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Abst rac t  

We examine various computational accounts of aspects of music 
understanding. These accounts involve programs which can notate 
melodies based on pitch and duration information. It is argued that 
this task involves significant musical intelligence. In particular, it re- 
quires an understanding of basic metric and harmonic relations implicit 
in the melody. We deal only with single-voice, tonal melodies. While 
the task is a limited one, and the programs give only partial solu- 
tions to this task, we argue that this represents a first step towards a 
computational realization of significant aspects of musical intelligence. 
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1 Introduction 

Can musical understanding be achieved by a computer? To address this 
question, it is necessary to define a clear test of understanding. The test 
we use here is that of taking musical dictation: a melody is played, and 
the listener must write it down in standard musical notation. A version 
of this "dictation problem" is easily applied to a computer: the melody is 
input as a list of pitches and durations, and we define a form of output 
which is closely related to standard musical notation. We argue that such 
a test requires significant musical understanding. In particular, it requires 
an understanding of the basic metric and harmonic relations implicit in the 
melody. 

Metric relations have to do with grouping notes in time: in deciding if 
a melody is a waltz or a march, one must decide between groups of three 
and four units of time. This is an example of grouping notes into time-units 
which are called "bars". It is also necessary to make smaller groupings, that 
is, groupings within bars. For example, if one decides that each bar contains 
six notes of a given length, one must further decide whether these six notes 
are grouped in two groups of three or three groups of two. For our purposes, 
we define the metric problem as determining these metric groupings at  least 
up to the level of the bar. 

Harmonic relations also involve grouping notes: not in time, but with 
respect to  a key. A listener determines that a melody begins in a certain key, 
and hears each pitch with respect to  that key, until the key is felt t o  change. 
A given pitch is notated differently depending on the current key. So the 
harmonic problem can be described as follows: the key must be identified, 
and notes are notated according to that key. Also, the system must be alert 
for the possibility that the key will change. 

The "dictation problem" represents a very limited notion of musical in- 
telligence. Even so, the programs which attempt to  solve it are subject to  
a number of further limitations. First, they deal only with unaccompanied 
melodies. Also, they maintain an artificial separation between metric and 
harmonic information: with a few exceptions, they avoid the use of metric 
information by the harmonic conlponent, or the use of harmonic informa- 
tion by the metric component. Despite such limitations, we argue that these 
programs are a first step towards a computational realization of significant 
aspects of musical intelligence. 

In what follows, we consider the metric problem and the harmonic prob- 
lem separately. We begin ~vi th  a description of the metric hierarchy, which 



embodies some important constraints on the possible solutions to the metric 
problem. Then we look at several programs which attempt to solve various 
aspects to the metric problem. In considering the harmonic problem we 
again begin with an abstract description of the solution space, which we 
term the harmonic space. Then we look at various partial solutions to  this 
problem. Finally we draw conclusions about possibilities for integrating 
these programs and expanding upon them, and make some general remarks 
about the investigation of musical intelligence. 



2 Meter 

We examine the problem of determining the meter of a melody. First, we 
describe the metric hierarchy, which embodies some strong constraints on 
the possible solutions to the metric problem. These constraints are often 
taken for granted by musicians, but are rarely made explicit. We present 
several programs which attempt to  determine the meter based solely on the 
relative duration of notes. The first of these is only able to  move down the 
metric hierarchy, after being given the beat and measure length. The next 
program is able to  move up the metric hierarchy, and thus complements the 
approach in the first program. We look at another program which also moves 
up the metric hierarchy based on relative durations. Finally we examine an 
approach which infers metric groupings based on facts about about melodic 
repetition. 

2.1 The Metric Hierarchy 

The programs we will examine do not give output precisely in the form 
of music notation; instead, a hierarchy of metric groupings is given. This 
hierarchy can be expressed as a tree (Fig 2.i),  where at each lower level 
the grouping is in shorter time-units. Defining the meter in this way is 
not entirely equivalent to  standard musical notation for meter. Standard 
notation expresses no grouping larger than the measure, despite the fact 
that such groupings are often clearly definable. In this sense the hierarchical 
representation can contain more information. On the other hand, standard 
notation selects one level of metric grouping as the measure and another 
as the beat, while the hierarchical representation does not make any such 
distinctions among the levels. In this sense, i t  is the standard notation which 
contains more information. 

It is assumed that the ratio of the metric units at adjacent levels has 
only two and three as prime factors. This is described as a "reasonable" 
ratio for a metric grouping. In general, when a possible metric grouping is 
being considered, it will be rejected if it is not "reasonable" in relation to  
the groupings already established. This assumption seems to  be justified for 
baroque music; it may be necessary to  relax this assumption for later music 
such as Brahms, where factors such as five and seven seem to  appear in the 
metric hierarchy. 



Fig. 2.1 The Metric Hierarchy 



2.2 Relative Durations 

2.2.1 Moving Down the Metric Hierarchy 

We examine a program (LH76) that is able to infer levels of metric grouping 
below the beat level, based on relative durations of notes. The program 
requires that a bar's worth of beats be given before the melody; it is not 
able to  identify the beats from the melody itself, as a musician can. On the 
other hand, it has the ability to tolerate slight variations in the durations of 
notes, as is inevitable in human performance. 

