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1. Introduction 

Human reasoning is commonly decomposed into two major categories. On the one hand, analysis or 

deductive inference can be defined as any process by which a model of the world is evaluated and its 

implications are made known. On the other hand, synthesis or inductive inference can be defined as any 

process by which a model of the world is determined from observations. Mathematics has had some 

success in the formalization of the deductive inference process through the framework of mathematical 

logic. This is not to say that all problems in deductive inference have been solved, but there is a 

formalization which can adequately state many problenis of deductive inference. However, attempts to 

formalize the inductive inference process have been less successful. 

In the mid 1960's, ~olrno~orov[9], chaitin[4] and ~olomonoffIl61 independently developed a 

fomialization of inductive inference which is extremely general, that of descriptive complexity (elsewhere 

known as algorithmic complexity or Kolmogorov complexity; the term descriptive complexity is used 

here to avoid possible confusion with computational complexity). Unfortunately, in analogy with 

mathematical logic as a formalization of deductive inference, the formalization has little computational 

feasibility. In response to this problem, ~ i s s a n e n ~  has formulated the minimum description length 

(MDL) approach to statistical inference (inductive inference with probabilistic models) which is basicaIly a 

strengthening or a restriction in generality of descriptive complexity. Finally, we look at ~ e ~ l e r c ' s 3  

application of the Rissanen formalism to image segmentation. 

In the next 3 subsections, we present introductory material to help motivate each of the 3 major sections 

of the paper. 

1.1. The Interpretation(s) of Probability Theory 

1.1.1. Measure Theory 

Measure theory, the abstract theory of volume, is now widely accepted as the axiomatic basis of 

probability theory. From the axioms of measure theory, various laws of probability can be derived. 

However, the axiom system does not directly answer the question, "What does it mean for some event to 

be random with a certain probability?" Several related questions are extremely important for inductive 

inference using probability models. How can we determine a probability for some event? How can we 

tell whether a particular set of data adequately characterized by a particular probability model? Section 2 
of this paper examines attempts to define probability theory by answering these questions. There are 

several popular theories giving interpretations of probabilities. Such theories can be generally categorized 

as frequency-based approaches and subjective approaches. In subjective approaches, a probability is 

interpreted as a subjective degree of belief in some event. However, such theories are difficult to 

formalize and will not be presented here. 



1.1.2. Probabilities as Frequencies 

It has been long realized that probabilities often arise in connection with the frequency of occurrence of 

some event. Let us consider attempting to define probability in terms of frequencies of an event. In 

tossing a fair coin many times, one believes that the relative frequency of heads occurring will be 
1 

approach 3 with probability one. However, what is meant by with probability one? It seems that 

probability cannot be defined in terms of frequencies without creating a circular definition. Furthermore, 

frequency does not adequately characterize randomness. The frequencies of O's and 1's in the binary 
1 

representation of n converge to but x is not random. 

1.2. Statistical Modeling and Inference 

In section 3, we will be concerned with statistical inference. Statistical inference is essentially inductive 

inference restricted to probabilistic models. Some introductory material is presented here. 

1.2.1. Model Classes and Nested Model Classes 

In statistical modeling, we are interested in choosing, from some class of models, a probabilistic model 

which adequately characterizes the data. Broadly, there are two classes of statistical models, parametric 

and non-parametric. In this paper, we will be concerned only with parametric model classes. In 

parametric statistical inference, the class of models from which the choice is made are characterized by 

some parameter vector 0=(01,02, ..., 8k) which ranges in a subset ek of Euclidean k-space. For the 

statistical models in section 3, the data space will be time series, that is, finite sequences of real numbers. 

Such a sequence of points will be denoted by xn=(xl,x2, ..., x,) where n is the number of points and xO is 

the sequence containing no points. The ith position of the sequence will be called time step i. xi is the 

value of the sequence at time step i. We will denote the distribution of xn, given a model with parameter 

9, by fe(xn). No distinction will be made in the sequel between the specific model and the parameters 

which define it. 

The parameters of a model class may come from a more general set than a subset of Euclidean k-space. 

Here, some general classes that we consider have a varying number of parameters, that is, each model is 

parameterized by a finite number of parameters but different models may have a different number of 

parameters. In other words, the parameters range in a set A defined as the union of subsets of Euclidean 

k-space over all k: 



where @ is the subset of Euclidean k-space over which the set of parameters with dimension k ranges. 

Thus, the set A is the set of all vectors of finite dimension. Another way of viewing this is that the 

number of parameters is itself a parameter. The model class will be called nested if the models with 

parameters of dimension k is a subset of the models with parameters of dimension k+l, that is: 

In other words, the model classes are increase in generality as the dimension of their parameter vector 

increases. For an example of a nested model class, see the discussion of ARMA models below. 

1.2.2. Statistical Inference Procedures 

There are many formalisms by which a parametric model may be chosen from within some model class. 

In section 3, we present the minimum description length (MDL) approach to statistical inference. Here, 

we will present maximum likelihood estimation, the least squares criterion and maximum a posteriori 

probability estimation. In maximum likelihood estimation, we choose the parameter value, i.e., model, 

which is the most likely to have produced the data, that is, we choose 8 to maximize the so-called 

likelihood function, fe(xn). For example, let xn be a sequence of independent, identically distributed 

Gaussian random variables with unknown mean p and unit variance: 

-- 

fp(xn) = ni 1 ( (xi ; P I ~ )  

i= 1 l/Gexp - 

In order to choose y, we maximize the above with respect to y which is equivalent to discarding the 

positive constant and maximizing the logarithm: 

which is equivalent to choosing y to minimize the sum of squared errors: 

This is the least squared error criterion. We choose the model such that predictions made by using the 

model minimize the sum of squared errors. As we have just seen, for Gaussian random variables with 

known variance, this is equivalent to maximum likelihood estimation (in fact, the solution of either 

optimization problem is the sample mean). 



