
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

May 1992

Randomized Routing and Sorting on the Reconfigurable Mesh Randomized Routing and Sorting on the Reconfigurable Mesh

Sanguthevar Rajasekaran
University of Pennsylvania

Theodore McKendall
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Sanguthevar Rajasekaran and Theodore McKendall, "Randomized Routing and Sorting on the
Reconfigurable Mesh", . May 1992.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-92-36.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/408
For more information, please contact repository@pobox.upenn.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76362889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F408&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/408
mailto:repository@pobox.upenn.edu

Randomized Routing and Sorting on the Reconfigurable Mesh Randomized Routing and Sorting on the Reconfigurable Mesh

Abstract Abstract
In this paper we demonstrate the power of reconfiguration by presenting efficient randomized algorithms
for both packet routing and sorting on a reconfigurable mesh connected computer (referred to simply as
the mesh from hereon). The run times of these algorithms are better than the best achievable time
bounds on a conventional mesh.

In particular, we show that permutation routing problem can be solved on a linear array of size n in 3/4n
steps, whereas n-1 is the best possible run time without reconfiguration. We also show that permutation
routing on an n x n reconfigurable mesh can be done in time n + o(n)using a randomized algorithm or in
time 1.25n + o(n) deterministically. In contrast, 2n-2 is the diameter of a conventional mesh and hence
routing and sorting will need at least 2n-2 steps on a conventional mesh. In addition we show that the
problem of sorting can be solved in time n+ o(n). All these time bounds hold with high probability. The
bisection lower bound for both sorting and routing on the mesh is n/2, and hence our algorithms have
nearly optimal time bounds.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-92-36.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/408

https://repository.upenn.edu/cis_reports/408

Randomized Routing and Sorting
On The Reconfigurable Mesh

MS-CIS-92-36
GRASP LAB 314

Sanguthevar Rajasekaran
Theordore McKendall

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

May 1992

Permutation Routing and Sorting
on the Reconfigurable Mesh

Sanguthevar Rajasekaran
Theodore McKendall

Department of Computer and Informat ion Science

Univ. of Pennsylvania, Philadelphia, PA 19104.

Abstract In this paper we demonstrate the power of reconfiguration by pre-

senting efficient randomized algorithms for both packet routing and sorting on

a reconfigurable mesh connected computer (referred to simply as the mesh from
hereon). The run times of these algorithms are better than the best achievable

time bounds on a conventional mesh.

In particular, we show that permutation routing problem can be solved on a
linear array of size n in Qn steps, whereas n - 1 is the best possible run time

without reconfiguration. We also show that permutation routing on an n x n

reconfigurable mesh can be done in time n + o(n) using a randomized algorithm

or in time 1.25n + o(n) deterministically. In contrast, 2n - 2 is the diameter

of a conventional mesh and hence routing and sorting will need at least 2n - 2
steps on a conventional mesh. In addition we show that the problem of sorting

can be solved in randomized time n + o(n). The time bounds of our randomized

algorithms hold with high probability. The bisection lower bound for both sorting

and routing on the mesh is 5, and hence our algorithms have nearly optimal time

bounds.

1 Introduction

A number of optimal algorithms have been proposed in the recent past for various compu-
tational problems on the reconfigurable mesh [I , 9, 10, 18, 19, 111. In particular, constant
time algorithms have been given for routing and sorting [I, 19, 111. Even in the most pow-
erful CRCW PRAM, we know that sorting takes C2(lo2~,) time given only a polynomial

number of processors. Thus the reconfigurable network seems to a be an attractive model

of computing.
Past works on routing and sorting have concentrated on the case when the number of

packets (or keys) is much smaller than the number of processors. Wang, Chen, and Lin [19]
have presented an O(1) time sorting algorithm that makes use of n3 processors where n is
the number of keys. For the same time bound, the processor bound has been reduced to n2

by [I , 111. The later algorithm is the best possible under some weak assumptions.

