convex spaces. To this end, 
we begin by noting that much of the theory of closure 
operators discussed in the previous section is applicable 
to convex spaces. To see why, let c : P ( P )  - P ( P )  be 
the function defined by 

The map c is called the convex closure and it is easily 
shown to be a closure operation whose fixed points are 
exactly the convex spaces of P. In particular, it follows 
from Lemma 2 that convex spaces form a complete lattice 
under the ordering defined by set inclusion. 

Boundary sets and fwite representability. 

The key characteristic of convex spaces that underlies 
their usefulness in the applications we shall discuss is the 
simple fact that they may sometimes be represented by 
their upper and lower fringes. In a computational setting 
this may mean that a small set can be used to represent 
a large one. Since computers can only hold finite sets of 
data, if this set is to be represented directly as something 
like a list, then it must be finite; however, nothing pre- 
vents the larger set from being infinite-and, in practice, it 
often will be infinite. We now develop some results about 
convex spaces which can be finitely represented with their 
fringes. 

Lemma 8 For all A, B E P ( P ) ,  B(A, B )  is a convex 
space. 

Proof: We know that c(B(A, B ) )  > B(A, B) .  To show 
equality, we observe that for all p E c(B(A, B ) ) ,  there 
exist p1 ,pz  E B(A, B)  such that pl 5 p 5 pz. But 
p l ,  p2 E B(A, B)  implies that there exist p i  E A and 
p!, E B such that p', 5 pl and p2 5 p',. Hence, p E 
B(A, B).  

Given any C E P ( P ) ,  define: ' 

M Z N ( C )  = { P  E C 1 Vfl E C ,  p' 5 p a p' = p ) ,  

MZN ( C )  and MAX ( C )  are called the boundary sets of 
C .  A subset C E P ( P )  is representable by boundary sets 
if C = { p  E P I 3 s  E M Z N ( C ) , s g  E M A X ( C ) ,  s.t. 
s 5 p 5 g}.  Furthermore, if M Z N ( C )  and M A X ( C )  
are both finite, then C is said to befrnitely representable. 
Observe that any subset that is representable by boundary 
sets is a convex space. An example of a finitely rep- 
resentable convex space C is shown in figure 1, where 
M Z N ( C )  = {ql,q2) and M A X ( C )  = {PI, P Z , P ~ ) .  
Each of the quadrilaterals represents the interval bounded 
by two concepts (where the pairs of elements p l ,  q2 and 
ps, q1 are unrelated); their union represents the convex 
space C .  Each of the quadrilateral could have infinitely 
many elements. 

Lemma 9 IfC = B ( X , Y )  for somefinite X , Y  E P ( P ) ,  
then C isfrnitely representable. 

Proof: Let A = { p  E M Z N ( X )  I 3p' E Y,  s.t. p 4 
p'}, B  = { p  E M A X ( Y )  I 3p1  E X ,  s.t. p' 5 p r  
By the definition of B(X, Y), we have M Z N ( C )  = 
A, MAX ( C )  = B and both are finite. Furthermore, 
for all p E C ,  there exist pl E X , p 2  E Y such that 
pl 5 p 5 p2. Since X and Y are finite, hence bounded 
by A and B, this implies that there exist pi E A, pi E B 
such that p', 5 pl 5 p 5 p2 5 p',, i.e. C is representable 
by the boundary sets A and B. Hence, C is finitely rep- 
resentable. 

It should be noted that many of our notations and definitions related 
to convex spaces and version spaces are adapted from the works of Tom 
Mitchell [Mit78] and Hyam Hirsh [Hi1901 



Theorem 10 For any poset P ,  the poset F ( P )  offiitely 
representable convex spaces is isomorphic to the poset 
G ( P )  of fringes. 

Figure 1: A finitely representable convex space 

For a poset P,  let F ( P )  be the set of finitely repre- 
sentable convex spaces of P ordered by superset inclu- 
sion, that is, C 5 C' iff C C'. Elements of F ( P )  
can be represented as a pairs of finite sets since any such 
element can be recovered as the convex closure of its up- 
per and lower boundaries. In fact, one can characterize 
F ( P )  more abstractly simply as such a set of pairs under 
an appropriate ordering. To see this, we introduce some 
order-theoretic notation taken from work on the study of 
what are called powerdomains in the semantics of pro- 
gramming languages (for example, see [Gun931 and the 
references there). Suppose U and V are finite subsets of 
P .  We define three binary relations as follows: 

U j f l  V iff for every y E V there is a x E U such 
that x j y, 

U db V iff for every x E U there is a y E V such 
that x 5 y, 

U sb V iff U j j  V andU jb V 

In a poset P, an anti-chain A is a subset of P with the 
property that, whenever p,  q E A and p j q, then p = q. 

Definition: Let P be a poset. A fringe is a pair ( S ,  G )  
such that S, G  are finite antichains of P and S db G. 
The poset G ( P )  is the set of fringes under the ordering: 

Proof: Define maps f : F ( P )  - G ( P )  and g : 
G ( P )  - F ( P )  as follows: 

It is easy to check that these maps are well-defined (in par- 
ticular, that ( M Z N ( C ) , M A X ( C ) )  is, in fact, a fringe). 
Let us first check that f is monotone. Suppose that 
C 2 C' and suppose p' E M Z N ( C t ) .  Since C is finitely 
representable, there is some p E M Z N ( C )  with p j p'. 
Hence we may conclude that M Z N ( C )  jl MZN(Ct ) .  
On the other hand, if p' E M A X ( C 1 ) ,  then, by fi- 
nite representability of C ,  there is some p E M A X ( C )  
with p' 5 p. Hence M A X ( C 1 )  jb M A X ( C ) .  Thus 
f ((7 3 f (C'). 

Next we check that g is monotone. Suppose that 
(S ,  G )  j (S t ,  GI) and p' E B(St , GI). Then p', j p' j p', 
for some p', E St and p', E G'. Now, S 51 St means that 
there is some pl E G such that pl j pi. On the other 
hand, G' 5b G means that there is some p2 E G such 
that pb j p2. Hence p  E B(S, G)  and we may conclude 
that g(S, G )  j g(S' , GI). 

To complete the proof the f ,  g define an isomorphism, 
we must show that the compositions f o g and g o f 
yield the identity. To see that ( f  o g)(S, G )  = (S ,  G )  
we must demonstrate that MZN(B(S,  G ) )  = S and 
MAX(B(S,  G ) )  = G. For the first of these, suppose that 
p is a minimal element of B(S, G) .  Since p E B(S, G) ,  
there is some p' E S with p' 5 p. Since p is minimal, we 
must have p  = p'. On the other hand, if p E S then p E 
B(S, G )  so there is minimal element of B(S, G) below p. 
But minimal elements of B(S, G) are in S and related ele- 
ments of S must be equal since S is an anti-chain. Hence 
p E MZN(B(S,  G ) ) .  The proof that MAX (B(S, G ) )  = 
G is similar. To show that ( g  o f ) ( C )  = C we must 
prove that B(MZN(C) ,  M A X ( C ) )  = C .  But this fol- 
lows immediately from the assumption that C is finitely 
representable. 

(S ,  G )  5 (S', G') iff S j f l  St and G' ib G 
Ensuring finite representability. 

Our primary interest is in the joins and meets of finitely 
We leave for the reader the demonstration that fringes representable convex spaces. It is easy to see that the join 

a poset under this ordering. The of two such spaces is again finitely representable. How- 
that spaces can indeed ever, the meet of finitely representable spaces may not be 

be viewed as pairs of finite sets: 



finitely representable! It is only under special circum- are {g 1 ,  . . . , g, ) -and {sl , . . . , s, ) respectively. In some 
stances that this will be the case. What we want to know contexts, the set V ( p l ,  p2,  4) is called the "most special- 
is whether, for a given Pse t  P *  the lJoset F ( P )  2 G ( P )  ized generalizations" of pl , pz and j \(pl , p 2 ,  $) is called 
is a sublattice of the convex spaces of P .  We now present cGmmt general specializationsw of , p 2 .  
a criterion which insures that finite representability is pre- 
served under intersections. Another such criterion will be 
presented in the next section. 

In a lattice, a pair of elements x, y has a least upper 
bound x  V y and a greatest lower bound z A y. But for 
given elements x,  y of an arbitrary poset P there may be 
no such distinguished upper and lower bounds. On the 
other hand, if P  is finite, then there will be a set u such 
that 

2. if x, y 5 z', then there is a z E u such that z 5 z'. 

Namely, u is the set of minimal upper bounds of x, y. 
Similarly, there is a set v of maximal lower bounds of 
x ,  y. The sets u and v may be viewed as a kind of quasi- 
join and quasi-meet of x ,  y.  Now, in an infinite poset P .  
there is no guarantee that, for a given pair x, y E P ,  a set u 
having properties 1,2 above exists (we leave the search for 
a counterexample to the reader). Hence, in infinite posets, 
the existence of such a form of quasi-join and quasi-meet 
is a special property of the poset. This concept is familiar, 
for example, in the study of the mathematical semantics 
of programming languages where it is related to what is 
usually calledproperty M [Smy83, GJ881. In the current 
context, our goal is to show that property M and its dual 
(which one might call "property W )  are related to the 
problem of the admissibility of concept spaces that use 
the version space algorithm. To this end, we begin with 
a rigorous definition of quasi-join and quasi-meet: 

Figure 2: The M W property 

Property MW asserts that the quasi-join and quasi- 
meet of a pair of elements are finite and "cover" the ele- 
ments from above and below respectively: 

Definition: A poset P  is said to have the M W property 
if it is finitely representable and for all p l ,  p2 E P: 

M3. V P , P  5 P I , P  5 ~2 * 3 ~ '  E ~ ( p l , p 2 , d ) ,  s.2. P 3 
p'. 