The program begins by making the beat length the current metrical unit. 
Then, whenever the current metrical unit is interrupted by the onset of a 
note, the current metrical unit is subdivided into n units, where n is either 
2 or 3,  depending on whether the interruption was onelhalf or onelthird 
of the way through the current metrical unit. In this way we build all the 
levels of the metric hierarchy which are below the beat level. 

The system contains a constant called the "tolerance", which is the max- 
imum temporal discrepancy it will disregard. For example, a given note 
would be considered an interruption of the current metrical unit only if its 
onset differed from the expected time by an amount greater than the toler- 
ance. The tolerance is necessary because the system is dealing with "real" 
durations; the system must ignore the minor temporal discrepancies which 
are inevitable in a human performance. At the same time, the system can 
make use of such discrepancies to detect a gradual change in tempo. This 
would not be possible using "idealized" note lengths, as is done in MS73. 

2.2.2 Moving up the Metric Hierarchy: Longuet-Higgins 

Here we look at a program (LII82)  which is meant to complement the pro- 
gram described above (LH 76). That program was only able to move down 
the metric hierarchy, and needed to be given the beat and measure length. 
This program addresses the problem of how to "get started", i.e., how to 
find the beat and other higher levels in the hierarchy. After identifying a 
metric grouping from the opening notes of a melody, it attempts to move up 
the metric hierarchy, at least up to the measure level. In principle it should 
be able to handle "real" note durations, as was possible in the 76 program. 

The program begins by examining t l ,  the onset time of the first note, 
and t2, the onset time of the second note. The length 1 of note 1 is t2 - t l .  
The system predicts that the third note will occur at time t 3  = t 2  + I .  If it 
does, the metrical hypothesis is confirmed. Then the routine CONFLATE 



is called, which moves t 2  onto t 3 ,  thus doubling the current metric unit. If 
a note occurs between t 2  and t 3  which is longer than the note on t2, t2 is 
moved onto this note. This is the purpose of the STRETCH routine, which 
thus lengthens the current estimate of the beat length. 

There are cases where the first note is an upbeat, where we want to  move 
t l  to  the second note. This is the purpose of the UPDATE routine: if we are 
near the beginning of a sequence and we encounter a note which is longer 
than any of its predecessors, we move t l  to  this note. The UPDATE rule 
is, whenever the current note at t 2  is longer the note at t l ,  move tl  to  the 
current note, except if the long note at t2 is shorter than the current value 
of the beat. This allows the UPDATE rule to apply in Example A, but not 
in Example B (Fig 2.2). 

The rules of the program are admirably simple-in some ways too simple. 
The program makes very quick decisions about the phase and period of 
metric units, and there is very little provision for undoing these decisions. 

The period of the current metric unit is determined by the interaction 
between the CONFLATE and STRETCH rules. The CONFLATE rule as- 
sumes a binary grouping unless it is contradicted by the STRETCH rule. 
This causes the program to frequently mistake triplet groupings for binary 
groupings. For example, as long as notes of equal value are seen, CON- 
FLATE continually builts up metric groupings which are twice the size of 
the previous unit. This would fail with an opening triplet passage, such as 
Fugue 4, book I1 of the WTC (Fig 2.3). 

There are also important problems with determining the phase of metric 
units. Metric units a t  all levels begin at t l ,  and the only rule which can 
move t l  is the UPDATE rule. The UPDATE rule is very narrowly defined, 
however, and will in many cases fail to  move t l  when required. For example, 
in the case of initial rests, higher level metric units will almost certainly be 
out of phase, since tl  can never be moved to the left, as it should be to  
handle initial rests. For example, in Fugue 1, Book I (Fig 2.4), the program 
would place t l  under the first note, and build up metric groupings from 
there. The metric units larger than eighth notes will be out of phase. 

The program needs some ways other than UPDATE in which the phase 
of metric groupings can be changed. It is reasonable to assume that t l  marks 
the beginning of a metric group at  some level: but except in the case of an 
upbeat, the program assumes that all higher levels of metric groupings will 
also begin there. Even in the case of an upbeat, UPDATE has problems. It 
would fail t o  notice an upbeat in a case such as the Beethoven Violin Sonata 
no 1, (Fig 2.5) where the upbeat is the same length as the downbeat. In 



this case, the phase of higher level metric groupings becomes obvious by the 
second measure, but by this time it is not possible for the UPDATE rule 
to apply. Also, the UPDATE rule causes the program to often identify an 
upbeat where one is not found, such as in Fig 2.6. 

Thus this program is complementary to the work in LH76 in that it is 
able to find the beat and other higher levels in the metric hierarchy, while 
the earlier work was only able to move down the metric hierarchy after 
being given the beat. Both programs share the goal of handling "real" note 
durations, at least in principle. While the previous program used a constant 
"tolerance" to handle small variations in duration, there is no discussion of 
how such a mechanism would be incorporated into the present rules. 



