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Permutation Routing and Sorting 
on the Reconfigurable Mesh 

Sanguthevar Rajasekaran 
Theodore McKendall 

Department of Computer and Informat ion Science 

Univ. of Pennsylvania, Philadelphia, PA 19104. 

Abstract In this paper we demonstrate the power of reconfiguration by pre- 

senting efficient randomized algorithms for both packet routing and sorting on 

a reconfigurable mesh connected computer (referred to simply as the mesh from 
hereon). The run times of these algorithms are better than the best achievable 

time bounds on a conventional mesh. 

In particular, we show that permutation routing problem can be solved on a 
linear array of size n in Qn steps, whereas n - 1 is the best possible run time 

without reconfiguration. We also show that permutation routing on an n x n 

reconfigurable mesh can be done in time n + o(n)  using a randomized algorithm 

or in time 1.25n + o(n) deterministically. In contrast, 2n - 2 is the diameter 

of a conventional mesh and hence routing and sorting will need at least 2n - 2 
steps on a conventional mesh. In addition we show that the problem of sorting 

can be solved in randomized time n + o(n). The time bounds of our randomized 

algorithms hold with high probability. The bisection lower bound for both sorting 

and routing on the mesh is 5, and hence our algorithms have nearly optimal time 

bounds. 

1 Introduction 

A number of optimal algorithms have been proposed in the recent past for various compu- 
tational problems on the reconfigurable mesh [I ,  9, 10, 18, 19, 111. In particular, constant 
time algorithms have been given for routing and sorting [I, 19, 111. Even in the most pow- 
erful CRCW PRAM, we know that sorting takes C2(lo2~,) time given only a polynomial 



number of processors. Thus the reconfigurable network seems to a be an attractive model 

of computing. 
Past works on routing and sorting have concentrated on the case when the number of 

packets (or keys) is much smaller than the number of processors. Wang, Chen, and Lin [19] 
have presented an O(1) time sorting algorithm that makes use of n3 processors where n is 
the number of keys. For the same time bound, the processor bound has been reduced to n2 

by [I ,  111. The later algorithm is the best possible under some weak assumptions. 

An interesting question is if it helps to have the feature of reconfiguration for problems 
where the number of processors is the same as the number of packets (or keys). In this 
paper we answer this question in the affirmative. In particular, we show that permutation 
routing can be completed in i n  routing steps on an n-node linear array. We also establish 

that both routing and sorting of n2 keys can be performed in n + o(n) + O(:) steps on an 

n x n reconfigurable mesh, the queue size being O(q), with very high probability. Thus this 

time bound will be n + o(n) for instance if we pick q = logn. In addition, we show how 

to perform routing deterministically in time 1.25n + o(n) + O($), corresponding to a queue 

size of O(q). We also point out that is the bisection lower bound for routing and sorting. 

Therefore our algorithms are nearly optimal. In contrast, one needs at least 2n - 2 steps for 

both routing and sorting on the conventional mesh since 2n - 2 is the diameter. 
Optimal algorithms have been discovered for packet routing and sorting on the conven- 

tional mesh. For instance Kunde's algorithm [5] for sorting takes 2.5n + o(n) steps, and 

Kaklamanis & Krizanc's algorithm [2] for sorting is randomized and runs in 2n + o(n) steps. 

Several optimal packet routing algorithms also exist in the literature [16, 8, 5, 131. 

2 Some Preliminaries 

2.1 Problem Statement 

Packet routing is an important problem in parallel computing because efficient algorithms 

for packet routing ensure fast inter-processor communication. They also lead to efficient 
emulation of ideal models like PRAMS on fixed connection machines. A single step of inter- 

processor communication in a fixed connection network can be thought of as the following 

task (also called packet routing): each node in the network has a packet of information that 
has to be sent to some other node. The task is to send all the packets to their correct desti- 
nations as quickly as possible such that at the most one packet passes over any connection 
at any time. 



A special case of the routing problem is called the partial permutation routing. In partial 

permutation routing, each node is the origin of at the most one packet and each node is the 
destination of no more than one packet. A packet routing algorithm is judged by its run 

time, i.e., the time taken by the last packet to reach its destination, and its queue length, 

which is defined as the maximum number of packets any node will have to store during 
routing. 