Definition: Let P  be a poset with p l ,  p2 E P and S ,  G g It is important to realize that the first condition does not 

P .  We define the quasi-join of pl and p2 relative to G as imply the next two. For example, one could have an 

the set infinite descending chain of elements above both pl and 
pa with no minimal element. One should also note that 

$ ' ( p l , p 2 , ~ )  = M I N ( { P E P  l p l  5 p l p 2  r j p ,  the M W property implies $ ' (PI ,  ~ 2 ,  G )  and ~ ( p l ,  p2, S )  
and Vg E G ,  P 3 9 ) )  are finite for all subsets S ,  G c_ P. 

and the the quasi-meet of pl and pz relative to S as the 
set Join and meet algorithms of convex spaces. 

In this section we show how one can decide join and 
A ( P ~ ,  P Z ,  S )  = M A X ( { P  E P I P I  >- P , P Z  t. P ,  meet operations on convex spaces by operations on their 

and Vs E S, p  k s } )  boundary sets. The first step is to show the desired result 
for finitely representable convex spaces: 

A graphical representation of the definition is shown in Theorem 11 Let P  be a poset and suppose that C l ,  C2 
figure 2 where the quasi-join and quasi-meet of pl , pz are )finitely representable convex spaces of P .  Then 



1. C1 Vc C2 isfinitely representable and 

2 .  i f  P has property MW, then Cl A" C2 is finitely 
representable. 

Proof: Suppose that Cl,  C2 have finite boundary sets 
S1, G1 and S2, G2 respectively, define: 

S l n a  = MZN({s E O(si, s 2 ,  {g1, g2)) I s1 E s1, 
s2 ES2,gi EGi,g2 EG2)) 

G l ~ 2 = M A X ( { ~  E ~ ( 9 1 , ! ? 2 , { ~ 1 , ~ 2 ) )  191 EGl ,  
g2 EGz,s i  ESl ,sz  ESz)) 

For any s l  E S l r ~ 2  E S2,gl E G1,g2 E G2. 
V(s1, s2, {gl ,  92)) is finite by the M W  property of P. 
Since S1, S2,G1, G2 are finite, there are only finitely 
many distinct sl, s2, gl ,  g2, hence, Sln2 is finite. Sim- 
ilarly, Gln2 is finite. Moreover. SlU2 and GlU2 are 
finite, because Sl U S2 and G1 U G2 are finite. Hence, 
B(Sln2, Gln2), B(SlU2, GIU 2) are finitely representable. 

( 2 )  If p E C1 A C2, then there exist sl E S1, s2 E S2, 
91 E GI, g2 E G2. such that sl 5 p 5 gl, s2 5 p 3 
q. Since P has the M W  property, there exists s E 
V(s1, s2, {gl, 92)) such that s 5 p. Hence, there exists 
s' E Sln2 such that s' 5 s 5 p, by the definition of Sln2. 
Similarly, there exists g' E GIn2 such that p 5 g', which 
implies that p E B(Sln2, Gln2) 

(2 )  If p E Sln2, then there exist sl E S1, s2 E S2, 
gl  E GI, 92 E G2, such that p E v(sl,s2, {g1,92)). 
which implies that sl 5 p 5 gl and s2 5 p 5 g,. Hence, 
P E C1 A C2. SO, S l n 2  C1 A C2. Similarly, Gln2 
C1 A C2. SO B(Sln2, Gin2) C1 A C2. 

(C) If p E C1 VC2, then there exist s, g E Cl UC2 such 
that s 5 p 5 g. By definition of Slu2 and GlU2, there 
exists' E SlU2, g' E GlU2 such that s' 5 s 3 p 5 g 5 g'. 

Hence, P E B(Siu2, Gluz). 

(2 )  If p E SlU2, then p E S1 U Sz which implies 
P E C1 VC2. Hence, Slu2 E C1 vC2. Similarly, GlU2 2 
C1 V C2. Therefore, B(SlU2, Glu2) C C1 v C2. 

Corollary 12 I f  P has the M W  properly, then the 
jinitely representable convex spaces form a sublattice in 
(CL(c) ,  AC, VC). 

Since the poset of finitely representable convex spaces 
is isomorphic to the poset of fringes, it is now possible 
to express the join and meet operations on such spaces 
entirely in terms of fringes. The following result can 
be obtained directly from the proofs of Theorem 10 and 
Theorem 11. 

Theorem 13 If P has the M W property, then the space 
G(P) of fringes is a lattice where, for every pair of fringes 
(SI, GI) and (S2, G2), we have 

(Si, GI) V (S2, (32) = (S iu2 ,  Giu2) 
(Si, GI) A (S2, (32) = (Sin2, Gina) 0 

The theorem shows that finitely representable convex 
spaces can be represented and manipulated indirectly 
through operations on pairs of finite sets. In the next 
theorem, we show that the converse of the second part of 
Theorem 11 is true. 

Theorem 14 If P is a jinitely representable poset and 
the intersection of any two finitely representable convex 
spaces in P isjinitely representable, then P has properly 
MW. 

Proof: Let S = MZN(P) and G = MAX(P). Then, 
for any Pl, p2 E P, 

It is easy to see that these sets have the desired proper- 
ties. 

Corollary 15 A finitely representable poset P has the 
M W  property if and only if the intersection of every 
two jinitely representable convex spaces isjinitely repre- 
sentable. 0 

Hence the M W property is the basic order-theoretic con- 
dition which insures that we are able to manipulate convex 
spaces in a finitely representable way. Of course, to ap- 
ply the results that we have developed in this subsection 
in a real computational setting, it is also essential that 
we know how to calculate the quasi-join and quasi-meet 
operations with acceptable efficiency. 

4 Version Spaces 

The version space algorithm which was introduced by 
Mitchell [Mit78] can be formulated using the ideas of the 



previous section. We have two principal goals. The first 
of these is to characterize the order-theoretic conditions 
under which the version space representation is legitimate. 
Since it is not the case that every concept space supports 
the version space learning technique, it is desirable to 
provide some simple conditions which will certify, for a 
given concept space, that the algorithm is sound. Such 
conditions have been proposed in several discussions of 
version spaces including the original work [Mit78] and 
a more recent textbook account [GN87]. However, the 
admissibility conditions which have been given are suf- 
jicient conditions which are too weak to support many 
of the examples of concept spaces for which the version 
space algorithm is sound (and, indeed, efficient). 

Our second goal is to isolate the essential order- 
theoretic content of the version space algorithm. We will 
later employ the same techniques to develop new algo- 
rithms in the context of ATMS's. 

Concepts consistent with observations. 

For our purposes a concept space is a set of sets P with 
the property that 4 E P and 

The elements of UP are called the instances and the ele- 
ments of P are called concepts. A concept space is par- 
tially ordered by set inclusion s. If p s q then we say that 
p is more specijic than q or we say that q is more general 
than p. We define an operation X: : ?(UP) x P(W) - 
P(P) on a pair of sets of instances as follows: 

where r ,  A C W and is the complement of A in 
W. Here r represents the "positive" instances and A the 
"negative" instances. 

Example: (Adapted from [Mit78].) Let I = (0 , l )  x 
(0 , l )  be the open unit rectangle in the two-dimensional 
real plane. A real interval is defined to be a set of real 
numbers having one of the following forms: 

Note that any interval with 1 > u, is equal to the empty 
set. We define the rectangular concept space R as the set 
of subsets p c I such that p is the product of a pair of 
intervals. 

Although many of the version spaces of R are uncount- 
ably infinite, it can be shown that each such version space 
is a finitely representable convex subset of R. 

Definition: A subset C of P is called a version space if 
there exist I?, A C UP, such that C = K(r, A). The set 
of version spaces over a concept space P is denoted by 
V S p  (where the subscript is omitted when P is obvious 
from the context). 

The two subsets P and 4 are version spaces, which 
arise respectively when r = A = 4 and I' n A # 4. 
Now, given a C E P(P), we define an operation d : 
P(P) - P(P) as follows: 

It is easy to check that d is a closm operation. Indeed, 
we have the following: 

Theorem 16 For any concept space P,  a subset C c P 
is a version space if, and only i f ,  it is a fixed point of d. 

Proof: (3) By C1, d(C) > C. To show that the in- 
clusion is indeed an equality, we observe that for all 
p E d(C), we have n C C_ p C UC. However, since 
C is a version space, there exist r, A C W, such that 
for all p' E C, we have I? p' C x. Hence, r C n C  
and UC E x. Therefore, I' g p C x, i.e. p E C. So 
d(C) C C. 

(e) If d(C) = C, we have C = {p E P - ( n C c p 

U C). So by assigning r = n C ,  A = U C, we have 
C = K ( r ,  A), i.e. C is a version space. 

The next lemma shows how to calculate meets and joins 
in the lattice defined by the closure operation d. 

Lemma 17 Let S = {Ci I V i  E I ) ,  where Ci = 
X:(I'i, Ad). be an indexed family of elements in V S ,  then: 

1. = X:(U{I'; I i E I),U{Ai I i E I)), 

2. /\d S = X:(U{nCi I i E I) ,  n{UCi ( i E I)), 

3. vd s = X:(n{nCi I i E I), U{uCi I i E I)). 