Fig. 2.2 

Ex. A Ex. B 

Fig. 2.3 WTC, Fugue 4, Book I1 

Fig. 2.4 WTC, Fugue I, Book I 

Fig. 2.5 Beethoven Sonata for Violin 

Fig. 2.6 Bach Harpsichord Concerto 



2.2.3 Moving up the Metric Hierarchy: Steedman 

iQe examine another program (MS73) which attempts to move up the met- 
ric hierarchy. This program infers metric groupings by comparing relative 
durations, as did the previous program. In addition, it defines some struc- 
tured rhythmic events which it takes as evidence of metric groupings. As 
mentioned above, this program expects a melody whose notes have "ide- 
alized" durations, ie, in the exact ratios dictated by the meter. I t  has no 
"tolerance" for small variations in note-length, as had the program of LH76. 

The program works as follo~vs: the first note is taken to  define the cur- 
rent metric unit, typically at a rather low level in the metric hierarchy. 
There are several rules for enlarging this metric unit and thus moving up 
in the rhythmic hierarchy. There are no rules for moving down the metric 
hierarchy, although it  is not clear why the rules given could not serve this 
purpose as well. As in all the rhythmic algorithms we examine here, levels 
of the rhythmic hierarchy must be related by prime factors of 2 or 3, and 
no others. 

The simplest evidence for moving up the metric hierarchy is a longer 
note; if its length is a "reasonable" multiple of the current metric unit, it is 
adopted as the new metric unit. In addition to  such facts, Steedman defines 
two more structured rhythmic events which indicate a new metric grouping: 
the "dactyl" and the "isolated accent". 

The dactyl is defined as follows: "the first three notes in a sequence of 
four, such that the second and third are equal in length and shorter than 
the first or the fourth." (p 39, MS73) If a dactyl is encountered, i t  defines a 
new metric unit, given that it is a reasonable multiple of the current metric 
unit. In Fugue 2 book 1, (Fig 2.7) Notes 5-7 comprise a dactyl which lasts 
one quarter note. Since the current metric unit is an eighth note, the new 
current metric unit becomes a quarter note. 

An "isolated accent" is an isolated metrical unit which is "marked for 
accent", where "A metrical unit is marked for accent if a note or dactyl 
begins at the beginning of it and lasts throughout it" (p 43 MS73). Other- 
wise a metrical unit is "unmarked". Two marked units separated by several 
unmarked units is takcn as evidence for a metric grouping, whose length is 
the period between the two marked units. 

This allows, for example, the grouping of three eight notes in Fugue 15, 
Book I. (Fig 2.8) As with all the rules, the IAR will only establish a new 
metric grouping if it is a "reasonable7' multiple of the current metric unit. 

The rules can now be precisely stated as follows: (p 42, MS73) 



1. Dactyl Rule: If the note is the first note of a dactyl, and the total length 
of the dactyl has a "reasonable" ratio to  the current metric unit, this 
becomes the current metric unit. If the ratio is not a "reasonable" 
one, but the length of the first note minus the combined length of the 
next two does satisfy the "reasonableness" condition, then this length 
is taken to  be the new current metric unit. 

2. Dotted Note Rule: The note is followed by a single shorter note, fol- 
lowed by a longer note. take the length of the short note and subtract 
it from the first note. If this length is a "reasonable" one, it becomes 
the new current metric unit. 

3. Long Note Rule: If the note length itself has a "reasonable" ratio to  
the current metric unit, i t  becomes the new cmu. 

4. Isolated Accent Rule: If the note is marked for accent, or begins a 
dactyl which is marked for accent, and it is followed by several un- 
marked notes followed by another note/dactyl which is marked for 
accent, the period from the current note to  the next marked note de- 
fines a metric grouping, if it is a reasonable multiple of the current 
metric unit. 

5. If none of these rules apply, the current metric unit is retained. 

Rules 2 and 3 are similar to the rules of the Longuet-Higgins algorithm 
considered above (LH82): they allow a step up in the metric hierarchy based 
on extremely simple facts about relative durations. As in the previous al- 
gorithm, the rules seem too quick to  decide that a new metric grouping has 
been found. By rule 3, whenever we encounter a note which is twice the 
current metric unit, we define a new metric unit of that length. Although 
Rules 1 and 2 are meant to apply before Rule 3, this still causes the program 
to make simple mistakes in moving up in the metric hierarchy. For example, 
in the Minuet from Eine Kleine Nachtmusik (Fig 2.9), when the half note 
is encountered, Rule 3 is applied, causing the program to incorrectly infer a 
binary grouping of quarter notes. 

The dactyl and isolated accent rules are different in that they define more 
complicated rhythmic structures which are taken to be evidence of metric 
groupings. The dactyl rule allows the program to make some musically 
plausible inferences of metric groupings, such as in the Bach Fugue Book 1 
no 2 (Fig 2.7). However, it is not clear why the dactyl should be so narrowly 
defined. Why, for example, must it be four notes? A grouping of three or 



five notes, where the first and last are long, and the intervening notes of 
short, equal values, would seem equally plausible candidates for establishing 
metric groupings. The isolated accent rule seems open to  the same type of 
questions that we raise below with respect to  melodic repetition: while such 
events clearly seem to be evidence of salient musical groupings, it is not 
always clear that such groupings should be identified with metric groupings. 
In particular, the phase of such groupings might differ from that of the 
metric groupings. 