2.2 Model Definition 

In this paper we are concerned with packet routing and sorting algorithms for mesh connected 
computers, which are becoming increasingly popular owing to their special properties. A 
mesh is an n x n square grid with a processing element at each grid point. Every processor 
is connected to all its (four or less) neighbors via bidirectional connections. We assume the 
MIMD model where each processor can communicate with all its neighbors in one unit of 
time. This model has been widely used in current research. 

In addition, the processors are connected to a reconfigurable broadcast bus. At any given 

time, the broadcast bus can be partitioned into subbuses. Each subbus connects a collection 

of successive processors. One of the processors in this collection can choose to broadcast a 
message which is assumed to be readable in one unit of time by all the other processors in 
this collection. For instance, in an n x n mesh, the different columns (or different rows) can 

form subbuses. Even within a column (or row) there could be many subbuses, and so on. 
It is up to the algorithm designer to decide what configuration of the bus should be used 
at each time unit. To be consistent with the MIMD model, we assume that each processor 

has two switches (as shown in Figure l),  one for connecting the column bus and the other 

for connecting the row bus. This implies for example that in one time unit independent 

broadcasting can be done along the rows as well as the columns. 

2.3 Chernoff Bounds 

Let X = B(n,p) stand for the number of heads in n independent flips of a coin, the proba- 

bility of a head in a single flip being p. The following three facts (known as Chernoff bounds) 

are now folklore: 

Prob.[X > (1 + c)np] < exp(-c2np/2), and 

Prob.[X 5 (1 - c)np] < exp(-c2np/3). 



Figure 1: Independent Row and Column Switches 

By high probability, we mean a probability of > (1 - n-") for any constant a > 1. 

2.4 Organization of this Paper 

The rest of this paper is organized as follows. In section 3 we show that permutation routing 

on a linear array can be accomplished within Qn steps on the reconfigurable model. We 

know that on the conventional linear array permutation routing needs at least n - 1 steps 

in the worst case. In section 3 we also identify a generic routing problem on a linear array 

and provide a solution, which will prove helpful in analyzing the mesh routing algorithms. 

In sections 4 and 5 we present our routing and sorting algorithms respectively. In section 6 
we provide some concluding remarks. 

3 Linear Array Routing 

3.1 A (3/4)n Step Routing Algorithm 

In this section we will describe a an time algorithm for performing permutation routing on 

a linear array of n processors. Let each processor have zero or one packets of information it 

wishes to send to another processor in the array. Also let each processor be the destination 

of zero or one such packets. The goal is to send each packet to its destination within :n 

time steps. 

Partition the array into four equal sized regions A, B, C, and D, where region A is the 

collection of the first processors, region B is the next % processors, and so on (see Figure 

2). 



Figure 2: The Four Regions of a Linear Array 

Also, let AB denote the set of packets originating from region A with a destination in 
region B, Ac the set originating from A and destined for C, and so forth. We then have the 
following relations: 

etc., and 

et c. 
Finally, let processors (n/2 - 1) and (n/2) each have three incremental counters bl, b2, b3 

and cl, c2, c3 respectively, all of which are initially set to zero. 

The algorithm proceeds in three phases. Phase I involves normal routing, and phases I1 

and I11 involve broadcasting using the reconfigurable properties of the array. The following 

description gives the algorithm for all packets destined for processors in regions A and B, 
the other two regions being similar. 
Phase I Normal routing occurs for n/2 time steps. During this phase, the processors use 

their standard neighbor connections to send packets towards their destinations. 
When processor (n/2 - 1) receives a packet it does the following: 

If the packet is a CA packet, increment bl and attach bl onto the packet; 

If the packet is a DB packet, increment b2 and attach b2 onto the packet; 

If the packet is a DA packet, increment b3 and attach b3 onto the packet; 

In any case forward the packet (if needed). 



At the end of this phase, any packet which originated from region A or B with a desti- 

nation in region A or B will have reached it. In addition, any packet originating from region 
C with a destination in B will have reached it. Thus AA, BA, AB, BB, and CB have all been 
properly routed. 

Also note that region A now contains all of CA, and region B now contains all of DA 
and DB, with each processor containing at most one packet which has not yet reached its 

destination. The counters bl, b2, and b3 contain the numbers of packets in CA, DB, and DA 
respectively. 

Phase  I1 
Step  one: The processors of the array configure themselves into two broadcast busses, with 
all processors in regions A and B comprising one bus, and those of regions C and D the 

other. Processor (n/2 - 1) broadcasts the maximum of bl and b2 across the first bus. 