Thus, maximum likelihood estimation and the least squares criterion are two methods for choosing 

models. Unfortunately, these methods, as well as many of the other standard statistical methods, do not 

help in choosing from more general classes of models such as nested models. To see this, consider the 

model which gives probability one to the data. Under both methods discussed above, this model is the 

best possible model and will always be chosen if it is in the considered class. However, this model is not 

very satisfying and will generally have little predictive value. In the case of nested models, all models 

which may be parameterized by a k-vector are also parameterized by a (k+l)-vector, and so the likelihood 

of the best (k+l)-vector will be at least the likelihood of the best k-vector. Typically, the likelihood of the 

best (k+l)-vector will be greater than the likelihood of the best k-vector since there is more generality in 

the models of dimension k+l. Thus, maximum likelihood will typically choose arbitrarily high 

dimensional models. 

On the other hand, the Bayesian formalism for statistical inference requires specification of a prior 

distribution on the parameters of the model. This prior distribution may represent prior or subjective 

knowledge as to which models are more likely to occur. We denote the prior distribution on the 

parameters, 0, by g(0). Based on the prior distribution, we can compute the conditional distribution of 

the model given the data (here we denote the distribution of the data given the model by f(xnle) as 

opposed to the previous fe(xn)): 

where f(xn) is the marginal distribution of the data with respect to the parameters: 

(integrating over all of 0-space). In the maximum a posteriori method of estimation, we choose the model 

which maximizes the probability of the model given the data, that is, which maximizes f(0lxn). Note that 

this differs from the maximum likelihood method in which we choose the model in which the data would 

have the maximum probability of occurrence and no prior was required. In the equation for f(OIxn), we 

see that f(x) in the denominator is constant with respect to 0 (since it is just the normalizing constant) and 

so maximizing f(81xn) is equivalent to maximizing: 

Finally, note that if the prior has the same value on all models 8 (which is sometimes considered to be the 

case that there is no prior knowledge since it can be shown to be the distribution representing the least 

amount of prior "information"), this is equivalent to the maximum likelihood approach. 



1.2.3. Example Model Class: ARMA Models 

Autoregressive moving average (ARMA) models are probabilistic models which can be used for the 

analysis of time series, which, as mentioned, are finite sequences of real numbers. An ARMA process is 

a sequence of random variables which are derived from a white noise excitation source by stable linear 

filtering. White noise is a sequence of independent and identically distributed random variables with 

bounded second moment. An autoregressive (AR) process is obtained from white noise by passing it 

through an infinite impulse response (IIR) filter as demonstrated below: 

where (xn) is the AR process, (al, ..., ap) are the p coefficients of the IIR filter and (e,,) is the white noise 

process. The filter must be stable so that the process is stationary. An IIR filter is stable if its output 

sequence is bounded whenever its input sequence is bounded. A moving average (MA) process is 

obtained fiom white noise by passing it through a finite impulse response (FIR) filter as demonstrated 

below: 

where (xJ is the MA process, (bl, ..., &) are the q coefficients of the FIR filter and (e,,) is the white 

noise process. In order to maintain a dual relationship between AR and MA processes, it is required that 

the FIR filter of an MA process have a stable inverse filter. Thus, an ARMA process can be described as: 

There is a large body of work on identification of ARMA processes[3]. However, most of the methods of 

identification, as discussed in the previous subsection, do not include a completely objective method for 

determination of the number of parameters (coefficients of the AR and MA filters). ARMA processes 
(more specifically AR processes) are used as an example in the discussion of the minimum description 

length principle since MDL is well-suited for determination of ARMA models, including the number of 

parameters. 

1.3. Image Segmentation 

In computer vision, we attempt to recognize objects in an intensity image (for our purposes, we will 

consider intensity images, although other types of images are sometimes available). The problem of 
image segmentation is often considered to be one of the stages in the process of vision. In image 

segmentation, we attempt to partition the image into roughly homogeneous regions, where homogeneous 



can mean constant intensity, smoothly varying intensity, uniform texture, etc. After segmentation, we 

might attempt to identi@ each region as an object or sub-object of some type. 

There are many approaches to the segmentation problem[6]. Some techniques are based on local 

information such as region growing, in which seed regions are expanded based on the similarity of 

neighboring pixels. Others techniques are based on more global information such as reg~larization[~l], in 

which a segmented model of the image is chosen which minimizes a functional containing terms for 

similarity to the original image, smoothness of the model between segment boundaries, and the lengths of 

the boundaries. An approach to image segmentation based on the MDL principle is presented in section 

4. However, in image segmentation in general, there is no criterion for the comparison of segmentations 

besides visual inspection with the exception of what will be described in section 4 of this report. 

2. Complexity and Randomness 

In this section, we discuss the theoretical framework for randomness given by descriptive complexity and 

related topics. We consider the example of sequences of i.i.d. symmetric Bernoulli random variables as 

the probability model. Such a sequence consists of 0's and 1's determined independently and occuring 

with equal probability, i.e. tosses of a fair coin. 