An interesting question is if it helps to have the feature of reconfiguration for problems
where the number of processors is the same as the number of packets (or keys). In this
paper we answer this question in the affirmative. In particular, we show that permutation
routing can be completed in i n routing steps on an n-node linear array. We also establish

that both routing and sorting of n2 keys can be performed in n + o(n) + O(:) steps on an

n x n reconfigurable mesh, the queue size being O(q), with very high probability. Thus this

time bound will be n + o(n) for instance if we pick q = logn. In addition, we show how

to perform routing deterministically in time 1.25n + o(n) + O($), corresponding to a queue

size of O(q). We also point out that is the bisection lower bound for routing and sorting.

Therefore our algorithms are nearly optimal. In contrast, one needs at least 2n - 2 steps for

both routing and sorting on the conventional mesh since 2n - 2 is the diameter.
Optimal algorithms have been discovered for packet routing and sorting on the conven-

tional mesh. For instance Kunde's algorithm [5] for sorting takes 2.5n + o(n) steps, and

Kaklamanis & Krizanc's algorithm [2] for sorting is randomized and runs in 2n + o(n) steps.

Several optimal packet routing algorithms also exist in the literature [16, 8, 5, 131.

2 Some Preliminaries

2.1 Problem Statement

Packet routing is an important problem in parallel computing because efficient algorithms

for packet routing ensure fast inter-processor communication. They also lead to efficient
emulation of ideal models like PRAMS on fixed connection machines. A single step of inter-

processor communication in a fixed connection network can be thought of as the following

task (also called packet routing): each node in the network has a packet of information that
has to be sent to some other node. The task is to send all the packets to their correct desti-
nations as quickly as possible such that at the most one packet passes over any connection
at any time.

A special case of the routing problem is called the partial permutation routing. In partial

permutation routing, each node is the origin of at the most one packet and each node is the
destination of no more than one packet. A packet routing algorithm is judged by its run

time, i.e., the time taken by the last packet to reach its destination, and its queue length,

which is defined as the maximum number of packets any node will have to store during
routing.

2.2 Model Definition

In this paper we are concerned with packet routing and sorting algorithms for mesh connected
computers, which are becoming increasingly popular owing to their special properties. A
mesh is an n x n square grid with a processing element at each grid point. Every processor
is connected to all its (four or less) neighbors via bidirectional connections. We assume the
MIMD model where each processor can communicate with all its neighbors in one unit of
time. This model has been widely used in current research.

In addition, the processors are connected to a reconfigurable broadcast bus. At any given

time, the broadcast bus can be partitioned into subbuses. Each subbus connects a collection

of successive processors. One of the processors in this collection can choose to broadcast a
message which is assumed to be readable in one unit of time by all the other processors in
this collection. For instance, in an n x n mesh, the different columns (or different rows) can

form subbuses. Even within a column (or row) there could be many subbuses, and so on.
It is up to the algorithm designer to decide what configuration of the bus should be used
at each time unit. To be consistent with the MIMD model, we assume that each processor

has two switches (as shown in Figure l), one for connecting the column bus and the other

for connecting the row bus. This implies for example that in one time unit independent

broadcasting can be done along the rows as well as the columns.

2.3 Chernoff Bounds

Let X = B(n,p) stand for the number of heads in n independent flips of a coin, the proba-

bility of a head in a single flip being p. The following three facts (known as Chernoff bounds)

are now folklore:

Prob.[X > (1 + c)np] < exp(-c2np/2), and

Prob.[X 5 (1 - c)np] < exp(-c2np/3).

Figure 1: Independent Row and Column Switches

By high probability, we mean a probability of > (1 - n-") for any constant a > 1.

2.4 Organization of this Paper

The rest of this paper is organized as follows. In section 3 we show that permutation routing

on a linear array can be accomplished within Qn steps on the reconfigurable model. We

know that on the conventional linear array permutation routing needs at least n - 1 steps

in the worst case. In section 3 we also identify a generic routing problem on a linear array

and provide a solution, which will prove helpful in analyzing the mesh routing algorithms.