In the next section we look at a program which infers metric groupings 
based on melodic repetition. Like the dactyl and isolated accent rules de- 
scribed above, this is a structured event which is taken as evidence for metric 
groupings. It is the first method we have seen which introduces information 
other than relative durations. 



Fig. 2.7 WTC, F'ugue 2, Book I 

Fig. 2.8 WTC, F'ugue 15, Book I 

Fig. 2.9 Menuet, Eine Kleine Nactmusik 



2.3 Melodic Repetition 

Steedman (MS73, MS77) argues that information about the meter can be 
inferred from the repetition of a figure: a new level of metric group can be 
obtained as the duration between the start of a figure and its repetition. 
The repetition of a figure is defined in terms of the durations and melodic 
intervals between notes. For example in Fugue 4 book I1 (Fig 2.3)) the 
first three notes are a figure that is repeated by notes 4-6. This repetition 
indicates a grouping of three notes. Notes 13-15 repeat the figure as well. 
This indicates in turn a higher level of grouping, of groups of four triplets. 
A simple repetition of a figure is defined as follows (MS77, p 560): 

A pair of sequences of three or more successive notes of a 
melody constitutes a simple repetition if all the notes before the 
last one are equal in duration, and if the corresponding intervals 
between the notes in the two sequences involve the same number 
of steps in the scale identified by the key signature, in the same 
direction. 

An interval between two notes is defined as the number of scale steps 
between them. Thus intervals can only be determined once the key is known. 
The metric grouping to  be inferred from a repetition is one which begins on 
the first note of the figure and lasts until the first note of the repeat. This 
grouping is accepted subject to the usual restrictions imposed by the metric 
hierarcl~y, i.e., the grouping must begin where the current metric group 
begins, and it  must be a reasonable multiple of the current metric group. 
One other important restriction is that a repetition must be taken to  involve 
the earliest possible figure: otherwise, in Fugue 4 book I1 (Fig 2.3), notes 
13-15 might be taken as a repetition of notes 4-6, giving an absurd metric 
grouping. 

The notion of "variant" repetition is introduced to  account for repetitions 
that otherwise might give a grouping whose phase is incorrect. For example, 
in Fugue 20, book I (fig 2.10)) if one infers a metric unit based on the simple 
repetition as defined above, the metric unit inferred would be from note 3 to  
note 8, which is incorrect. What is needed is a way of counting the figure as 
beginning at the beginning of the piece, and the repetition beginning with 
note 5. This is achieved by defining a notion of aKvariant" repetition (p 
563): 

Two sequences of notes in a melody constitute a variant rep- 
etition if the corresponding notes (except possibly the last) are 



equal in duration, and the corresponding intervals are the same 
in direction, and the sequences end with a simple repetition. 

The notion of variant repetition allows the program to move the met- 
ric grouping to  the left, when the grouping might otherwise have incorrect 
phase. A variant repetition can be divided into two parts. The second part 
must be a simple repetition. The first part must match the first part of the 
figure, but the standard for matching is less strict. Intervals whose direc- 
tions are the same but whose size are different are allowed to  match, and 
intervals involving rests match any interval. 

Scales and alternations must be dealt with as special cases. A scale 
would contain repetitions of many periods, so inferences based on a scale 
must be restricted as follows: any repetition which begins in the middle of 
a scale is ignored, unless the repetition continues after the scale passage. 
Alternations also must be dealt with in a special way. An alternation is a 
sequence where every other note is the same. There must be at least three 
successive occurrences of the repeating separated by notes all of which are 
either higher, or lower in pitch. Fugue 15, book I1 contains an alternation 
sequence (Fig 2.11), while Fugue 18 book I1 (Fig 2.12) does not. Although 
the underlined section includes three successive A's, the intervening notes are 
not all either above or below, as required. Alternation sequences are taken 
to  indicate a binary grouping of notes, with the repeated note unaccented. 

Some notion of figure and repetition is doubtless an essential part of 
an account of musical intelligence, and the current program represents an 
important attempt to incorporate such a notion. Indeed, this notion should 
be expanded in various ways. The criteria of what counts as repetition ought 
to  be relaxed a bit. For example, in Fig 2.13 the repetition of the notes 1-5 
and notes 6-10 is ruled out, since the first interval is a 4th in the figure, and 
a 3rd in the repetition. Also, while there is a very constrained notion of 
"variant" repetition, we need a broader notion of repetitions which resemble 
the figure in a salient way. For example, there is no concept of a question 
and answer, although this identifies groupings just as repetition does. 

While it is definitely worthwhile to incorporate figure and repetition in an 
account of musical intelligence, the inference of metric grouping on this basis 
is somewhat problematic. Melodic repetition does seem to imply a grouping 
of some sort, but it is not always clear that a metric grouping is implied. 
They are groupings which are related to metric groupings but should not 
necessarily be identified with them. (See LerdahlSJackendoff, p 27) The 
relationship of these groupings to metric units needs further investigation. 