2.1. The Partial Recursive Functions 

In this report, the partial recursive functions are used as the model of computation. These are essentially 

the functions which can be implemented by a computer program (assuming an arbitrarily large amount of 

memory is available). The functions may be partial because for some values of inputs, a computer 

program may never halt to return an answer. The partial recursive functions are a countable subset of the 

set of all partial functions from the set of natural numbers into itself. The set of natural numbers is 

isomorphic to the set of strings over the alphabet {0, I )  (or any finite set) and the two sets will be used 

interchangeably. The concatenation of strings v and w, written vw, is the string containing the symbols 

of v followed by the symbols of w. For example, 01101 is the concatenation of 01 and 101. A string v 

is a prefix of a string w if there is a stting u such that w=vu. For details on the construction of the partial 

recursive functions see the paper by Zvonkin and ~evinll91, or any text in the theory of computation. 

A partial recursive function which is total, i.e., one which is defined everywhere, is called general 

recursive. The length function is a general recursive function which will be important in the sequel. The 

length function will be denoted by L(x) and represents the length of the string x. For example, L(00)=2 

and L(O1100 1 1)=7. 

In much of what follows we will be interested in two-place partial recursive functions. There is a 

universal two-place partial recursive function, F, that is, a function F such that for any two-place partial 
recursive function, f(x,y), there is a string af such that: 



for all strings x. In other words, this universal partial recursive function can "simulate" any other partial 
recursive function using the "program" af by prependiig the program onto the first argument. A 

universal partial recursive hc t ion  is roughly equivalent to a programming environment and is called a 

universal interpreter. 

The partial recursive functions (and therefore the universal partial recursive function) are equivalent in 

computational power to Turing machines which are used elsewhere in the literature. The ChurcWuring 

thesis is a conjecture which claims that either of these, as well as many other models of computation that 

have been found to be equivalent, can in fact compute anything that can be computed in principle. Thus, 

any algorithm which performs a finite string of operations on finite (but arbitrarily large) data, can in 

theory be described by a partial recursive function. Some of the algorithms in the sequel will be described 

in English and the corresponding partial recursive function will not be stated explicitly though it will 

always exist. 

2.2. Preliminary Work 

2.2.1. Von Mises' Collectives 

In 1919, Von ~ises[ l*]  introduced the notion of a collective or random sequence. Von Mises chose a 

specific set of infinite sequences of 0's and 1's as the set of random sequences, i.e. sequences which are 

believable as samples from a symmetric Bernoulli random variable. The Von Mises definition is based on 

tlie idea that no gambling system should be able to turn the odds in favor of a gambler predicting the 
1 outcome of a fair coin toss. Thus, the frequency of 1's in the sequence should converge to 2. 

Furthermore, no gambling system should be able to change this asymptotic frequency of 1's. In other 

words, any subsequence chosen based a selection rule should have the same asymptotic 

frequency. The selection rules must have the property of being "proper", that is, each element of the 

subsequence is selected based solely on knowledge of the elements of the sequence Drier to that element, 

as would be the case in any gambling system. In the first formulation, Von Mises merely suggests using 

a countable set of "proper" selection rules. However, the asymptotic frequency should be invariant to any 

proper selection rule which any gambler could compute. For this reason, in 1940, Church[5] suggested 

specifically using the set of all general recursive functions as the selection rules. 

Von Mises defiition of randomness suggests a connection between randomness and inductive inference. 

A string is random if any gambling system cannot help the gambler in predicting the future of the string. 

In other words, a string is random if it cannot be induced from its initial fragments. This suggests that a 

formal definition of randomness will inherently specify a formal definition of inductive inference and vice 

versa. 



2.2.2. Kolmogorovts "Foundations of Probability Theory" 

In 1933, Kolmogorov published his landmark book, "The Foundations of Probability Theory"[8]. This 

book was the first to present measure theory as the basis of probability theory. It had an overwhelming 

impact on probability theory. For our purposes, the book had the impact of turning attention away from 

the work of Von Mises. In fact, Kolmogorov himself did not accept Von Mises work. However, 

measure theory does not answer some fundamental questions about probability which can be traced back 

to Laplace. For example, suppose someone gives you the following two sequences and says that one of 

the sequences was produced by coin tossing: 

Most people would choose the latter sequence as being more random. However, both sequences have 

exactly the same probability of occuring. It is ironic that it was Kolmogorov who, a few years after the 

death of Von Mises, finally presented a consistent theory of randomness and brought new life into the 

program of Von Mises. 

2.2.3. Shannon's Entropy 

In 1948, C. E. Shannon published a seminal work entitled "A Mathematical Theory of Communication". 

This work laid the foundation for what was to become modem information theory. It also had a large 

impact on the development of descriptive complexity theory. Shannon's entropy (which is itself a 

generalization of the concept from statistical mechanics) is essentially a restricted form of descriptive 
complexity 

In his paper, Shannon considered communication of a finite set of symbols over a communications 

channel (Fig. 1). The theory is developed by providing a mathematical model of a communication 

system. The communication system consists of an information source, a communications channel, and a 

destination for the information. The information source which produces the symbols is assumed to be an 

ergodic Markov chain. The symbols which are produced are encoded before being transmitted over the 

channel. In our case, it is instructive to consider the channel to be a computer memory (which is merely a 

time delay channel). Shannon's theory allows one to determine how to encode symbols which are to be 

transmitted so that to minimize use of the channel. After transmission, the symbols are decoded and 

forwarded to the destination. A fundamental assumption of Shannon's work is that the distribution (the 
transition probabilities, etc.) of the source is known in full to the designer of the encoder and decoder. 
Shannon shows how the ergodic Markov chain can be unfolded into a independent and identically 

distributed random sequence of "long" strings. Thus, we can assume that the source is a random 

variable, X, with range XI,.. .,xn having probabilities pl=Pr[X=xl], ...,pn= Pr[X=x,l. 