Proof: 1. By definition, /\d S = n S. Hence, 

P E K(U{ri I i E I ) ,  U{Ai I i E I)). 



2. Bv the argument given in Theorem 16, we have Vi E 
1;ci = k ( n c i  ,z). Hence, by 1 above, we get 

A d s  = K(U{nCi 1 i E I},U{UG I i E  I))  = 
K(U{nci ( a' E I), n{uCi 1 i E I ) ) .  

3. By definition, vd S = d(US). Hence, 

n{nCi I i E I) C p C U{UC~ 1 i E I) 
P E K(n{nCi ( i E I), U{UC; ( i E I ) ) .  C] 

The next lemma shows that the version spaces are fixed 
points of the closure operation c (i.e. they are convex 
spaces) and relates the meets and joins in the two lat- 
tices defined by the fixed points of the closure operations 
c and d. 

Lemma 18 1 .  Every C E VS is a b e d  point of the 
operation c, 

Proof: 1. Vp E c(C), there exist pl , p2 E C, such that 
P I  C P C_ p2. However, n C  c P I ,  and p2 c 
U C ,  implies n C  c p c UC,  i .e.p E d(C) = C. 
Therefore, by C1, we have c(C) = C. 

2. By definition, A* S = n S = AC S. By C1, we have 
vd S > US. SO by ~ 2 ,  we get c(vd S) > vC S. 
Hence by 1 above, we have vd S > Vc S. 

In general, there are convex spaces which are not ver- 
sion spaces. For example, in the rectangular concept 
space R described earlier, the convex space determined 
by the zero area "rectangles" 

together with the set I is not a version space since the 
image of this convex space under the map d is K(4, I). 
On the other hand, since version spaces are convex spaces 
and their meet operations are identical, several results that 
are true for convex spaces are also true for version spaces. 
For instance, it is immediate that the M W property im- 
plies that the meet of every two finitely representable ver- 
sion spaces is finitely representable. Furthermore, observe 
that given any s ,  g E P, the convex space B ( { s ) ,  {g)) is 
also a version space, because it is equal to 

Therefore, the proof of Theorem 14 still works if we sub- 
stitute version spaces for convex spaces. Hence, we have 
the following: 

Theorem 19 A concept space P has the M W property 
i f  and only if the meet of every two fvlitely representable 
version spaces is finitely representable. 

In a concept learning system using the version space rep- 
resentation, the new version space after the addition of 
some new observations is the same as the intersection 
(merging) of the current version space with the version 
space representing the new observations. Thus, the M W  
property is a necessary and sufficient condition for ensur- 
ing the preservation of finite representability in version 
space merging. 

Admissibility. 

As mentioned earlier, we seek a condition on concept 
spaces which will certify that version spaces can be rep- 
resented with their boundary sets. We say that concept 
spaces having this property are admissible. More pre- 
cisely: 

Definition: A concept space P is said to be admissible, 
if X(r  , A) is finitely representable whenever I? u A C W 
finite. 

We now demonstrate several conditions which imply (or 
are equivalent to) the admissibility of a concept space. 

Definition: A concept space P is said to have property 
G if, for all x E UP, K({x), 4) and K(4, {z}) are finitely 
representable. 

The following lemma allows us to check the admissi- 
bility of a pattern language by verifying that if observa- 
tions are all positive or negative, then the version space 
is finitely representable. 

Lemma 20 A poser P is admissible if and only if for all 
non-empty finite F, A UP, both K(r ,  4) and K(4, A) 
are finitely representable. 

Proof: (+) Immediate. 

(e) Given r , A C W, with r UA finite and nonempty. 
If either K' or A is an empty set, then iC(I', A) is finitely 
representable by our assumption. Otherwise, let C = 
K(r ,  A), A = K(r ,  d), B = K(4, A). Note that C = AA 
B. We want to show that C = B(MZN(A), MAX(B)): 



(C) If p E C, then there exist s l ,  gl E A  and s 2 ,  g2 E include infinite (and even uncountable) chains, so an ad- 
B such that s~ C p s gl and sz s p s g2. Hence, missibility condition which precludes such properties in 
s l  c p C g2, i.e. p E B ( M Z N ( A ) ,  M A X ( 3 ) ) .  the concept space will fail to cover this example. 

(2) If p  E B ( M Z N ( A ) ,  M A X ( B ) ) ,  then there exist Note that to apply Theorem 21, it is necessary for P 
s  E M Z N ( A )  and g  E M A X ( B )  such that s c p C g. to have the property G, so that the finite representabii- 
Since s C g, we have I' C g .  Hence, by definition of ity property can be propagated to version spaces having 
A, we have g E A, which implies that p  E A. Similarly, more than one observation. To see how essential this is, 
p E B .  Hence p  E C. consider the following variation on the rectangular con- 

Since both M Z N ( A )  and M A X ( B )  are finite by 
cept space R. Let us expand our collection of concepts to 
include any subset of the unit rectangle I which is con- 

Lemma 97 we conclude that C is finitely representable. vex in the usual geome~c  sense. Our concept space now 
does not support the version space algorithm because it 

The next theorem allows one to check for admissibility fails to satisfy property G. For example, if ( 1 / 2 , 1 / 2 )  

by checking finite representability in some special cases. is observed to be a negative instance, then there is an 
uncountable collection of most general concepts consis- - 

Theorem 21 If a concept space p has the MW and tent with this observation. Hence the version space is not 
properties, then P is admissible. finitely representable. 

Another admissibility criterion is related to the concept 
prmfi Obm-Ve that for all finite r, A C UP. the version of in rna l  refinement 1 the following, we i n m u c e  ae 
'pace '(I'l *) can be consnucted the finite A Of ver- notion of parafiniteness for a pattern language which can 
sion spaces, each of a single observation. The result is be used to deternine the admissibiliv of the language. 
then immediate from Theorem 1  1. 

To appreciate the point of having a condition for verify- 
ing admissibility, we consider again the earlier rectangular 
concept space R, where each concept p  is either the prod- 
uct of a pair of intervals (rectangles) or p  is the empty 
set 4. The set of observations is a subset of P of the 
form: [ x ,  x ]  x [ y ,  y] (points). Given a set of positive and 
negative ob~e~at ions ,  the learning task is to find the set 
of concepts in P that are consistent with the observations. 

For each positive observation [ x ,  x ]  x [ y ,  y ] ,  its version 
space is the convex closure of {I) and { [ x ,  x ]  x [ y ,  Y ] ) .  
For each negative 0bse~ati0n [ x ,  x ]  x [ y ,  y ] ,  its version 
space is the convex closure of { ( x ,  1 )  x (0, l ) ,  ( 0 ,  x )  x 
( 0 1  ( O ,  I )  ( Y ,  I ) ,  ( O r  l) ( 0 1  Y ) )  and (4)' Hence, 
has property G .  

Given a pair of rectangles pl = [ lx  , u x ]  x [l y  , u  y ] ,  pa = 
[lx',  ux'] x [ly' ,  uy ' ] ,  we have: 

Definition: A given P is said to be parafinite if for all 
p , q  E P withp> q,andforall x  with x  € p  but x  $ 9 ,  
we have: 

1. there exists {pi) where 1  5 i 5 m for some finite 
m such that p  _> pi > q, x  $2 pi and for all p' with 
p  > p' _> q ,  x  # p', there exists i such that pi > p', 

2. there exists {qj) where 1  < j 5 n for some finite 
n such that p  > q, > q,  x E qj and for all q' with 
p _> q' > q ,  x  E q', there exists j such that q j  g ql. 

The interpretation of parafiniteness is that, given any 
interval in the poset of concepts and any instance of the 
more general concept, we can find a finite cover that re- 
fines the original space to account for the results of this 
new trial instance. A graphical illustration of the defini- 
tion is shown in figure 3, where {ql , q 2 ,  q3) is the finite 
cover refining the interval formed by p  and q when a trial 
is found to be a positive and {pl , p 2 )  is the finite cover 
refining the interval when the trial is found to be nega- 
tive. The quadrilaterals represent intervals in the poset of 

Besides being finite, they also satisfy the second and third concepts. 

conditions of the MW p ~ ~ r t y .  resulU can be ~h~~~~~ 22 A giwn p is parojrnite if and only if thp 
derived for different in the types Of meet of everyfiitely representable convex space with any 

Hence' has and it is Iherefore finitely observable version space isfinitely representable. 
admissible. Note that the version spaces of P typically 



Corollary 23 If a concept language is parafinite then it 
is h i s s i b l e .  

The above results indicate that it may be desirable to 
look for the parafiniteness property in a concept descrip- 
tion language. In particular, it constitutes part of the 
sufficient conditions for ensuring the admissibility of a 
language. Furthermore, it is conceivable that in some ap- 
plications, domain knowledge may be used to infer an ini- 
tial (or intermediate) finitely representable convex space 
which is further refined when additional observations are 
collected. In these cases, the parafiniteness property pro- 
vides the necessary and sufficient conditions for the final 

Figure 3: The parafinite property concept space to be finitely representable. 