In sections 4 and 5 we present our routing and sorting algorithms respectively. In section 6
we provide some concluding remarks.

3 Linear Array Routing

3.1 A (3/4)n Step Routing Algorithm

In this section we will describe a an time algorithm for performing permutation routing on

a linear array of n processors. Let each processor have zero or one packets of information it

wishes to send to another processor in the array. Also let each processor be the destination

of zero or one such packets. The goal is to send each packet to its destination within :n

time steps.

Partition the array into four equal sized regions A, B, C, and D, where region A is the

collection of the first processors, region B is the next % processors, and so on (see Figure

2).

Figure 2: The Four Regions of a Linear Array

Also, let AB denote the set of packets originating from region A with a destination in
region B, Ac the set originating from A and destined for C, and so forth. We then have the
following relations:

etc., and

et c.
Finally, let processors (n/2 - 1) and (n/2) each have three incremental counters bl, b2, b3

and cl, c2, c3 respectively, all of which are initially set to zero.

The algorithm proceeds in three phases. Phase I involves normal routing, and phases I1

and I11 involve broadcasting using the reconfigurable properties of the array. The following

description gives the algorithm for all packets destined for processors in regions A and B,
the other two regions being similar.
Phase I Normal routing occurs for n/2 time steps. During this phase, the processors use

their standard neighbor connections to send packets towards their destinations.
When processor (n/2 - 1) receives a packet it does the following:

If the packet is a CA packet, increment bl and attach bl onto the packet;

If the packet is a DB packet, increment b2 and attach b2 onto the packet;

If the packet is a DA packet, increment b3 and attach b3 onto the packet;

In any case forward the packet (if needed).

At the end of this phase, any packet which originated from region A or B with a desti-

nation in region A or B will have reached it. In addition, any packet originating from region
C with a destination in B will have reached it. Thus AA, BA, AB, BB, and CB have all been
properly routed.

Also note that region A now contains all of CA, and region B now contains all of DA
and DB, with each processor containing at most one packet which has not yet reached its

destination. The counters bl, b2, and b3 contain the numbers of packets in CA, DB, and DA
respectively.

Phase I1
Step one: The processors of the array configure themselves into two broadcast busses, with
all processors in regions A and B comprising one bus, and those of regions C and D the

other. Processor (n/2 - 1) broadcasts the maximum of bl and b2 across the first bus.

S t e p two: The processors of the array configure themselves into four broadcast busses,

each consisting of all of the processors of each of the four regions A, B, C, and D. At step

i , 1 5 i 5 max{bl, b2), each processor j in region B does the following: If the packet a t j
is a DB packet, and the rank attached onto it is i, then broadcast the packet onto the bus.

Otherwise, read from the bus, and if there is a packet there which is destined for j, then
store that packet. The region A processors act similarly with CA packets.

Since this goes on for max{bl, b2) steps, by the end of this phase all packets in DB and
CA would have been properly routed. All that remain are the DA packets which currently

rest in region B.
Phase I11 The processors of the array reconfigure themselves into two broadcast busses, as

before, with regions A and B composing one, and C and D the other. At step i , 1 5 i 5 b3,
each processor j in region B does the following: If the packet at j is a DA packet, and the

rank attached onto it is i , then broadcast the packet onto the bus. Each processor k in region

A does the following: read from the bus and if there is a packet there which is destined for
k, then store that packet.

Since this goes on for b3 steps, by the end of this phase all packets in DA have been
properly routed. This completes the routing of all packets destined for regions A and B.
T i m e Analysis: Phase I takes n/2 steps. Phase I1 takes max{DB, CA) steps. Phase I11

takes DA steps. Since it must be that DA + DB 5 n/4 and DA + CA 5 n/4, we have that
the total run time of the algorithm is n/2 + max{DB, CA) + DA 5 2n.

And so we have the following:

Theorem 3.1 Permutation packet routing on the reconfigurable linear array can be done in
3 ,n steps.