It may be that the period of groupings generally coincides with that of metric 
groupings, while the phase does not. 



Fig. 2.10 WTC, Fugue 20, Book I 

Fig. 2.11 WTC, Fugue 15, Book I1 

Fig. 2.12 W T C ,  Fugue 18, Book I1 

Fig. 2.13 Beethoven Sonata op 2 no 2 Scherzo 



2.4 Idealized vs. Real Duratio~is 

As mentioned above, the Steedman programs expect "idealized" durations, 
so that only ratios which are exactly divisible by 2 or 3 will allow the infer- 
ence of metric groupings. In real human performance such an expectation 
will rarely be satisfied. This is why Longuet-Higgins introduces the notion of 
a "tolerance", which allows the system to ignore discrepancies smaller than 
a certain value. Also, this malies it possible to  detect a change in tempo 
based on such minor discrepancies, without problems arising with the metric 
groupings. 

While the Steedman programs lack these virtues, it seems that the dura- 
tions could be "normalized" in some fashion prior to the application of the 
current rules of the program: for example, all durations could be rounded 
to  the nearest small ratio with respect to  the first note, such that the ratio 
is divisible by 2 or 3. 

It seems reasonable to abstract away from such issues in attempting to  
frame principles that are musically and cognitively interesting. Such ideal- 
ization is common in other areas of AI, such as computational linguistics, 
where the input to syntactic and semantic rules is idealized in several ways. 
Indeed, we suspect that it is impossible to arrive at a viable theory of musical 
understanding unless one can abstract away from such low level issues. 



3 Harmony 

The harmonic problem is to determine the note names for a melody. To do 
this, i t  is necessary to determine the key of the melody, since a given tone 
is notated differently depending on the key. For example, in the key of F 
major, a certain tone would be notated Bb, while in I?# major that same tone 
would be An. We begin with an abstract description of the harmonic space, 
formalizing the notion of a key and other important concepts. Next, we 
look at a very simple proposal for determining the key: the tonic- dominant 
rule. Then we look at an alternative to  this simple rule. This alternative 
defines a syntax of melody, and determines the key based on the harmonic 
implications of the syntactic constituents. Finally we look at the problem 
of detecting a change in key. 

3.1 The Harmonic Space 

Longuet-Higgins (LH62a, LH62b) has given a formal theory of the harmonic 
space which serves as a basis for the harmonic algorithms we examine. A 
musical interval can be thought of as a ratio between two frequencies. An 
octave, for example, has a ratio of 211. A perfect fifth has the ratio of 
3/2, and a major third has the ratio of 514. However, not all frequency 
ratios define musical intervals. For example, the ratio 711 is not one that 
appears in Firestern music. Indeed, the only frequency ratios which appear 
in iVestern music are those which are expressible as the product of the three 
prime factors 2,3, and 5. In other words, all musical intervals can be thought 
of as being composed of octaves, fifths, and major thirds. 

To reflect this, Longuet-Higgins pictures the harmonic space as a three- 
dimensional array, where the x axis denotes intervals of perfect fifths, the 
y axis, major thirds, and the z axis, octaves. A note at point (x,y,z) is a 
distance of x fifths, y major thirds, and z octaves from the origin, which is 
arbitrarily defined as middle C. This harmonic space is pictured in Fig 3.1, 
with the z dimension left out. The box corresponds to  the extended key of C ;  
any other extended key can be similarly determined by drawing such a box 
with the key note occupying the position of C in the diagram. The extended 
key determines the correct note-name for any keyboard position. Thus if 
the key is known, the notation for any keyboard position can be found in 
the harmonic space. The key frame is the seven notes within the extended 
key which make up the scale of that key. The other five notes within the 
frame we term acciclentals. 
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Fig. 3.1 The Harmonic Space 

By defining the harmonic space in this way, we are able to give precise 
definitions for some import ant musical concepts. First we can precisely 
quantify the remoteness of an interval. To do so, we define the sharpness of 
a note as the quantity q = x + 4 y ,  where x,y are coordinates in the harmonic 
space. The remoteness of an interval then is defined as the difference in 
sharpness of the two notes of the interval. A further distinction needed 
is the traditional distinction between chromatic and diatonic intervals. We 
define diatonic intervals as those with remoteness less than 6, and chromatic 
intervals as those with remoteness greater than 6. 

3.2 The Tonic-Dominant Rule 

Longuet-Higgins (LH71,76) offers a simple solution to the problem of de- 
termining the initial key: it is based on the assumption that a melody will 
begin on either the tonic or the dominant, most likely the tonic. The rule 
is that one begins by assuming that the first note is the tonic. If the second 
note is to  the right of the first or directly over it (in the harmonic space), 



the hypothesis is supported, otherwise, the first note is taken to  be the dom- 
inant. This rule holds quite well for most Bach fugue subjects. However, 
there are many unremarkable melodies which start on a note other than the 
tonic or dominant, such as "I Dream of Jeannie with the Light Brown Hair" 
(Fig 3.2). Furthermore, even if the first note is either the tonic or dominant, 
the second note does not always allow one to determine which it is. 