Proof: (e) For all p ,  q  E P, with p  > q ,  and 
for all x  with x E p  but x $ q, we have C = 

{ p ) )  is a finitely representable convex space and 
A = K ( C $ , { z } ) ,  B = K ( { z } , q 5 )  are finite observation 
version spaces. Let C1 = A A C and Cz = B A C. By 
assumption C 1 ,  Cz are finitely representable, therefore we 
can find m , n , G , S  where G = { p ;  ( 1 5 i 5 m }  and 
S = { q j  1 1 < j < n )  such that C1 = B ( { q } ,  G )  and 
C2 = a(s, { P I ) .  Hence, P 2 pi > q  and P 2 qj 1 q.  
Furthermore, for all p' with p  > p' > q ,  x $ p', we have 
by definition that p' E Cl, which implies that there exists 
i such that pd > p'. Similar results hold for C2 and qj by 
duality. Hence P is parafinite. 

(*) Given any finitely representable convex space 
A = B ( X , Y )  and a finite observation version space 
B = K ( r , A ) ,  with X , Y  g P and r , A  C UP are finite, 
we want to show that C = A A B is finitely representable. 
sin= B = A y E r K ( { y ) ,  d) A AaEaK(C$> { h } ) ,  by asso- 
ciativity of A, it suffices to show that C is finitely repre- 
sentable for those cases where B is a single observation 
version space. First, we assume that B = K ( {  y }, 4 ) .  Ob- 
serve that q' E C if and only if there exist q  E X , p  E Y 
such that q  c q' c p  and y  E q'. Since P is parafi- 
nite, implies that there exist finite m and q j ,  where 
1 5 j 5 m ,  such that for any q', we have q  5 q' C_ p  
and y  E q' if and only if there exists j such that qj 5 q', 
i.e. q' E B ( { P } ,  { q j  I 1 5 j 5 n } )  C C.  Since X , Y  are 
finite, we have only finite distinct pairs of such p  and q. 
Therefore C is the union of finite finitely representable 
convex spaces. Furthermore, C is by definition a con- 
vex space, therefore C is a join of finitely representable 
convex spaces by the definition of join. Hence, by The- 
orem 11, we conclude that C is finitely representable. 
Similarly, we can show that C is finitely representable 
for the case where B = K ( 4 ,  ( 5 ) ) .  

Extended version spaces. 

In many real applications, the training data for con- 
structing the version space of a concept may be erro- 
neous or the concept itself may be a disjunction of sev- 
eral version spaces, therefore it is essential to work with 
a more general notion of version spaces. There are at 
least two approaches to this problem. One approach, sug- 
gested by Hirsh [HSO], is to generalize from the notion 
of a version space as a collection of concepts consistent 
with positive and negative training data to a notion of 
"abstract" version space having the needed mathematical 
properties and potentially arising from other sources of 
information such as domain knowledge. In particular, the 
finitely representable convex spaces are an ideal candidate 
for such a abstract theory. The structures Hirsh considers 
are slightly more general than this, but the basic results 
about version space merging are similar to those we have 
discussed above (for example we adopted the notation in 
our proof of Theorem 11 from Theorem 8.6 of [Hir90]). 

In this section we retreat to an analysis of a class of 
finitely representable convex spaces which was used in the 
implementation of the Meta-DENDRAL project [BM78]. 

Definition: Given a finite set of observations (I', A), the 
extended version spaces of (I?, A) are: 

where 0  5 s 5 lrl,O 5 g 5 lA l .  

Lemma 24 V, ,, is a convex space. 

Proof: By definition of c,  we have c ( V , , , )  > V,, , .  To 
show equality, we observe that for all p  E c(VS, , ) .  there 
exist pl E K ( y l , h ~ )  and pz E K ( y 2 ,  b2)  such that pl C - 



p C p2, where y1,72 F and 61,62 C_ A, with lyll = 
1721 = s,  1611 = 1521 = g. Since 3 pl and p2 62, 
we have p E K(y1,52). Hence, p E V ,  ,, which implies 
~ ( ~ , g )  = Vs,,. 

The last lemma establishes the basis for the formal treat- 
ment of extended version spaces using the theory of con- 
vex spaces. In fact, the convexity is the main reason 
for why extended version spaces can be represented by 
boundary sets and computable using similar operations 
that we have established for the version spaces. Note that 
several results are immediate from the lemma: 

Corollary 25 Any extended version space is a frnite join 
of version spaces: 

where 0 5 s 5 II ' l ,O 5 g 5 lAl. 

Corollary 26 If a concept space P has the M W and G 
properties, and VS,, is an extended version space with ei- 
ther s > 0 or g > 0, then V,,, is finitely representable. 

With the facts that we have established in Lemma 4, we 
can show that the union operations which occur in the 
manipulation of extended version spaces can usually be 
replaced by the join operations of convex spaces. There- 
fore, the algorithms for computing the meet and join of 
convex spaces can be applied directly to the extended 
version spaces without any modification. Using only the 
lattice operations, the following theorem allows us to gen- 
erate the extended version spaces incrementally and with- 
out referencing any of the previous observations. 

Theorem 27 If the extended version space induced by a 
set I? of positive instances and a set A of negative instances 
is V,,,, then: 

I .  given a new positive observation x, the extended ver- 
sion space of (I? U {x), A) is: 

2.  given a new negative observation x, the extended ver- 
sion space of ( I ? ,  A U {x)) is: 

where we assume that: 

= { : i f s  < Oor s > Iyl l forl . )  
i f g  < 0 or g > 161 lfor2.) 

Proof: For boundary cases, we have the following de- 
sired results: 

For non-boundary cases, we have: 

= ( V ,  A ( { ,  4 ) )  V -because V:,, is a con- 
vex space and by noting that, for a closure operation 
f, We have f (A U B )  = f (f (A) U f (B)) .  

2. Similar proof as 1. O 

The following shows that it is possible to compute the 
entire extended version space V,,, from V,,o and Vo,, 
using the lattice operations: 

Lemma 28 For all 0 5 st 5 s 5 (I'(and 0 2 g' < g 5 
IAl* 

Proof: 1. I f p ~  V,,,,thenthereexisty C_ I ' , 6 C A l  
with ly 1 = s ,  16 1 = g, such that y C p C 2. However, 
there exist y' 2 y,6' C 6, with 17'1 = s', 16'1 = gt. 
So y1 G p C p, i.e. p E V,I,,I. 

2. (g )  From l., we have I/,,, C V,,,l,V,,, C V,',,. 
This implies that V,,, 2 V,,,I A V,I,, because 
V,,, is a convex space. 

(2) If p E &,,I A V,I,,, then there exist yl, y2 g I? 
and & ,  62 c A, with Iyl 1 = s ,  (y21 = st ,  161 1 = 
gl, 16~1 = g, such that yl C p c and y2 
p C &. Hence, we have yl C p g G, i.e. p E 
K,g. 



3. By assigning st = gt = 0 in 2. above. 

The following theorem allows us to independently calcu- 
late several sets of extend version spaces and later com- 
bine them without referencing any of the previous obser- 
vations. 

Theorem 29 If afinite set of observation (I?, A) is parti- 
tioned into (rl, Al ) and (r2, A2), then: 

~ S , O  = v (V:-k,O A ~ $ 0 ) ~  
O<k<s 

'. lio,g = V ( ~ , ' , g - k ~ ~ < k ) ~  

O l k 5 g  

where the various extended version spaces are distin- 
guished by superscripts. 

Proof: 1. Ks0  

= U{K(r,4) I r G r,Irl = S) 

= u { K ( ~ I , ~ )  A K(72,d)  I yl c r l , y z  E r 2 , 1 ~ ~ t  + 
l ~ a l =  s) 

= u ( u ( u {~(7' i ,d)AK(7'2,4)>))  
Osks~ lyll=s-k I7al=k 

= U ( U {K(ri,C) A ~ 2 0 ) )  -by Lemma4 
O<k<s 1711=s-k 

= U {&L,, A v;,)) - by Lemma 4 
O<k<s 

= V ( l . ' , l -k ,o~~{o)  -byLemma4 
OskLs 

2. Similar to the proof of 1. 

5 Assumption-based TMS's 

In this section, we examine Johan de Kleer's formula- 
tion of truth maintenance systems (TMS's) known as 
assumption-based TMS's [dK86a, dK86bl. An ATMS 
works in conjunction with a problem solver recording all 
conclusions drawn by the solver together with the assump- 
tions they depend on. The job of an ATMS is to effi- 
ciently recalculate the status of beliefs in a solver when 
the premises that underlie them are changed. Each con- 
clusion derived by the problem solver is represented as a 

node in the ATMS. The derivation of a node is also ob- 
tained from the solver and recorded in the ATMS. Central 
to the ATMS is the notion of an assumption: each node 
has associated with it all minimal sets of assumptions 
that would make the node hue. The ATMS recalculates 
these sets as new formulas are acquired from the problem 
solver. 

The assumption sets form a finite lattices under set in- 
clusion. We show that the sets of assumptions that make 
a node me ,  form a convex space. Hence such sets of 
assumptions can be represented by boundary sets. The 
existence of the common inconsistent sets of assumptions 
makes it possible to simplify this representation so that 
only the upper boundary (greatest) elements are required. 
These constitute the label of a node. 

Our goal in this section is to formalize the working 
of an ATMS and show how the calculations of label sets 
can be formulated as computations on the boundaries of 
convex spaces. As with our analysis of version spaces, 
the convex space reformulation of the ATMS leads to the 
discovery of several new results. In particular, it allows us 
to describe the semantics of the label computations in both 
the basic and extended ATMS in a uniform framework. 
Furthermore, it leads to the development of new general 
algorithms for label computations. 

To eliminate many implementation related details of 
an ATMS, we propose the following specification of an 
ATMS which focuses on the label calculation. 

Definition: An ATMS is characterized by the following 
inputs and outputs. 