3.2 A Generic Problem

The problem we consider now is this: C is a linear array with n nodes. There are a total of
m packets in C whose origins and destinations could be arbitrary. Route the packets.

Theorem 3.2 The above problem can be solved in time m + O(1ogn)

Proof. The idea behind the proof is the fact that one could compute prefix sums in O(1og n)
time on an n-node linear array. (Given a sequence of n numbers, say, kl, k2,. . . , k, the

problem of prefix sums computation is to calculate kl, kl + k2,. . . , k1 + k2 + . . . + k,).
Let k; be the number of packets in processor i, for i = 1,2, . . . , n. We could compute the

prefix sums of kl, k2,. . . , k, as follows: Partition the array into two, the first part consisting
of the first [%l processors and the second part consisting of the remaining processors. 1)
Recursively compute the prefix sums of the two parts; and 2) Processor broadcasts the

sum of the first numbers to the whole array, so that the processors in the second part
can update their sums. Clearly, this algorithm runs in time O(1og n). Denote the prefix
sums as ki, kk, . . . , ki.

The above prefix sums dictate the schedule for each processor. In particular, processor

1 broadcasts its packets from time step 1 until step ki; processor 2 broadcasts its packets
starting from time step ki + 1 until step ka; and so on. Thus the total time taken by the

algorithm is m + O(1og n).

4 Packet Routing on the Mesh

In this section we show how to perform permutation routing of n2 elements on an n x n

reconfigurable mesh in time n + o(n) + O(f) , the queue size being O(q). This time bound
holds with high probability (abbreviated from hereon as 'w.h.p.'). % is the bisection lower

bound for this problem. This can be readily seen by looking at the following permutation:

Exchange the $ packets in the left half of the mesh with the packets in the right half. Since

these packets can cross over to the other half only via the nodes in the middle column, the

lower bound follows. The same lower bound holds even in the conventional mesh [6]. We
also present a deterministic algorithm whose run time is 1.25n + O(1og n) + O(7) with a
queue size of O(q).

The randomized algorithm to be presented resembles the algorithm of [16]. We first
describe a 2n + o(n) + O(:) time algorithm and then show how to reduce the run time of

Figure 3: Partitioning of the Mesh into Slices

this algorithm to n + o(n) + O(a). The mesh is partitioned into horizontal slices of m rows
each where E = 1 (for any 1 5 4 5 n) as shown in Figure 3.

P

The algorithm has three phases. In phase I a packet at processor (i, j), destined for

processor (k , I), is routed along column j to (r, j) , a processor chosen at random in the same
column and slice as (i, j). In phase I1 the packet is sent to (r, I) along row r , and finally
in phase I11 it is routed to its destination along column I . These three phases are assumed
to be disjoint, i.e., a packet can start its phase I1 only after all the packets have completed
their phase I, and so on.

We employ algorithm A of section 3.2 for routing in each phase.
Analysis To analyze each phase we make use of Theorem 3.2.
Phase I. Here m = En and hence phase I can be completed in En + O(1og n) steps.

Phase 11. Consider an arbitrary node (i, k) in an arbitrary row i. The number of packets

in this node at the end of phase I is B(tn,&). The total number of nodes in this row i
is B(nen,&). Using Chernoff bounds, this number is no more than n + d m w.h.p.

Thus we could use Theorem 3.2 with m = n + o(n). The time needed for phase I1 is then
n + O(Js) w.h.p.
Phase 111. The number of packets that can be found in any column at the beginning of

the third phase is clearly n (since we have a permutation routing problem). Thus applying

Theorem 3.2 with rn = n, we infer that phase 111 can be completed in n + O(1ogn) time.

Put together, the above algorithm runs in time (2 + ~) n + O (J G) . Next we show
how to reduce this run time by a factor of nearly two.