S t e p  two: The processors of the array configure themselves into four broadcast busses, 

each consisting of all of the processors of each of the four regions A, B, C, and D. At step 

i ,  1 5 i 5 max{bl, b2), each processor j in region B does the following: If the packet a t  j 
is a DB packet, and the rank attached onto it is i, then broadcast the packet onto the bus. 

Otherwise, read from the bus, and if there is a packet there which is destined for j, then 
store that packet. The region A processors act similarly with CA packets. 

Since this goes on for max{bl, b2) steps, by the end of this phase all packets in DB and 
CA would have been properly routed. All that remain are the DA packets which currently 

rest in region B.  
Phase  I11 The processors of the array reconfigure themselves into two broadcast busses, as 

before, with regions A and B composing one, and C and D the other. At step i ,  1 5 i 5 b3, 
each processor j in region B does the following: If the packet at j is a DA packet, and the 

rank attached onto it is i ,  then broadcast the packet onto the bus. Each processor k in region 

A does the following: read from the bus and if there is a packet there which is destined for 
k, then store that packet. 

Since this goes on for b3 steps, by the end of this phase all packets in DA have been 
properly routed. This completes the routing of all packets destined for regions A and B. 
T i m e  Analysis: Phase I takes n/2 steps. Phase I1 takes max{DB, CA) steps. Phase I11 

takes DA steps. Since it must be that DA + DB 5 n/4 and DA + CA 5 n/4, we have that 
the total run time of the algorithm is n/2 + max{DB, CA) + DA 5 2n. 

And so we have the following: 

Theorem 3.1 Permutation packet routing on the reconfigurable linear array can be done in 
3 ,n steps. 



3.2 A Generic Problem 

The problem we consider now is this: C is a linear array with n nodes. There are a total of 
m packets in C whose origins and destinations could be arbitrary. Route the packets. 

Theorem 3.2 The above problem can be solved in time m + O(1ogn) 

Proof. The idea behind the proof is the fact that one could compute prefix sums in O(1og n) 
time on an n-node linear array. (Given a sequence of n numbers, say, kl, k2,. . . , k, the 

problem of prefix sums computation is to calculate kl, kl + k2,. . . , k1 + k2 + . . . + k,). 
Let k; be the number of packets in processor i, for i = 1,2, . . . , n. We could compute the 

prefix sums of kl, k2,. . . , k, as follows: Partition the array into two, the first part consisting 
of the first [%l processors and the second part consisting of the remaining processors. 1) 
Recursively compute the prefix sums of the two parts; and 2) Processor broadcasts the 

sum of the first numbers to the whole array, so that the processors in the second part 
can update their sums. Clearly, this algorithm runs in time O(1og n). Denote the prefix 
sums as ki, kk, . . . , ki. 

The above prefix sums dictate the schedule for each processor. In particular, processor 

1 broadcasts its packets from time step 1 until step ki; processor 2 broadcasts its packets 
starting from time step ki + 1 until step ka; and so on. Thus the total time taken by the 

algorithm is m + O(1og n). 

4 Packet Routing on the Mesh 

In this section we show how to perform permutation routing of n2 elements on an n x n 

reconfigurable mesh in time n + o(n) + O(f ) ,  the queue size being O(q). This time bound 
holds with high probability (abbreviated from hereon as 'w.h.p.'). % is the bisection lower 

bound for this problem. This can be readily seen by looking at the following permutation: 

Exchange the $ packets in the left half of the mesh with the packets in the right half. Since 

these packets can cross over to the other half only via the nodes in the middle column, the 

lower bound follows. The same lower bound holds even in the conventional mesh [6]. We 
also present a deterministic algorithm whose run time is 1.25n + O(1og n) + O(7) with a 
queue size of O(q). 

The randomized algorithm to be presented resembles the algorithm of [16]. We first 
describe a 2n + o(n) + O(:) time algorithm and then show how to reduce the run time of 



Figure 3: Partitioning of the Mesh into Slices 

this algorithm to n + o(n) + O(a). The mesh is partitioned into horizontal slices of m rows 
each where E = 1 (for any 1 5 4 5 n) as shown in Figure 3. 

P 

The algorithm has three phases. In phase I a packet at processor (i, j),  destined for 

processor (k ,  I), is routed along column j to (r, j) ,  a processor chosen at  random in the same 
column and slice as (i, j). In phase I1 the packet is sent to (r, I) along row r ,  and finally 
in phase I11 it is routed to its destination along column I .  These three phases are assumed 
to be disjoint, i.e., a packet can start its phase I1 only after all the packets have completed 
their phase I, and so on. 

