
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

November 1990

The Common Order-Theoretic Structure of Version Spaces and The Common Order-Theoretic Structure of Version Spaces and

ATMS's ATMS's

Carl A. Gunter
University of Pennsylvania

Teow-Hin Ngair
University of Pennsylvania

Prakash Panangaden
McGill University

Devika Subramanian
University of Cornell

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Carl A. Gunter, Teow-Hin Ngair, Prakash Panangaden, and Devika Subramanian, "The Common Order-
Theoretic Structure of Version Spaces and ATMS's", . November 1990.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-90-86.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/434
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76362913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F434&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/434
mailto:repository@pobox.upenn.edu

The Common Order-Theoretic Structure of Version Spaces and ATMS's The Common Order-Theoretic Structure of Version Spaces and ATMS's

Abstract Abstract
This paper exposes the common order-theoretic properties of the structures manipulated by the version
space algorithm [Mit78]and the assumption-based truth maintenance systems (ATMS) [dk86a,dk86b] by
recasting them in the framework of convex spaces. Our analysis of version spaces in this framework
reveals necessary and sufficient conditions for ensuring the preservation of an essential finite
representability property in version space merging. This analysis is used to formulate several sufficient
conditions for when a language will allow version spaces to be represented by finite sets of concepts
(even when the universe of concepts may be infinite). We provide a new convex space based formulation
of computation performs by an ATMS which extends the expressiveness of disjunctions in the systems.
This approach obviates the need for hyper-resolution in dealing with disjunction and results in simpler
label-update algorithms.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-90-86.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/434

https://repository.upenn.edu/cis_reports/434

The Common Order-Theoretic Structure
Of Version Spaces And ATMS's

MS-CIS-90-86
LOGIC & COMPUTATION 28

Carl A. Gunter

Teow-Hin Ngair

Prakash Panangaden
Devika Subramanian

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

November 1990

The Common Order-theoretic Structure of
Version Spaces and ATMS's*

Carl A. Gunter Teow-Hin Ngair Prakash Panangaden Devika Subramanian
Univ. of Pennsylvania Univ. of Pennsylvania McCill University Cornell University

gunter@cis.upenn.edu ngair@saul.cis.upenn.edu prakash@ opus.cs.rncgill.ca devik@cs.cornell.edu

September 9, 1991

Abstract

This paper exposes the common order-theoretic proper-
ties of the structures manipulated by the version space al-
gorithm [Mit78] and the assumption-based truth mainte-
nance system (ATMS) [dK86a, dK86bI by recasting them
in the framework of convex spaces. Our analysis of version
spaces in this framework reveals necessary and sufficient
conditions for ensuring the preservation of an essential
finite representability property in version space merging.
This analysis is used to formulate several sufficient condi-
tions for when a language will allow version spaces to be
represented by finite sets of concepts (even when the uni-
verse of concepts may be infinite). We provide a new con-
vex space based formulation of complltations perJormed by
an ATMS which extends the expressiveness of disjunctions
in the system. This approach obviates the need for hyper-
resolution in dealing with disjunctions and results in sim-
pler label-update algorithms. The semantics of the label-
update algorithms is established using the order-theoretic
characterization of the algorithms.

1 Introduction

This paper arose out of the observation that the version
space algorithm and the ATMS label-update algorithms
operate on very similar structures. The version space al-
gorithm learns concept descriptions from examples. Cen-
tral to this algorithm is the notion of all concept descrip-
tions consistent with a given set of positive and negative

*An extendend abstrad of this paper appears in: Ninth National
Conference on Artificial Intelligence, Anaheim, CA. July
1991, pp. 500-505.

examples. The assumption-based truth maintenance sys-
tem for recording dependencies during reasoning main-
tains labels for a proposition which encode all environ-
ments in which that proposition is true.

This gives rise to two questions: one, what is the pre-
cise nature of the relationship between the structures em-
ployed by these algorithms taken from two different prob-
lem areas, and second: are the computations performed
by the two algorithms related, and what special proper-
ties of these structures do they depend on? Our aim is
to find a common mathematical basis in order to deter-
mine applicability conditions for the algorithms, and to
cast the computations done in a form that reveals new,
more efficient implementations.

We Erst show that the version space of a concept is a
special case of a convex space. We re-express the com-
putation performed by the version space merging opera-
tion in terms of lattice operations on convex spaces. The
mathematics of these structures is then brought to bear
on the question'of ensuring that finite representability is
preserved under the merging operation. We derive a nec-
essary and sufficient condition, called the M W property
which identifies the class of concept languages for which
version spaces arising from finitely many observations are
finitely representable. Mitchell [Mit78] calls such concept
languages admissible. The M W property is the first con-
dition on admissibility that captures both finite and infinite
concept languages. We also show that extended version
spaces described in Mitchell's thesis can be treated within
the same mathematical framework, and we provide a rig-
orous account for the construction of these spaces.

We then recast the label-update algorithms in the ATMS
also as lattice operations on a convex space. This help
us to establish a simple semantics for both the basic and
extended ATMS algorithms. An important result is a new

algorithm for computing labels that handles complex dis-
junctions such as choose({A, B, C}, { D , E, F)), which
stands for either A, B, and C are true, or D, E, and F are
me. This algorithm is a natural extension of de Kleer's
original ATMS algorithm and does not require hyper-
resolution rules to compute minimal, consistent, sound
and complete labels. We also identify several easy-to-
detect conditions under which label updates can be done
efficiently.

The paper is structured as follows. In Section 2 we
introduce the mathematics of ordered spaces and closure
operators on them. In Section 3 we present the basic the-
ory of convex spaces: finite representability and the M W
properties, the isomorphism between convex spaces and
their boundary set representations, as well as algorithms
for computing meets and joins of convex spaces and their
boundaries. The version space and extended version space
are formulated in terms of convex spaces in Section 4,
and we present three admissibility results for concept lan-
guages. In Section 5, we perform a similar analysis of
the ATMS algorithm and show that the label computa-
tion performed by the disjunction-free ATMS is akin to
the boundary set updates of the version space algorithm.
We extend the class of disjunctions expressible within the
ATMS and use a new closure operator to derive a new
label-update algorithm which is more efficient in general,
and does not rely on hyper-resolution rules. We then show
that these ATMS algorithms have a simple and consistent
semantics.

2 Mathematical Background

In this section we develop some of the basic mathemat-
ical theory of ordered spaces and closure operators on
them. The intuition that is captured by order structures
is a qualitative notion of i@ormation content. Roughly
speaking, the orders that we use express the notion that
one item is more informative than another. Closure oper-
ators are certain special functions that describe operations
that increase the information content of the items that they
manipulate. Thus the common order-theoretic mathemat-
ical structures of the systems that we analyze correspond
to common intuitions about how these systems represent
and manipulate information.

The viewpoint that one can understand the mathemat-
ics of data items, and programs that manipulate them,
in terns of ordered structures is primarily due to Dana
Scott [Sco76, Sco821 in his work on programming lan-
guage semantics. It is in [Sco82], that one sees the ba-

sic intuition relating the order structure to information
content spelled out precisely. A rich subject, known as
domain theory has arisen from his work; see for exam-
ple the recent review article by Gunter and Scott [GSgO].
A rather more daunting but very informative reference
is [GHK*80]. Our treatment is intended to be, for the
most part, self contained.

Closure operators first appeared in the work of Moore
in his study of lattices. Scott's original paper on data types
already contains a discussion of closure operators though
they are used by him for a completely different purpose.
The idea that processes that increase information content
can be modeled by closure operators appears in [JPF%9]
and [SRPgl] in the context of constraint programming.

Order Structures.

We begin by recapitulating some basic definitions. A
partially ordered set (or "poset" for short) is a set P to-
gether with a binary relation 5 which is transitive, re-
flexive and anti-symmetric. We assume that the reader is
familiar with the concepts, least upper bound also called
"join" or "sup", written as V in infix form or V in prefix
form and greatest lower bound, written as A or A and
also called "meet" or "inf". A lattice is a poset in which
every finite subset has a least upper bound and a greatest
lower bound together with some equations that describe
how meets and joins interact. The classical example of
a lattice is the powerset of a set X, i.e. the collection
of all subsets of X ordered by inclusion; usually written
P(X). A sublattice, S, of a lattice L, is a lattice that has
as its underlying set a subset of L and the the meet and
join operations are those of L restricted to the subset. It
is important to keep in mind the distinction between the
sublattices and subsets of lattices that happen to be lat-
tices. In the case of a sublattice we mean that when we
compute the meet or join of two elements in the sublat-
tice we get the same result as when we compute the meet
or join in the original lattice. This need not be true in a
subset that happens to be a lattice. We will see examples
of both situations.

As is usual in the study of algebraic structures, an im-
portant role is played by structure preserving functions. A
function f, from a poset (P , 5) to another poset (PI, 5')
is said to be monotone (or monotonic) if whenever x 5 y
then f (x) 5' f (y). Intuitively one thinks of the elements
of an ordered space as being ordered by information con-
tent. Functions then stand for operations that produce
some output given some input information. It is clear
that for most reasonable notions of transforming informa-
tion, better input information should result in better output

information. The collection of monotone functions forms
a lattice in its own right. The ordering is given by f 3 g
if, for all x in L, f (x) 3 g(x). It is of course possible
to define other orderings on functions but this one is the
most widely used and is commonly called the extensional
ordering.

If one has a function f from L to itself, then an x in
L such that f (x) = x is called a fixed point of f . The
following theorem is an elementary special case of much
more general theorems, but is all that we shall need in
this paper.

Theorem 1 Any monotonefunction f from afrnite lattice
L , with a least element I , to itself has a leastfrxed point.

Proofi Consider the set S = { I , f (l), f (f (l)), . . .}.
Since L is finite there are only finitely many distinct ele-
ments in this set. Since f is monotone and I is the least
element we have the following ordering among the mem-
bers of S, I 5 f (l) 5 f (f (l)) 5 ... ; in other words
for any member a of S we have a 5 f (a). Let x be the
largest element of S. Now, by the definition of S, f (x)
is in S but f (x) is larger than x, on the other hand, x is
the largest element of S thus f (x) = x. Suppose that u is
another fixed point of f . Now I 5 u, by definition of I.
Using the monotonicity of f , we have f (l) 5 f (u) = u,
and by applying f repeatedly we see that all the elements
of S are less than u. Thus, in particular, x is less than u,
i.e. x is the least fixed point of f .

The iterative process used in the proof of this theorem is
the idea behind techniques to search for least fixed points.

Closure Operations on Lattices.

A very important class of monotone functions are clo-
sure operators. They occur throughout this paper to rep
resent processes that correspond to adding information or
"completing" a collection in some way. Therefore, it will
be convenient to develop some general properties of clo-
sure operations.

Definition: Given a lattice L and a monotone function
f : L --i L, f is called a closure operation if it satisfies
the following properties:

C1. x f (x) for any x, in L, and

Note that if x is in L, then C2 says that f (x) is a fixed
point of f . Intuitively, C1 says that f increases informa-
tion and C2 says that adding the same information twice

is no different from adding it once. We frequently say
that f is a closure operator on L.

There are many familiar examples of closure opera-
tions. For instance, consider a language L of propositions
over a fixed alphabet of proposilional atoms. Let i= stand
for the usual notion of entailment between propositions.
Consider the lanice P(L) . Now consider the function
T : P(L) - P(L) defined by T (S) = { r j E L (u
4 , u S). Thus T (S) adds to a set all the propositions
that are entailed by it. It is easy to see that this is a
closure operator. This is, in fact, a very typical closure
operator. Other examples from mathematics are the sub-
group generated by a subset of a group, the span of a set
of elements in a vector space and the closure of a set in
a topological space.

Another example of a closure operator that will be of
interest later, is defined as follows:

Definition: Given any poset P, a subset C P is said to
be downward closed if p E C and pi 3 p implies pi E C.
Furthermore, given any subset S C_ P, the downward
closure of S is the set 1 S = { p E P (3pi E S, p 3 p').