4.1 Reducing the Run Time Further

We can reduce the number of steps taken by the above algorithm by making the follow-
ing modifications. Initially, each processor flips an unbiased two sided coin and colors its
packet red or black depending on the result. The mesh is partitioned into both vertical and
horizontal slices of En columns and rows respectively.

In phase I, all the red packets choose a random node in the same column and horizontal
slice as their origin and go there along the column of origin. Also in phase I, the black
packets choose a random node in the same row and vertical slice as their origin and go there
along the row of origin. During phase 11, all red packets are routed along rows till they reach
their column destination, while black packets are routed along columns till they reach their
row destination. In phase 111, red packets are routed along columns to their destinations,
while black packets are routed along rows. This idea of coloring the packets has been used
before (see e.g. [6]).

Theorem 4.1 The above algorithm terminates in time n + + O (J z) with high prob-

ability.

Proof. The run time reduces to half because, as a result of the coloring, the number of
packets that will use any row (or column) during any of the three phases now decreases
nearly by a factor of two w.h.p. For instance the number of packets that will perform their
phase I11 along any column(or row) is B(n, f). (Consider the packets whose destination is
some column j . They could have been colored white or black with equal probability). This
number is no more than + O(J*) w.h.p. (as inferred from an application of the
C hernoff bounds).

Similarly, we could show that the traffic along any row (or column) is no more than

+ O(J*) in phase I1 w.h.p. Therefore phases I1 and 111 take no more than + 2

O(\/=) steps each, and phase I takes no more than + O (4 Z) steps (cf. Theorem
3.2). Summing up, we conclude that the run time of the above algorithm is no more than
n + P + O (J m) w.h.p.

Queue Size Analysis

The queue size of the above algorithm in any phase is seen to be no more than the queue size
at the beginning or at the end of the phase. For example at the end of phase I, the number of
packets that will end up in any node is upper bounded by B(m, 2). Using Chernoff bounds
(equation Z), this number is O(1ogn) w.h.p. At the end of phase 11, consider any column

slice. In the worst case, this slice can have 4 + O(J*) packets w.h.p. Because of the
randomization done in phase I, these packets will be uniformly distributed among all the en
nodes in the slice. This implies that the expected number of packets in any node at the end
of phase 11 is nearly i. Using Chernoff bounds, the queue size at the end of phase I1 is O(f)
w.h.p. (provided ! is n(lo:~n) . This is then the queue size of the whole algorithm.

Obtaining Constant Size Queues: The expected queue size of the above algorithm is

nearly ! as was mentioned before. We can also show that O(!) is the queue size with high

probability if ! is dig^). But if we desire constant size queues, we have to choose r to
be constant fraction, in which case we could only prove an expected constant size queues
(and not w.h.p.). However we could modify the above algorithm slightly to obtain high
probability constant queues. This technique is due to [16]. The idea is based on the fact
that the total queue size of any collection of log n successive nodes in the mesh is O(1og n)
w.h.p. (given that r is a constant fraction). We partition the nodes in the mesh into groups of
log n successive nodes each (along the rows as well as columns). At any time in the routing,

packets in a group are locally distributed so as to ensure constant queue size. For instance
if more than a constant number of packets want to end up in a specific node (at the end of

phase I or phase 11), the extra packets will be sent to other nodes in the group.

4.2 Deterministic Packet Routing

In this section we present a deterministic algorithm for permutation routing whose run time

is 1.25n + O(1og n) + O(), the queue size being O(q) (for any 1 < q 5 n). We first show how
to obtain a 1.5n + O(1og n) + O(t) time algorithm. Later we will describe the modifications

needed to improve the time bound.

The idea of our algorithms is to employ the 'sort and route' paradigm of Kunde [4]
together with the coloring schemes proposed in [6]. Partition the mesh into submeshes of
size $ x $, for any 1 < q < n. In phase I sort the submeshes in time O(?) in column major

order according to column destinations of packets. In phase 11, a packet at (i, j) whose
destination is (k, I) traverses along row i up to column I, and in phase I11 it traverses along
column I up to row k. This simple algorithm can be shown to have a run time of 2n + 0(:),
the queue size being 0 (q) [4].