We employ algorithm A of section 3.2 for routing in each phase. 
Analysis To analyze each phase we make use of Theorem 3.2. 
Phase I. Here m = En and hence phase I can be completed in En + O(1og n) steps. 

Phase 11. Consider an arbitrary node (i, k)  in an arbitrary row i. The number of packets 

in this node at the end of phase I is B(tn,&).  The total number of nodes in this row i 
is B(nen,&). Using Chernoff bounds, this number is no more than n + d m  w.h.p. 

Thus we could use Theorem 3.2 with m = n + o(n). The time needed for phase I1 is then 
n + O( Js) w.h.p. 
Phase 111. The number of packets that can be found in any column at the beginning of 

the third phase is clearly n (since we have a permutation routing problem). Thus applying 

Theorem 3.2 with rn = n, we infer that phase 111 can be completed in n + O(1ogn) time. 

Put together, the above algorithm runs in time (2 + ~ ) n  + O ( J G ) .  Next we show 
how to reduce this run time by a factor of nearly two. 



4.1 Reducing the Run Time Further 

We can reduce the number of steps taken by the above algorithm by making the follow- 
ing modifications. Initially, each processor flips an unbiased two sided coin and colors its 
packet red or black depending on the result. The mesh is partitioned into both vertical and 
horizontal slices of En columns and rows respectively. 

In phase I, all the red packets choose a random node in the same column and horizontal 
slice as their origin and go there along the column of origin. Also in phase I, the black 
packets choose a random node in the same row and vertical slice as their origin and go there 
along the row of origin. During phase 11, all red packets are routed along rows till they reach 
their column destination, while black packets are routed along columns till they reach their 
row destination. In phase 111, red packets are routed along columns to their destinations, 
while black packets are routed along rows. This idea of coloring the packets has been used 
before (see e.g. [6]). 

Theorem 4.1 The above algorithm terminates in time n + + O ( J z )  with high prob- 

ability. 

Proof. The run time reduces to half because, as a result of the coloring, the number of 
packets that will use any row (or column) during any of the three phases now decreases 
nearly by a factor of two w.h.p. For instance the number of packets that will perform their 
phase I11 along any column(or row) is B(n,  f ). (Consider the packets whose destination is 
some column j .  They could have been colored white or black with equal probability). This 
number is no more than + O(J*) w.h.p. (as inferred from an application of the 
C hernoff bounds). 

Similarly, we could show that the traffic along any row (or column) is no more than 

+ O(J*) in phase I1 w.h.p. Therefore phases I1 and 111 take no more than + 2 

O(\/=) steps each, and phase I takes no more than + O ( 4 Z )  steps (cf. Theorem 
3.2). Summing up, we conclude that the run time of the above algorithm is no more than 
n + P + O ( J m )  w.h.p. 

Queue Size Analysis 

The queue size of the above algorithm in any phase is seen to be no more than the queue size 
at the beginning or at the end of the phase. For example at the end of phase I, the number of 
packets that will end up in any node is upper bounded by B(m,  2). Using Chernoff bounds 
(equation Z), this number is O(1ogn) w.h.p. At the end of phase 11, consider any column 



slice. In the worst case, this slice can have 4 + O(J*) packets w.h.p. Because of the 
randomization done in phase I, these packets will be uniformly distributed among all the en 
nodes in the slice. This implies that the expected number of packets in any node at the end 
of phase 11 is nearly i. Using Chernoff bounds, the queue size at  the end of phase I1 is O(f)  
w.h.p. (provided ! is n( lo:~n) .  This is then the queue size of the whole algorithm. 

Obtaining Constant Size Queues: The expected queue size of the above algorithm is 

nearly ! as was mentioned before. We can also show that O(!) is the queue size with high 

probability if ! is  dig^). But if we desire constant size queues, we have to choose r to 
be constant fraction, in which case we could only prove an expected constant size queues 
(and not w.h.p.). However we could modify the above algorithm slightly to obtain high 
probability constant queues. This technique is due to [16]. The idea is based on the fact 
that the total queue size of any collection of log n successive nodes in the mesh is O(1og n) 
w.h.p. (given that r is a constant fraction). We partition the nodes in the mesh into groups of 
log n successive nodes each (along the rows as well as columns). At any time in the routing, 

packets in a group are locally distributed so as to ensure constant queue size. For instance 
if more than a constant number of packets want to end up in a specific node (at the end of 

phase I or phase 11), the extra packets will be sent to other nodes in the group. 

