
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

March 1991

Tree-Adjoining Grammars and Lexicalized Grammars Tree-Adjoining Grammars and Lexicalized Grammars

Aravind K. Joshi
University of Pennsylvania

Yves Schabes
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Aravind K. Joshi and Yves Schabes, "Tree-Adjoining Grammars and Lexicalized Grammars", . March 1991.

University of Pennsylvania Department of Computer and Information Science, Technical Report No. MS-CIS-91-22.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/445
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76362911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/445
mailto:repository@pobox.upenn.edu

Tree-Adjoining Grammars and Lexicalized Grammars Tree-Adjoining Grammars and Lexicalized Grammars

Abstract Abstract
In this paper, we will describe a tree generating system called tree-adjoining grammar(TAG)and state
some of the recent results about TAGs. The work on TAGS is motivated by linguistic considerations.
However, a number of formal results have been established for TAGs, which we believe, would be of
interest to researchers in tree grammars and tree automata. After giving a short introduction to TAG, we
briefly state these results concerning both the properties of the string sets and tree sets (Section 2). We
will also describe the notion of lexicalization of grammars (Section 3) and investigate the relationship of
lexicalization to context-free grammars (CFGs) and TAGS (Section 4).

Comments Comments
University of Pennsylvania Department of Computer and Information Science, Technical Report No. MS-
CIS-91-22.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/445

https://repository.upenn.edu/cis_reports/445

Tree-Adjoining Grammars
and

Lexicalized Grammars

MS-CIS-91-22
LINC LAB 197

Aravind K. Joshi
Yves Schabes

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

March 1991

Tree-Adjoining Grammars and
Lexicalized Grammars*

Aravind K. Joshi and Yves Schabes
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104-6389, USA

1 Introduction

In this paper, we will describe a tree generating system called tree-adjoining grammar
(TAG) and state some of the recent results about TAGs. The work on TAGS is motivated
by linguistic considerations. However, a number of formal results have been established
for TAGs, which we believe, would be of interest to researchers in tree grammars and
tree automata. After giving a short introduction to TAG, we briefly state these results
concerning both the properties of the string sets and tree sets (Section 2). We will
also describe the notion of lexicalization of grammars (Section 3) and investigate the
relationship of lexicalization to context-free grammars (CFGs) and TAGS (Section 4).

The notion of lexicalization is linguistically very significant. Formally, this notion
leads to a tree representation for CFGs which may be regarded as a stronger version of
the Greibach Normal Form for CFGs, in the sense that the structures are preserved and
not just the string sets.

The motivations for the study of tree-adjoining grammars (TAG) are of linguistic and
formal nature. The elementary objects manipulated by a TAG are trees, i.e., structured
objects and not strings. Using structured objects as the elementary objects of a formalism,
it is possible to construct formalisms whose properties relate directly to the strong gen-
erative capacity (structural description) which is more relevant to linguistic descriptions
than the weak generative capacity (set of strings).

TAG is a tree-generating system rather than a string generating system. The set of
trees derived in a TAG constitute the object language. Hence, in order to describe the
derivation of a tree in the object language, it is necessary to talk about derivation 'trees'
for the object language trees. These derivation trees are important both syntactically
and semantically. It has also turned out that some other formalisms which are weakly

'This paper will appear in Nivat and Podelski (editors), Definabi l i ty and Recognizabili ty of Seis of
Trees, Elsevier, 1991. This work was partially supported by NSF grants DCR-84-10413, ARO Grant
DAAL03-87-0031, and DARPA Grant N001485-K0018.
bye are grateful to Anne AbeillC, Bruno Courcelle, Anthony Kroch, Mitch Marcus, Fernando Pereira,
Stuart Shieber, Mark Steedman and Marilyn Walker for providing valuable comments.

equivalent to TAGs are similar to each other in terms of the properties of the derivation
'trees' of these formalisms (Weir, 1988; Joshi et al., forthcoming 1991).

Another important linguistic motivation for TAGs is that TAGs allow factoring re-
cursion from the statement of linguistic constraints (dependencies), thus making these
constraints strictly local, and thereby simplifying linguistic description (Kroch and Joshi,
1985).

Lexicalization of grammar formalism is also one of the key motivations, both linguistic
and formal. Most current linguistic theories give lexical accounts of several phenomena
that used to be considered purely syntactic. The information put in the lexicon is thereby
increased in both amount and complexity1.

On the formal side, lexicalization allows us to associate each elementary structure in
a grammar with a lexical item (terminal symbol in the context of formal grammars). The
well-known Greibach Normal Form (CNF) for CFG is a kind of lexicalization, however it
is a weak lexicalization in a certain sense as it does not preserve structures of the original
grammar. Our tree based approach to lexicalization allows us to achieve lexicalization
while preserving structures, which is linguistically very significant.

2 Tree- Adjoining Grammars

TAGs were introduced by Joshi, Levy and Takahashi (1975) and Joshi (1985). For more
details on the original definition of TAGs, we refer the reader to (Joshi, 1987; Kroch and
Joshi, 1985). It is known that tree-adjoining languages (TALs) generate some strictly
context-sensitive languages and fall in the class of the so-called 'mildly context-sensitive
languages' (Joshi et al., forthcoming 1991). TALs properly contain context-free languages
and are properly contained by indexed languages.

Although the original definition of TAGs did not include substitution as a combining
operation, it can be easily shown that the addition of substitution does not affect the
formal properties of TAGs.

We first give an overview of TAG and then we study the lexicalization process.