The operation 1 is a closure operation on subsets of P.
Note that a set C is downward closed if, and only if, it is
a fixed point of this operation, that is C = 1 C.

Indeed, it is a general fact that the image of a closure
operation (i.e. CL(f)) is exactly its set of fixed points.
Moreover a closure is uniquely determined by its set of
fixed points. In our subsequent discussion we will often
be more interested in the fixed points of a closure op-
eration than in the closure operation itself. In fact, one
reason for our interest in closure operations is the set of
properties that the fixed points of such an operator pos-
sess. In particular, we can use the following Lemma. For
any poset P, let T x for the set {u E L I x 5 a}.

Lemma 2 Suppose that f is a closure operator on a lat-
tice L.

I . Then f is uniquely determined by its image according
to the formula

f (x) = min (t x n C L (f))

where min(S) means the smallest element of S.

2. I f X isasubset of CL(f) , then A X isalso in CL(f) .

3. (CL(f); ~f , ~ f) forms a lattice where:

for each X C C C (f) . 2. f (U S) = smallest element in CC(f) containing
us.

Proof: 1. Note that f (x) is in the set t x n CC(f) . Ac-
cording to C1, x f (x), i.e. f (x) E t (~) , whereas
by C2, f (x) is a fixed point of f , in other words, The following lemma will be pivotal in our subsequent

f (x) E C C (f) . Now suppose that u is any other ele- discussion of closed sets.

merit of f 2 n C L (f 1- In other words, X 5 u and is a ~ w m a 4 r f f : p (p) + ~ (p) is closve operation
fixed point of f . BY monotonicity of f 7 f (+I 5 f (u); s i, a sdset of CL(f), such that f (U S) = U S , then
but, u is a fixed point of f so f (x) 5 u. Thus f (x) is
indeed the least element of the set. I . u s = v s ,

2. First, we have X 5 f (A X) , since f is a closure
operator. Next, by monotonicity of f , f (A X) 5 u for 2. (V S) A C' = V (C A C') , VC' € C C (f) .
any u in X. Thus, by definition of greatest lower bound, C E S

f (A X) 5 A { f (u) I u E X } . The elements of X are all
fixed points of f so { f (u) 1 u E X } = /\ X . In short we Proof: 1. Immediate from the definition of join in

have f (A X) = A X . c L (f 1.
3. The result for meets is immediate from (2) above.

The second follows immediately from the fact that
f (V X) is the least fixed point of f above V X . We
omit the checking of the various equations satisfied by
meets and joins in lattices. 0

Although the set of fixed points of a closure operator
forms a lattice in its own right, it may not be a sublattice
of the original lattice on which the closure operator is
defined. So some care must be take about the &fference
between the operations ~f and ~f on the closed sets ver-
sus the meet and join operations on the original lattice. It
is easy to see that the operations ~f and vf satisfy the
associative, commutative and absorptive properties. For
the rest of this paper, we will omit the superscripts in the
join and meet operations when the context makes obvious
the closure operation that we are discussing.

Many of the lattices that we consider below are pow-
erset lattices of some set. In other words, we have some
set X and we consider the set of subsets of X ordered
by inclusion, i.e P (X) . A closure operator on this lattice
takes a subset of X to what is called a closed subset of
X . What the phrase "closed subset" means varies as one
considers different closure operators. All the general the-
ory that we have established for closure operators applies
here. The closed subsets form a lattice as we have already
noted in the previous lemma but in the special case of a
subset lattice the meets and joins can be defined in terms
of union and intersection. We have the following special
instance of Lemma 2

Lemma 3 I f f : P (P) - P (P) is a closure operation,
then for any subset S C C (f) ,

2. Let X = (V S) A C'. By 1. above, we have X =
(U S) A C' = (U S) n C'. By distributivity of n and
U, we get X = U,,,(C f l C') . But X = f (X) , so
by 1. again, we get X = V,,, (C A C').

If we are working with closed sets, then the third part of
Lemma 2 says that we can substitute meet for intersection.
Moreover, if the result of a union is closed, then Lemma 4
says that we can substitute join for union and attain a
limited form of distributivity. We will see later that it is
desirable to substitute meet and join for intersection and
union respectively in order to tap useful properties of the
lattice operations. However, this requires that every union
operation produce a closed set. One way of achieving this
is to restrict the possible combinations of the operands for
the union operation so that the results are always closed,
another is to restrict the universe of closed sets so that
every union of closed sets is a closed set. In the discussion
below, we will see that the theory of extended version
spaces falls into the former category and the theory of
ATMS's falls into the latter.

Common Fixed Points of Closure Operations.

The next crucial property that we wish to establish is
how one finds least fixed points for closure operators.
Now any closure operator is a monotone function and
thus has a least fixed point if the lattice has a least ele-
ment. Closure operators enjoy a special property that is
not shared by arbitrary monotone functions. Any fam-
ily of closure operators has a least common fixed point.
Furthermore, this least common fixed point can be calcu-
lated by iterating all the closure operators in the family
sufficiently often. The next theorem makes this precise.

Theorem 5 Suppose that { f, I i E I } is a family of clo-
sure operators on L indexed by some arbitrary set I . Sup-
pose that L is finite and has a least element I . Let a be
an infinite sequence of members of I such that every ele-
ment of I appears in every suffw of a. Let u[n] be the nth
element of a. Consider the set

The least upper bound of S , call it x , is the least common
fixed point of all the closure operators { f ; (i E I) .

Proof: We need a convenient notation for sequences of
fis composed together. We write a, for the length n
prefix of u. We write j,, for the composition j,[,] o
futn-ll o . . . o fo[ll. First, note that the elements are
written in increasing order because all the fi are closure
operators. Second, because L is finite, the least upper
bound is attained at some finite stage, i.e. for some n the
least upper bound of S is fu[n](fu[*-l](. . . (f u [l] (l))))
or, using our notation, fun Consider any of the closure
operators, say ji. We claim that f i (x) is less than x. To
see this consider any rn greater than n such that u[rn] = i,
we know there must be such an m from the assumption
on a. Now we have x = fun (1) 3 fa, (1), the later
inequality follows from the assumption that all the fi are
closure operators. But f j (x) = f j o fun (1) 5 f j o . . . o
fun (1) = fu, (1) . The inequality again follows from
the fact that closure operators increase their arguments.
But notice that f u , (l) is in the set S and that a: is the
least upper bound of S, so j i (x) f,, (1) 5 x , Since
fi is a closure operator we must have x 5 f ; (x) , in other
words, x = f i (x) . Thus, x is a fixed point of any of the
closure operators in our set. Suppose that u is any other
common fixed point, we have, by an easy induction on
m, that for all m, f u , (l) 5 u; using the monotonicity
of the fi and the fact that I u. Thus, -u is an upper
bound for S and, since x is the least upper bound, x 5 u.

The upshot of this theorem is that if we wish to find the
least common fixed point of a set of closure operators
we need only apply each one often enough in succession,
not necessarily in any systematic order, and we will find
the fixed point. The appearance of the infinite sequence
a in the proof is only to formalize the notion of "often
enough" it need not cause alarm to those readers worried
about the effectiveness of the process we have described.

Q Operators.

A closure operator which will be the focus of our atten-
tion when we discuss assumption based truth maintenance
systems later is defined as follows:

Definition: Let (P , 5) be any lattice. Given any subset
T E P (P) , the operation QT is defined on downward
closed sets C E P (P) by:

It is not difficult to check that Q T (C) is downward closed
and QT is itself a closure operation. To understand the
QT operation more "intuitively" it is helpful to think in
terms of downward closed sets generated by elements of
P. The principal ideal generated by p E P is the set 4 { p)
of elements of P that are below p. Given any downward
closed A C P, let us say that the set { p E A (3p' E
T , s.t. p 3 p') is the restriction of A by T. So, one can
think of Q T (C) as the expansion of C to include those
elements of P such that the restriclions of their principal
ideals by T are subsets of C . Some basic properties of Q
are:

Lemma6 1. QA o Q B = QT where T = { t E P 1
3 t ~ E A , 3 t g E B , t = t~ A t g } .

Proof: 1. Given any A, B E P (P) and any downward
closed C, then for all p E P, we have p E @ A o
Q B (C) if and only if for all t A E A, tB E B we have
(p A ~ A) A t g E C, which means p A (t A A t B) E C
which means that p E a T (C) .

2. This follows immediately from 1 and the commuta-
tivity of meets.

Theorem 7 Given any QT,, ..., QT, and any downward
closed C , F = QTl o . - o QTn (C) is the least common
fixed point of every QT, , 1 5 i 5 n, above C.

Proofi Given any QT,, 1 < i 5 n and any C, by using
the commutative and idempotent properties of o, we have:

QT, (F)
= QT, 0 aTl 0 . . . 0 QT, (C)
= QTl o . - . o QT, 0 QT, 0 . . * 0 QT, (C)
= QT, O . . 'OQT, O . . .OQTn(C)
= F.

So F is a fixed point of every QT, and F contains C . Fur-
thermore, given any Y E P (P) with the same properties,
since C c Y, we have QT, (C) E QT, (Y) = Y . Hence,
by applying QT,_, , ..., QT1 succe~sively to the two sides

of the inequality, we get F = o .. . o QT,(C) E Y . Definition: Given any A, B E P (P) , define B(A, B) =
Therefore, F is the least common fixed point of every { p E P 1 3pl € A, 3 p 2 E B, s.t. pl 4 p 4 An
aTi,1 < i <n,above C. interval (in a poset) is a set of the form 3 { p z }) .

Observe that o . . - o GTn is itself a closure operation.
However, it is not true in general for the composition
of closure operations to be a closure operation because
idempotence usually fails.

3 Convex Spaces

In this section we develop some of the basic theory of
convex spaces that we will need later. In mathematics,
convex spaces are most familiar in the context of geom-
etry where, for example, a subset C of the real plane
is said t be convex if the line connecting any pair of
points of C lies entirely within C. However, our interest
in this paper is in convex spaces in a poset A subset
C contained in a poset P is said to be a convex space
if, whenever pl 5 p 5 p2 and pl , p a E C , then p E C .
In this section we focus on analyzing the purely order-
theoretic characteristics of convex spaces. To this end,
we begin by noting that much of the theory of closure
operators discussed in the previous section is applicable
to convex spaces. To see why, let c : P (P) - P (P) be
the function defined by

The map c is called the convex closure and it is easily
shown to be a closure operation whose fixed points are
exactly the convex spaces of P. In particular, it follows
from Lemma 2 that convex spaces form a complete lattice
under the ordering defined by set inclusion.

Boundary sets and fwite representability.

The key characteristic of convex spaces that underlies
their usefulness in the applications we shall discuss is the
simple fact that they may sometimes be represented by
their upper and lower fringes. In a computational setting
this may mean that a small set can be used to represent
a large one. Since computers can only hold finite sets of
data, if this set is to be represented directly as something
like a list, then it must be finite; however, nothing pre-
vents the larger set from being infinite-and, in practice, it
often will be infinite. We now develop some results about
convex spaces which can be finitely represented with their
fringes.

Lemma 8 For all A, B E P (P) , B(A, B) is a convex
space.

Proof: We know that c(B(A, B)) > B(A, B) . To show
equality, we observe that for all p E c(B(A, B)) , there
exist p1 ,pz E B(A, B) such that pl 5 p 5 pz. But
p l , p2 E B(A, B) implies that there exist p i E A and
p!, E B such that p', 5 pl and p2 5 p',. Hence, p E
B(A, B).