4.2 Deterministic Packet Routing 

In this section we present a deterministic algorithm for permutation routing whose run time 

is 1.25n + O(1og n) + O( ), the queue size being O(q) (for any 1 < q 5 n). We first show how 
to obtain a 1.5n + O(1og n)  + O( t ) time algorithm. Later we will describe the modifications 

needed to improve the time bound. 

The idea of our algorithms is to employ the 'sort and route' paradigm of Kunde [4] 
together with the coloring schemes proposed in [6]. Partition the mesh into submeshes of 
size $ x $, for any 1 < q < n. In phase I sort the submeshes in time O(? ) in column major 

order according to column destinations of packets. In phase 11, a packet at (i, j )  whose 
destination is (k, I) traverses along row i up to column I, and in phase I11 it traverses along 
column I up to row k. This simple algorithm can be shown to have a run time of 2n + 0(:), 
the queue size being 0 (q) [4]. 

The above algorithm is 'uniaxial', i.e., it uses either the column edges or the row edges 
at any given time. One could utilize the full capacity of the MIMD mesh by sending some 
packets orthogonal to the directions suggested by the above algorithm (similar to what we 
did in section 4.1). For instance at the beginning we could color each packet (call its origin 



node as ( i , j ) )  as either red or black depending on whether (i + j)mod 2 is either 0 or 1. 
Route the red packets using the above algorithm. Route the black packets orthogonal to 

the red packets. That is, in phase I we sort the black packets in row major order according 
to their row destinations. In phase 11, a black packet from (i, j) whose destination is (k, I) 
traverses along column j up to row k and in phase I11 it traverses along row k up to its 
destination. 

This algorithm takes O(f ) time in phase I. In phase 11, the number of packets traversing 
along any row or column is exactly and hence phase I1 can be completed in time 5+0(log n) 

(according to Theorem 3.2). Phase I11 can be completed in n steps or less (even without 

employing any broadcasts). 
The run time of deterministic routing can further be improved to 1.25n + O(1og n) + O(f ) 

using the coloring scheme of Kunde and Tensi (cf. Theorem 19 in [ 6 ] ) .  Thus we have the 
following 

Theorem 4.2 Permutation routing can be completed in 1.25n + O(1og n) + O(a)  steps on a 

reconfigurable mesh with a queue size of O(q). 

5 Randomized Sorting 

We show here that sorting of n2 elements can be accomplished on an n x n reconfigurable 

mesh in n + o(n) + O(a) steps w.h.p., the queue size being O(q) (for any 1 < q 5 n).) Many 
optimal algorithms have been proposed in the literature for sorting on the conventional mesh 

(see e.g. [7]). Recently a 2n +o(n) step randomized algorithm has been discovered for sorting 
[2]. But 2n - 2 is a lower bound for sorting on the conventional mesh. Thus our algorithms 
demonstrate that a reconfigurable mesh is strictly more powerful than a conventional mesh 

even when the problem size and the processor size match. Our sorting algorithm makes use 
of random sampling and the randomized routing algorithm given in section 4. The indexing 

scheme assumed is the blockwise snake-like row major indexing (which is the same as the 
scheme assumed in [3, 5, 12, 21). More details follow. 

Summary. Random sampling has played a vital role in the design of parallel algorithms for 

comparison problems (including sorting and selection). Reischuk's [17] sorting algorithm is a 
good example. Given n keys, the idea is to: 1) randomly sample n' (for some constant 6 < 1) 

keys, 2) sort this sample (using any nonoptimal algorithm), 3)partition the input using the 
sorted sample as splitter keys, and 4) to sort each part separately in parallel. Similar ideas 
have been used in many other works as well (see e.g., [2, 3, 121). 



Let X = kl, k2,. . . , km be a given sequence of n keys and let S = {ki, ki,.  . . , kt} be a 

random sample of s keys (in sorted order) picked from X. X is partitioned into (s + 1) parts 
defined as follows. XI = {l  E X : l 5  k:}, X j  = { l  E X : k;-l < l <  k;} for 2 5 j 5 s,  
and Xs+l = {l  E X : l  > k:}. The following lemma [17, 151 probabilistically bounds the 
size of each of these subsets, and will prove helpful to our algorithm. (We say a function 

f (n) is d(g(n)) if f (n) < cag(n) for all sufficiently large n with probability 2 (1 - n-O) for 
any o and some constant c). 