Input: a finite set of propositional formulas 3, and a fi- 
nite set of propositional literals A, called ussump- 
tions. Subsets of A are called environments, the 
power set of A is called the environment lattice P. 
Propositional literals that appear in 3 and A are the 
nodes of the ATMS. 

Output: for each X, where X can be a propositional 
atom in 3, an assumption in A, or I (a special 
proposition that represents falsity), the ATMS com- 
putes Vx which is a set of subsets of A where 

Semantics: using the short hand 3 U p  for the set 3 u  { j  

x I x E p), the output of the ATMS, Vx, must satisfy 
the following (where X #I):  

VL={p E P 1 3 U p is inconsistent), 
Vx={p E P ( 3 U p  is consistent, and 3 U p  X). 



Algorithm: a procedure that takes the input of the ATMS 
and manipulates the values of Vx's so as to satisfy 
the semantical requirement above. 

In the ATMS literature, the boundary set representation 
of Vx is called the label of X,  and is the data structure 
that is manipulated. Our approach in this paper, how- 
ever, is to describe the principles behind the algorithms 
of ATMS by first discussing the operations on the set Vx. 
This approach is more intuitive and it offers additional 
insights into the functionality of the ATMS. In terms of 
algorithms, as long as we work with Vx's that are con- 
vex spaces, and the operations on the Vx's are restricted 
to meets and joins, we can apply the isomorphism the- 
orem 13 to obtain equivalent algorithms that operate on 
boundary representations. Thus the boundary representa- 
tion that is normally used in the ATMS can be considered 
as an optimization technique as it was in the case of the 
Version Space. 

In this paper, we will discuss two specializations of an 
ATMS, namely the basic ATMS and the extended ATMS 
described in [dK86a, dK86bl. 

Basic ATMS. 

A basic ATMS can be specified as the following spe- 
cialization of an ATMS: 

Definition: A basic ATMS is an ATMS where the input 
formulas F are propositional Horn clauses XI ,  . . . , X, j 

Y also called justijcations, and the assumption set A con- 
tains positive literals only. 

The consequent of a justification with no antecedents is 
called a premise. A premise can be an assumption. Every 
justification must have a consequent. If a Horn clause 
justification l X 1  A .  . . A l X ,  has no positive literals, it is 
rewritten as XI,  . . . , X, +=I, with the special consequent 
1. 

In our convex space reformulation, we let W be equal 
to A and P be the environment lattice. However, the 
partial order on P is defined to be the reverse of set 
inclusion, i.e., set containment, i.e. 5 r 2. This partial 
order captures the notion of the generality of an environ- 
ment. Since the set of assumptions is finite, the environ- 
ment lattice is also finite and therefore convex subsets of 
P can be represented by their finite boundaries. 

Definition: Given an ATMS with input formulas 3, the 
set of values for the Vx's (where X is either a proposi- 
tional atom in F, or an assumption, or the proposition I) 

are called states of the ATMS. An initial ATMS state is 
a state such that for each propositional atom X E 3, 

1. Vx is the downward closure of {{X)), if X is an 
assumption but not a premise. 

2. Vx is P, if X is a premise. 

3. Vx is the empty set for every other X. 

Observe that every Vx is downward closed in an initial 
ATMS. In fact, for the following discussion, we will only 
be concerned with those states of ATMS where each Vx 
is either downward closed or convex. As described in 
section 2, the downward closed sets form a lattice and in 
particular, a sublattice of the convex spaces. Therefore, 
the following are well defined: 

Definition: For any justification $ (= X I , .  . . , X, + 
Y) E 3, we say that $ is applicable to the ATMS if 
in the current state of the ATMS, 

The application of $ to the current state of the ATMS 
results in the modification of Vy as follows: 

Note that for downward closed sets, the meet and join 
operations are equivalent to the set intersection and union 
operations respectively. The above definitions can be ex- 
tended to cover a sequence of justifications as follows: 

Definition: Let . . , $,) be a sequence of justifica- 
tions. The sequence is said to be applicable to the ATMS 
if is applicable and each $i, 1 < i < s is applica- 
ble after the sequential application of . . . , - to the 
ATMS. The application of the sequence to the ATMS is 
defined to be the sequential application of $, , . . . , $,. An 
applicable sequence of justifications is said to be complete 
with respect to F if, after the application of the sequence, 
no justification in 3 is applicable. 

With the above definitions, we can now proceed to dis- 
cuss the basic ATMS algorithm. The algorithm can be 
viewed as a process of modifying the values of Vx's from 
an inilial ATMS: 

Definition: Given a basic ATMS with input F, the basic 
ATMS algorithm is defined to be the selection and appli- 
cation of a complete applicable sequence of justifications 
with respect to F on the corresponding initial ATMS, fol- 
lowed by the removal of every environment in Vl from 
every consistent Vx. 



The following are some simple observations that one Similarly, p E Vx in the initial ATMS if, and only 
can derive from the above definitions: if, X is a premise or X is an assumption and X E p. 

2. This is obvious since the empty set is a subset of 
1. To implement the basic ATMS algorithm, we only ( T ~ ~ ~ ) ~ - ~  ( d ) ,  therefore everything that is derivable 

need the procedure that compares sets and the pr* from justifications with empty antecedents is already 
cedures that compute the meet and join of convex present in D. 
spaces. 

2. After the application of a sequence, Vx will remain 
downward closed. Hence, Vx will be convex after 
the removal of the environments that are in VL. 

3. The application of a justification strictly increases the 
size of a single Vx in the ATMS. Other Vx's remain 
unchanged. 

4. Since the size of the environment lattice and the num- 
ber of propositional atoms are both finite, the previ- 
ous observation allows us to conclude that there is 
no infinite applicable sequence of justifications; so 
the basic ATMS algorithm terminates. 

5. By repeating the search for an applicable justification 
in 3, we can always derive a finite complete appli- 
cable sequence of justifications. In particular, given 
any applicable sequence of an ATMS, we can extend 
the sequence to a finite and complete one. This is a 
consequence of Theorem 5 in Section 2, because the 
modification process is a closure operator. 

An observation from the above lemma is that if we 
are given the initial ATMS, then we can obtain MFuP 
by computing ( T 3 ~ ) a - 1 ( C p )  where 3' is F with all 
premise justifications deleted and C p  = {z ( p E 
V, in the initial ATMS). Therefore, with the initializa- 
tion that we made to the ATMS, we can assume that 3 
contains no premise justifications and every justification 
has non-empty antecedents. 

Consider an ATMS with an input set of justifications 3 
not containing I. The basic ATMS algorithm is reduced 
to the application of any complete applicable sequence 
of justifications to the initial ATMS. To justify our def- 
inition, we need to show that every complete applicable 
sequence derives the same results. This, however, is a di- 
rect consequence of theorem 5 because every application 
of a justification can be considered as a closure operation 
on the cross product of all Vx 's. More generally, as stated 
in the following theorem, we can define a semantics of 
our algorithm which is independent of the choice of the 
sequence. 

Theorem 31 If S = . . . , $,)  is a complete applica- In analyzing the basic ATMS algorithm, it is convenient 
ble sequence of justifications of an initial ATMS, then at to first ignore I and consider only those Horn sentences 
the end of of S, we hovel in 3 that have exactly one positive literal. An important 

fact about such a propositional system is that it has a 
minimal model. We will denote the minimal model of 3 
by M3. Another fact is that if we define T 3 ( M )  = {y I 
(XI,. . . , xn + y) E 3 and {xl, . . . , x,) C M )  IJ M ,  
then M3 = Ui,0(~3) i (q5)  = (T3)'(4)  for some non- 
negative integers W H 9 0 1 .  The following relates the 
initial ATMS to the operation T3: 

Lemma 30 1 .  The initial ATMS corresponds directly to 
T F u p ( 4 ) ,  i.e. p E Vx in the initial ATMS if, and only 
@-# x E T3up(4) .  

2.  Given D = (TFup)$(4)  where i > 0, the 
only justifications that contribute additional items 
to ( T F u P ) ( D )  are those that have non-empty an- 
tecedents, i.e. the premise justifications and those jus- 
tifications in p. 

Proof: 1. Observe that X E TFu,(q5) if, and only if, 
X is a premise or an assumption in p, i.e. X E p. 

Proof: Since there exists a minimum model MF,, for 
3 u p ,  it suffices to show that p E Vx e X E 

(+) We will prove this by induction on the number of 
applications of justifications: 

Basis From lemma 30, we know that the setup of the 
initial ATMS is such that if p E Vx, we have X E 
M3up. 

Step The only way that p E P can be added to V, for 
some node y after the application of a justification II, 
iswhenII,=xl,  ..., x, + y a n d p E V r i , l i i <  
n. By induction, we have for all i that xi E MFUP. 
Since $ E F, we have y E MFuP. 

(e) We want to show that if X E MFup. then 
p E Vx at the end of the application of S. As indi- 
cated in the observation after lemma 30, it is sufficient 



to show that if x E ( T F ) S - l ( C p ) ,  where C, = { x  ( p  E is inconsistent. Let 3~ be the set of justifications of 
V, in the initial ATMS), then p  E V,. the form ( x l , .  . . , x n  +I) ,  and let 3' = 3 - 3 i .  We 

Assume that this is not true, then at the end of the 
basic ATMS algorithm, there exists y E ( T ~ ) " - l ( c , )  
such that p  $2 V,. Note that lemma 30 says that x E  
(T3)O(CP) implies that p  E V,. Therefore the minimal 
i ,  such that there exists y E (TF)'(c,) and p  (2 V,, is 
non-zero. However, by definition of T, y E  ( T ~ ) ~ ( C ~ )  
implies that there exists + = zl , . . . , x, + y such that 
xi E (TF)'-'(C,), 1 5 i 5 n. But the minimality of 
i implies that p  E Vxi for all i ,  1 < i < n. Therefore, 
P E  V,,A...AVx, andp $! Vy,i .e .  Vx,A.--AV,, V,. 
This contradicts the assumption that we have applied a 
complete applicable sequence. 