Given any C E P (P) , define: '

M Z N (C) = { P E C 1 Vfl E C , p' 5 p a p' = p) ,

MZN (C) and MAX (C) are called the boundary sets of
C . A subset C E P (P) is representable by boundary sets
if C = { p E P I 3 s E M Z N (C) , s g E M A X (C) , s.t.
s 5 p 5 g}. Furthermore, if M Z N (C) and M A X (C)
are both finite, then C is said to befrnitely representable.
Observe that any subset that is representable by boundary
sets is a convex space. An example of a finitely rep-
resentable convex space C is shown in figure 1, where
M Z N (C) = {ql,q2) and M A X (C) = {PI, P Z , P ~) .
Each of the quadrilaterals represents the interval bounded
by two concepts (where the pairs of elements p l , q2 and
ps, q1 are unrelated); their union represents the convex
space C . Each of the quadrilateral could have infinitely
many elements.

Lemma 9 IfC = B (X , Y) for somefinite X , Y E P (P) ,
then C isfrnitely representable.

Proof: Let A = { p E M Z N (X) I 3p' E Y, s.t. p 4
p'}, B = { p E M A X (Y) I 3p1 E X , s.t. p' 5 p r
By the definition of B(X, Y), we have M Z N (C) =
A, MAX (C) = B and both are finite. Furthermore,
for all p E C , there exist pl E X , p 2 E Y such that
pl 5 p 5 p2. Since X and Y are finite, hence bounded
by A and B, this implies that there exist pi E A, pi E B
such that p', 5 pl 5 p 5 p2 5 p',, i.e. C is representable
by the boundary sets A and B. Hence, C is finitely rep-
resentable.

It should be noted that many of our notations and definitions related
to convex spaces and version spaces are adapted from the works of Tom
Mitchell [Mit78] and Hyam Hirsh [Hi1901

Theorem 10 For any poset P , the poset F (P) offiitely
representable convex spaces is isomorphic to the poset
G (P) of fringes.

Figure 1: A finitely representable convex space

For a poset P, let F (P) be the set of finitely repre-
sentable convex spaces of P ordered by superset inclu-
sion, that is, C 5 C' iff C C'. Elements of F (P)
can be represented as a pairs of finite sets since any such
element can be recovered as the convex closure of its up-
per and lower boundaries. In fact, one can characterize
F (P) more abstractly simply as such a set of pairs under
an appropriate ordering. To see this, we introduce some
order-theoretic notation taken from work on the study of
what are called powerdomains in the semantics of pro-
gramming languages (for example, see [Gun931 and the
references there). Suppose U and V are finite subsets of
P . We define three binary relations as follows:

U j f l V iff for every y E V there is a x E U such
that x j y,

U db V iff for every x E U there is a y E V such
that x 5 y,

U sb V iff U j j V andU jb V

In a poset P, an anti-chain A is a subset of P with the
property that, whenever p, q E A and p j q, then p = q.

Definition: Let P be a poset. A fringe is a pair (S , G)
such that S, G are finite antichains of P and S db G.
The poset G (P) is the set of fringes under the ordering:

Proof: Define maps f : F (P) - G (P) and g :
G (P) - F (P) as follows:

It is easy to check that these maps are well-defined (in par-
ticular, that (M Z N (C) , M A X (C)) is, in fact, a fringe).
Let us first check that f is monotone. Suppose that
C 2 C' and suppose p' E M Z N (C t) . Since C is finitely
representable, there is some p E M Z N (C) with p j p'.
Hence we may conclude that M Z N (C) jl MZN(Ct) .
On the other hand, if p' E M A X (C 1) , then, by fi-
nite representability of C , there is some p E M A X (C)
with p' 5 p. Hence M A X (C 1) jb M A X (C) . Thus
f ((7 3 f (C').

Next we check that g is monotone. Suppose that
(S , G) j (S t , GI) and p' E B(St , GI). Then p', j p' j p',
for some p', E St and p', E G'. Now, S 51 St means that
there is some pl E G such that pl j pi. On the other
hand, G' 5b G means that there is some p2 E G such
that pb j p2. Hence p E B(S, G) and we may conclude
that g(S, G) j g(S' , GI).

To complete the proof the f , g define an isomorphism,
we must show that the compositions f o g and g o f
yield the identity. To see that (f o g)(S, G) = (S , G)
we must demonstrate that MZN(B(S, G)) = S and
MAX(B(S, G)) = G. For the first of these, suppose that
p is a minimal element of B(S, G) . Since p E B(S, G) ,
there is some p' E S with p' 5 p. Since p is minimal, we
must have p = p'. On the other hand, if p E S then p E
B(S, G) so there is minimal element of B(S, G) below p.
But minimal elements of B(S, G) are in S and related ele-
ments of S must be equal since S is an anti-chain. Hence
p E MZN(B(S, G)) . The proof that MAX (B(S, G)) =
G is similar. To show that (g o f) (C) = C we must
prove that B(MZN(C) , M A X (C)) = C . But this fol-
lows immediately from the assumption that C is finitely
representable.

(S , G) 5 (S', G') iff S j f l St and G' ib G
Ensuring finite representability.

Our primary interest is in the joins and meets of finitely
We leave for the reader the demonstration that fringes representable convex spaces. It is easy to see that the join

a poset under this ordering. The of two such spaces is again finitely representable. How-
that spaces can indeed ever, the meet of finitely representable spaces may not be

be viewed as pairs of finite sets:

finitely representable! It is only under special circum- are {g 1 , . . . , g,) -and {sl , . . . , s,) respectively. In some
stances that this will be the case. What we want to know contexts, the set V (p l , p2, 4) is called the "most special-
is whether, for a given Pse t P * the lJoset F (P) 2 G (P) ized generalizations" of pl , pz and j \(pl , p 2 , $) is called
is a sublattice of the convex spaces of P . We now present cGmmt general specializationsw of , p 2 .
a criterion which insures that finite representability is pre-
served under intersections. Another such criterion will be
presented in the next section.

In a lattice, a pair of elements x, y has a least upper
bound x V y and a greatest lower bound z A y. But for
given elements x, y of an arbitrary poset P there may be
no such distinguished upper and lower bounds. On the
other hand, if P is finite, then there will be a set u such
that

2. if x, y 5 z', then there is a z E u such that z 5 z'.

Namely, u is the set of minimal upper bounds of x, y.
Similarly, there is a set v of maximal lower bounds of
x , y. The sets u and v may be viewed as a kind of quasi-
join and quasi-meet of x , y. Now, in an infinite poset P .
there is no guarantee that, for a given pair x, y E P , a set u
having properties 1,2 above exists (we leave the search for
a counterexample to the reader). Hence, in infinite posets,
the existence of such a form of quasi-join and quasi-meet
is a special property of the poset. This concept is familiar,
for example, in the study of the mathematical semantics
of programming languages where it is related to what is
usually calledproperty M [Smy83, GJ881. In the current
context, our goal is to show that property M and its dual
(which one might call "property W) are related to the
problem of the admissibility of concept spaces that use
the version space algorithm. To this end, we begin with
a rigorous definition of quasi-join and quasi-meet:

Figure 2: The M W property

Property MW asserts that the quasi-join and quasi-
meet of a pair of elements are finite and "cover" the ele-
ments from above and below respectively:

Definition: A poset P is said to have the M W property
if it is finitely representable and for all p l , p2 E P:

M3. V P , P 5 P I , P 5 ~2 * 3 ~ ' E ~ (p l , p 2 , d) , s.2. P 3
p'.

Definition: Let P be a poset with p l , p2 E P and S , G g It is important to realize that the first condition does not

P . We define the quasi-join of pl and p2 relative to G as imply the next two. For example, one could have an

the set infinite descending chain of elements above both pl and
pa with no minimal element. One should also note that

$ ' (p l , p 2 , ~) = M I N ({ P E P l p l 5 p l p 2 r j p , the M W property implies $ ' (PI , ~ 2 , G) and ~ (p l , p2, S)
and Vg E G , P 3 9)) are finite for all subsets S , G c_ P.

and the the quasi-meet of pl and pz relative to S as the
set Join and meet algorithms of convex spaces.

In this section we show how one can decide join and
A (P ~ , P Z , S) = M A X ({ P E P I P I >- P , P Z t. P , meet operations on convex spaces by operations on their

and Vs E S, p k s }) boundary sets. The first step is to show the desired result
for finitely representable convex spaces:

A graphical representation of the definition is shown in Theorem 11 Let P be a poset and suppose that C l , C2
figure 2 where the quasi-join and quasi-meet of pl , pz are)finitely representable convex spaces of P . Then

1. C1 Vc C2 isfinitely representable and

2 . i f P has property MW, then Cl A" C2 is finitely
representable.

Proof: Suppose that Cl, C2 have finite boundary sets
S1, G1 and S2, G2 respectively, define:

S l n a = MZN({s E O(si, s 2 , {g1, g2)) I s1 E s1,
s2 ES2,gi EGi,g2 EG2))

G l ~ 2 = M A X ({ ~ E ~ (9 1 , ! ? 2 , { ~ 1 , ~ 2)) 191 EGl ,
g2 EGz,s i ESl ,sz ESz))

For any s l E S l r ~ 2 E S2,gl E G1,g2 E G2.
V(s1, s2, {gl , 92)) is finite by the M W property of P.
Since S1, S2,G1, G2 are finite, there are only finitely
many distinct sl, s2, gl , g2, hence, Sln2 is finite. Sim-
ilarly, Gln2 is finite. Moreover. SlU2 and GlU2 are
finite, because Sl U S2 and G1 U G2 are finite. Hence,
B(Sln2, Gln2), B(SlU2, GIU 2) are finitely representable.

(2) If p E C1 A C2, then there exist sl E S1, s2 E S2,
91 E GI, g2 E G2. such that sl 5 p 5 gl, s2 5 p 3
q. Since P has the M W property, there exists s E
V(s1, s2, {gl, 92)) such that s 5 p. Hence, there exists
s' E Sln2 such that s' 5 s 5 p, by the definition of Sln2.
Similarly, there exists g' E GIn2 such that p 5 g', which
implies that p E B(Sln2, Gln2)

(2) If p E Sln2, then there exist sl E S1, s2 E S2,
gl E GI, 92 E G2, such that p E v(sl,s2, {g1,92)).
which implies that sl 5 p 5 gl and s2 5 p 5 g,. Hence,
P E C1 A C2. SO, S l n 2 C1 A C2. Similarly, Gln2
C1 A C2. SO B(Sln2, Gin2) C1 A C2.

(C) If p E C1 VC2, then there exist s, g E Cl UC2 such
that s 5 p 5 g. By definition of Slu2 and GlU2, there
exists' E SlU2, g' E GlU2 such that s' 5 s 3 p 5 g 5 g'.

Hence, P E B(Siu2, Gluz).

(2) If p E SlU2, then p E S1 U Sz which implies
P E C1 VC2. Hence, Slu2 E C1 vC2. Similarly, GlU2 2
C1 V C2. Therefore, B(SlU2, Glu2) C C1 v C2.

Corollary 12 I f P has the M W properly, then the
jinitely representable convex spaces form a sublattice in
(CL(c) , AC, VC).

Since the poset of finitely representable convex spaces
is isomorphic to the poset of fringes, it is now possible
to express the join and meet operations on such spaces
entirely in terms of fringes. The following result can
be obtained directly from the proofs of Theorem 10 and
Theorem 11.

Theorem 13 If P has the M W property, then the space
G(P) of fringes is a lattice where, for every pair of fringes
(SI, GI) and (S2, G2), we have

(Si, GI) V (S2, (32) = (S iu2 , Giu2)
(Si, GI) A (S2, (32) = (Sin2, Gina) 0

The theorem shows that finitely representable convex
spaces can be represented and manipulated indirectly
through operations on pairs of finite sets. In the next
theorem, we show that the converse of the second part of
Theorem 11 is true.

Theorem 14 If P is a jinitely representable poset and
the intersection of any two finitely representable convex
spaces in P isjinitely representable, then P has properly
MW.

Proof: Let S = MZN(P) and G = MAX(P). Then,
for any Pl, p2 E P,

It is easy to see that these sets have the desired proper-
ties.