3.3 An Alternative to tlie Tonic-Dominant Rule 

Because of the obvious inadequacy of the tonic-dominant rule, Steedman 
(MS73) proposes an alternative approach to  key determination. The ap- 
proach begins by allowing many different key hypotheses, and then succes- 
sively rules out hypotheses that conflict with the harmonic implications of 
the melody. These implications are defined, not in terms of individual notes, 
but in terms of "syntactic constituents" of the melody. These constituents 
in turn are defined based on individual notes as notated according to  a given 
key hypotheses. Thus the overall structure of the algorithm is as follows: 

I n i t i a l i z e  l i s t  of key hypotheses 
For each note i n  melody 

For each key hypothesis 
no ta t e  current  note  
determine syn tac t i c  cons t i tuent  
i den t i fy  harmonic implicat ions,  i f  any 

el iminate  any hypotheses t h a t  c o n f l i c t  with implicat ions 

The criteria for eliminating a key hypothesis are quite strict, so we find 
that nearly all key hypotheses are generally eliminated after the first few 
notes. When only one hypothesis remains, it is taken to  be the key of the 
melody. In what follows we explain this algorithm in detail. First, we de- 
scribe how a melody is notated according to  a given key hypothesis. Next, we 
define the syntactic constituents and give the harmonic implications which 
are defined in terms of these constituents. Finally, we give the criteria for 
eliminating a given key hypothesis. 

3.4 Notating the Melody 

Since we are merely notating based on a given key hypothesis, the rules 
are rather simple. Whenever the notes fall within the scale of the key, the 
notation is obvious. We require special rules for accidentals and for semitone 



sequences. Often accidentals serve to signal a modulation, and in such cases 
these rules will fail, since the rules ignore the possibility of modulation. 

The first rule is: if a note can be notated within the frame of the seven 
scale degrees, that is the notation adopted. (Note: for minor scales, we 
follow the melodic convention, ie, in ascending and descending minor scales 
we use the major sixth and minor seventh). 

We define a special rule to  handle sequences of semitones: 
Semitone rule: Every note in a chromatic scale, except the first and last, 

must be involved in at least one diatonic semitone. 
Finally, accidentals which are not part of semitone sequences are dealt 

with in the following rule. 
Rule for accidentals: place it as close as possible to the previous note. 

The definition of closeness is that given above in the section on the har- 
monic space: it is the difference in sharpness of two notes. Except for one 
interval, a closest interpretation can always be found for an interval. There 
is one interval for which this rule does not give a unique answer: that of 6 
semitones. It could be either the augmented fourth or the diminished fifth. 
Steedman gives no method for making a choice in this case. 

The notation algorithm as a whole is as follows: 

1. If interval is a semitone, notate according to semitone rule. 

2. Otherwise, if interval is non-accidental, notate according to key frame. 

3. Else (interval is accidental), choose interpretation closest to  predeces- 
sor. 



Fig. 3.2 I Dream of Jeannie 

Fig. 3.3 WTC, Fugue 7, Book I 



3.5 Defining a Syntax of Melody 

Harmonic understanding, like rhythmic understanding, requires grouping 
notes into larger units. We describe a "syntax of melody" which defines 
musically salient constituents, such as turns, inflections, and runs. This 
allows the system to recognize to  some intuitively obvious musical facts, 
that i t  otherwise would miss. For example, the subject of the Eb major 
fugue (Fig 3.3) opens with the Eb major triad; this is clearer if one thinks 
of the G-F-G as an "inflection" of the G. 

Constituents are defined in terms of intervals, which can be determined 
based on the notation of the melody according to  a given key hypothesis. 
There are two categories of constituents. The first, which concerns single 
notes or elaborations of a single note, we term points. The second concerns 
movements between points; these are called transitions. 

Of points we define four kinds: 

1. Note: a single note. 

2. Repetition: a note that is repeated one or more times. 

3. Inflection: a sequence of three intervals such that the first is an de- 
scending second, the second is an ascending second, and both have the 
same duration. 

4. Turn: A sequence of four intervals such that the first two are descend- 
ing seconds, the third is an ascending second, and all three have the 
same duration. 

There are two kinds of transitions: 

1. Run: a sequence of 2 or more seconds, all in the same direction 

2. Jump: any transition which is not involved in a run. 

There is some possible overlap among the definitions of run, turn and 
inflection. The run always takes precedence over the turn,i.e., a turn will 
not be found if part of it can be considered part of a run. In all cases except 
one, the run also takes precedence over the inflection. The exception, for a 
case like no 4 book 11, (Fig 2.3) states that if an inflection is succeeded but 
not preceded by an ascending second, it is not to  be considered a run but as 
an inflection. Finally, if there is ambiguity between a turn and an inflection, 
a turn is found. 