We wish to design an encoder which assigns a string of symbols as the code for each symbol produced 

by the source. It is desirable that the code length be as short as possible in order to minimize use of the 

channel which is assumed to be the limiting resource. A prefix code is a code for which no code string is 

a prefix of another code string. This condition is required if the code is to be decodable. Let L(x;) be the 

length of any code of the source symbols. Shannon's entropy, H(pl, ...,p,), is a lower bound on the 

expected number bits per symbol of any prefix code of the source symbols: 

where b is the number of symbols available to the decoder (here, we use binary codes and so b=2). 
Thus, in order to create a code with small expected code length, it is desirable to choose the code length 

for each xi to be as close as possible to -logz(pi). Shannon also shows how this lower bound can be 

achieved to within an arbitrarily small precision by encoding long strings of source symbols. Note that 

another part of Shannon's information theory yields an upper bound for the expected number of "bits of 

information" which can be transmitted over a given channel per unit time but this part of information 

theory is not relevant to the current report. 

Figure 1 

Shannon's Communication System 

User-Defined 

0 Pre-Defined 

Encoder 

One important aspect of Shannon's work is that the entropy represents the size of the minimum length 

encoding for strings given a certain probability distribution. Thus, the entropy is a measure of how much 

regularity is contained in strings from a given distribution. Distributions with little regularity have high 

entropy and are "uncertain" in that it is difficult to accurately guess which symbol will be produced next. 

In fact, this is the central idea behind the maximum entropy principle. Sometimes it is desirable to derive 

Decoder 



a probability distribution which expresses ignorance about some events (for example, to derive a prior 

when there is no known prior). The maximum entropy principle asserts that the way to express this 

ignorance is to choose that probability distribution which has the maximum entropy. This distribution is 

the one which is the most "uncertain" or "random". 

2.3. Descriptive Complexity 

2.3.1. Definitions and Invariance 

Kolmogorov was interested in the generalization of the concept of entropy to more general sources. In 

1965, he arrived at the extremely general notion of descriptive complexity. The descriptive complexity of 

a suing x with respect to a partial recursive function f is defined as follows: 

that is, the length of a smallest program (input to the function) on which f outputs the string x. The 

descriptive complexity of a string x given a string v with respect to f is defined as follows: 

that is, the length of a smallest program (first argument to the function) which outputs the string x under f 
when given y as input (second argument to the function). Clearly, Kdx)=KAxle) where E is the empty 

string (actually, any constant string would work). Thus, we develop some of the theory for KAxly) with 

the implication that the corresponding results hold for Kf(x). 

Note that the descriptive complexity is dependent upon the function f. However, for any universal partial 

recursive function, F, the following inequality applies: 

since in the worst case, f(x,y) can be simulated by F(afx, y). The important point here is that L(af) is 

independent of x and so the descriptive complexity with respect to F grows at most as fast as that off. 

By the same token, the descriptive complexity with respect to any two universal partial recursive 

functions will grow at the same rate. Thus, in this sense, the descriptive complexity is invariant of the 

underlying interpreter. This fact is called the invariance theorem. Note also that growing at the same rate 

in this manner is in some sense stronger than the more commonly used rates of growth denoted by o, 0 
and O since this is with respect to an additive constant . Figure 2 demonstrates some differences between 

the two notions of rate of growth. @-growth is strictly asymptotic and requires no correspondence 

between the initial segments of the functions. Also, @-growth only requires that a constant multiple of 



one of the functions approaches the other asymptotically whereas for additive growth, the constant is 1 

(assuming that the functions tend to infinity which is the case here). 
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It is easy to see that descriptive complexity is a generalization of entropy to a more general set of 

information sources, i.e. the partial recursive functions. Whereas entropy is the minimum average 

encoding length when the probability distribution is known to the sender and receiver, descriptive 



complexity is the minimum encoding length when a common universal interpreter is known to the sender 

and receiver. In fact, the Churcwuring thesis purports that the partial recursive functions are the most 

general form of information source. Thus, in this sense, descriptive complexity is the most general form 

of entropy or encoding length possible. 

2.3.2. Randomness 

One particularly important upper bound of descriptive complexity is the length function. Consider the 
projection function n(x,y)=x. n: is partial recursive and so: 

the descriptive complexity is bounded by the length function to withii an additive constant. This is a very 

intuitive notion. The objects which are most difficult to describe cannot be described in any way other 
than listing them in full and so their minimum description length, i.e. their descriptive complexity, is 

roughly equal to their length (the constant is the length of the minimum length code to tell the interpreter 

that a literal value follows). Kolmogorov had more to say about these complex strings. 

Consider the set of "long" strings with descriptive complexity near their lengths: 

{x: KF(x) 2 L(x) - c] 

for some constant c. Kolmogorov suggested that these are the strings which should be considered 

random. For these strings, there is essentially no shorter way to describe them than by listing them. This 

is analogous with the maximum entropy principle in that randomness is the property of only being 

described by a large number of bits. Notice that this gives an implicit definition of inductive inference. In 

order to choose a model of a string, we choose the smallest program which can produce that string. 