Corollary 15 A finitely representable poset P has the
M W property if and only if the intersection of every
two jinitely representable convex spaces isjinitely repre-
sentable. 0

Hence the M W property is the basic order-theoretic con-
dition which insures that we are able to manipulate convex
spaces in a finitely representable way. Of course, to ap-
ply the results that we have developed in this subsection
in a real computational setting, it is also essential that
we know how to calculate the quasi-join and quasi-meet
operations with acceptable efficiency.

4 Version Spaces

The version space algorithm which was introduced by
Mitchell [Mit78] can be formulated using the ideas of the

previous section. We have two principal goals. The first
of these is to characterize the order-theoretic conditions
under which the version space representation is legitimate.
Since it is not the case that every concept space supports
the version space learning technique, it is desirable to
provide some simple conditions which will certify, for a
given concept space, that the algorithm is sound. Such
conditions have been proposed in several discussions of
version spaces including the original work [Mit78] and
a more recent textbook account [GN87]. However, the
admissibility conditions which have been given are suf-
jicient conditions which are too weak to support many
of the examples of concept spaces for which the version
space algorithm is sound (and, indeed, efficient).

Our second goal is to isolate the essential order-
theoretic content of the version space algorithm. We will
later employ the same techniques to develop new algo-
rithms in the context of ATMS's.

Concepts consistent with observations.

For our purposes a concept space is a set of sets P with
the property that 4 E P and

The elements of UP are called the instances and the ele-
ments of P are called concepts. A concept space is par-
tially ordered by set inclusion s. If p s q then we say that
p is more specijic than q or we say that q is more general
than p. We define an operation X: : ?(UP) x P(W) -
P(P) on a pair of sets of instances as follows:

where r , A C W and is the complement of A in
W. Here r represents the "positive" instances and A the
"negative" instances.

Example: (Adapted from [Mit78].) Let I = (0 , l) x
(0 , l) be the open unit rectangle in the two-dimensional
real plane. A real interval is defined to be a set of real
numbers having one of the following forms:

Note that any interval with 1 > u, is equal to the empty
set. We define the rectangular concept space R as the set
of subsets p c I such that p is the product of a pair of
intervals.

Although many of the version spaces of R are uncount-
ably infinite, it can be shown that each such version space
is a finitely representable convex subset of R.

Definition: A subset C of P is called a version space if
there exist I?, A C UP, such that C = K(r, A). The set
of version spaces over a concept space P is denoted by
V S p (where the subscript is omitted when P is obvious
from the context).

The two subsets P and 4 are version spaces, which
arise respectively when r = A = 4 and I' n A # 4.
Now, given a C E P(P), we define an operation d :
P(P) - P(P) as follows:

It is easy to check that d is a closm operation. Indeed,
we have the following:

Theorem 16 For any concept space P, a subset C c P
is a version space if, and only i f , it is a fixed point of d.

Proof: (3) By C1, d(C) > C. To show that the in-
clusion is indeed an equality, we observe that for all
p E d(C), we have n C C_ p C UC. However, since
C is a version space, there exist r, A C W, such that
for all p' E C, we have I? p' C x. Hence, r C n C
and UC E x. Therefore, I' g p C x, i.e. p E C. So
d(C) C C.

(e) If d(C) = C, we have C = {p E P - (n C c p

U C). So by assigning r = n C , A = U C, we have
C = K (r , A), i.e. C is a version space.

The next lemma shows how to calculate meets and joins
in the lattice defined by the closure operation d.

Lemma 17 Let S = {Ci I V i E I) , where Ci =
X:(I'i, Ad). be an indexed family of elements in V S , then:

1. = X:(U{I'; I i E I),U{Ai I i E I)),

2. /\d S = X:(U{nCi I i E I) , n{UCi (i E I)),

3. vd s = X:(n{nCi I i E I), U{uCi I i E I)).

Proof: 1. By definition, /\d S = n S. Hence,

P E K(U{ri I i E I) , U{Ai I i E I)).

2. Bv the argument given in Theorem 16, we have Vi E
1;ci = k (n c i ,z). Hence, by 1 above, we get

A d s = K(U{nCi 1 i E I},U{UG I i E I)) =
K(U{nci (a' E I), n{uCi 1 i E I)) .

3. By definition, vd S = d(US). Hence,

n{nCi I i E I) C p C U{UC~ 1 i E I)
P E K(n{nCi (i E I), U{UC; (i E I)) . C]

The next lemma shows that the version spaces are fixed
points of the closure operation c (i.e. they are convex
spaces) and relates the meets and joins in the two lat-
tices defined by the fixed points of the closure operations
c and d.

Lemma 18 1 . Every C E VS is a b e d point of the
operation c,

Proof: 1. Vp E c(C), there exist pl , p2 E C, such that
P I C P C_ p2. However, n C c P I , and p2 c
U C , implies n C c p c UC, i .e.p E d(C) = C.
Therefore, by C1, we have c(C) = C.

2. By definition, A* S = n S = AC S. By C1, we have
vd S > US. SO by ~ 2 , we get c(vd S) > vC S.
Hence by 1 above, we have vd S > Vc S.

In general, there are convex spaces which are not ver-
sion spaces. For example, in the rectangular concept
space R described earlier, the convex space determined
by the zero area "rectangles"

together with the set I is not a version space since the
image of this convex space under the map d is K(4, I).
On the other hand, since version spaces are convex spaces
and their meet operations are identical, several results that
are true for convex spaces are also true for version spaces.
For instance, it is immediate that the M W property im-
plies that the meet of every two finitely representable ver-
sion spaces is finitely representable. Furthermore, observe
that given any s , g E P, the convex space B ({ s) , {g)) is
also a version space, because it is equal to

Therefore, the proof of Theorem 14 still works if we sub-
stitute version spaces for convex spaces. Hence, we have
the following:

Theorem 19 A concept space P has the M W property
i f and only if the meet of every two fvlitely representable
version spaces is finitely representable.

In a concept learning system using the version space rep-
resentation, the new version space after the addition of
some new observations is the same as the intersection
(merging) of the current version space with the version
space representing the new observations. Thus, the M W
property is a necessary and sufficient condition for ensur-
ing the preservation of finite representability in version
space merging.

Admissibility.

As mentioned earlier, we seek a condition on concept
spaces which will certify that version spaces can be rep-
resented with their boundary sets. We say that concept
spaces having this property are admissible. More pre-
cisely:

Definition: A concept space P is said to be admissible,
if X(r , A) is finitely representable whenever I? u A C W
finite.

We now demonstrate several conditions which imply (or
are equivalent to) the admissibility of a concept space.

Definition: A concept space P is said to have property
G if, for all x E UP, K({x), 4) and K(4, {z}) are finitely
representable.

The following lemma allows us to check the admissi-
bility of a pattern language by verifying that if observa-
tions are all positive or negative, then the version space
is finitely representable.

Lemma 20 A poser P is admissible if and only if for all
non-empty finite F, A UP, both K(r , 4) and K(4, A)
are finitely representable.

Proof: (+) Immediate.

(e) Given r , A C W, with r UA finite and nonempty.
If either K' or A is an empty set, then iC(I', A) is finitely
representable by our assumption. Otherwise, let C =
K(r , A), A = K(r , d), B = K(4, A). Note that C = AA
B. We want to show that C = B(MZN(A), MAX(B)):

(C) If p E C, then there exist s l , gl E A and s 2 , g2 E include infinite (and even uncountable) chains, so an ad-
B such that s~ C p s gl and sz s p s g2. Hence, missibility condition which precludes such properties in
s l c p C g2, i.e. p E B (M Z N (A) , M A X (3)) . the concept space will fail to cover this example.

(2) If p E B (M Z N (A) , M A X (B)) , then there exist Note that to apply Theorem 21, it is necessary for P
s E M Z N (A) and g E M A X (B) such that s c p C g. to have the property G, so that the finite representabii-
Since s C g, we have I' C g . Hence, by definition of ity property can be propagated to version spaces having
A, we have g E A, which implies that p E A. Similarly, more than one observation. To see how essential this is,
p E B . Hence p E C. consider the following variation on the rectangular con-

Since both M Z N (A) and M A X (B) are finite by
cept space R. Let us expand our collection of concepts to
include any subset of the unit rectangle I which is con-

Lemma 97 we conclude that C is finitely representable. vex in the usual geome~c sense. Our concept space now
does not support the version space algorithm because it

The next theorem allows one to check for admissibility fails to satisfy property G. For example, if (1 / 2 , 1 / 2)

by checking finite representability in some special cases. is observed to be a negative instance, then there is an
uncountable collection of most general concepts consis- -

Theorem 21 If a concept space p has the MW and tent with this observation. Hence the version space is not
properties, then P is admissible. finitely representable.

Another admissibility criterion is related to the concept
prmfi Obm-Ve that for all finite r, A C UP. the version of in rna l refinement 1 the following, we i n m u c e ae
'pace '(I'l *) can be consnucted the finite A Of ver- notion of parafiniteness for a pattern language which can
sion spaces, each of a single observation. The result is be used to deternine the admissibiliv of the language.
then immediate from Theorem 1 1.

To appreciate the point of having a condition for verify-
ing admissibility, we consider again the earlier rectangular
concept space R, where each concept p is either the prod-
uct of a pair of intervals (rectangles) or p is the empty
set 4. The set of observations is a subset of P of the
form: [x , x] x [y , y] (points). Given a set of positive and
negative ob~e~at ions , the learning task is to find the set
of concepts in P that are consistent with the observations.

For each positive observation [x , x] x [y , y] , its version
space is the convex closure of {I) and { [x , x] x [y , Y]) .
For each negative 0bse~ati0n [x , x] x [y , y] , its version
space is the convex closure of { (x , 1) x (0, l) , (0 , x) x
(0 1 (O , I) (Y , I) , (O r l) (0 1 Y)) and (4)' Hence,
has property G .

Given a pair of rectangles pl = [lx , u x] x [l y , u y] , pa =
[lx', ux'] x [ly' , uy '] , we have:

Definition: A given P is said to be parafinite if for all
p , q E P withp> q,andforall x with x € p but x $ 9 ,
we have:

1. there exists {pi) where 1 5 i 5 m for some finite
m such that p _> pi > q, x $2 pi and for all p' with
p > p' _> q , x # p', there exists i such that pi > p',

2. there exists {qj) where 1 < j 5 n for some finite
n such that p > q, > q, x E qj and for all q' with
p _> q' > q , x E q', there exists j such that q j g ql.

The interpretation of parafiniteness is that, given any
interval in the poset of concepts and any instance of the
more general concept, we can find a finite cover that re-
fines the original space to account for the results of this
new trial instance. A graphical illustration of the defini-
tion is shown in figure 3, where {ql , q 2 , q3) is the finite
cover refining the interval formed by p and q when a trial
is found to be a positive and {pl , p 2) is the finite cover
refining the interval when the trial is found to be nega-
tive. The quadrilaterals represent intervals in the poset of

Besides being finite, they also satisfy the second and third concepts.

conditions of the MW p ~ ~ r t y . resulU can be ~h~~~~~ 22 A giwn p is parojrnite if and only if thp
derived for different in the types Of meet of everyfiitely representable convex space with any

Hence' has and it is Iherefore finitely observable version space isfinitely representable.
admissible. Note that the version spaces of P typically

Corollary 23 If a concept language is parafinite then it
is h i s s i b l e .

The above results indicate that it may be desirable to
look for the parafiniteness property in a concept descrip-
tion language. In particular, it constitutes part of the
sufficient conditions for ensuring the admissibility of a
language. Furthermore, it is conceivable that in some ap-
plications, domain knowledge may be used to infer an ini-
tial (or intermediate) finitely representable convex space
which is further refined when additional observations are
collected. In these cases, the parafiniteness property pro-
vides the necessary and sufficient conditions for the final

Figure 3: The parafinite property concept space to be finitely representable.