Definition 1 (tree-hdjoining grammar)
A tree-adjoining grammar (TAG) consists of a quintuple (C, NT, I, A, S), where

(i) C is a finite set of terminal symbols;
(ii) N T is a finite set of non-terminal symbols2: C n N T = 0;
(iii) S is a distinguished non-terminal symbol: S E N T ;
(iv) I is a finite set of finite trees, called initial trees, characterized as follows (see
tree on the left in Figure 1):

interior nodes are labeled by non-terminal symbols;

lSome of the linguistic formalisms illustrating the increased use of lexical information are, lexical rules
in LFG (Kaplan and Bresnan, 1983), GPSG (Gazdar et al., 1985), HPSG (Pollard and Sag, 1987), Combi-
natory Categorial Grammars (Steedman, 1987), Karttunen's version of Categorial Grammar (Karttunen,
1986), some versions of GB theory (Chornsky, 1981)), and Lexicon-Grammars (Gross, 1984).

'We use lower-case letters for terminal symbols and upper-case letters for non-terminal symbols.

the nodes on the frontier of initial trees are labeled by terminals or non-
terminals; non-terminal symbols on the frontier of the trees in I are marked
for substitution; by convention, we annotate nodes to be substituted with a
down arrow (1);

(v) A is a finite set of finite trees, called auxiliary trees, characterized as follows
(see tree on the right in Figure 1):

interior nodes are labeled by non-terminal symbols;

the nodes on the frontier of auxiliary trees are labeled by terminal symbols
or non-terminal symbols. Non-terminal symbol on the frontier of the trees
in A are marked for substitution except for one node, called the foot node;
by convention, we annotate the foot node with an asterisk (*); the label of
the foot node must be identical to the label of the root node.

In lexicalized TAG, at least one terminal symbol (the anchor) must appear at the
frontier of all initial or auxiliary trees.

The trees in I U A are called elementary trees. We call an elementary tree an X-type
elementary tree if its root is labeled by the non-terminal X.

Initial Jree: Auxiliary tree:

A A
W terminal nodes or

substitution nodes

Figure 1 : Schematic initial and auxiliary trees.

A tree built by composition of two other trees is called a derived tree.
We now define the two composition operations that TAG uses: adjoining and substi-

tution.
Adjoining builds a new tree from an auxiliary tree ,B and a tree a (a is any tree, initial,

auxiliary or derived). Let a be a tree containing a non-substitution node n labeled by X
and let ,B be an auxiliary tree whose root node is also labeled by X . The resulting tree,
y, obtained by adjoining ,B to a at node n (see top two illustrations in Figure 2) is built
as follows:

the sub-tree of cu dominated by n, call it t , is excised, leaving a copy of n behind.

the auxiliary tree ,B is attached at the copy of n and its root node is identified with
the copy of n.

the sub-tree t is attached to the foot node of P and the root node of t (i.e. n) is
identified with the foot node of P.

The top two illustrations in Figure 2 illustrate how adjoining works. The auxiliary
tree pl is adjoined on the V P node in the tree a*. al is the resulting tree.

Substitution takes only place on non-terminal nodes of the frontier of a tree (see bottom
two illustrations in Figure 2). An example of substitution is given in the fourth illustration
(from the top) in Figure 2. By convention, the nodes on which substitution is allowed are
marked by a down arrow (I). When substitution occurs on a node n, the node is replaced
by the tree to be substituted. When a node is marked for substitution, only trees derived
from initial trees can be substituted for it.

By definition, any adjunction on a node marked for substitution is disallowed. For
example, no adjunction can be performed on any N P node in the tree 0 2 . Of course,
adjunction is possible on the root node of the tree substituted for the substitution node.

2.1 Adjoining Constraints

In the system that we have described so far, an auxiliary tree /? can be adjoined on a node
n if the label of n is identical to the label of the root node of the auxiliary tree ,d and if n
is labeled by a non-terminal symbol not annotated for substitution. It is convenient for
linguistic description to have more precision for specifying which auxiliary trees can be
adjoined at a given node. This is exactly what is achieved by constraints on adjunction
(Joshi, 1987). In a TAG G = (C, NT, I, A, S), one can, for each node of an elementary
tree (on which adjoining is allowed), specify one of the following three constraints on
adjunct ion:

Selective Adjunction (SA(T), for short): only members of a set T A of auxiliary
trees can be adjoined on the given node. The adjunction of an auxiliary is not
mandatory on the given node.

Nudl Adjunction (NA for short): it disallows any adjunction on the given node.3

Obligatory Adjunction (OA(T), for short): an auxiliary tree member of the set
T C A must be adjoined on the given node. In this case, the adjunction of an
auxiliary tree is mandatory. OA is used as a notational shorthand for OA(A).

If there are no substitution nodes in the elementary trees and if there are no constraints
on adjoining, then we have the 'pure' (old) Tree Adjoining Grammar (TAG) as described
in (Joshi et al., 1975).

The operation of substitution and the constraints on adjoining are both needed for
linguistic reasons. Constraints on adjoining are also needed for formal reasons in order to
obtain some closure properties.

3Null adjunction constraint corresponds to a selective adjunction constraint for which the set of aux-
iliary trees T is empty: NA = SA(0)

4

R
NP0L VP

N P ~ . ~ VP VP
A
v VP

A
v N P ~ L

A
v VP*

I A
has V N P ~ L

(02) I (a1 > I
loved

(81) I
has loved

Adjoining

n

I
loved woman

loved DL N

I
woman

I

Substitution

Figure 2: Combining operations: adjoining and substitution

2.2 Derivation in TAG

We now define by an example the notion of derivation in a TAG. Unlike CFGs, the tree
obtained by derivation (the derived tree) does not give enough information to determine
how it was constructed. The derivation tree is an object that specifies uniquely how a
derived tree was constructed. Both operations, adjunction and substitution, are consid-
ered in a TAG derivation. Take for example the derived tree a5 in Figure 3; a 5 yields the
sentence yesterday a man saw M a y . It has been built with the elementary trees shown
in Figure 4.