The above algorithm is 'uniaxial', i.e., it uses either the column edges or the row edges
at any given time. One could utilize the full capacity of the MIMD mesh by sending some
packets orthogonal to the directions suggested by the above algorithm (similar to what we
did in section 4.1). For instance at the beginning we could color each packet (call its origin

node as (i , j)) as either red or black depending on whether (i + j)mod 2 is either 0 or 1.
Route the red packets using the above algorithm. Route the black packets orthogonal to

the red packets. That is, in phase I we sort the black packets in row major order according
to their row destinations. In phase 11, a black packet from (i, j) whose destination is (k, I)
traverses along column j up to row k and in phase I11 it traverses along row k up to its
destination.

This algorithm takes O(f) time in phase I. In phase 11, the number of packets traversing
along any row or column is exactly and hence phase I1 can be completed in time 5+0(log n)

(according to Theorem 3.2). Phase I11 can be completed in n steps or less (even without

employing any broadcasts).
The run time of deterministic routing can further be improved to 1.25n + O(1og n) + O(f)

using the coloring scheme of Kunde and Tensi (cf. Theorem 19 in [6]) . Thus we have the
following

Theorem 4.2 Permutation routing can be completed in 1.25n + O(1og n) + O(a) steps on a

reconfigurable mesh with a queue size of O(q).

5 Randomized Sorting

We show here that sorting of n2 elements can be accomplished on an n x n reconfigurable

mesh in n + o(n) + O(a) steps w.h.p., the queue size being O(q) (for any 1 < q 5 n).) Many
optimal algorithms have been proposed in the literature for sorting on the conventional mesh

(see e.g. [7]). Recently a 2n +o(n) step randomized algorithm has been discovered for sorting
[2]. But 2n - 2 is a lower bound for sorting on the conventional mesh. Thus our algorithms
demonstrate that a reconfigurable mesh is strictly more powerful than a conventional mesh

even when the problem size and the processor size match. Our sorting algorithm makes use
of random sampling and the randomized routing algorithm given in section 4. The indexing

scheme assumed is the blockwise snake-like row major indexing (which is the same as the
scheme assumed in [3, 5, 12, 21). More details follow.

Summary. Random sampling has played a vital role in the design of parallel algorithms for

comparison problems (including sorting and selection). Reischuk's [17] sorting algorithm is a
good example. Given n keys, the idea is to: 1) randomly sample n' (for some constant 6 < 1)

keys, 2) sort this sample (using any nonoptimal algorithm), 3)partition the input using the
sorted sample as splitter keys, and 4) to sort each part separately in parallel. Similar ideas
have been used in many other works as well (see e.g., [2, 3, 121).

Let X = kl, k2,. . . , km be a given sequence of n keys and let S = {ki, ki,. . . , kt} be a

random sample of s keys (in sorted order) picked from X. X is partitioned into (s + 1) parts
defined as follows. XI = {l E X : l 5 k:}, X j = { l E X : k;-l < l < k;} for 2 5 j 5 s,
and Xs+l = {l E X : l > k:}. The following lemma [17, 151 probabilistically bounds the
size of each of these subsets, and will prove helpful to our algorithm. (We say a function

f (n) is d(g(n)) if f (n) < cag(n) for all sufficiently large n with probability 2 (1 - n-O) for
any o and some constant c).

Lemma 5.1 The cardinality of each Xj (I 5 j 5 (s + 1)) is b(: log n).

Next we describe our algorithm. The mesh is partitioned into blocks of size n3I4 x

n3I4. We could name the blocks with integers in the range [I, n1I2]. This naming is done
according to snake-like row major indexing, i.e., the topmost blocks in the mesh are numbered
1,2 , . . . , n1I4 from left to right, the n1I4 blocks immediately below are numbered n1I4 +
1, n1I4 + 2, . . . , 2n1I4 from right to left, and so on.