Proof: (e) For all p , q E P, with p > q , and
for all x with x E p but x $ q, we have C =

{ p)) is a finitely representable convex space and
A = K (C $, { z }) , B = K ({ z } , q 5) are finite observation
version spaces. Let C1 = A A C and Cz = B A C. By
assumption C 1 , Cz are finitely representable, therefore we
can find m , n , G , S where G = { p ; (1 5 i 5 m } and
S = { q j 1 1 < j < n) such that C1 = B ({ q } , G) and
C2 = a(s, { P I) . Hence, P 2 pi > q and P 2 qj 1 q.
Furthermore, for all p' with p > p' > q , x $ p', we have
by definition that p' E Cl, which implies that there exists
i such that pd > p'. Similar results hold for C2 and qj by
duality. Hence P is parafinite.

(*) Given any finitely representable convex space
A = B (X , Y) and a finite observation version space
B = K (r , A) , with X , Y g P and r , A C UP are finite,
we want to show that C = A A B is finitely representable.
sin= B = A y E r K ({ y) , d) A AaEaK(C$> { h }) , by asso-
ciativity of A, it suffices to show that C is finitely repre-
sentable for those cases where B is a single observation
version space. First, we assume that B = K ({ y }, 4) . Ob-
serve that q' E C if and only if there exist q E X , p E Y
such that q c q' c p and y E q'. Since P is parafi-
nite, implies that there exist finite m and q j , where
1 5 j 5 m , such that for any q', we have q 5 q' C_ p
and y E q' if and only if there exists j such that qj 5 q',
i.e. q' E B ({ P } , { q j I 1 5 j 5 n }) C C. Since X , Y are
finite, we have only finite distinct pairs of such p and q.
Therefore C is the union of finite finitely representable
convex spaces. Furthermore, C is by definition a con-
vex space, therefore C is a join of finitely representable
convex spaces by the definition of join. Hence, by The-
orem 11, we conclude that C is finitely representable.
Similarly, we can show that C is finitely representable
for the case where B = K (4 , (5)) .

Extended version spaces.

In many real applications, the training data for con-
structing the version space of a concept may be erro-
neous or the concept itself may be a disjunction of sev-
eral version spaces, therefore it is essential to work with
a more general notion of version spaces. There are at
least two approaches to this problem. One approach, sug-
gested by Hirsh [HSO], is to generalize from the notion
of a version space as a collection of concepts consistent
with positive and negative training data to a notion of
"abstract" version space having the needed mathematical
properties and potentially arising from other sources of
information such as domain knowledge. In particular, the
finitely representable convex spaces are an ideal candidate
for such a abstract theory. The structures Hirsh considers
are slightly more general than this, but the basic results
about version space merging are similar to those we have
discussed above (for example we adopted the notation in
our proof of Theorem 11 from Theorem 8.6 of [Hir90]).

In this section we retreat to an analysis of a class of
finitely representable convex spaces which was used in the
implementation of the Meta-DENDRAL project [BM78].

Definition: Given a finite set of observations (I', A), the
extended version spaces of (I?, A) are:

where 0 5 s 5 lrl,O 5 g 5 lA l .

Lemma 24 V, ,, is a convex space.

Proof: By definition of c, we have c (V , , ,) > V,, , . To
show equality, we observe that for all p E c(VS, ,) . there
exist pl E K (y l , h ~) and pz E K (y 2 , b2) such that pl C -

p C p2, where y1,72 F and 61,62 C_ A, with lyll =
1721 = s, 1611 = 1521 = g. Since 3 pl and p2 62,
we have p E K(y1,52). Hence, p E V , ,, which implies
~ (~ , g) = Vs,,.

The last lemma establishes the basis for the formal treat-
ment of extended version spaces using the theory of con-
vex spaces. In fact, the convexity is the main reason
for why extended version spaces can be represented by
boundary sets and computable using similar operations
that we have established for the version spaces. Note that
several results are immediate from the lemma:

Corollary 25 Any extended version space is a frnite join
of version spaces:

where 0 5 s 5 II ' l ,O 5 g 5 lAl.

Corollary 26 If a concept space P has the M W and G
properties, and VS,, is an extended version space with ei-
ther s > 0 or g > 0, then V,,, is finitely representable.

With the facts that we have established in Lemma 4, we
can show that the union operations which occur in the
manipulation of extended version spaces can usually be
replaced by the join operations of convex spaces. There-
fore, the algorithms for computing the meet and join of
convex spaces can be applied directly to the extended
version spaces without any modification. Using only the
lattice operations, the following theorem allows us to gen-
erate the extended version spaces incrementally and with-
out referencing any of the previous observations.

Theorem 27 If the extended version space induced by a
set I? of positive instances and a set A of negative instances
is V,,,, then:

I . given a new positive observation x, the extended ver-
sion space of (I? U {x), A) is:

2. given a new negative observation x, the extended ver-
sion space of (I ? , A U {x)) is:

where we assume that:

= { : i f s < Oor s > Iyl l forl .)
i f g < 0 or g > 161 lfor2.)

Proof: For boundary cases, we have the following de-
sired results:

For non-boundary cases, we have:

= (V , A ({ , 4)) V -because V:,, is a con-
vex space and by noting that, for a closure operation
f, We have f (A U B) = f (f (A) U f (B)) .

2. Similar proof as 1. O

The following shows that it is possible to compute the
entire extended version space V,,, from V,,o and Vo,,
using the lattice operations:

Lemma 28 For all 0 5 st 5 s 5 (I'(and 0 2 g' < g 5
IAl*

Proof: 1. I f p ~ V,,,,thenthereexisty C_ I ' , 6 C A l
with ly 1 = s , 16 1 = g, such that y C p C 2. However,
there exist y' 2 y,6' C 6, with 17'1 = s', 16'1 = gt.
So y1 G p C p, i.e. p E V,I,,I.

2. (g) From l., we have I/,,, C V,,,l,V,,, C V,',,.
This implies that V,,, 2 V,,,I A V,I,, because
V,,, is a convex space.

(2) If p E &,,I A V,I,,, then there exist yl, y2 g I?
and & , 62 c A, with Iyl 1 = s , (y21 = st , 161 1 =
gl, 16~1 = g, such that yl C p c and y2
p C &. Hence, we have yl C p g G, i.e. p E
K,g.

3. By assigning st = gt = 0 in 2. above.

The following theorem allows us to independently calcu-
late several sets of extend version spaces and later com-
bine them without referencing any of the previous obser-
vations.

Theorem 29 If afinite set of observation (I?, A) is parti-
tioned into (rl, Al) and (r2, A2), then:

~ S , O = v (V:-k,O A ~ $ 0) ~
O<k<s

'. lio,g = V (~ , ' , g - k ~ ~ < k) ~

O l k 5 g

where the various extended version spaces are distin-
guished by superscripts.

Proof: 1. Ks0

= U{K(r,4) I r G r,Irl = S)

= u { K (~ I , ~) A K(72,d) I yl c r l , y z E r 2 , 1 ~ ~ t +
l ~ a l = s)

= u (u (u {~(7' i ,d)AK(7'2,4)>))
Osks~ lyll=s-k I7al=k

= U (U {K(ri,C) A ~ 2 0)) -by Lemma4
O<k<s 1711=s-k

= U {&L,, A v;,)) - by Lemma 4
O<k<s

= V (l . ' , l -k ,o~~{o) -byLemma4
OskLs

2. Similar to the proof of 1.

5 Assumption-based TMS's

In this section, we examine Johan de Kleer's formula-
tion of truth maintenance systems (TMS's) known as
assumption-based TMS's [dK86a, dK86bl. An ATMS
works in conjunction with a problem solver recording all
conclusions drawn by the solver together with the assump-
tions they depend on. The job of an ATMS is to effi-
ciently recalculate the status of beliefs in a solver when
the premises that underlie them are changed. Each con-
clusion derived by the problem solver is represented as a

node in the ATMS. The derivation of a node is also ob-
tained from the solver and recorded in the ATMS. Central
to the ATMS is the notion of an assumption: each node
has associated with it all minimal sets of assumptions
that would make the node hue. The ATMS recalculates
these sets as new formulas are acquired from the problem
solver.

The assumption sets form a finite lattices under set in-
clusion. We show that the sets of assumptions that make
a node me , form a convex space. Hence such sets of
assumptions can be represented by boundary sets. The
existence of the common inconsistent sets of assumptions
makes it possible to simplify this representation so that
only the upper boundary (greatest) elements are required.
These constitute the label of a node.

Our goal in this section is to formalize the working
of an ATMS and show how the calculations of label sets
can be formulated as computations on the boundaries of
convex spaces. As with our analysis of version spaces,
the convex space reformulation of the ATMS leads to the
discovery of several new results. In particular, it allows us
to describe the semantics of the label computations in both
the basic and extended ATMS in a uniform framework.
Furthermore, it leads to the development of new general
algorithms for label computations.

To eliminate many implementation related details of
an ATMS, we propose the following specification of an
ATMS which focuses on the label calculation.

Definition: An ATMS is characterized by the following
inputs and outputs.

Input: a finite set of propositional formulas 3, and a fi-
nite set of propositional literals A, called ussump-
tions. Subsets of A are called environments, the
power set of A is called the environment lattice P.
Propositional literals that appear in 3 and A are the
nodes of the ATMS.

Output: for each X, where X can be a propositional
atom in 3, an assumption in A, or I (a special
proposition that represents falsity), the ATMS com-
putes Vx which is a set of subsets of A where

Semantics: using the short hand 3 U p for the set 3 u { j

x I x E p), the output of the ATMS, Vx, must satisfy
the following (where X #I):

VL={p E P 1 3 U p is inconsistent),
Vx={p E P (3 U p is consistent, and 3 U p X).

Algorithm: a procedure that takes the input of the ATMS
and manipulates the values of Vx's so as to satisfy
the semantical requirement above.

In the ATMS literature, the boundary set representation
of Vx is called the label of X, and is the data structure
that is manipulated. Our approach in this paper, how-
ever, is to describe the principles behind the algorithms
of ATMS by first discussing the operations on the set Vx.
This approach is more intuitive and it offers additional
insights into the functionality of the ATMS. In terms of
algorithms, as long as we work with Vx's that are con-
vex spaces, and the operations on the Vx's are restricted
to meets and joins, we can apply the isomorphism the-
orem 13 to obtain equivalent algorithms that operate on
boundary representations. Thus the boundary representa-
tion that is normally used in the ATMS can be considered
as an optimization technique as it was in the case of the
Version Space.

In this paper, we will discuss two specializations of an
ATMS, namely the basic ATMS and the extended ATMS
described in [dK86a, dK86bl.

Basic ATMS.

A basic ATMS can be specified as the following spe-
cialization of an ATMS:

Definition: A basic ATMS is an ATMS where the input
formulas F are propositional Horn clauses XI , . . . , X, j

Y also called justijcations, and the assumption set A con-
tains positive literals only.

The consequent of a justification with no antecedents is
called a premise. A premise can be an assumption. Every
justification must have a consequent. If a Horn clause
justification l X 1 A . . . A l X , has no positive literals, it is
rewritten as XI, . . . , X, +=I, with the special consequent
1.

In our convex space reformulation, we let W be equal
to A and P be the environment lattice. However, the
partial order on P is defined to be the reverse of set
inclusion, i.e., set containment, i.e. 5 r 2. This partial
order captures the notion of the generality of an environ-
ment. Since the set of assumptions is finite, the environ-
ment lattice is also finite and therefore convex subsets of
P can be represented by their finite boundaries.