1 vesterday NP

a man saw N

(05 > I
Mary

Figure 3: Derived tree for: yesterday a man saw Mary.

h NP

Adv S* D
A

DL N
(&st> I a) I (aman)

yesterday a
I

man

A
NP,& VP NP

A
v N P ~ &

I
N

(G L J) I (a ~ ~ ~ ~ >
saw

I
Mary

Figure 4: Some elementary trees.

The root of a derivation tree for TAGS is labeled by an S-type initial tree. All other
nodes in the derivation tree are labeled by auxiliary trees in the case of adjunction or
initial trees in the case of substitution. A tree address is associated with each node
(except the root node) in the derivation tree. This tree address is the address of the

node in the parent tree to which the adjunction or substitution has been performed. We
use the following convention: trees that are adjoined to their parent tree are linked by
an unbroken line to their parent, and trees that are substituted are linked by a dashed
line.4 Since by definition, adjunction can only occur at a particular node one time, all
the children of a node in the derivation tree will have distinct addresses associated with
them.

The derivation tree in Figure 5 specifies how the derived tree a5 pictured in Figure 3
was obtained.

Figure 5: Derivation tree for Yesterday a man saw M a y .

This derivation tree (Figure 5) should be interpreted as follows: a, is substituted in the
tree a,,, at the node of address 1 (D), a,,, is substituted in the tree a,,, at address
1 (NPo) in a,,,, a~ , , , is substituted in the tree a,,, at node 2 - 2 (N P l) and the tree
Dyest is adjoined in the tree a,,, at node 0 (S).

The order in which the derivation tree is interpreted has no impact on the resulting
derived tree.

2.3 Some properties of the string languages and tree sets

We summarize some of the well known properties of tree-adjoining grammar's string
languages and of the tree sets.

The tree set of a TAG is defined as the set of completed5 initial trees derived from
some S-rooted initial trees:

TG = { t I t is 'derived'from some S-rooted initial tree)
The string language of a TAG, L(G), is then defined as the set of yields of all the trees

in the tree set:
LG = {W) w is the yield of some t in TG)

Adjunction is more powerful than substitution and it generates some context-sensitive
languages (see Joshi [I9851 for more details).

4JVe will use Gorn addresses as tree addresses: 0 is the address of the root node, k is the address of
the k th child of the root node, and p . q is the address of the qth child of the node a t address p.

'IVe say that an initial tree is completed if there is no substitution nodes on the frontier of it.
'Adjunction can simulate substitution with respect to the weak generative capacity. It is also possible

to encode a context-free grammar with auxiliary trees using adjunction only. However, although the
languages correspond, the possible encoding does not directly reflect the tree set of original context-free
grammar since this encoding uses adjunction.

Some well known properties of the string languages follow:
r context-free languages are strictly included in tree-adjoining languages, which them-

selves are strictly included in indexed languages;
CFL c TAL c Indexed Languages c CSL

r TALs are semilinear;

r All closure properties of context-free languages also hold for tree-adjoining lan-
guages. In fact, TALs are a full abstract family of languages (full AFLs).

r a variant of the push-down automaton called embedded push-down automaton
(EPDA) (Vijay-Shanker, 1987) characterizes exactly the set of tree-adjoining lan-
guages, just as push-down automaton characterizes CFLs.

r there is a pumping lemma for tree-adjoining languages.

r tree-adjoining languages can be parsed in polynomial time, in the worst case in
O(n6) time.

Some well know properties of the tree sets of tree-adjoining grammars follow:
r the tree sets of recognizable sets (regular tree sets)(Thatcher, 1971) are strictly in-

cluded in the tree sets of tree-adjoining grammars, T(TAG);
recognizable sets c I (T A G)

r the set of paths of all the trees in the tree set of a given TAG, /P(T(G)), is a context-
free language;

P(T(G)) is a CFL

r the tree sets of TAG are equivalent to the tree sets of linear indexed languages.
Hence, linear versions of Schimpf-Gallier tree automaton (Schimpf and Gallier, 1985)
are equivalent to 'T(TAG);

r for every TAG, G, the tree set of G, T(G), is recognizable in polynomial time, in
the worst case in O(n3)-time, where n is the number of nodes in a tree t E T(G).

We now give two examples to illustrate some properties of tree-adjoining grammars.

Example 1 Consider the following TAG GI = ({a, e, b), {S), {a6), {/32), S)

G1 generates the language L1 = {anebnln >_ 1). For example, in Figure 6, a7 has been
obtained by adjoining ,B2 on the root node of a 6 and as has been obtained by adjoining
P2 on the node at address 2 in in the tree a7.

Although L1 is a context-free language, G1 generates cross serial dependencies. For
example, a7 generates, alebl, and 0 8 generates, ala2eb2bl. It can be shown that T(G1) is
not recognizable.

Figure 6: Some derived trees of GI

Example 2 Consider the following TAG, G2 = ({a, b, C, d, e) , {S), {a6), {P3), S)

G2 generates the context-sensitive language L2 = {anbnecndnln >_ 1). For example, in
Figure 7, a s has been obtained by adjoining P3 on the root node of (r6 and alo has been
obtained by adjoining P3 on the node at address 2 in in the tree a9.