We define rules for determination of harmonic implication in terms of the 
syntactic constituents defined above. In particular, we look at the intervals 
of melodic transitions, that is, jumps and runs. The harmony is defined by 
its triad, which is made up of thirds and a perfect 5th. Thus the first rule 
is that 

"the thirds and the perfect fifth, (and their inversions), imply 
the two triads apiece which they take part in." (p 173, MS73) 

This leaves seconds and sevenths, which are not in the triad. They are 
interpreted as implying thirds or fifths, which in turn imply triads. These im- 
plication of seconds and sevenths are found by examining their path through 
the harmonic space. For example the major second is two steps to the right 
in the harmonic space; it is taken to  imply one step to the right: the perfect 
fifth. Thus the major second implies the triads the perfect fifth implies: the 
major and minor triads. Similarly, the dominant seventh, which is two steps 
t o  the left, implies the perfect fourth, one step to the left. 

The minor second, two steps left and one step up, implies the perfect 
fourth, one step to  the left. Its inverse, the minor seventh, implies a perfect 
fifth leading to the second note. The minor seventh can also imply two other 
intervals: the perfect fifth from the first note, and the perfect fifth from the 
note a third below the first note. The semitone is even more ambiguous; 
its implications can be similarly determined from the path in the harmonic 
space. Often the implied interval will have a different end- point than the 
actual interval. Such an implied end-point of a transition is called a virtual 
note: in this case the next transition is taken as beginning on the virtual 
end-point of its predecessor. 

Harmonic implications are in general defined in terms of transitions. 
Apart fro111 one exception, no "internal" implications are considered, i.e., the 
implications of the notes making up a point or transition are not considered. 
The exception is that we consider the harmonic implications of the first 
interval of a run. The motivation this is to  handle examples such as Fugue 
1, book 1 (Fig 2.4) If one merely took the implication of the run as a whole, 
the perfect 4th C - F would only allow the two triads containing F and C, 
ruling out the correct key. The first interval C - D implies the key of C 
major, allowing it to eventually be selected. It  isn't clear that the first few 
notes of the C major subject should lead to an irrevocable conclusion that 
the key is C major. The same rule xvould cause an example such as Fig 3.4 



to  be incorrectly labeled as G major. This exception for the first interval 
of a run seems rather ad hoc. In principle it would seem that all internal 
in~plications should be considered, granting them perhaps less weight than 
"external" implications. 

We have seen how a transition can be seen as implying a given triad. 
A transition which implies the triad of a given key is said to be congruent 
to  that key. The notion of congruence to  a key is an essential one for key 
determination. 

3.7 Key Determination 

We present the key determination algorithm(p 214, MS73): 

1. Introduce all key hypotheses for which the 1st note is non-accidental. 

2. For each transition, eliminate any hypotheses for which that transition 
is non-congruent. A transition is congruent to a key iff it implies the 
triad of that key. 

3. If all hypotheses are non-congruent, retain those for which the current 
transition is non-accidental. 

4. If the current transition is accidental for all hypotheses, retain them 
all. 

Thus the current key hypotheses are examined with respect to  the cur- 
rent transition based on two criteria: whether the interval is accidental and 
whether the interval is congruent. If no hypothesis matches the stricter test 
of congruence, then the weaker test of looking for accidentals is used. Nor- 
mally, the first interval will rule out all but a very small number of key 
hypotheses. 

This algorithm gives a much more sophisticated approach to key deter- 
mination than the approach based on the tonic-dominant rule. Rather than 
considering just two key hypotheses, it gives consideration to many possible 
keys until it finds evidence to rule them out, based on the harmonic impli- 
cations of the melody. These inlplications are defined in terms of syntactic 
melodic constituents. The notion of syntactic constituents, in addition to  
improving the performance of the present algorithm, is suggestive of ways 
in which the current approach could be extended to  model some aspects of 
higher-level musical understanding. 



Fig. 3.4 

Fig. 3.5 Paganini Violin Concerto in D 

Fig. 3.6 WTC Fugue 5, Book I1 

Fig. 3.7 WTC Fugue 23, Book I1 



3.8 Probleins with the  Key Determination Algorithm 

Despite such virtues, this approach has some serious shortcomings. We men- 
tion first a rather minor problem relating t o  the initial list of key hypotheses. 
Then we discuss the more fundamental problem that the algorithm lacks any 
notion of harmonic context or progression. 

The first rule eliminates any key for which the first note is accidental. 
This loses the benefit of having defined syntactic constituents, and will cause 
an error when the first note is part of a "point" such that, by itself, the first 
note is accidental to  the key, while the point is non-accidental. For example, 
a melody which begins with a turn might easily begin with a note which 
is accidental. (See Fig 3.5.) This problem would be rectified if one merely 
began with all possible key hypotheses. 

Steedman mentions two examples which illustrate a basic problem with 
this algorithm: it lacks any notion of harmonic context or progression. It 
always assumes that the first triad established is that of the tonic. Also, 
if a note can be interpreted in the current harmony then it must be. Thus 
in Fig 3.6 the first triad established is the subdominant, but the algorithm 
mistakenly interprets it as the tonic. This despite the fact that in the context 
of the two measures, the harmony is clearly IV-V-I. Similarly in Fig 3.7 the 
algorithm mistaltenly finds the key to  be G # minor, because the first three 
notes are that triad. Again, from the context, the key of B major is obvious. 
What is required is some notion of harmonic progressions such as IV-V-I, 
and some notion of harmonic context. 