Definition: Given an ATMS with input formulas 3, the
set of values for the Vx's (where X is either a proposi-
tional atom in F, or an assumption, or the proposition I)

are called states of the ATMS. An initial ATMS state is
a state such that for each propositional atom X E 3,

1. Vx is the downward closure of {{X)), if X is an
assumption but not a premise.

2. Vx is P, if X is a premise.

3. Vx is the empty set for every other X.

Observe that every Vx is downward closed in an initial
ATMS. In fact, for the following discussion, we will only
be concerned with those states of ATMS where each Vx
is either downward closed or convex. As described in
section 2, the downward closed sets form a lattice and in
particular, a sublattice of the convex spaces. Therefore,
the following are well defined:

Definition: For any justification $ (= X I , . . . , X, +
Y) E 3, we say that $ is applicable to the ATMS if
in the current state of the ATMS,

The application of $ to the current state of the ATMS
results in the modification of Vy as follows:

Note that for downward closed sets, the meet and join
operations are equivalent to the set intersection and union
operations respectively. The above definitions can be ex-
tended to cover a sequence of justifications as follows:

Definition: Let . . , $,) be a sequence of justifica-
tions. The sequence is said to be applicable to the ATMS
if is applicable and each $i, 1 < i < s is applica-
ble after the sequential application of . . . , - to the
ATMS. The application of the sequence to the ATMS is
defined to be the sequential application of $, , . . . , $,. An
applicable sequence of justifications is said to be complete
with respect to F if, after the application of the sequence,
no justification in 3 is applicable.

With the above definitions, we can now proceed to dis-
cuss the basic ATMS algorithm. The algorithm can be
viewed as a process of modifying the values of Vx's from
an inilial ATMS:

Definition: Given a basic ATMS with input F, the basic
ATMS algorithm is defined to be the selection and appli-
cation of a complete applicable sequence of justifications
with respect to F on the corresponding initial ATMS, fol-
lowed by the removal of every environment in Vl from
every consistent Vx.

The following are some simple observations that one Similarly, p E Vx in the initial ATMS if, and only
can derive from the above definitions: if, X is a premise or X is an assumption and X E p.

2. This is obvious since the empty set is a subset of
1. To implement the basic ATMS algorithm, we only (T ~ ~ ~) ~ - ~ (d) , therefore everything that is derivable

need the procedure that compares sets and the pr* from justifications with empty antecedents is already
cedures that compute the meet and join of convex present in D.
spaces.

2. After the application of a sequence, Vx will remain
downward closed. Hence, Vx will be convex after
the removal of the environments that are in VL.

3. The application of a justification strictly increases the
size of a single Vx in the ATMS. Other Vx's remain
unchanged.

4. Since the size of the environment lattice and the num-
ber of propositional atoms are both finite, the previ-
ous observation allows us to conclude that there is
no infinite applicable sequence of justifications; so
the basic ATMS algorithm terminates.

5. By repeating the search for an applicable justification
in 3, we can always derive a finite complete appli-
cable sequence of justifications. In particular, given
any applicable sequence of an ATMS, we can extend
the sequence to a finite and complete one. This is a
consequence of Theorem 5 in Section 2, because the
modification process is a closure operator.

An observation from the above lemma is that if we
are given the initial ATMS, then we can obtain MFuP
by computing (T 3 ~) a - 1 (C p) where 3' is F with all
premise justifications deleted and C p = {z (p E
V, in the initial ATMS). Therefore, with the initializa-
tion that we made to the ATMS, we can assume that 3
contains no premise justifications and every justification
has non-empty antecedents.

Consider an ATMS with an input set of justifications 3
not containing I. The basic ATMS algorithm is reduced
to the application of any complete applicable sequence
of justifications to the initial ATMS. To justify our def-
inition, we need to show that every complete applicable
sequence derives the same results. This, however, is a di-
rect consequence of theorem 5 because every application
of a justification can be considered as a closure operation
on the cross product of all Vx 's. More generally, as stated
in the following theorem, we can define a semantics of
our algorithm which is independent of the choice of the
sequence.

Theorem 31 If S = . . . , $,) is a complete applica- In analyzing the basic ATMS algorithm, it is convenient
ble sequence of justifications of an initial ATMS, then at to first ignore I and consider only those Horn sentences
the end of of S, we hovel in 3 that have exactly one positive literal. An important

fact about such a propositional system is that it has a
minimal model. We will denote the minimal model of 3
by M3. Another fact is that if we define T 3 (M) = {y I
(XI,. . . , xn + y) E 3 and {xl, . . . , x,) C M) IJ M ,
then M3 = Ui,0(~3) i (q5) = (T3)'(4) for some non-
negative integers W H 9 0 1 . The following relates the
initial ATMS to the operation T3:

Lemma 30 1 . The initial ATMS corresponds directly to
T F u p (4) , i.e. p E Vx in the initial ATMS if, and only
@-# x E T3up(4) .

2. Given D = (TFup)$(4) where i > 0, the
only justifications that contribute additional items
to (T F u P) (D) are those that have non-empty an-
tecedents, i.e. the premise justifications and those jus-
tifications in p.

Proof: 1. Observe that X E TFu,(q5) if, and only if,
X is a premise or an assumption in p, i.e. X E p.

Proof: Since there exists a minimum model MF,, for
3 u p , it suffices to show that p E Vx e X E

(+) We will prove this by induction on the number of
applications of justifications:

Basis From lemma 30, we know that the setup of the
initial ATMS is such that if p E Vx, we have X E
M3up.

Step The only way that p E P can be added to V, for
some node y after the application of a justification II,
iswhenII,=xl, ..., x, + y a n d p E V r i , l i i <
n. By induction, we have for all i that xi E MFUP.
Since $ E F, we have y E MFuP.

(e) We want to show that if X E MFup. then
p E Vx at the end of the application of S. As indi-
cated in the observation after lemma 30, it is sufficient

to show that if x E (T F) S - l (C p) , where C, = { x (p E is inconsistent. Let 3~ be the set of justifications of
V, in the initial ATMS), then p E V,. the form (x l , . . . , x n +I) , and let 3' = 3 - 3 i . We

Assume that this is not true, then at the end of the
basic ATMS algorithm, there exists y E (T ~) " - l (c ,)
such that p $2 V,. Note that lemma 30 says that x E
(T3)O(CP) implies that p E V,. Therefore the minimal
i , such that there exists y E (TF)'(c,) and p (2 V,, is
non-zero. However, by definition of T, y E (T ~) ~ (C ~)
implies that there exists + = zl , . . . , x, + y such that
xi E (TF)'-'(C,), 1 5 i 5 n. But the minimality of
i implies that p E Vxi for all i , 1 < i < n. Therefore,
P E V,,A...AVx, andp $! Vy,i .e . Vx,A.--AV,, V,.
This contradicts the assumption that we have applied a
complete applicable sequence.

Note that since 3 does not contain I , for all environ-
ments p E P, 3 U p is always consistent.

Incrementality and I.

What about the incrementality of the basic ATMS al-
gorithm? When an additional justification + is added to
3, a complete applicable sequence (&, . . . , $,) with re-
spect to 3 may no longer be complete with respect to
3 U ($ 1 even though it is still applicable. However, one
can always extend . . . , $,) to obtain a complete ap-
plicable sequence with respect to 3 U ($1. Observe that
the results of applying the latter sequence is equivalent to
applying a complete applicable sequence with respect to
3 U { $) on the ATMS state S, where S is the ATMS state
that results from applying the sequence ($ 1 , . . . , $,) on
the initial ATMS. Therefore, the incremental basic ATMS
algorithm can be viewed as the application of a complete
applicable sequence with respect to F U ($1 on the correct
ATMS state with respect to 7.

The addition of a node into an ATMS does not pose
any problems since the additional node, with the proper
initialization if the node is an assumption or premise, will
not be in the antecedent or consequence of any formula in
3 . Hence, any complete applicable sequence will remain
complete and applicable, and none of the existing VX's
will be affected by the addition of the new node. One
could also make a non-premise node X into a premise
(assumption) incrementally, by changing the value of Vx
to P (downward closure of { { X))) and follow it by the
application of a complete applicable sequence to the re-
sulting ATMS state.

We are now ready to address the issue of the node I .
Consider an ATMS containing I . Each justification of the
form (x l , . . . , x, * I) stands for the fact that xl A. . .Ax,

only want to consider models of 3' U p that also satisfy
F L . If there exists at least one such model, we said that
F U p is consistent. We also say that the environment p is
consistent with respect to 3. If we treat I in the manner
as any other node in the basic ATMS algorithm, we have
p E VL if, and only if, there exists (2 1 , . . . , x, +I
) E 3 such that p E Vxi where 1 5 i 5 n. From
theorem 31, this means xl A - . - A xn holds, i.e. 3 U p
is inconsistent. This establishes the exact comespondence
between the environments in V' and the environments
that are inconsistent with respect to F.

Lemma 32 If an ATMS containing I is given the input
3, then after the basic ATMS algorithm, we have:

p E VL # 3 U p is inconsistent. 13

With the introduction of I in an ATMS, the basic
ATMS algorithm performs the step of removing any
p E Vx that is also present in VL, i.e. Vx is left with
only consistent environments that, together with the input
formulas, imply X. Hence, the basic ATMS algorithm
satisfies the semantical requirement of an ATMS:

Corollary 33 . If an ATMS is given the input 3 (which
contain I) , then after the basic ATMS algorithm, we have
for every X f 1:

VL = { p E P I 3 U p is inconsistent),
Vx={p E P I FUpisconsistent,and X) .

Since VL increases monotonically, the results of the
algorithm will not be affected if one removes new incon-
sistent environments from Vx (X # I) after each appli-
cation of a justification, instead of removing them after
applying a complete set of justifications as shown in our
basic ATMS algorithm. de Kleer's basic ATMS algorithm
does remove inconsistent environments in this incremen-
tal fashion.

Boundary representation.

In an actual implementation of an ATMS, we usually
resort to boundary representation of Vx's for reasons of
computational and storage efficiencies. Instead of provid-
ing the users of an ATMS with Vx, the ATMS provides
MAX(Vx) denoted by Lx. Furthermore, for the initial
ATMS, Lx is { { X)) or (4) when X is an assumption
or a premise respectively. Otherwise Lx = (1 . In the
ATMS literature, one usually refers to Lx as the label

of X . Hence, such ATMS is said to use the label rep- Extended ATMS.
resentation. This representation is sufficient because an In [dK86bl, de Kleer extended the basic ATMS to al-
environment p is in Vx for X #I if there does not exist low additiod input called dsjuncrionr
p' E LI such that p 5 p' and there exists p" E Lx such as choose(C1, ..., C,) , where each C ; , 1 5 i < n is a
that p 5 Therefore, to encode the information of disrinct assumptionP The interprebtion of the primitive
V x . we need only to know the labels of X and 1 . This disjunction is Ulat at one of the Ci9s must be uue
nice property is captured by the following definition: in the ATMS. Primitive disjunctions can be used to en-

Definition: A convex space
if C = { p E P ((Vp' E
M A X (C) , p 5 p")). The
label of C .

C is representable by label
LI, P 5 P') and (3p" E

set M A X (C) is called the

In order to make the label representation of an ATMS
useful, we also need to be able to run the basic ATMS
algorithm using only the labels, without any reference to
the Vx9s. The following shows that this can be achieved.

One can easily verify that convex spaces representable
by label are downward closed sets because they also form
a sublattice of the convex spaces of P, i.e. the meet and
join operations of convex spaces representable by label are
still representable by label. In particular, given two con-
vex spaces X and Y that are representable by label, if Lx
and Ly are their labels and, S and T are M A X (X A Y)
and M A X (X V Y) respectively, then by specializing the
definitions of Gln2 and Glu2 in the proof of Theorem 11,
we obtain the following formulas for computing the la-
bels:

S = M A X ({ P X U P Y I P , E L X , P ~ E L Y ,
s.t. 7 3 p 1 E L l , px U PY 5 p'}) (1)

T = M A X (L x U L y) (2)

For the operations on downward closed sets, the formulas

code negated assumptions, -hence, all propositional ex-
pressions can be encoded using justifications and prim-
itive disjunctions only. With the addition of primitive
disjunctions, the basic ATMS algorithm for computing
labels is no longer sufficient. To see why, consider
the following example from [dK86b]. Suppose 3 is
{ A * a; B * b; C 3 c; c , a 3l; c, b + I } . The la-
bel for the proposition I is { { A , c), { B , c } } . Adding
choose({A}, { B }) causes this label to change to { { C } }
because one of A or B holds in the new ATMS state.
The basic ATMS algorithm fails to make this correction
because it handles Horn clause justifications only, and our
choose statement is non-Horn. To solve this problem, de
Kleer corrected the labels computed by the basic ATMS
algorithm using two hyper-resolution rules, one for the I
node and one for the others.