A random sample of size s (nearly equal to n2I3) is chosen and broadcast to the whole
mesh, such that each block stores a copy of all the splitter keys. We compute the partial
ranks of the sample keys in each block after sorting the block. Then we perform a prefix
sum operation on these partial ranks so as to obtain the global ranks of the sample keys.
Let ki, ki, . . . , k: be the sorted order of the sample. Next we route each key to a destination
that is close to its actual destination. If this key has a value that falls in between k: and
k:+,, it is sent to a random node in block $n1I2. The keys in each block together with the
sample keys are now sorted. Using the global ranks of the sample keys we determine the
rank of each key in the mesh and finally route the packets to their actual destinations.

Algorithm Sorting

Step 1: Each key includes itself as a sample key in S with probability &. The
number of sample keys can be seen to be 0(n2I3) w.h.p.

Step 2: Partition the mesh into blocks of size n3I4 x n3I4. Sort each block to
group and count the sample keys in this block. The number of sample keys
in each block can be seen (using Chernoff bounds) to be 0(n1I6) w.h.p. Now
broadcast the sample keys (using a scheme similar to the algorithm in section
3.2), so that each block will have a copy of all the sample keys of S . (Realize
that it takes O(1) time to broadcast a single key to the whole mesh.)

In this step sorting takes O(n3I4) time, and the broadcast takes 0(n2I3) time.

Step 3: Now again sort each block of size n3I4 x n3I4, this time also including
all the sample keys obtained in Step 2. This sorting takes 0(n3I4) time. As a
by-product of this sorting we have computed the partial ranks of the sample keys

in each block.

Step 4: Compute the global rank of each splitter key and broadcast this informa-

tion to the whole mesh. This is done by summing up the partial ranks computed

in Step 3 for each sample key. For a single key, the sum can be obtained clearly

in time O(1og n). Therefore this step will take a total of 0(n2I3 log n).

Step 5: Now route each packet to a node which is close to its actual destination.

In particular, we send each packet to a random node in an appropriate block
depending on between which two splitter keys this key falls in (see the summary

above). Using lemma 5.1, it is easy to see that the actual destination of the key
can be at the most one block away from the block to where it is routed in this

step w.h.p. We use the algorithm of section 4 for this routing.

Step 6: Sort the keys in each block together with the sample keys, and compute
the global ranks of all the keys in the mesh. This can be done in 0(n3I4) time

w.h.p.

Step 7: Finally route the packets to their actual destinations. Since each packet

can be at the most one block away from its destination, this routing can be done
in 0(n3I4) time w.h.p. [16].

The correctness of the above algorithm is quite clear. As a consequence of the above
algorithm we have the following

Theorem 5.1 Sorting can be performed in time n + o(n) + O(n/q) w.h.p. with a queue size

of O(q) (for any 1 I q 5 n).

Note: The above algorithm can be considered as a reduction of sorting to permutation
routing. In particular, this algorithm establishes that sorting time on a reconfigurable mesh

is at the most o(n) more than the time needed for packet routing.

6 Conclusions

In this paper we have addressed the problems of routing and sorting on a reconfigurable

mesh when the problem size and the processor bound are the same. Even in this case we

have demonstrated that a reconfigurable mesh is more powerful than a conventional mesh
model. A number of open problems remain: 1) Is :n the best possible run time for routing
on a linear array?; 2) Can one perform sorting and/or routing in time better than n + o(n)?
(the lower bound is only q);

References

[I] Ben- Asher, Y., Peleg, D., Ramaswami, R., and Schuster, A., 'The Power of Reconfigu-
ration,' Journal of Parallel and Distributed Computing, 1991, pp. 139- 153.

[2] Kaklamanis, C., and Krizanc, D., 'Optimal Sorting on Mesh Connected Processor Ar-
rays,' to be presented in the ACM Symposium on Parallel Algorithms and Architectures,
San Diego, CA, 1992.