Figure 7: Some derived trees of G2

One can show that {anbncndnenln > 1) is not a tree-adjoining language.

We have seen in Section 2.2 that the derivation in TAG is also a tree. For a given

TAG, G, it can be shown that the set of derivations trees of G, D(G), is recognizable (in
fact a local set). Many different grammar formalisms have been shown to be equivalent
to TAG, their derivation trees are also local sets.

Lexicalized Grammars

We define a notion of "lexicalized grammars" that is of both linguistic and formal sig-
nificance. We then show how TAG arises in the processes of lexicalizing context-free
grammars.

In this "lexicalized grammar" approach (Schabes et al., 1988; Schabes, 1990), each
elementary structure is systematically associated with a lexical item called the anchor.
By 'lexicalized' we mean that in each structure there is a lexical item that is realized. The
'grammar' consists of a lexicon where each lexical item is associated with a finite number
of structures for which that item is the anchor. There are operations which tell us how
these structures are composed. A grammar of this form will be said to be 'lexicalized'.

Definition 2 (Lexicalized Grammar) A grammar is 'lexicalized' if it consists of:

a finite set of structures each associated with a lexical item; each lexical item will
be called the anchor of the corresponding structure;

an operation or operations for composing the structures.

We require that the anchor must be an overt (i.e. not the empty string) lexical item.
The lexicon consists of a finite set of structures each associated with an anchor. The

structures defined by the lexicon are called elementary structures. Structures built by
combination of others are called derived structures.

As part of our definition of lexicalized grammars, we require that the structures be
of finite size. We also require that the combining operations combine a finite set of
structures into a finite number of structures. We will consider operations that combine
two structures to form one derived structure.

Other constraints,can be put on the operations. For examples, the operations could be
restricted not to copy, erase or restructure unbounded components of their arguments. We
could also impose that the operations yield languages of constant growth (Joshi [1985]).
The operations that we will use have these properties.

Categorial Grammars (Lambek, 1958; Steedman, 1987) are lexicalized according to
our definition since each basic category has a lexical item associated with it.

As in Categorial Grammars, we say that the category of a word is the entire structure
it selects. If a structure is associated with an anchor, we say that the entire structure is
the category structure of the anchor.

We also use the term 'lexicalized' when speaking about structures. We say that a
structure is Iesicalized if there is at least one overt lexical item that appears in it. If
more than one lexical item appears, either one lexical item is designated as the anchor
or a subset of the lexical items local to the structure are designated as multi-component
anchor. A grammar consisting of only lexicalized structures is of course lexicalized.

For example, the following structures are lexicalized according to our definition:'

(all) 1 (4 I (~ 1 3)
men eat

I
think

kick D N

take P NP

into N

I the bucket account I

Some simple properties follow immediately from the definition of lexicalized grammars.

Proposition 1 Lezicalized grammars are finitely ambiguous.

A grammar is said to be finitely ambiguous if there is no sentence of finite length that
can be analyzed in an infinite number of ways.

The fact that lexicalized grammars are finitely ambiguous can be seen by considering
an arbitrary sentenci of finite length. The set of structures anchored by the words in the
input sentence consists of a set of structures necessary to analyze the sentence; while any
other structure introduces lexical items not present in the input string. Since the set of
selected structures is finite, these structures can be combined in finitely many ways (since
each tree is associated with at least one lexical item and since structures can combine to
produce finitely many structures) . Therefore lexicalized grammars are finitely ambiguous.

Since a sentence of finite length can only be finitely ambiguous,the search space used for
analysis is finite. Therefore, the recognition problem for lexicalized grammars is decidable

Proposition 2 It is decidable whether or not a string is accepted b y a lezicalized grammar.8

7 ~ h e interpretation of the annotations on these structures is not relevant now and i t will be given
later.

"ssurning that one can compute the result of the combination operations.

Having stated the basic definition of lexicalized grammars and also some simple prop-
erties, we now turn our attention to one of the major issues: can context-free grammars
be lexicalized?

Not every grammar is in a lexicalized form. Given a grammar G stated in a formalism,
we will try find another grammar GI,, (not necessarily stated in the same formalism) that
generates the same language and also the same tree set as G and for which the lexicalized
property holds. We refer to this process as lexicalization of a grammar.

Definition 3 (Lexicalization) We say that a formalism F can be lexicalized by another
formalism F', if for any finitely ambiguous grammar G in F there is a grammar G' in F'
such that G' is a lexicalized grammar and such that G and G' generate the same tree set
(and a fortiori the same language).

The next section discusses what it means to lexicalize a grammar. We will investigate
the conditions under which such a 'lexicalization' is possible for CFGs and tree-adjoining
grammars (TAGs). We present a method to lexicalize grammars such as CFGs, while
keeping the rules in their full generality. We then show how a lexicalized grammar natu-
rally follows from the extended domain of locality of TAGs.

4 'Lexicalization' of CFGs

Our definition of lexicalized grammars implies their being finitely ambiguous. Therefore
a necessary condition of lexicalization of a CFG is that it is finitely ambiguous. As a
consequence, recursive chain rules obtained by derivation (such as X & X) or elementary
(such as X + X) are disallowed since they generate infinitely ambiguous branches without
introducing lexical items.

In general, a CFG will not be in lexicalized form. For example a rule of the form,
S -+ N P V P or S -+ S S, is not lexicalized since no lexical item appears on the right
hand side of the rule.