If such a string were to have any regularities, the regularities could be used to describe the strings with a 

shorter program. For example, suppose the frequency of 1's in a string x is greater than the frequency of 
0's in x. Let p be the frequency of 1's. As Shannon proved, for any E, if the strings are large enough, 

the strings of symbols (in this case {0, 1)) can be encoded so that the average number of bits to encode a 
symbol is: 

1 1 This function H(p, 1 - p) has a unique maximum of 1 at p y  Thus, if p > ~  then H(p,l-p)cl and we can 

choose E so that: 



The total length of encoding a sufficiently long string will therefore be: 

Thus, one possible program to generate the string would list the encoding of the string as part of the 
program and would merely decode this to obtain the string. The total length of this program would be the 

length of the encoding plus the length of the program to do the decoding: 

where a is the progranl to decode the encoded string. Since the constant multiplier of L(x) is less than 1, 

this will be less than L(x)-c for large enough L(x), i.e. for a long enough string. Therefore, long enough 
1 

strings with frequency p>2 would not be random in the sense of Kolmogorov. Similarly, if the 
1 

frequency of any short substring (short relative to the length of the suing), is more than - where k is the 
2k 

length of the substring, then the same technique could be used to find a shorter description of the string. 

As a further example, consider a suing which is a picture with k-fold symmetry. This string also is not 

random. We can write a program which lists one of the symmetric pieces and reproduces it k times to 

produce the string. The length of this program would be: 

where a is the program to draw a picture with k-fold symmetry. Again, for large enough L(x), the above 

length would be less than L(x)-c (actually, this example could be subsumed by the previous one in certain 

circumstances). The thesis here is clear, any regularity can be captured by a program and therefore, the 

random strings in the sense of Koln~ogorov are strings containing no regularities. 

Now, let us attempt to count the number of random strings of length n. First note that there are exactly 

2n-c-1 strings of length less than n-c. This is of course the number of programs of length less than n-c. 

Thus, there are at most 2"-'-1 strings with complexity less than n-c. So of the 2" strings of length n, 

there are at most 2"+-1 which are not random (in reality there may be many less than this since many of 

the programs may produce strings of different length or produce repeats). Therefore, most of the strings 

of length n are random. The same basic idea can be applied to infinite strings (i.e., real numbers) and the 
random strings can be shown to have Lebesgue measure 1 in [0,1] (of course, the theory has to been 
modified somewhat for infinite strings). 



2.3.3. Computing the Descriptive Complexity 

The descriptive complexity function is not partial recursive. To prove this by contradiction, assunle that 

the descriptive complexity is partial recursive. First note that the descriptive complexity with respect to a 

function with infiite codomain is unbounded. This is because, for any given length, the number of 

programs of that length is finite, and so there is only a finite number of strings with at most that 

complexity. Thus, an infinite set of strings will have strings of arbitrarily large complexity. Next note 

that the following inequality holds: 

since x is a program of length L(x) generating f(x,y) under f with input y. Now consider some universal 
interpreter F. Define f(x,y) so that xlKp(f(x,y)ly) as follows: 

f(x, y) = min z 
(z:K~(zly)a]  

Now if KF is partial recursive then so is f since 1 can be defined as a partial recursive function (relation) 

and minimization of partial recursive functions are partial recursive. Therefore, we have: 

But this is a contradiction for large enough x since L(x) grows at the same rate as log2(x). Therefore, KF 

cannot be partial recursive. In the remainder of this report, proofs will be omitted for brevity. 

Despite this condition, descriptive complexity can be approximated. For example, it was previously 

shown that the length of a string (with an additive constant) acts as an upper bound on its descriptive 

complexity. There are in fact many other ways in which the descriptive complexity can be approximated. 

Any type of regularity which can be computed is an upper bound to the descriptive complexity such as the 

entropy and symmetry tests described above. 

Let us approximate the descriptive complexity of some string x by finding programs which describe x. 
Again fix a universal interpreter F. The hnction L(x)+al provides an upper bound on the size of a 

minimal length program producing x. Suppose we take each possible program of size less than this and 

allow each to run for some predetermined number of time steps t. Let H(x,y,t) be the length of the first 

program which describes x on input y and finishes in t time steps (time step will not be defined rigorously 

here but any notion of time is sufficient). If none of the programs which finishes in time t produce x then 
we let H(x,y,t)=L(x)+al. Note that H(x,y,t) is general recursive. Since H(x,y,t) is the length of a 

program which describes x, it is an upper bound for K(xly). For any t, there could be a program which is 

shorter than H(x,y,t) but describes x in more than t time steps. However, for t larger than the length of 

time it takes a shortest program to describe x on input y, H(x,y,t)=K(xly). Thus, we have the following: 



and so H(x,y,t) approximates K(x1y) from above. It is important to note that there is no general recursive 

function which approximates the descriptive complexity from below in the same manner that H(x,y,t) 

approximates it from above. In fact, there are no general recursive functions which bound the descriptive 

complexity from below and tend to infinity. 

2.4. Martin-Lops Tests and Randomness 

Ji 1966, Martin-Lof introduced a definition of randomness based on an abstraction of statistical testing. 

This definition was constructed so as to be applicable to finite sequences. A statistical test is a rule for 

determining whether a set of data is fitted by some probabilistic model. The test may either accept or 

reject a given set of data. The level of significance of such a test is the probability that data which is 

generated by the model is rejected by the test (probability of false rejection). Martin-Lof develops the 

theory for tests which determine whether data is fitted by symmetric Bernoulli distribution and then 

generalizes it to arbitrary probability spaces. Here we will concentrate on the theory of randomness for 

Bernoulli distributed random variables. The presentation here has been modified from those found in the 

literature to fit the scope of this report. 