Note that since 3 does not contain I ,  for all environ- 
ments p  E P, 3 U p  is always consistent. 

Incrementality and I. 

What about the incrementality of the basic ATMS al- 
gorithm? When an additional justification + is added to 
3, a complete applicable sequence (&, . . . , $,) with re- 
spect to 3 may no longer be complete with respect to 
3 U ( $ 1  even though it is still applicable. However, one 
can always extend . . . , $,) to obtain a complete ap- 
plicable sequence with respect to 3 U  ($1. Observe that 
the results of applying the latter sequence is equivalent to 
applying a complete applicable sequence with respect to 
3 U { $ )  on the ATMS state S, where S is the ATMS state 
that results from applying the sequence ( $ 1 ,  . . . , $,) on 
the initial ATMS. Therefore, the incremental basic ATMS 
algorithm can be viewed as the application of a complete 
applicable sequence with respect to F U  ($1 on the correct 
ATMS state with respect to 7. 

The addition of a node into an ATMS does not pose 
any problems since the additional node, with the proper 
initialization if the node is an assumption or premise, will 
not be in the antecedent or consequence of any formula in 
3 .  Hence, any complete applicable sequence will remain 
complete and applicable, and none of the existing VX's 
will be affected by the addition of the new node. One 
could also make a non-premise node X into a premise 
(assumption) incrementally, by changing the value of Vx 
to P (downward closure of { { X ) ) )  and follow it by the 
application of a complete applicable sequence to the re- 
sulting ATMS state. 

We are now ready to address the issue of the node I .  
Consider an ATMS containing I .  Each justification of the 
form ( x l , .  . . , x, * I )  stands for the fact that xl A. . .Ax, 

only want to consider models of 3' U p  that also satisfy 
F L .  If there exists at least one such model, we said that 
F U p  is consistent. We also say that the environment p  is 
consistent with respect to 3. If we treat I in the manner 
as any other node in the basic ATMS algorithm, we have 
p  E VL if, and only if, there exists ( 2 1 , .  . . , x, +I 
) E  3 such that p  E Vxi where 1 5 i 5 n. From 
theorem 31, this means xl A - . - A xn holds, i.e. 3 U p  
is inconsistent. This establishes the exact comespondence 
between the environments in V' and the environments 
that are inconsistent with respect to F. 

Lemma 32 If an ATMS containing I is given the input 
3, then after the basic ATMS algorithm, we have: 

p E VL # 3 U p  is inconsistent. 13 

With the introduction of I in an ATMS, the basic 
ATMS algorithm performs the step of removing any 
p  E Vx that is also present in VL, i.e. Vx is left with 
only consistent environments that, together with the input 
formulas, imply X. Hence, the basic ATMS algorithm 
satisfies the semantical requirement of an ATMS: 

Corollary 33 . If an ATMS is given the input 3 (which 
contain I ) ,  then after the basic ATMS algorithm, we have 
for every X f 1: 

VL = { p  E P I 3 U p  is inconsistent), 
Vx={p E P I FUpisconsistent,and X ) .  

Since VL increases monotonically, the results of the 
algorithm will not be affected if one removes new incon- 
sistent environments from Vx ( X  # I )  after each appli- 
cation of a justification, instead of removing them after 
applying a complete set of justifications as shown in our 
basic ATMS algorithm. de Kleer's basic ATMS algorithm 
does remove inconsistent environments in this incremen- 
tal fashion. 

Boundary representation. 

In an actual implementation of an ATMS, we usually 
resort to boundary representation of Vx's for reasons of 
computational and storage efficiencies. Instead of provid- 
ing the users of an ATMS with Vx, the ATMS provides 
MAX(Vx) denoted by Lx. Furthermore, for the initial 
ATMS, Lx is { { X ) )  or (4) when X is an assumption 
or a premise respectively. Otherwise Lx = (1 .  In the 
ATMS literature, one usually refers to Lx as the label 



of X .  Hence, such ATMS is said to use the label rep- Extended ATMS. 
resentation. This representation is sufficient because an In [dK86bl, de Kleer extended the basic ATMS to al- 
environment p is in Vx for X #I if there does not exist low additiod input called dsjuncrionr 
p' E LI such that p 5 p' and there exists p" E Lx such as choose(C1, ..., C,) ,  where each C ; ,  1 5 i < n is a 
that p 5 Therefore, to encode the information of disrinct assumptionP The interprebtion of the primitive 
V x .  we need only to know the labels of X and 1 .  This disjunction is Ulat at one of the Ci9s must be uue 
nice property is captured by the following definition: in the ATMS. Primitive disjunctions can be used to en- 

Definition: A convex space 
if C = { p  E P ( (Vp' E 
M A X ( C ) ,  p 5 p")). The 
label of C .  

C is representable by label 
LI, P 5 P') and (3p" E 

set M A X ( C )  is called the 

In order to make the label representation of an ATMS 
useful, we also need to be able to run the basic ATMS 
algorithm using only the labels, without any reference to 
the Vx9s. The following shows that this can be achieved. 

One can easily verify that convex spaces representable 
by label are downward closed sets because they also form 
a sublattice of the convex spaces of P, i.e. the meet and 
join operations of convex spaces representable by label are 
still representable by label. In particular, given two con- 
vex spaces X and Y that are representable by label, if Lx 
and Ly are their labels and, S and T are M A X ( X  A Y) 
and M A X ( X  V Y) respectively, then by specializing the 
definitions of Gln2 and Glu2 in the proof of Theorem 11, 
we obtain the following formulas for computing the la- 
bels: 

S = M A X ( { P X U P Y  I P , E L X , P ~  E L Y ,  
s.t. 7 3 p 1  E L l  , px U PY 5 p'}) (1) 

T = M A X ( L x  U L y )  (2) 

For the operations on downward closed sets, the formulas 

code negated assumptions, -hence, all propositional ex- 
pressions can be encoded using justifications and prim- 
itive disjunctions only. With the addition of primitive 
disjunctions, the basic ATMS algorithm for computing 
labels is no longer sufficient. To see why, consider 
the following example from [dK86b]. Suppose 3 is 
{ A  * a; B * b;  C 3 c; c , a  3l; c, b + I } .  The la- 
bel for the proposition I is { { A ,  c), { B ,  c } } .  Adding 
choose({A}, { B } )  causes this label to change to { { C } }  
because one of A or B holds in the new ATMS state. 
The basic ATMS algorithm fails to make this correction 
because it handles Horn clause justifications only, and our 
choose statement is non-Horn. To solve this problem, de 
Kleer corrected the labels computed by the basic ATMS 
algorithm using two hyper-resolution rules, one for the I 
node and one for the others. 

In this paper, we extend the expressive power of 
the choose operation to allow the encoding of com- 
plex disjunctions which can have sets of assumptions 
as their arguments, i.e. DNF (disjunctive normal form) 
formula of assumptions. For instance, we may have 
choose({A, B, C ) ,  { D ,  E ,  F } )  and the interpretation is 
that either A, B and C are true or D ,  E and F are true. 
This allows greater flexibility in the encoding of knowl- 
edge in an ATMS. 

are still the same except that one need not bother with LI  
In the following, we reformulate the problem of la- 

in computing S. Therefore, one can compute the meet be1 calculation in the extended ATMS using the convex 
and the join of the convex spaces in the basic ATMS spaces. In particular, we describe a general algorithm for 
algorithm in terms of their labels alone. Furthermore, 
the subset comparison of any two convex spaces in the 

computing the correct labels that depends only on the meet 

algorithm can be easily decided by exarning their labels. 
and join operations of convex spaces. Note that the only 

Since the procedures that compare sets and the procedures 
difference between the basic and the extended ATMS is 
that in addition to justifications, the extended ATMS al- that compute the meet and join of convex spaces are the 
lows the input to contain disjunctions (we only procedures required by the basic ATMS algorithm, 
also refer to these formulas as DNF formulas or choose 

and we have shown that each of these procedures has an 
statements), i.e. equivalent procedure that operates only on the labels, we 

have: Definition: An extended ATMS is an ATMS where the 
input formulas T are propositional Horn clauses and DNF 

Theorem 34 In a basic ATMS that uses label representa- formulas assumptions only, and A contains 
tion. the basic ATMS algorithm can be tran$ormed to one positive literah only. 
that operates on labels only. 

3De Kleer also introduces ignore to hide information from the prob 
"Ihis is not to there exists P l  E LL and Pz E Lx such 1em solver. This is an added feature which does not affect the calculation 

that pl < p 5 p z ,  because the latter fails when Vl is empty. of labels and hence will be ignored in this paper. 



Our approach is to extend the basic ATMS algorithm 
in the previous section by adding a procedure to han- 
dle disjunctions. Instead of using propositional inference 
to correct labels, we first examine how the introduction 
of disjunctions changes the set of environments where a 
proposition holds, and use this to derive the label update 
algorithm for the extended ATMS. 