[3] Kaklamanis, C., Krizanc, D ., Narayanan, L., and Tsantilas, Th., 'Randomized Sort-
ing and Selection on Mesh-Connected Processor Arrays,' in Proc. 3rd Annual ACM
Symposium on Parallel Algorithms and Architectures, July 1991.

[4] Kunde, M., 'Routing and Sorting on Mesh-Connected Arrays,' in Proc. 3rd Aegean
Workshop on Computing. Springer-Verlag Lecture Notes in Computer Science # 3 19,
1988, pp. 423-433.

[5] Kunde, M., 'Concentrated Regular Data Streams on Grids: Sorting and Routing Near
to the Bisection Bound,' IEEE Symposium on Foundations of Computer Science, 1991,
pp. 141-150

[6] Kunde, M., and Tensi, T. ' (k - k) Routing on Multidimensional Mesh-Connected Ar-
rays,' Journal of Parallel and Distributed Computing 11, 1991, pp. 146-155.

[7] Leighton, F.T., Introduction to Parallel Algorithms and Architectures: Meshes, Trees,
Hypercubes, Morgan-Kaufmann Publishers, San Jose, CA, 1992.

[8] Leighton, T., Makedon, F., and Tollis, I.G. 'A 2n - 2 Step Algorithm for Routing in an
n x n Array With Constant Size Queues,' Proc. ACM Symposium on Parallel Algorithms
and Architectures, 1990.

[9] Miller, R., Prasanna-Kumar, V.K., Reisis, D., and Stout, Q.F., 'Meshes with Reconfig-
urable Buses,' in Proc. 5th MIT Conference on Advanced Research in VLSI, 1988, pp.
163-178.

[lo] Miller, R., Prasanna-Kumar, V.K., Reisis, D ., and Stout, Q.F., 'Image Computations on
Reconfigurable VLSI Arrays,' in Proc. Conference on Vision and Pattern Recognition,
1988, pp. 925-930.

[ll] Nakano, K., Peleg, D., and Schuster, A., 'Constant-time Sorting on a Reconfigurable
Mesh,' Manuscript, 1992.

[12] Rajasekaran, S., 'k-k Routing, k-k Sorting, and Cut Through Routing on the Mesh,'
Technical Report, Department of CIS, University of Pennsylvania, Philadelphia, PA
19104, October 1991.

[13] Rajasekaran, S., 'Randomized Algorithms for Packet Routing on the Mesh,' to appear
in Advances in Parallel Algorithms, Blackwell Scientific Publications, 1992.

[14] Rajasekaran, S., and Raghavachari, M., 'Optimal Randomized Algorithms for Multi-
packet and Cut Through Routing on the Mesh,' in Proc. IEEE Symposium on Parallel
and Distributed Processing, Dallas, Texas, Dec. 1991.

[15] Rajasekaran, S., and Reif, J.H., 'Derivation of Randomized Sorting and Selection Algo-
rithms,' Technical Report, Aiken Computing Lab., Harvard University, 1984.

[16] Rajasekaran, S., and Tsantilas, Th., 'Optimal Routing Algorithms for Mesh Connected
Processor Arrays,' To appear in Algorithmica, 1992.

[17] Reischuk, R., 'Probabilistic Parallel Algorithms for Sorting and Selection,' SIAM Jour-
nal of Computing, 14(2), 1985, pp. 396-411.

[18] Schuster, A., 'Dynamic Reconfiguring Networks for Parallel Computers: Algorithms
and Complexity Bounds,' Ph.D. Thesis, Computer Science Department, Technion-Israel
Institute of Technology, August 1991.

[19] Wang, B-F., Chen, G-H., and Lin, F-C, 'Constant Time Sorting on a Processor Array
with a Reconfigurable Bus System,' Information Processing Letters, 34(4), April 1990.

	Randomized Routing and Sorting on the Reconfigurable Mesh
	Recommended Citation

	Randomized Routing and Sorting on the Reconfigurable Mesh
	Abstract
	Comments

	tmp.1186754122.pdf.Ol1TZ