In this paper, we extend the expressive power of
the choose operation to allow the encoding of com-
plex disjunctions which can have sets of assumptions
as their arguments, i.e. DNF (disjunctive normal form)
formula of assumptions. For instance, we may have
choose({A, B, C) , { D , E , F }) and the interpretation is
that either A, B and C are true or D , E and F are true.
This allows greater flexibility in the encoding of knowl-
edge in an ATMS.

are still the same except that one need not bother with LI
In the following, we reformulate the problem of la-

in computing S. Therefore, one can compute the meet be1 calculation in the extended ATMS using the convex
and the join of the convex spaces in the basic ATMS spaces. In particular, we describe a general algorithm for
algorithm in terms of their labels alone. Furthermore,
the subset comparison of any two convex spaces in the

computing the correct labels that depends only on the meet

algorithm can be easily decided by exarning their labels.
and join operations of convex spaces. Note that the only

Since the procedures that compare sets and the procedures
difference between the basic and the extended ATMS is
that in addition to justifications, the extended ATMS al- that compute the meet and join of convex spaces are the
lows the input to contain disjunctions (we only procedures required by the basic ATMS algorithm,
also refer to these formulas as DNF formulas or choose

and we have shown that each of these procedures has an
statements), i.e. equivalent procedure that operates only on the labels, we

have: Definition: An extended ATMS is an ATMS where the
input formulas T are propositional Horn clauses and DNF

Theorem 34 In a basic ATMS that uses label representa- formulas assumptions only, and A contains
tion. the basic ATMS algorithm can be tran$ormed to one positive literah only.
that operates on labels only.

3De Kleer also introduces ignore to hide information from the prob
"Ihis is not to there exists P l E LL and Pz E Lx such 1em solver. This is an added feature which does not affect the calculation

that pl < p 5 p z , because the latter fails when Vl is empty. of labels and hence will be ignored in this paper.

Our approach is to extend the basic ATMS algorithm
in the previous section by adding a procedure to han-
dle disjunctions. Instead of using propositional inference
to correct labels, we first examine how the introduction
of disjunctions changes the set of environments where a
proposition holds, and use this to derive the label update
algorithm for the extended ATMS.

The introduction of disjunctions into an ATMS causes
the set of inconsistent environments in VL to expand to
include any environment p with the property that ev-
ery superset of p that satisfies at least one disjunct in
every choose statement will also derive I. We now
show how the set Vl changes for our running exam-
ple. Using justifications alone, we determine that the
environments {A, C), {B , C) and {A, B , C) are in-
consistent. Thus MAX(Vl) , which is the label for
the I node, is {{A, C) , {B, C)). Now we consider
the effects of choose({A), {B)). The set of incon-
sistent environments expands to include {C), because
every superset of {C) that satisfies our choose state-
ment is also inconsistent. The new value of Vl is
{{C), { A , C), {B, C), {A, B , C)). Therefore the new
label for I is {{C)).

Similarly, the set of consistent environments deriving
a node X, i.e. Vx, is expanded to include any consistent
environment p with the property that every superset of
p which satisfies every choose statement also derives X.
We will see in the following that these effects can be
achieved by the applications of the operation O as defined
in section 2. First, we need to introduce some notations:

choose(t\, ..., t ; ,) stands for the ith disjunction,
where I 5 i 5 n.

Consider a node X #1 and a basic ATMS that is cor-
rect with respect to some formulas 3. When the i:, dis-
junction is added to to 3, we know that at least one of
the tfl (interpreted as a conjunction), 1 5 j 5 ni, needs
to be true, hence, we need those consistent environments
p such that given any choice of t ; , p A t; E Vx or
p A t; E VL. This will capture every consistent environ-
ment p that when expanded to agree with the i:, disjunc-
tion will derive X or become inconsistent. Note that the
p's that get expanded into inconsistent environments can
be easily filtered out because they will now be present
in the new VL. Therefore, we want to expand Vx to be
{ p E P I vj, 1 5 j 5 n i l , p ~ t f E Cxjp # Vl) which is
aT,! (CX) - VL, where I;.! = {t; I 1 5 j 5 nit). Taking

all the disjunctions into consideration, we expand Vx by
each QT, until it becomes a (least) fixed point of every
aT,. Therefore, as a consequence of the Theorem 7, we
arrive at the following definition:

Definition: Given an extended ATMS with input 3, if the
set of disjunctions in 3 are represented by z, 1 5 a' 5 n,
then the extended ATMS algorithm is defined to be the
following sequence of steps:

1. Apply the basic ATMS algorithm to calculate Vx
using only the justifications in 3,

In the following, we show that the above algorithm
satisfies the semantical requirement of an ATMS, i.e.

Theorem 35 In an ATMS with the input 3 which contains
the set ofDNFformulas 2) = (81,. . . , Om), at the termi-
nation of the extended ATMS algorithm given above, we
have for all node X f I:

p E VL # 3 U p is inconsistent,
p E Vx # 3 U p is consistent, and 3 u p + X.

Proof: To make references easier, we will assume V i ,
Vi and C& to be the values before the application of the
Q opemtions, i.e. those defined in steps 1 and 2.

iFrom lemma 32 and corollary 33, we know that at the
end of step 2 in the extended ATMS algorithm, we have
V; containing all inconsistent environments with respect
to (3 -D) , andp E C& u (3 - D) U P X. If Vl and
Cx remain correct with respect to these semantics, then
the resulting Vx at the end of step 5 will be correct.

We will prove the theorem by induction on the number
of DNF formulas in 3. Using the results of the basic
ATMS as basis, it suffices to show that the addition of
a single DNF formula 8 to 3 will produce the correct
results.

First we will show that at the end of step 3, VL contains
all the inconsistent environments with respect to 3 U 8.
Observe that F U 8 U p is inconsistent if, and only if,
3 U p U t is inconsistent for all t E 8. By induction, we
have 3 U p U t is inconsistent if, and only if, p A t E Vi.

Therefore, 3 U p U t is inconsistent if, and only if, p E
QT(V;), where T is the set of conjuncts in 0.

Next, we need to show that p E Cx e 3 U p b X
at the end of step 4. Let T be the set of conjuncts in
6. We have by definition of O that p E Cx implies
that p A t E Ck for all t E T . By induction, we have
3 U (p U t) b X. Hence, (F u f ?) U p b X.

Conversely, given any p E P such that (3 ~ 6) u p + X.
Observe that for every t E T, we have (3 U t) U p 'i= f
for all f E (F u 8) U p . Hence, 3 U (t U p) X . By
induction, we have p A t E Ck for all t E T , i.e. p E C X .

To make the extended ATMS algorithm meaningful,
we still need to find a way to compute cP. This can be
achieved by the following:

Theorem 36 If P is an environment lattice, then given
any downward closed C with MAX(C) = { s l , ..., s,),
and any T = i t l , ..., t ,) , :

where E: = { p E P I p Ati 5 s , } . Furthermore, E: is
a downward closed set with a unique upper bound e j =
s j - t j .

ProoP: For the first part of the theorem, we know that
@ T (C) = { P E P IWj E T , p A t j € C) a n d p A t j E
C if and only if there exists i, 1 < i 5 rn such that
p Atj 5 si, which means p E Ui E; = V i E;. Therefore,
QT(C) = Aj V i E;.

The downward closed property of E; is obvious from
its definition. Furthermore, if we rewrite the definition in
terms of set operations: E; = { p E P (p U t j > s i) , then
si - tj is obviously the largest element (smallest subset)
in E:, i.e. e(= si - t j . J

Again, in an actual implementation of an extended
ATMS, one may wish to improve the efficiency of the
algorithm by exploiting the label representation. Since
@ , (C) = { p E P I W ; E T , p A t i E C) = (E : V . . . V
E r) A - . . A (E: V . . . V E,"), and each of the terms E:
can be represented by the boundary set { e j) , we can ap-
ply the formula (1) and (2) to calculate MAX (QT(C)) -
with the deletion of inconsistent environments suppressed.
Hence, as a consequence of the Theorem 34, we have:

Corollary 37 In an extended ATMS that uses label rep-
resentation, the extended ATMS algorithm can be trans-
formed to one that operates on labels only.

In an incremental extended ATMS where recalculation
of labels is needed for each new input, the addition of a
disjunction involves applying the corresponding O oper-
ation to every label in the ATMS. However, the addition
of a justification involves runing the incremental basic
ATMS algorithm, followed by applying the operation
on each affected node for every disjunction previously
input to the ATMS.

What is still lacking in the extended ATMS are the neg-
ative literals. However, given any propositional formulas
with negative literals, we can always map them to an
equivalent set of extended ATMS inputs without negative
literals. Such a mapping was described in [dK86b]. This
mapping can be rigorously formalized and shown to be
correct. We leave it as an exercise for interested readers.

Examples of label calculations.

We now present some examples drawn from [dK86b]
to show the calculation of label sets using the formulas
derived in the previous section. We adopt the same no-
tation as in [dK86a], upper case letters are assumptions
nodes, lower case letters are derived nodes. In addition,
we use the following:

s l , s2 , ..., s , are the environments in MAX(Cx) ,
i.e. the MAX of the union of the old label set of X
and MAX(Vl) ,

t l , t 2 , . . . , t , are the environments in the disjunction
under consideration,

The label of I before considering the disjunction is
{ { A , C) , { B , C)) . Hence, the calculation of the label
of I is as follows:

SI = {A , C) , s2 = (9, C)

t1= { A) , t2 = { B)

where LI is the new label set of the node I.

The label of d before considering the disjunctions is {{B),
{ C }) and LI is { { ~ , 7 1)) , hence, Cd = { { B) , { C) ,
{ A , A)) . Since we have two disjunctions, we have the
options of either applying two successive @'s each repre-
senting one disjunction, or combine the two disjunctions
and apply a single operation. In this example, we adopt
the latter method to illustrate the flexibility of the con-
vex space approach. Note that the two disjunctions are
equivalent to choose({x), {A, B) , { A , C)) . Hence, the
calculation of label of d is as follows:

s1= {B), S.2 = { C) S 3 = { A , X)
t = { t2 = { A , B) t3 = { A , C }

where Ld is the new label set of the node d.

New label-update algorithm.

The convex space reformulation of the label update
computations in the extended ATMS reveals new oppor-
tunities for efficient implementations. The key calculation
is that of MAX(aT(C)) . From the previous section, we
know that for any downward closed C, we have:

@.(c) = AVE; (3)
j i

If we let C denote the set of all functions with do-
main (1 , ..., n) and codomain (1, ..., m) . We can rewrite
formula (3) as:

Q ~ (c) = v A E;(') (5)
oEC j

Observe that we always get better efficiency by using
formula (3) since it requires fewer operations than for-
mula (5). However, under certain circumstances, we may
be able to ignore a big proportion of a's in calculating
aT(C) . thus making the use of formula (5) reasonable. In
particular, as we will see later, de Kleer's hyper-resolution
rules exploit such situations.

In this section, we discuss possible ways of optimizing
the calculation of MAX (aT (C)) . We identify conditions
on T and C that simplify this computation. In the naive
implementation of the algorithm using the formula above,
we first calculate the matrix of ej's for 1 < j 5 n and
1 5 i < m. The columns in this matrix correspond to
the si's which are elements of MAX(C): the current
label of a node, the rows correspond to the tj's which are
taken from a choose statement. The entry in cell (j , i) is
ej which is s , - t j . We compute the union of all elements
in each column to obtain 3 = MAX(U, {ej 1) . Then the
new label of interest is Aj 5.