A lexicalized CFG would be one for which each production rule has a terminal symbol
on its right hand side. These constitute the structures associated with the lexical anchors.
The combining operation is the standard substitution ~ p e r a t i o n . ~

Lexicalization of CFG that is achieved by transforming it into an equivalent Greibach
Normal Form CFG, can be regarded as a weak lexicalization, because it does not give us
the same set of trees as the original CFG." Our notion of lexicalization can be regarded
as strong lexicalization.

In the next sections, we propose to extend the domain of locality of context-free
grammar in order to make lexical item appear local to the production rules. The domain of

'Variables are independently substituted by substitution. This standard (or first order) substitution
contrasts with more powerful versions of substitution which allow to substitute multiple occurrences of
the same variable by the same term.

''To our knowledge, there is no known tree transducer that transforms the derivation of a context-free
grammar transformed in Greibach normal form to its original derivation. We strongly suspect that such
a tree transducer can very probably be found. However, the transducer will probably be quite complex
and will need to work on distant pieces since leaves of the derivation tree must be put back to higher
positions in the tree.

locality of a CFG is extended by using a tree rewriting system that uses only substitution.
We will see that in general, CFGs cannot be lexicalized using substitution alone, even if
the domain of locality is extended to trees. Furthermore, in the cases where a CFG could
be lexicalized by extending the domain of locality and using substitution alone, we will
show that, in general, there is not enough freedom to choose the anchor of each structure.
This is important because we want the choice of the anchor for a given structure to
be determined on purely linguistic grounds. We will then show how the operation of
adjunction enables us to freely 'lexicalize' CFGs.

4.1 Substitution and Lexicalization of CFGs

We already know that we need to assume that the given CFG is finitely ambiguous in
order to be able to lexicalized it. We propose to extend the domain of locality of CFGs
to make lexical items appear as part of the elementary structures by using a grammar
on trees that uses substitution as combining operation. This tree-substitution grammar
consists of a set of trees that are not restricted to be of depth one (rules of context-free
grammars can be thought as trees of depth one) combined with substitution."

A finite set of elementary trees that can be combined with substitution define a tree-
based system that we will call a tree substitution grammar.

Definition 4 (Tree-Substitution Grammar)
A Tree-Substitution Grammar (TSG) consists of a quadruple (C, NT, I, S), where

(i) C is a finite set of terminal symbols;
(ii) NT is a finite set of non-terminal symbols12: C n N T = 8;
(iii) S is a distinguished non-terminal symbol: S E NT;
(iv) I is a finite set of finite trees whose interior nodes are labeled by non-terminal
symbols and whose frontier nodes are labeled by terminal or non- terminal sym-
bols. All non-terminal symbols on the frontier of the trees in I are marked for
substitution. The trees in I are called initial trees.

We say that a tree is derived if it has been built from some initial tree in which initial
or derived trees were substituted. A tree will be said of type X if its root is labeled by
X . A tree is considered completed if its frontier is to be made only of nodes labeled by
terminal symbols.

Whenever the string of labels of the nodes on the frontier of an X-type initial tree tx
is a E (C U NT)*, we will write: F r (t x) = a.

As for TAG, the derivation in TSG is stated in the form of a tree called the derivation
tree (see Section 2.2).

It is easy to see that the set of languages generated by this tree rewriting system is
exactly the same set as context-free languages.

We now come back to the problem of lexicalizing context-free grammars. One can try
to lexicalize finitely ambiguous CFGs by using tree-substitution grammars. However we
will exhibit a counter example that shows that, in the general case, finitely ambiguous

''We assume here first order substitution meaning that all substitutions are independent.
12We use lower-case letters for terminal symbols and upper-case letters for non-terminal symbols.

CFGs cannot be lexicalized with a tree system that uses substitution as the only combining
operat ion.

Proposition 3 Finitely ambiguous context-free grammars cannot be lexicalized with a
tree-substitution grammar.

Proof13 of Proposition 3
We show this proposition by a contradiction. Suppose that finitely ambiguous CFGs can
be lexicalized with TSG. Then the following CFG can be lexicalized:14

Example 3 (counter example)

Suppose there were a lexicalized TSG G generating the same tree set as the one
generated by the above grammar. Any derivation in G must start from some initial tree.
Take an arbitrary initial tree t in G. Since G is a lexicalized version of the above context-
free grammar, there is a node n on the frontier of t labeled by a. Since substitution
can only take place on the frontier of a tree, the distance between n and the root node
of t is constant in any derived tree from t . And this is the case for any initial tree t
(of which there are only finitely many). This implies that in any derived tree from G
there is a t least one branch of bounded length from the root node to a node labeled by
a (that branch cannot further expand). However in the derivation trees defined by the
context-free grammar given above, a can occur arbitrarily far away from the root node of
the derivation. Contradiction.

The CFG given in Example 3 cannot be lexicalized with a TSG. The difficulty is due
to the fact that TSGs do not permit the distance between two nodes in the same initial
tree to increase.

For example, one'might think that the following TSG is a lexicalized version of the
above grammar:

13The underlying idea behind this proof was suggested to us by Stuart Shieber.
14This example was pointed out to us by Fernando Pereira.

However, this lexicalized TSG does not generate all the trees generated by the context-
free grammar; for example the following tree (al9) cannot be generated by the above TSG:

S S S S

(~ 1 9) I I I I
a a a a

We now turn to a less formal observation. Even if some CFGs can be lexicalized by
using TSG, the choice of the lexical items that emerge as the anchor may be too restrictive,
for example, the choice may not be linguistically motivated.