The introduction of disjunctions into an ATMS causes 
the set of inconsistent environments in VL to expand to 
include any environment p with the property that ev- 
ery superset of p that satisfies at least one disjunct in 
every choose statement will also derive I. We now 
show how the set Vl changes for our running exam- 
ple. Using justifications alone, we determine that the 
environments {A, C),  {B  , C) and {A, B , C) are in- 
consistent. Thus MAX(Vl ) ,  which is the label for 
the I node, is {{A, C) , {B, C)). Now we consider 
the effects of choose({A), {B)). The set of incon- 
sistent environments expands to include {C), because 
every superset of {C) that satisfies our choose state- 
ment is also inconsistent. The new value of Vl is 
{{C), { A ,  C), {B, C), {A, B ,  C)). Therefore the new 
label for I is {{C)). 

Similarly, the set of consistent environments deriving 
a node X, i.e. Vx, is expanded to include any consistent 
environment p with the property that every superset of 
p which satisfies every choose statement also derives X. 
We will see in the following that these effects can be 
achieved by the applications of the operation O as defined 
in section 2. First, we need to introduce some notations: 

choose(t\, ..., t ; , )  stands for the ith disjunction, 
where I 5 i 5 n. 

Consider a node X #1 and a basic ATMS that is cor- 
rect with respect to some formulas 3. When the i:, dis- 
junction is added to to 3, we know that at least one of 
the tfl (interpreted as a conjunction), 1 5 j 5 ni, needs 
to be true, hence, we need those consistent environments 
p such that given any choice of t ; ,  p A t; E Vx or 
p A t; E VL. This will capture every consistent environ- 
ment p that when expanded to agree with the i:, disjunc- 
tion will derive X or become inconsistent. Note that the 
p's that get expanded into inconsistent environments can 
be easily filtered out because they will now be present 
in the new VL. Therefore, we want to expand Vx to be 
{ p  E P I vj, 1 5 j 5 n i l , p ~ t f  E Cxjp # Vl) which is 
aT,! (CX) - VL, where I;.! = {t; I 1 5 j 5 nit). Taking 

all the disjunctions into consideration, we expand Vx by 
each QT, until it becomes a (least) fixed point of every 
aT,. Therefore, as a consequence of the Theorem 7, we 
arrive at the following definition: 

Definition: Given an extended ATMS with input 3, if the 
set of disjunctions in 3 are represented by z, 1 5 a' 5 n, 
then the extended ATMS algorithm is defined to be the 
following sequence of steps: 

1. Apply the basic ATMS algorithm to calculate Vx 
using only the justifications in 3, 

In the following, we show that the above algorithm 
satisfies the semantical requirement of an ATMS, i.e. 

Theorem 35 In an ATMS with the input 3 which contains 
the set ofDNFformulas 2) = (81,. . . , Om), at the termi- 
nation of the extended ATMS algorithm given above, we 
have for all node X f I:  

p E VL # 3 U p is inconsistent, 
p E Vx # 3 U p is consistent, and 3 u p + X. 

Proof: To make references easier, we will assume V i ,  
Vi and C& to be the values before the application of the 
Q opemtions, i.e. those defined in steps 1 and 2. 

iFrom lemma 32 and corollary 33, we know that at the 
end of step 2 in the extended ATMS algorithm, we have 
V; containing all inconsistent environments with respect 
to (3 -D) ,  andp E C& u ( 3 - D ) U P  X. If Vl and 
Cx remain correct with respect to these semantics, then 
the resulting Vx at the end of step 5 will be correct. 

We will prove the theorem by induction on the number 
of DNF formulas in 3. Using the results of the basic 
ATMS as basis, it suffices to show that the addition of 
a single DNF formula 8 to 3 will produce the correct 
results. 

First we will show that at the end of step 3, VL contains 
all the inconsistent environments with respect to 3 U 8. 
Observe that F U 8 U p is inconsistent if, and only if, 
3 U p  U t is inconsistent for all t E 8. By induction, we 
have 3 U p U t is inconsistent if, and only if, p A t E Vi. 



Therefore, 3 U p U t  is inconsistent if, and only if, p E 
QT(V;), where T is the set of conjuncts in 0. 

Next, we need to show that p E Cx e 3 U p  b X 
at the end of step 4. Let T be the set of conjuncts in 
6. We have by definition of O that p E Cx implies 
that p A t  E Ck for all t E T .  By induction, we have 
3 U ( p U t )  b X. Hence, ( F u f ? ) U p b  X. 

Conversely, given any p E P such that ( 3 ~ 6 ) u p  + X. 
Observe that for every t  E T, we have (3 U t )  U p 'i= f 
for all f E ( F u  8 )  U p .  Hence, 3 U  (t U p )  X .  By 
induction, we have p A t  E Ck for all t  E T ,  i.e. p E C X .  

To make the extended ATMS algorithm meaningful, 
we still need to find a way to compute cP. This can be 
achieved by the following: 

Theorem 36 If P is an environment lattice, then given 
any downward closed C with MAX(C)  = { s l  , ..., s,), 
and any T = i t l ,  ..., t , ) , :  

where E: = { p  E P I p Ati 5 s , } .  Furthermore, E: is 
a downward closed set with a unique upper bound e j  = 
s j  - t j .  

ProoP: For the first part of the theorem, we know that 
@ T ( C ) = { P E  P IWj E T , p A t j  € C ) a n d p A t j  E 
C  if and only if there exists i, 1 < i 5 rn such that 
p Atj 5 si, which means p E Ui E; = V i  E;. Therefore, 
QT(C)  = Aj V i  E;. 

The downward closed property of E; is obvious from 
its definition. Furthermore, if we rewrite the definition in 
terms of set operations: E; = { p  E P ( p U t j  > s i ) ,  then 
si - tj is obviously the largest element (smallest subset) 
in E:, i.e. e( = si - t j .  J 

Again, in an actual implementation of an extended 
ATMS, one may wish to improve the efficiency of the 
algorithm by exploiting the label representation. Since 
@ , ( C ) = { p E P I W ; E T , p A t i E C ) = ( E : V . . . V  
E r )  A - . . A (E: V . . . V E,"), and each of the terms E: 
can be represented by the boundary set { e j ) ,  we can ap- 
ply the formula (1) and (2) to calculate MAX (QT(C))  - 
with the deletion of inconsistent environments suppressed. 
Hence, as a consequence of the Theorem 34, we have: 

Corollary 37 In an extended ATMS that uses label rep- 
resentation, the extended ATMS algorithm can be trans- 
formed to one that operates on labels only. 

In an incremental extended ATMS where recalculation 
of labels is needed for each new input, the addition of a 
disjunction involves applying the corresponding O oper- 
ation to every label in the ATMS. However, the addition 
of a justification involves runing the incremental basic 
ATMS algorithm, followed by applying the operation 
on each affected node for every disjunction previously 
input to the ATMS. 

What is still lacking in the extended ATMS are the neg- 
ative literals. However, given any propositional formulas 
with negative literals, we can always map them to an 
equivalent set of extended ATMS inputs without negative 
literals. Such a mapping was described in [dK86b]. This 
mapping can be rigorously formalized and shown to be 
correct. We leave it as an exercise for interested readers. 

Examples of label calculations. 

We now present some examples drawn from [dK86b] 
to show the calculation of label sets using the formulas 
derived in the previous section. We adopt the same no- 
tation as in [dK86a], upper case letters are assumptions 
nodes, lower case letters are derived nodes. In addition, 
we use the following: 

s l ,  s2 ,  ..., s ,  are the environments in MAX(Cx) ,  
i.e. the MAX of the union of the old label set of X 
and MAX(Vl) ,  

t  l ,  t 2 ,  . . . , t ,  are the environments in the disjunction 
under consideration, 

The label of I before considering the disjunction is 
{ { A ,  C )  , { B ,  C ) ) .  Hence, the calculation of the label 
of I is as follows: 

SI = {A ,  C ) ,  s2 = (9, C )  

t1=  { A ) ,  t2 = { B )  



where LI  is the new label set of the node I. 

The label of d before considering the disjunctions is {{B), 
{ C } )  and LI  is { { ~ , 7 1 ) ) ,  hence, Cd = { { B ) ,  { C ) ,  
{ A ,  A ) ) .  Since we have two disjunctions, we have the 
options of either applying two successive @'s each repre- 
senting one disjunction, or combine the two disjunctions 
and apply a single operation. In this example, we adopt 
the latter method to illustrate the flexibility of the con- 
vex space approach. Note that the two disjunctions are 
equivalent to choose({x), {A, B ) ,  { A ,  C ) ) .  Hence, the 
calculation of label of d is as follows: 

s1= {B), S.2 = { C )  S 3  = { A , X )  
t = { t2 = { A ,  B )  t3 = { A ,  C }  

where Ld is the new label set of the node d. 

New label-update algorithm. 

The convex space reformulation of the label update 
computations in the extended ATMS reveals new oppor- 
tunities for efficient implementations. The key calculation 
is that of MAX(aT(C)) .  From the previous section, we 
know that for any downward closed C, we have: 

@.(c) = AVE; (3) 
j i 

If we let C denote the set of all functions with do- 
main ( 1 ,  ..., n )  and codomain (1, ..., m ) .  We can rewrite 
formula (3) as: 

Q ~ ( c )  = v A E;(') (5) 
oEC j 

Observe that we always get better efficiency by using 
formula (3) since it requires fewer operations than for- 
mula (5). However, under certain circumstances, we may 
be able to ignore a big proportion of a's in calculating 
aT(C) .  thus making the use of formula (5) reasonable. In 
particular, as we will see later, de Kleer's hyper-resolution 
rules exploit such situations. 