A test of regularity for strings is a partial recursive function, g(x,m), which terminates with g(x,m)=O 

when its input x should be accepted as having regularity g at the level 2-m and is undefined otherwise. In 

symmetric Bernoulli trials, all strings of the same length are equiprobable. Since 2-m represents the level 

of the test, the following must hold: 

) {x: L(x) = n and g(x, m) = 0} I I 2n-m 

that is, a fraction 2-m of the strings of length n are accepted. Also, if a string is accepted at level 2-m then 
it should also be accepted at level 2-p for all pGn and so: 

p I m * {x: g(x, m) = O] c {x: g(x, p) = 0) 

A test of regularity is any such function in which the above two properties hold. For example, the 
1 

function might test for the proxinlity of the frequency of 1's to 2 or it might test for certain values of the 

average length of runs of 0's or 1's or anything which can be computed with partial recursive functions. 

For any given test of regularity, the largest level at which a string x is accepted is known as the 

randomness defect, mg(x), of the string: 



mg(x) = max m 
(m:g(xm>=O) 

The randomness defect will be one less than the first level at which the string x is rejected. By the first 
1 

property of tests, there can be at most 2n-(n+l)'2 strings of length n and which are rejected by a test at 

level n+l and so there are no strings accepted at this level. Therefore, mg(x) I n, that is, the length 

function bounds the randomness defect for any test g (no additive constant here). 

Analogous to the universal interpreter for descriptive complexity, there is a universal test of randomness, 

G. The test is universal in that for any test g, the following holds: 

In other words, if g rejects x at some level, then G rejects x at a level which is at most some constant 

number higher. A string is random in the sense of Martin-Ltif if it has no regularities, that is, if it is 

rejected by every possible test at some small level. This definition would be unwieldy were it not for the 

existence of a universal test. From the above property, a string is rejected by the universal test at some 

small level if and only if it is rejected by every possible test at some higher level (which depends on the 

test). Thus, the randomness defect with respect to a universal test gives an indication of the non- 

randomness of a string. A string with small randonlness defect is rejected at a small level and so does not 

contain any regularities with a reasonable certainty. This can be extended to give a precise definition of 

randomness for infinite strings. An infinite string for which the randomness defect of its initial segments 

is bounded is random. 

Martin-Lof went further to show a relationship between the randomness defect of a string x with respect 

to a universal test G and the descriptive complexity of x given the length of x, with respect to a universal 

interpreter F: 

for some constant c. Thus, the randomness defect and the descriptive complexity have an additive inverse 

relationship. Since L(x) bounds both m ~ ( x )  and K~(xlL(x)) (approximately), when either one of the 

functions is near this maximal value, the other must be small. This relates our two notions of 

randomness. Kolmogorov defines random strings as strings which have conlplexity close to their length. 

Martin-Lof defines random strings as strings with small randomness defect. By the above inequality, we 

see that these two definitions correspond closely (the use of K~(xlL(x)) may actually be more appropriate 

than KF(x) because randomness is relative to other strings of the same length). Random strings are 

strings which cannot be described concisely and these are precisely the strings which have no regularities. 

Just as belief in the Churcwuring thesis is strengthened by the correspondence between the two 



seemingly different forms of computation, one's belief in these definitions of randomness is strengthened 

by the correspondence of the two definitions. 

2.5. Discussion 

Von Mises was the first to introduce an explicit definition of randomness in terms of a set of random 

sequences. Implicit in his formulation was the importance of the relationship between inductive inference 

and randomness. I believe that this is essentially the correct notion of randomness. Random strings are 

those strings upon which a gambler cannot bet and win consistently; those strings for which the future 

cannot be guessed from the initial segments. However, Von Mises original definition was somewhat 

informal and in fact, formalizations of it were found to be inconsistent[l9]. 

Descriptive complexity theory goes even further in demonstrating the relationship between inductive 

inference and randomness. With descriptive complexity approach to inductive inference, we choose the 

model which allows the data to be communicated as concisely as possible. In this theory, randomness is 

defined in terms of the descriptive complexity which measures how simple of a model a string has, that 

is, how well it can be induced. If the string is random, its only models are essentially restatements of the 

string. The descriptive complexity approach to inductive inference is extremely general and, as is often 

the case, pays for its generality with practicability. The descriptive complexity is not computable. We 

can approximate it from above by various means but we cannot approximate it closely from below. This 

essentially means that we can determine when a string is non-random but we cannot determine when a 

suing is random. In other words, we can find certain regularities in strings but we cannot determine 

when a string has no regularities. 

Another problem with descriptive complexity is in choosing an interpreter. The invariance theorem 

implies that the complexity will not differ significantly between any two universal interpreters for 

sufficiently long strings (or more directly, sufficiently complex strings). This can be extended to any 

finite number of universal interpreters. However, when we consider the countable number of universal 

interpreters, we fmd that the strings must be arbitrarily long for the invariance theorem to hold. To clarify 

this, consider the case of a fixed finite piece of data. For any number, we can choose a universal 

interpreter in which this piece of data has that complexity. Thus, for the case of finite data, the choice of 

the interpreter can make the data random or non-random. The complexity is still invariant for the case of 

infinite data, or data which can be extended indefinitely. However, in practice we are often limited in the 

number of measurements we can take due to various constraints. Perhaps one solution is to choose an 

interpreter which is suitable for the problem at hand, i.e. one that codes the type of regularities which are 

expected with small codes. In fact, it may well be that randomness is context dependent. For instance, 

when one considers the set of all pictures, it may be that the picture encoded by the first n binary digits of 
the number IT will be a random picture, but this same data will be non-random as a long binary string. 