Consider the following example:

Example 4

S + N P V P
V P + adv V P
V P 4 v
N P j n

The grammar can be lexicalized as follows:

S

A
NPI VP NPL VP

(a201 I (021) A
v adv VPL

A VP NP

(~ ~ 2 2)
adv VPL

(~ 2 3) 1 (~ ~ 2 4) I
v n

This tree-substitution grammar generates exactly the same set of trees as in Example 4,
however, in this lexicalization one is forced to choose adv (or n) as the anchor of a structure
rooted by S (azl) , and it cannot be avoided. This choice is not linguistically motivated.
If one tried not to have an S-type initial tree anchored by n or by adv, recursion on the
V P node would be inhibited.

For example, the grammar written below:

S

A
NPL VP VP NP

b 2 0) I (~ 2 3) 1 ((~ 2 4 > I
v

(a 2 2 1
adv VP.!. v n

does not generate the tree ~ 3 2 5 :

NPJ VP

A
adv VP

((~ 2 5 > I
v

This example shows that even when it is possible to lexicalize a CFG, substitution
(TSG) alone does not allow us to freely choose the lexical anchors. Substitution alone
forces us to make choices of anchors that might not be linguistically (syntactically or
semantically) justified. From the proof of proposition 3 we conclude that a tree based
system that can lexicalize context-free grammars must permit the distance between two
nodes in the same tree to be increased during a derivation. In the next section, we suggest
the use of an additional operation when defining a tree-based system in which one tries
to lexicalize CFGs.

4.2 Lexicalization of CFGs with TAGs

Another combining operation is needed to lexicalize finitely ambiguous CFGs. As the
previous examples suggest us, we need an operation that is capable of inserting a tree
inside another one. We suggest using adjunction as an additional combining operation.
A tree-based system that uses substitution and adjunction coincides with a tree-adjoining
grammar (TAG).

We first show that the CFGs in examples 3 and 4 for which TSG failed can be lexi-
calized within TAGs.

Example 5 Example 3 could not be lexicalized with TSG. It can be lexicalized by using
adjunction as follows: 15

The auxiliary tree P4 can now be inserted by adjunction inside the derived trees.
For example, the following derived trees can be derived by successive adjunction of P4:

n
S S

S S S
I A
a S S

A A
S S S S

I (~ 2 6) I 1 (0 2 7) 1 I (a 2 g >
a a a a a

I I I I
a a a a

Example 6 The CFG given in Example 4 can be lexicalized by using adjunction and
one can choose the anchor freely:16

NPJ VP NP ,

(~ 2 0) I ((~ 2 4)
v

I
n adv VPt

The auxiliary tree P5 can be inserted in c r 2 o at the V P node by adjunction. Using
adjunction one is thus able to choose the appropriate lexical item as anchor. The following
trees and ~ 7 3 ~) can be derived by substitution of a 2 4 into a 2 0 for the N P node and

15a is taken as the lexical anchor of both the initial tree and the auxiliary tree P4.
16We chose v as the lexical anchor of a20 but, formally, we could have chosen n instead.

by adjunction of P5 on the V P node in azo:

NP VP

NP VP
I A
n adv VP

(~ 2 9) I / (~ ~ 3 0) I
n v v

We are now ready to prove the main result: any finitely ambiguous context-free gram-
mar can be lexicalized within tree-adjoining grammars; furthermore adjunction is the only
operation needed. Substitution as an additional operation enables one to lexicalize CFGs
in a more compact way.

Proposition 4 If G = (C, NT, P, S) is a finitely ambiguous CFG which does not generate
the empty string, then there is a lexicalized tree-adjoining grammar GI,, = (C, NT, I, A, S)
generating the same language and tree set as G. Furthermore GI,, can be chosen to have
no substitution nodes in any elementary trees.

We give a constructive proof of this proposition. Given an arbitrary CFG, G, we
construct a lexicalized TAG, GI,,, that generates the same language and tree set as G.
The construction is not optimal with respect to time or the number of trees but it does
satisfy the requirements.

The idea is to separate the recursive part of the grammar G from the non-recursive
part. The non-recursive part generates a finite number of trees, and we will take those
trees as initial TAG trees. Whenever there is in G a recursion of the form BSaBP, we
will create an B-type auxiliary tree in which a and ,8 are expanded in all possible ways by
the non-recursive part of the grammar. Since the grammar is finitely ambiguous and since
X $ L(G), we are gu&ranteed that ap derives some lexical item within the non-recursive
part of the grammar. The proof follows.

Proof of Proposition 4

Let. G = (C, NT, P, S) be a finitely ambiguous context-free grammar s.t. X $ L(G).
We say that B E N T is a recursive symbol if and only if jcr, ,k? E (C U NT)* s.t. B A ~ B P .
We say that a production rule B -t 6 is recursive whenever B is recursive.

The set of production rules of G can be partitioned into two sets: the set of recursive
production rules, say R C P, and the set of non-recursive production rules, say N R C P;
R U N R = P and R n N R = 8 . In order to determine whether a production is recursive,
given G, we construct a directed graph G whose nodes are labeled by non-terminal symbols
and whose arcs are labeled by production rules. There is an arc labeled by p E P from
a node labeled by B to a node labeled by C whenever p is of the form B + aCP, where
Q , P E (C U NT)". Then, a symbol B is recursive if the node labeled by B in G belongs

to a cycle. A production is recursive if there is an arc labeled by the production which
belongs to a cycle.