Lemma 5.1 The cardinality of each Xj (I 5 j 5 ( s  + 1)) is b(: log n).  

Next we describe our algorithm. The mesh is partitioned into blocks of size n3I4 x 

n3I4. We could name the blocks with integers in the range [I, n1I2]. This naming is done 
according to snake-like row major indexing, i.e., the topmost blocks in the mesh are numbered 
1,2 , .  . . , n1I4 from left to right, the n1I4 blocks immediately below are numbered n1I4 + 
1, n1I4 + 2, .  . . , 2n1I4 from right to left, and so on. 

A random sample of size s (nearly equal to n2I3) is chosen and broadcast to the whole 
mesh, such that each block stores a copy of all the splitter keys. We compute the partial 
ranks of the sample keys in each block after sorting the block. Then we perform a prefix 
sum operation on these partial ranks so as to obtain the global ranks of the sample keys. 
Let ki, ki, . . . , k: be the sorted order of the sample. Next we route each key to a destination 
that is close to its actual destination. If this key has a value that falls in between k: and 
k:+,, it is sent to a random node in block $n1I2. The keys in each block together with the 
sample keys are now sorted. Using the global ranks of the sample keys we determine the 
rank of each key in the mesh and finally route the packets to their actual destinations. 

Algorithm Sorting 

Step 1: Each key includes itself as a sample key in S with probability &. The 
number of sample keys can be seen to be 0(n2I3) w.h.p. 

Step 2: Partition the mesh into blocks of size n3I4 x n3I4. Sort each block to 
group and count the sample keys in this block. The number of sample keys 
in each block can be seen (using Chernoff bounds) to be 0(n1I6) w.h.p. Now 
broadcast the sample keys (using a scheme similar to the algorithm in section 
3.2), so that each block will have a copy of all the sample keys of S .  (Realize 
that it takes O(1) time to broadcast a single key to the whole mesh.) 

In this step sorting takes O(n3I4) time, and the broadcast takes 0(n2I3) time. 



Step 3: Now again sort each block of size n3I4 x n3I4, this time also including 
all the sample keys obtained in Step 2. This sorting takes 0(n3I4) time. As a 
by-product of this sorting we have computed the partial ranks of the sample keys 

in each block. 

Step 4: Compute the global rank of each splitter key and broadcast this informa- 

tion to the whole mesh. This is done by summing up the partial ranks computed 

in Step 3 for each sample key. For a single key, the sum can be obtained clearly 

in time O(1og n). Therefore this step will take a total of 0(n2I3 log n). 

Step 5: Now route each packet to a node which is close to its actual destination. 

In particular, we send each packet to a random node in an appropriate block 
depending on between which two splitter keys this key falls in (see the summary 

above). Using lemma 5.1, it is easy to see that the actual destination of the key 
can be at  the most one block away from the block to where it is routed in this 

step w.h.p. We use the algorithm of section 4 for this routing. 

Step 6: Sort the keys in each block together with the sample keys, and compute 
the global ranks of all the keys in the mesh. This can be done in 0(n3I4) time 

w.h.p. 

Step 7: Finally route the packets to their actual destinations. Since each packet 

can be at  the most one block away from its destination, this routing can be done 
in 0(n3I4) time w.h.p. [16]. 

The correctness of the above algorithm is quite clear. As a consequence of the above 
algorithm we have the following 

Theorem 5.1 Sorting can be performed in time n + o(n) + O(n/q) w.h.p. with a queue size 

of O(q) (for any 1 I q 5 n). 

Note: The above algorithm can be considered as a reduction of sorting to permutation 
routing. In particular, this algorithm establishes that sorting time on a reconfigurable mesh 

is at the most o(n) more than the time needed for packet routing. 

6 Conclusions 

In this paper we have addressed the problems of routing and sorting on a reconfigurable 

mesh when the problem size and the processor bound are the same. Even in this case we 



have demonstrated that a reconfigurable mesh is more powerful than a conventional mesh 
model. A number of open problems remain: 1) Is :n the best possible run time for routing 
on a linear array?; 2) Can one perform sorting and/or routing in time better than n + o(n)? 
(the lower bound is only q); 
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