However, this context dependency should be captured by the underlying distribution (the results above 

can be extended to probability spaces other than symmetric Bernoulli distributions). It is contrary to the 



original intention of finding a general theory of randomness to use different interpreters in different 

contexts. Similarly, there are strings which are random for most realistic applications but which are non- 
random according to descriptive complexity theory. For example, the binary digits of 7~ and the numbers 

produced with a random number generator demonstrate many features of randomness and yet are not 

random in that they have small programs which describe them. 

There may also be other factors which should be included in a theory of complexity and randomness. For 

example, a certain string may be completely predictable but it might be computationally or practically 

infeasible to predict it. For example, if we were to precisely measure the initial velocities, mass 

distribution and surrounding air currents at the toss of a coin, we might be able to compute the face on 

which it lands, however, it is unlikely that we would be able to make the required measurements and 

computations to make this prediction before the event occurred (actually, this example is somewhat 

contrived since we would have to include the air currents, etc. in the program to compute the coin toss 

and so the coin toss would still be random). As another example, the 1,000,000th prime can be produced 

by a relatively short program but this program would be computationally expensive. It is unlikely that 

you would be able to produce the next digit of the 1,000,000th prime in time to win a bet. However, 

again, this is an external factor specific to the situation at hand. Thus, descriptive complexity defines a 

general approach to the problem of randomness but there may be other factors to consider in applications. 

The definition of randomness via Martin-Lof s tests is essentially equivalent to that via descriptive 

complexity. As mentioned previously, this adds much weight to the descriptive complexity notion of 

randomness. However, since these definitions are equivalent, each of the points mentioned above apply 

equally to both. Martin-L6f s tests are not invariant to the choice of universal test for finite data and there 

may be factors not accounted for in specific applications. 

3. Minimum Description Length Modeling 

3.1. Introduction to MDL 

The uncomputability of the descriptive complexity makes descriptive complexity theory impractical. The 

minimum description length (MDL) principle for statistical inference introduced by ~ i s s a n e n ~  solves this 

problem of computability. MDL is concerned with detecting a certain class of regularities rather than the 

absence of all possible regularities which is impossible to detect as descriptive complexity theory proves. 

The type of regularities which are detected is restricted to certain probabilistic regularities generated by a 

chosen class of probabilistic models. This formalism can be seen as choosing a specific non-universal 

interpreter to determine the descriptive complexity. Although the interpreter is not as general as possible, 

the complexity of objects with respect to it is computable. Since the regularities detected with MDL are 

probabilistic, they do not give an exact description of the data. According to MDL, statistical inference is 

performed by choosing the model from a selected class which completely describes the data with the 



smallest possible encoding. However, in order to completely describe the data within the chosen model 

class, it is often necessary to encode the model. 

MDL requires selection of a class of probabilistic models. The specific class chosen depends on the 

specific problem but certain conditions must hold for the chosen class. The class of models must be 

indexed by some parameters. One of the strengths of Rissanen's formalism over other methods of 

statistical inference is that the number of parameters of the model may itself be a parameter, or, in other 

words, the class of models may have a varying number of parameters. Thus, MDL may be used with 

nested model classes. For example, the ARMA models would be one such class. ARMA models may 

have any number of AR parameters and any number of MA parameters and so the number of AR or MA 
parameters in a specific model can be viewed as a parameter. Recall that xn refers to the n-vector of data 

(XI, ..., xn). In what follows, the distribution of a model from the model class will be denoted by fa(xn) 

where a=(k,0) represents the parameter vector 0 as before and k the dimension of 8. Thus, the number 

of parameters is considered as a parameter, although it is treated differently in certain cases. Since we are 

concerned with coding the data, they must be finite sequences of elements from a countable set (we have 

only a countable number of codes). If the data elements are real numbers, Rissanen suggests discretizing 

the model class by choosing a precision r and integrating over regions of volume rn to define a new model 

with a countable number of elements. For example, in the simple case in which each data element is a real 
number and xn is distributed according to fa(xn), we define a new model with point mass function &Sn) 

on the fmite precision elements an=(*1 ,S2,. . . ,ad: 

In practice, this is not a problem since we never actually have data which are real numbers, that is, all data 
has some finite precision (otherwise, we would not be able to record it). In the sequel, I will use fa(xn) 

as the discretized version of the distribution rather than &(fn) in order to spare notation. 

3.1.1. The Non-predictive and Predictive Complexities 

Given the class of models, Rissanen introduces non-predictive, semi-predictive (which is not described 

here) and predictive complexities. The three cases correspond to different methods of encoding the data 

and parameters. In the non-predictive method, the parameters are determined for the whole set of data. 