3.9 Detecting a Change in Key 

Steedman's syntax-based approach ignores the issue of detecting a change 
in key. It merely assumes that the first tonality detected is the key of the 
melody, and notates the entire melody according to this. Longuet-Higgins 
gives some simple rules for this problem. 

The assumption is that, if the present key "requires the notes to jump 
about too violently in harmonic space ..." the system L'selects a new ltey in 
which the offending intervals give place to less remote ones". (LII79, p 319) 
We give the following rules about a possible change in key: 

1. If L,M, and N are three successive notes, and intervals LM and MN 
are both chromatic, then 14 is assigned a new interpretation M' which 
makes both intervals diatonic, and the key changes so as to take in M'. 



2. If I(,L,M, and N are four successive notes, and the three intervals 
LM,I<M and LN are all chromatic, the M is again reinterpreted, and 
the key is changed accordingly. 

3. If N is a note a the major key and MN is a rising chromatic semitone, 
then M is reinterpreted so as to  make M'N a diatonic semitone, but 
no change of key is precipitated. 

Longuet-Higgins does not give a precise method for determining the new 
interpretation for a given note; nor does he describe how to select the new 
key to accommodate the reinterpreted note. Presumably one could identify, 
in each case, the choice which is nearest in the harmonic space. 

4 Conclusions 

4.1 Illtegratiilg the Programs 

The programs we have presented could be integrated, removing some rather 
artificial boundaries between different parts of the dictation problem. For 
esan~ple, we have generally maintained a strict separation between the met- 
ric and harmonic components of the dictation problem. Each component 
would be improved if it had access to information from the other. We have 
seen only one example of this: the inference of metric groupings based on 
melodic repetition (MS73). Harmonic information could be used much more 
estensively as evidence for metric groupings. In general, "stronger" beats 
tend to  coincide with more harinonic stability, where stability is defined in 
terms of proximity to the tonic. This correspondence could be reflected by 
rules in various ways. One simple example involves finding upbeats, which 
is necessary for determining the phase of metric groupings. An upbeat is 
rarely more stable harmonically than the downbeat. So a metric algorithm 
could require that i t  mould only find an upbeat if it is less stable harmonically 
than the downbeat. Metric information could be used by the harmonic com- 
ponents in similar mays, by looking for a correspondence between stronger 
beats and more harmonic stability. 

Another boundary involves moving up and down the metric hierarchy. 
We have only seen programs that can do one or the other. What is needed 
is a program that does both. Many of the rules which were described in the 
context of finding a larger ~netric grouping could be applied equally well to  
finding lower level groupings. 



4.2 Extending the Prograins 

Various mays of extending these programs suggest themselves. One impor- 
tant may, which has been suggested by Steedman (MS73), involves expand- 
ing the harmonic context of key determination. Steedman's key determina- 
tion program really just finds the first chord that is implied. The next step 
is to define a contest such as a phrase, and describe the chord sequences 
that can make up a phrase. Once the phrase level is defined, it would be 
possible to look at higher levels of harmonic organzation, wlzich might look 
very much like the phrase level. Thus the extremely local harmonic key- 
determination of MS73 could be retained as the lowest level in an expanded 
harmonic program. Phrase structure rules for chord sequences have been 
used by Steedman (MS84) for jazz sequences. Also, Winograd ((38) and 
Lerhdahl and Jackendoff have suggested similar approaches. 

It may also be possible to  expand on the metric programs we have seen. 
None define methods for detecting a change in meter. Also, none of the 
programs give a method for determining which level of the metric hierar- 
chy is the beat, and which is the measure. It can be argued that this is 
arbitrary. However, it appears that the metric hierarchy does not extend 
indefinitely upward. LH82 conjectured that one can only go a level or two 
above the measure level. Beyond that, metric groupings seems to become 
rather different, if they can indeed be called metric groupings at all. If this 
is true, it appears one does need to make some distinctions in levels in the 
metric hierarchy, a t  least t o  find the upper limit. Perhaps this upper limit 
also gives a basis for finding the measure and beat levels. 

4.3 Iilvestigatiilg Musical Intelligence 

The dictation problem has been useful for our purposes because it is testable, 
and because i t  requires building some of the basic structure required for mu- 
sic understanding. Although only the trained musician can actually perform 
such a task, it seems reasonable to assume that the inference of basic facts 
about key and meter underly a more universal musical understanding. Still, 
if the ultimate goal is a computational model of musical intelligence, it will 
be necessary to move on to  other tasks. 

The ability to  notate a heard melody is at best a side-effect of musical 
understanding; one can certainly understand music without being able to  
perform this task. Nor is the ability to perform this task a sure sign of 
musical understanding. One could imagine a computer that could solve the 



"dictation problem" but that didn't really understand much about music. 
What is needed is a test which more directly reflects musical understanding. 
Such a test might be to recognize various structural facts about a piece: 
finding phrases, or recognizing a sonata form and its structural elements, 
for example. Another possibility might be recognizing relations between a 
theme and variations on that theme; the work cited above (MS73,MS77) on 
melodic repetition took some initial steps in that direction. Further progress 
towards a computational account of music understanding will require devis- 
ing tests such as these. 
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