Let L(NR) = {wlS$w using only production rules in NR}. L(NR) is a finite set.
Since X 4 L(G), X # L(NR). Let I be the set of all derivation trees defined by L(NR).
I is a finite set of trees; the trees in I have a t least one terminal symbol on the frontier
since the empty string is not part of the language. I will be the set of initial trees of the
lexicalized TAG GI,, .

We then form a base of minimal cycles of 6. Classical algorithms on graphs gives us
methods to find a finite set of so-called 'base-cycles' such that any cycle is a combination
of those cycles and such that they do not have any sub-cycle. Let { c l . . . c k } be a base of
cycles of 6 (each ci is a cycle of G).

We initialize the set of auxiliary trees of GI,, to the empty set, i.e. A := 0. We repeat
the following procedure for all cycles c; in the base until no more trees can be added to
A.

For all nodes ni in c;, let B, be the label of ni,
According to c; , B;acr;B;P;,
If Bi is the label of a node in a tree in I U A then

for all derivations criSwi E C*, P i s z i E C*
that use only non-recursive production rules

add to A the auxiliary tree corresponding to all derivations:
B i ~ c u ; B i ~ ; ~ w i B i z i where the node labeled B; on the frontier is the foot node.

In this procedure, we are guaranteed that the auxiliary trees have a t least one lexical
item on the frontier, because a;Pi must always derive some terminal symbol otherwise,
the derivation B ; s a i BiP; would derive a rule of the form B;$B; and the grammar would
be infinitely ambiguous.

It is clear that GI,, generates exactly the same tree set as G. Furthermore GI,, is
lexicalized.

We just showed that adjunction is sufficient to lexicalize context-free grammars. How-
ever, the use of substitution as an additional operation to adjunction enables one to
lexicalize a grammar with a more compact TAG.

5 Closure of TAGs under Lexicalization
In the previous section, we showed that context-free grammars can be lexicalized within
tree-adjoining grammars. Only adjunction is necessary but the addition of substitution
gives us the possibility to have a more compact representation of the lexicalized grammar.
We now ask ourselves if TAGs are closed under lexicalization: given a finitely ambiguous
TAG, G, (A $ L(G)), is there a lexicalized TAG, GI,,, which generates the same language
and the same tree set as G? The answer is yes. We therefore establish that TAGs are
closed under lexicalization. The following proposition holds:

Proposi t ion 5 (TAGs a r e closed unde r lexicalization)
If G is a finitely ambiguous TAG that uses substitution and adjunction as combining
operation, s.t. X # L(G), then there exists a lexicalized TAG GI,, which generates the
same language and the same tree set as G.

The proof of this proposition is similar to the proof of proposition 4 and we only give
a sketch of it. It consists of separating the recursive part of the grammar from the non-
recursive part. The recursive part of the language is represented in GI,, by auxiliary trees.
Since G is finitely ambiguous, those auxiliary trees will have at least one terminal symbol
on the frontier. The non-recursive part of the grammar is encoded as initial trees. Since
the empty string is not generated, those initial trees have at least one terminal symbol on
the frontier. In order to determine whether an elementary tree is recursive, given G, we
construct a directed graph G whose nodes are labeled by elementary trees and whose arcs
are labeled by tree addresses. There is an arc labeled by ad from a node labeled by ,b' to
a node labeled by a whenever /3 can operate (by adjunction or substitution) at address
ad in a. Then, an elementary tree b is recursive if the node labeled by 6 in G belongs to
a cycle. The construction of the lexicalized TAG is then similar to the one proposed for
proposition 4.

The elementary objects manipulated by a tree-adjoining grammar are trees, i.e., struc-
tured objects and not strings. The properties of TAGs relate directly to the strong genera-
tive capacity (structural description) which is more relevant to linguistic descriptions than
the weak generative capacity (set of strings). The tree sets of TAGs are not recognizable
sets but are equivalent to the tree sets of linear indexed languages. Hence, tree-adjoining
grammars generate some context-sensitive languages. However, tree-adj oining languages
are strictly contained in the class of indexed languages.

The lexicalization of grammar formalisms is of linguistic and formal interest. We
have taken the point of view that rules should not be separated totally from their lexical
realization. In this "lexicalized" approach, each elementary structure is systematically
associated with a lexical anchor. These structures specify extended domains of locality
(as compared to Context Free Grammars) over which constraints can be stated.

The process of lexicalization of context-free rules forces us to use operations for com-
bining structures that make the formalism fall in the class of mildly context sensitive
languages. Substitution and adjunction give us the freedom to lexicalize CFGs. Elemen-
t ary structures of extended domain of locality, when they are combined with substitution
and adjunction, yield Lexicalized TAGs. TAGs were so far introduced as an indepen-
dent formal system. We have shown that they derive from the lexicalization process of
context-free grammars. We also have shown that TAGs are closed under lexicalization.

It is still an open problem whether or not adjoining is the 'minimal' operation needed
for lexicalizing CFGs, i.e., whether there exists a tree-gluing operation say @ such that
substitution and @ can lexicalize any CFG, and such that the tree sets of the tree system
with substitution and @ are properly contained in the tree sets of TAG.

Bibliography

Anne Abeill6, Kathleen M. Bishop, Sharon Cote, and Yves Schabes. 1990. A lexicalized
tree adjoining grammar for english. Technical Report MS-CIS-90-24, Department of
Computer and Information Science, University of Pennsylvania.

Anne Abeillh. 1988. Parsing french with tree adjoining grammar: some linguistic ac-
counts. In Proceedings of the 1 2 ~ ~ International Conference on Computational Lin-
guistics (COLING'88), Budapest, August.