In this section, we discuss possible ways of optimizing 
the calculation of MAX (aT (C) ) .  We identify conditions 
on T and C that simplify this computation. In the naive 
implementation of the algorithm using the formula above, 
we first calculate the matrix of ej's for 1 < j 5 n and 
1 5 i < m. The columns in this matrix correspond to 
the si's which are elements of MAX(C):  the current 
label of a node, the rows correspond to the tj's which are 
taken from a choose statement. The entry in cell ( j ,  i) is 
ej which is s ,  - t j .  We compute the union of all elements 
in each column to obtain 3 = MAX(U, {ej 1 ) .  Then the 
new label of interest is Aj 5. 

Here are two special cases that allow us to compute 
the label sets without filling in all n * m entries in the e 
matrix. We will fill entries in the e matrix row by row. 

1. If there exist i' and j' such that sit t j , ,  we have 
sit - tjt = {) which implies that V i  E:, = ((1). 
Hence we may ignore the column j  = j' in the cal- 
culation of formula (3) if {) is ever generated in 
that column. We will call this condition the rowdone 
condition. 

2. If there exists a j' such that for all i, we have s; - 
tjt = s i ,  then Vi  E;, = C,  hence, A .  V i  E: C C.  

3 But the right hand side of the equanon is a T ( C )  
which is always larger than C ,  therefore, @T(C)  = 
C ,  and no further entries in the e matrix are required. 
This is the matrixdone condition. 

Sometimes, the application of @T on C does not pro- 
duce many new environments. In such situation, the al- 
gorithm can be further improved by first ignoring compu- 
tations that will only contribute to environments that are 
already in C .  The partial results can then be unioned with 



C  to obtain the desired answer. The following describes 
a condition when one can ignore some of the el: 

3. If there exist it and jt such that s;, - tjt = si , .  
i.e. ej: = si,, then Ej: C C .  Therefore, ~ j :  will 
not contribute to anything new in the computation of 
aT ( C )  and thus can be ignored. This is the emptycell 
condition. 

This optimization reduces the size of the unions that need 
to be taken for the calculation of Y j .  

We can use the special cases described above to im- 
prove on the naive implementation of the label calculation 
algorithm. The optimized algorithm takes two arguments: 
the label set S of a given node, and the set T  of conjuncts 
in DNF. It fills in the e  matrix one row at a time. For 
each column i, it examines s; in S computing e$ = si - t j  
when the emptycell condition doesn't hold, until the row 
is exhausted or skipping over rows for which the rowdone 
condition is true. If at any time the matrixdone condition 
is satisfied, the algorithm returns the set S. Otherwise, 
temporary unions Y,  = M A X  (Ui {ej )) are computed 
for each row. The final result is Aj Y ,  V  S  where the 
meet operation is taken over j's that fail the rowdone 
condition. 

procedure @ ( S ,  T )  
Initialize eCj,i] and YQ] to nil, 1 < j  < n  and 1 < i < m; 
rowdone +- false; matrixdone t false; 
Result +- nil; 
repeat for each tj in T 

repeat for each si in S  
if not emptycell(i j) 
then e[ j ,  i] +- { s i  - t j ) ;  

until rowdone 

5. For any fixed i, say it, if there exist j l ,  j2 such that 
t j l  , t j ,  t s , ~ ,  then given any set A  = { E ; ( ~ )  I 1 j 
j  5 n )  with a one to one, then at least one of 
~ ~ ( i l )  E ~ ( i a )  is not in A. 

1 1  ' 3 2  Without loss of gen- 
erality, assume EY?') is not in A. If there ex- 
ists j3 such that a ( j g )  = i t ,  then since t j l  and 
t j ,  are disjoint, we have ei: 5 t j l .  Consider 

= e ~ ( i l )  A ei,' , since e ~ ( j l )  = 
3 1 I 3 I 1 S o ( j 1 )  - t j , ,  we 

have p 5 t j l  U - t j l )  = Hence, 

Alsjsn e;") j s o ( j l ) ,  i . ~ .  A A  C.  Therefore, 
we can ignore any A  that contains E;' for any j ,  
i.e. E;' for 1 5 j  5 n  can be ignored. 

In the special case where arguments of the disjunction 
are singleton and disjoint, we conclude that we need only 
consider A l c j < ,  - - E;(') which satisfies the following: 

4 : a  is one to one, 
3 'J j ,  so(j)  - t j  # so( j ) ,  (6) 
5 : V j ' , j t  # - t j  = s o ( j ) .  

Therefore, for each A, E;(') in formula (S), only those 
a that satisfies (6) can contribute new environments. For 
any of these a ,  we need only to add the environments 
A, e;") = U j  (so( , )  - t j )  to the label set. This reduces 
to exactly the hyper-resolution rules discussed in [dK86b] 
for C  = VL and C = C x  which are the rules for ensuring 
consistency and completeness respectively. 

Observation 5 leads us to the following optimized al- 
gorithm for calculating iP when the given disjunction is 
primitive. T is a clause of length n whose terms are 
literals, and S is the label set for some node. 

until matrixdone 
if matrixdone then return Result = S; 

procedure Primitive-@(S, T) 
Initialize e&i] and Yu] to nil, 1 5 j  5 n and 1 5 i 5 rn; 

Ytil = M A X ( U  e [ j ,  ill. 1 5 j  < n  and not rowdone0); rowdone + false; matrixdone - fdse; 
return Result = Aj Y  b] V S,  not rowdoneu). Result t nil; 
end-procedure iP for each s  in S  

If we know that t j  's are pairwise disjoint, i.e. t j l  V t ja  = 
{), for 1 5 jl # jz j m, then one can further prune away 
some unnecessary operations. Consider the formula (5) 
in the following: 

4. For any fixed i ,  say i t ,  and any j l ,  j 2 ,  we have e; A 

e?' 1 2  = (sit - t j l ) A  (sit - t j 2 )  = si, - ( t j l  n t j 2 )  = s*, ,  

i.e. E;: A E;: g C.  Hence, only for cases where a  

is an one to one function will Aj E;(J) contribute 
new environments. 

if exactly one literal 6 of s  occurs as t j  E T 
then eu,il t {s - b ) ;  

end 
if matrixdone then return Result = S; 
Ytil = M A X ( U i  e b ,  z'j), 1 j j  5 n  and not rowdoneti); 
return Result = Aj Y b] V  S ,  not rowdoneu). 
end-procedure Primitive-@ 

There are several advantages to using this new algo- 
rithm over de Kleer's hyper-resolution approach. The ab- 
sence of resolution contributes substantially to the per- 



formance of our algorithm in comparison to a hyper- 
resolution based approach. This advantage is similar to 
the way ATMS's are an improvement over the earlier 
Truth Maintenance Systems [Doy79], because the label- 
ing eliminates the need to re-evaluate some computations 
multiple times during backtracking. In our case, the re- 
dundant computation involved in a hyper-resolution based 
ATMS is the pattern matching required by the last con- 
dition in formula (6). This is because different a's may 
share the same values for some subset of j's, hence the 
pattern matcher may run on every one of these u's even 
though all of them may fail for the same reason. 

Another advantage is the easier encoding and poten- 
tial improvement in efficiency because a formula in dis- 
junctive normal form can be asserted as a single choose 
statement. Furthermore, the new label-update algorithm 
allows the flexibility for combining any set of disjunctions 
into a single disjunction. For instance, we can combine 
choose({A), {B)), choose({B), { C ) )  and choose({A), 
{ C ) )  into choose({A, B), {B, C ) ,  { A ,  C ) ) .  Hence, a 
single application of the @ operation, instead of three, 
suffices to compute the new label of a node. 

6 Conclusions 

We have formulated a theory of convex spaces of par- 
tially ordered sets which includes algorithms for basic 
operations on finitely representable convex spaces in the 
presence of a simple assumption on the partial order. Us- 
ing this theory, we can also describe conditions that could 
ensure the admissibility of the version space representa- 
tion of a concept description language. 

We then show how the convex spaces can be used to 
describe the label-update algorithm in de Kleer's basic 
assumption-based truth maintenance systems. This idea 
suggests a new approach to the label-update algorithm 
for the extended ATMS. Our approach generalizes the ex- 
tended ATMS choose operations to allow the use of dis- 
junctions such as choose({A, B, c ) ,  { D ,  E ,  F ) ) .  This 
provides additional flexibility in expressing constraints 
and also contributes to the efficiency of label updating. 
Our new label-update algorithm does not require the in- 
troduction of any form of hyper-resolution rule. Instead, 
we use an approach which is similar to that employed in 
the version space algorithms to recalculate labels. This 
simplifies the description of how labels are updated and 
makes the extended ATMS label-update algorithm more 
consistent with the algorithm used for the basic ATMS's. 

The convex space treatment of ATMS provides more 
than just a new algorithm for the ATMS. We also show 
that the approach leads to better understanding of the 
logical foundations for both the basic and the extended 
ATMS. In the paper Nga911, we also show that if 
negation is introduced into the ATMS architecture, one 
can apply the operation to calculate the prime impli- 
cates [RdK87, KT901 of any set of DNF formulas. This 
algorithm has been implemented on top of our ATMS im- 
plementation. 

It is especially our hope that the abstraction of the con- 
vex space algorithms which we have discussed will lead 
to new insights in other areas which do, or could, employ 
similar structures for the representation of knowledge. 
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