Here are two special cases that allow us to compute
the label sets without filling in all n * m entries in the e
matrix. We will fill entries in the e matrix row by row.

1. If there exist i' and j' such that sit t j , , we have
sit - tjt = {) which implies that V i E:, = ((1).
Hence we may ignore the column j = j' in the cal-
culation of formula (3) if {) is ever generated in
that column. We will call this condition the rowdone
condition.

2. If there exists a j' such that for all i, we have s; -
tjt = s i , then Vi E;, = C, hence, A . V i E: C C.

3 But the right hand side of the equanon is a T (C)
which is always larger than C , therefore, @T(C) =
C , and no further entries in the e matrix are required.
This is the matrixdone condition.

Sometimes, the application of @T on C does not pro-
duce many new environments. In such situation, the al-
gorithm can be further improved by first ignoring compu-
tations that will only contribute to environments that are
already in C . The partial results can then be unioned with

C to obtain the desired answer. The following describes
a condition when one can ignore some of the el:

3. If there exist it and jt such that s;, - tjt = si , .
i.e. ej: = si,, then Ej: C C . Therefore, ~ j : will
not contribute to anything new in the computation of
aT (C) and thus can be ignored. This is the emptycell
condition.

This optimization reduces the size of the unions that need
to be taken for the calculation of Y j .

We can use the special cases described above to im-
prove on the naive implementation of the label calculation
algorithm. The optimized algorithm takes two arguments:
the label set S of a given node, and the set T of conjuncts
in DNF. It fills in the e matrix one row at a time. For
each column i, it examines s; in S computing e$ = si - t j
when the emptycell condition doesn't hold, until the row
is exhausted or skipping over rows for which the rowdone
condition is true. If at any time the matrixdone condition
is satisfied, the algorithm returns the set S. Otherwise,
temporary unions Y, = M A X (Ui {ej)) are computed
for each row. The final result is Aj Y , V S where the
meet operation is taken over j's that fail the rowdone
condition.

procedure @ (S , T)
Initialize eCj,i] and YQ] to nil, 1 < j < n and 1 < i < m;
rowdone +- false; matrixdone t false;
Result +- nil;
repeat for each tj in T

repeat for each si in S
if not emptycell(i j)
then e[j , i] +- { s i - t j) ;

until rowdone

5. For any fixed i, say it, if there exist j l , j2 such that
t j l , t j , t s , ~ , then given any set A = { E ; (~) I 1 j
j 5 n) with a one to one, then at least one of
~ ~ (i l) E ~ (i a) is not in A.

1 1 ' 3 2 Without loss of gen-
erality, assume EY?') is not in A. If there ex-
ists j3 such that a (j g) = i t , then since t j l and
t j , are disjoint, we have ei: 5 t j l . Consider

= e ~ (i l) A ei,' , since e ~ (j l) =
3 1 I 3 I 1 S o (j 1) - t j , , we

have p 5 t j l U - t j l) = Hence,

Alsjsn e;") j s o (j l) , i . ~ . A A C. Therefore,
we can ignore any A that contains E;' for any j ,
i.e. E;' for 1 5 j 5 n can be ignored.

In the special case where arguments of the disjunction
are singleton and disjoint, we conclude that we need only
consider A l c j < , - - E;(') which satisfies the following:

4 : a is one to one,
3 'J j , so(j) - t j # so(j) , (6)
5 : V j ' , j t # - t j = s o (j) .

Therefore, for each A, E;(') in formula (S), only those
a that satisfies (6) can contribute new environments. For
any of these a , we need only to add the environments
A, e;") = U j (so(,) - t j) to the label set. This reduces
to exactly the hyper-resolution rules discussed in [dK86b]
for C = VL and C = C x which are the rules for ensuring
consistency and completeness respectively.

Observation 5 leads us to the following optimized al-
gorithm for calculating iP when the given disjunction is
primitive. T is a clause of length n whose terms are
literals, and S is the label set for some node.

until matrixdone
if matrixdone then return Result = S;

procedure Primitive-@(S, T)
Initialize e&i] and Yu] to nil, 1 5 j 5 n and 1 5 i 5 rn;

Ytil = M A X (U e [j , ill. 1 5 j < n and not rowdone0); rowdone + false; matrixdone - fdse;
return Result = Aj Y b] V S, not rowdoneu). Result t nil;
end-procedure iP for each s in S

If we know that t j 's are pairwise disjoint, i.e. t j l V t ja =
{), for 1 5 jl # jz j m, then one can further prune away
some unnecessary operations. Consider the formula (5)
in the following:

4. For any fixed i , say i t , and any j l , j 2 , we have e; A

e?' 1 2 = (sit - t j l) A (sit - t j 2) = si, - (t j l n t j 2) = s*, ,

i.e. E;: A E;: g C. Hence, only for cases where a

is an one to one function will Aj E;(J) contribute
new environments.

if exactly one literal 6 of s occurs as t j E T
then eu,il t {s - b) ;

end
if matrixdone then return Result = S;
Ytil = M A X (U i e b , z'j), 1 j j 5 n and not rowdoneti);
return Result = Aj Y b] V S , not rowdoneu).
end-procedure Primitive-@

There are several advantages to using this new algo-
rithm over de Kleer's hyper-resolution approach. The ab-
sence of resolution contributes substantially to the per-

formance of our algorithm in comparison to a hyper-
resolution based approach. This advantage is similar to
the way ATMS's are an improvement over the earlier
Truth Maintenance Systems [Doy79], because the label-
ing eliminates the need to re-evaluate some computations
multiple times during backtracking. In our case, the re-
dundant computation involved in a hyper-resolution based
ATMS is the pattern matching required by the last con-
dition in formula (6). This is because different a's may
share the same values for some subset of j's, hence the
pattern matcher may run on every one of these u's even
though all of them may fail for the same reason.

Another advantage is the easier encoding and poten-
tial improvement in efficiency because a formula in dis-
junctive normal form can be asserted as a single choose
statement. Furthermore, the new label-update algorithm
allows the flexibility for combining any set of disjunctions
into a single disjunction. For instance, we can combine
choose({A), {B)), choose({B), { C)) and choose({A),
{ C)) into choose({A, B), {B, C) , { A , C)) . Hence, a
single application of the @ operation, instead of three,
suffices to compute the new label of a node.

6 Conclusions

We have formulated a theory of convex spaces of par-
tially ordered sets which includes algorithms for basic
operations on finitely representable convex spaces in the
presence of a simple assumption on the partial order. Us-
ing this theory, we can also describe conditions that could
ensure the admissibility of the version space representa-
tion of a concept description language.

We then show how the convex spaces can be used to
describe the label-update algorithm in de Kleer's basic
assumption-based truth maintenance systems. This idea
suggests a new approach to the label-update algorithm
for the extended ATMS. Our approach generalizes the ex-
tended ATMS choose operations to allow the use of dis-
junctions such as choose({A, B, c) , { D , E , F)) . This
provides additional flexibility in expressing constraints
and also contributes to the efficiency of label updating.
Our new label-update algorithm does not require the in-
troduction of any form of hyper-resolution rule. Instead,
we use an approach which is similar to that employed in
the version space algorithms to recalculate labels. This
simplifies the description of how labels are updated and
makes the extended ATMS label-update algorithm more
consistent with the algorithm used for the basic ATMS's.

The convex space treatment of ATMS provides more
than just a new algorithm for the ATMS. We also show
that the approach leads to better understanding of the
logical foundations for both the basic and the extended
ATMS. In the paper Nga911, we also show that if
negation is introduced into the ATMS architecture, one
can apply the operation to calculate the prime impli-
cates [RdK87, KT901 of any set of DNF formulas. This
algorithm has been implemented on top of our ATMS im-
plementation.

It is especially our hope that the abstraction of the con-
vex space algorithms which we have discussed will lead
to new insights in other areas which do, or could, employ
similar structures for the representation of knowledge.

Acknowledgements

Gunter's work was supported in part by NSF grant CCR-
8912778 and by a Young Investigator Award from the
Office of Naval Research. Ngair's work was supported
by the Institute of Systems Science, Singapore. Panan-
gaden's work was supported by NSF grant CCR-8818979
and by NSERC. Subramanian's work was supported by
NSF grant IRI-8902721.

References

[BM78] B. G. Buchanan and T. M. Mitchell. Model-
directed learning of production rules. In
D. A. Watterman and F. Hayes-Roth, ed-
itors, Pattern-Directed Inference Systems,
Academic Press, 1978.

[dK86a] Johan de Kleer. An assumption-based TMS.
Artijlcial Intelligence, 28:127-162, 1986.

[dK86b] Johan de Kleer. Extending the ATMS. Artifi-
cial Intelligence, 28:163-196, 1986.

[Doy79] Jon Doyle. A truth maintenance system. Ar-
tificial Intelligence, 12231-272, 1979.

[FMH90] Yasushi Fujiwara, Yumiko Mizushima, and
Shinichi Honiden. On logical foundations of
the ATMS. Proc. of ECAI-90 Workshop on
Truth Maintenance Systems, 1990.

[GHK*80] G. Gierz, K. H. Hofmann, K. Keimel, J. D.
Lawson, M. Mislove, and D. S. Scott. A Com-
pendium of Continuous Lattices. Springer,
1980.

[GJ88] C. A. Gunter and A. Jung. Coherence and
consistency in domains (extended outline). In
Y. Gurevich, editor, Logic in Computer Sci-
ence, pages 309-319, IEEE Computer Soci-
ety, July 1988.

[GN87] M. R. Genesereth and N. J. Nilsson. Logical
Foundations of Artificial Intelligence. Morgan
Kaufmann Publishers, 1987.

[GS90] C. A. Gunter and D. S. Scott. Semantic do-
mains. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, pages 633-
674, North Holland, 1990.

[Gun931 C. A. Gunter. The mixed powerdomain. Theo-
retical Computer Science, 102, 1993. In press
for TCS; available as University of Pennsyl-
vania, Department of Computer and Informa-
tion Science Technical Report 90-75.

Radha Jagadeesan, Prakash Panangaden, and
Keshav Pingali. A fully abstract semantics
for a functional language with logic variables.
Proceedings of the Third Annual IEEE Sympo-
sium on Logic in Computer Science, 1989.

Alex Kean and George Tsiknis. An incre-
mental method for generating prime impli-
cants/implicates. J. Symbolic Computation,
185-206, 1990.

Tom Mitchell. Version Space: An approach to
Concept Leaning. PhD thesis, Stanford Uni-
versity, 1978.

Teow-Hin Ngair. A Study on ATMS. Techni-
cal Report Forthcoming, University of Penn-
sylvania, 1991.

Raymond Reiter and Johan de Kleer. Foun-
dations of assumption-based truth maintence
systems: preliminary report. Proc. of AAAI-
87, 183-188, 1987.

D. S. Scott. Data types as lattices. SIAM
Journal of Computing, 5522-587, 1976.

D. S. Scott. Domains for denotational seman-
tics. In M. Nielsen and E. M. Schmidt, edi-
tors, International Colloquium on Automata,
Languages and Programs, pages 577-6 13,
Lecture Notes in Computer Science vol. 140,
Springer, 1982.

M. Smyth. The largest cartesian closed cate-
gory of domains. Theoretical Computer Sci-
ence, 27: 109-1 19, 1983.

Vijay Saraswat, Martin Rinard, and Prakash
Panangaden. Semantic foundations of con-
c'urrent constraint programming. 17th POPL,
1991.

[Hi1901 Haym Hirsh. Incremental Version Space
Merging: A General Framework for Con-
cept Learning. Kluwer Academic Publishers,
1990.

	The Common Order-Theoretic Structure of Version Spaces and ATMS's
	Recommended Citation

	The Common Order-Theoretic Structure of Version Spaces and ATMS's
	Abstract
	Comments

	tmp.1187104943.pdf.JPpyi