N. Chomsky. 198 1. Lectures on Government and Binding. Foris, Dordrecht .

G . Gazdar, E. Klein, G. K. Pullum, and I. A. Sag. 1985. Generalized Phrase Structure
Grammars. Blackwell Publishing, Oxford. Also published by Harvard University
Press, Cambridge, MA.

-- - - - - - - - - --

17There are several important papers about TAGS describing their linguistic and formal properties.
Some of these are: Joshi (1987), Joshi, Vijay-Shanker and Weir (forthcoming 1991), Vijay-Shanker (1987),
Weir (1988), Schabes (1990; 1991), Schabes and Joshi (1988; 1989), Kroch (1987), Kroch and Joshi (1985),
AbeillC, Bishop, Cote and Schabes (1990), AbeillC (1988). A reader interested in TAGs will find these
papers very useful.

Maurice Gross. 1984. Lexicon-grammar and the syntactic analysis of french. In Proceed-
ings of the loth International Conference on Computational Linguistics (COLING784),
Stanford, 2-6 July.

Aravind K. Joshi, L. S. Levy, and M. Takahashi. 1975. Tree adjunct grammars. Journal
of Computer and System Sciences, lO(1).

Aravind K. Joshi, K. Vijay-Shanker, and David Weir. forthcoming, 199 1. The convergence
of mildly context-sensitive grammatical formalisms. In Peter Sells, Stuart Shieber, and
Tom Wasow, editors, Foundational Issues in Natual Language Processing. MIT Press,
Cambridge MA.

Aravind K. Joshi. 1985. How much context-sensitivity is necessary for characterizing
structural descriptions-Tree Adjoining Grammars. In D. Dowty, L. Karttunen, and
A. Zwicky, editors, Natural Language Processing-Theoretical, Computational and
Psychological Perspectives. Cambridge University Press, New York. Originally pre-
sented in a Workshop on Natural Language Parsing at Ohio State University, Colum-
bus, Ohio, May 1983.

Aravind K. Joshi. 1987. An Introduction to Tree Adjoining Grammars. In A. Manaster-
Ramer, editor, Mathematics of Language. John Benj arnins, Amsterdam.

R. Kaplan and J. Bresnan. 1983. Lexical-functional grammar: A formal system for
grammatical representation. In J. Bresnan, editor, The Mental Representation of
Grammatical Relations. MIT Press, Cambridge MA.

Lauri Karttunen. 1986. Radical lexicalism. Technical Report CSLI-86-68, CSLI, Stanford
University. Also in Alternative Conceptions of Phrase Structure, University of Chicago
Press, Baltin, M. and Kroch A., Chicago, 1989.

Anthony Kroch and Aravind I<. Joshi. 1985. Linguistic relevance of tree adjoining gram-
mars. Technical Report MS-CIS-85-18, Department of Computer and Information
Science, University of Pennsylvania, April.

Anthony Kroch. 1987. Unbounded dependencies and subjacency in a tree adjoining
grammar. In A. Manaster-Ramer, editor, Mathematics of Language. John Benjamins,
Amsterdam.

Joachim Lambek. 1958. The mat hematics of sentence structure. American Mat hematical
Monthly, 65:154-170.

Carl Pollard and Ivan A. Sag. 1987. Information-Based Syntax and Semantics. Vol 1:
Fundamentals. CSLI.

Yves Schabes and Aravind K. Joshi. 1988. An Earley-type parsing algorithm for Tree Ad-
joining Grammars. In 26th Meeting of the Association for Computational Linguistics
(ACL '88)) Buffalo, June.

Yves Schabes and Aravind K. Joshi. 1989. The relevance of lexicalization to parsing. In
Proceedings of the International Workshop on Parsing Technologies, Pittsburgh, Au-
gust. To also appear under the title Parsing with Lexicalized Tree adjoining Grammar
in Current Issues in Parsing Technologies, MIT Press.

Yves Schabes, Anne Abeill6, and Aravind K. Joshi. 1988. Parsing strategies with 'lex-
icalized' grammars: Application to tree adjoining grammars. In Proceedings of the

International Conference on Computational Linguistics (COLING'88)) Budapest,
Hungary, August.

Yves Schabes. 1990. Mathematical and Computational Aspects of Lexicalized Grammars.
Ph.D. thesis, University of Pennsylvania, Philadelphia, PA, August. Available as
technical report (MS-CIS-90-48, LINC LAB179) from the Department of Computer
Science.

Yves Schabes. 1991. The valid prefix property and left to right parsing of tree-adjoining
grammar. In Proceedings of the second International Workshop on Parsing Technolo-
gies, Cancun, Mexico, February.

K. M. Schimpf and J. H. Gallier. 1985. Tree pushdown automata. Journal of Computer
and System Sciences, 30:25-39.

Mark Steedman. 1987. Combinatory grammars and parasitic gaps. Natural Language
and Linguistic Theoy , 5:403-439.

J. W. Thatcher. 1971. Characterizing derivations trees of context free grammars through
a generalization of finite automata theory. Journal of Computer and System Sciences,
5:365-396.

K. Vijay-Shanker. 1987. A Study of Tree Adjoining Grammars. Ph.D. thesis, Department
of Computer and Information Science, University of Pennsylvania.

David J. Weir. 1988. Characterizing Mildly Context-Sensitive Grammar Formalisms.
Ph-D. thesis, Department of Computer and Information Science, University of Penn-
sylvania.

	Tree-Adjoining Grammars and Lexicalized Grammars
	Recommended Citation

	Tree-Adjoining Grammars and Lexicalized Grammars
	Abstract
	Comments

	tmp.1187123087.pdf.I2GCF