In Shannon's method of coding, the coding scheme is determined once based on the known distribution 

of the data before any data is sent and it is assumed that this scheme is built into both the encoder and 

decoder. The difference between Rissanen's non-predictive method of coding and Shannon's method is 

that with Rissanen's non-predictive method of coding, the coding scheme (or equivalently, the 

distribution of the data) is not assumed to be known by the decoder before transmission and so the 

parameters of the chosen model (which determine the coding scheme) are transmitted before the actual 

coded data. Thus, to completely specify the data, we must encode the model, i.e., the parameters, and 



encode the data within the chosen model. If the model has distribution fa(xn) for some fixed parameters 

c(;~(k,8), then, according to Shannon, that model allows us to encode the data xn in an asymptotic 

average length of -log2fa(xn) bits. The total encoding length is therefore: 

where L(a) is the length required to encode the parameters a=(k,B). For fixed k, 8 must come from a 
countable set in order to encode it. Rissanen makes the assumption that 8 is from a compact subset of 

Euclidean k-space and that the distribution fke)(xn) is smooth (twice continuously differentiable) with 

respect to 8. In order to make 8 space countable, we choose a precision to which the parameters will be 

encoded. If the precision is too coarse, then we will not be able to accurately specify the model and the 

encoding length of the data will be large. On the other hand, if the precision is too fine, then the encoding 

length of the parameters will be long. Rissanen finds an optimal precision at which the parameters should 

be encoded for minimum description length (this is embodied in the theorem given in the next 

subsection). At this precision, the encoded parameters require: 

bits. We can ignore the o(log2 n) term since this is dominated by the log2(n) term asymptotically. Thus, 

the total number of bits required to describe the data is the number of bits required to describe the model 

plus the number of bits required to describe the data in that model or: 

This is the non-predictive complexity. We choose the model by minimizing the number of bits required to 
encode the data, that is, by choosing a=(k,8) which minimizes the above expression. In practice this 

involves minimizing L(a, xn) over 8 for each fixed k (within some reasonable range, for example, from 0 

to n) and choosing the k for which L(a, xn) is minimum with respect to 8. Note that for each fixed k, 

this corresponds exactly to the maximum likelihood method of parameter estimation. 

Now we consider the predictive complexity. In the case of predictive complexity, a new model is 

determined for each point of data in a predictive manner. Note that this differs more significantly from 

Shannon's method of coding. In this case, the coding scheme is chosen adaptively, that is, a completely 

new coding scheme is chosen after each data point is transmitted. This corresponds to sending the data 

one at a time as opposed to sending them in a batch as in the non-predictive complexity. At each step, the 
model is chosen based only on preceding data points, so that the model can be determined by the decoder 

based on the data already sent. Thus, there is no need to transmit the model (the parameters). 



Denote the model chosen at time t by &(t). The probability that xt+l will occur based on the chosen 

model is f&(t)(xt+llxt). The length of encoding of xt+l will therefore be -log2 f&(t)(xt+llxt). The total 

encoding length will be the sum of the encoding lengths of the individual points: 

This is the predictive complexity. The procedure for choosing &(t) for each t is derived fiom this using 

the constraint that only data from preceding time steps can be used in determining the model. 

To summarize construction of the model in the predictive complexity case, the basic idea is to hold 

constant the object which is to be determined and minimize the resulting complexity. Thus, the 

determination of tlie model is performed in two steps (Fig. 3). In the first step, a value of k is held fixed 

over time and for each time step t, $(t) is chosen by holding 0 fixed over time and minimizing the 

complexity. This is done for all reasonable values of k (say, between 0 and t-1). Then, the value of k is 

chosen such that when k is held futed, the complexity with respect to the models dk(t) is minimized. 

Notice that this method of model determination is well-suited for iterative procedure which predicts the 

data in real time (this is exactly because it is the predictive complexity). As a final consideration, the 

predictive complexity (or non-predictive complexity in the previous case) can be used to compare different 

classes of models. 



Figure 3 

Choosing a Model Using the Predictive Complexity 

For each value of k from 1 to n: 
For each value o f t  from 1 to n: 

Choose &(t) to minimize: 

Choose C(t) to minimize 

k(t) = arg min 

Predictive Complexity: 
The predictive complexity is calculated as: 

n- 1 n-1 
- C log2 f(ht); 6k(t))(xt+l I xt) = - C log2 fa(t,(xt+l I xt) 
t=O t=o 

In his later papers[14], Rissanen introduces the stochastic complexity which provides a unifying 

framework for the other types of complexity. The stochastic complexity equals -log2 f(x), the size of 
encoding x, where f(x) is the marginal distribution of x derived from f(xl9,k) by using priors n(91k) and 

Q(k) (he also discusses methods for choosing priors when they are not known in advance). He then 

suggests that the non-predictive, semi-predictive and predictive complexities are upper bounds 

approximating this stochastic complexity by implicitly choosing certain priors. 

3.1.2. A Lower Bound on the Complexity 

Rissanen gives a lower bound on the expected encoding length or complexity of data distributed 

according to fa(xn) with fixed cls(k,0) with 8 from a compact subset of Euclidean k-space. He gives 

certain sufficient conditions on f,(xn) in order for the lower bound to hold. One condition is that fa(xn) 

is twice continuously differentiable with respect to 8. Also, a sequence of estimates of 9, d(xn), must 

exist which satisfy the hypothesis of the central limit theorem, that is, there are constants 6(n) with: 

such that: 



In other words, there must exist estimates such that their probability distributions do not have too much 

mass in the tails. Let L(xn) be the length of encoding the data xn for any prefix code of the data xn. The 

coding scheme is regular if 2-Uxn) satisfies the compatibility conditions for a stochastic process. The 

lower bound on the expected coding length of a regular code, L(xn), is given by: 

for any E, for all but finitely many n and for all 0 except in a set of Lebesgue measure 0. 

The theorem is similar in nature to Shannon's theorem which states that the entropy of the source is the 

least possible expected code length per symbol. The first term on the right hand side of the inequality is 

exactly the entropy, i.e., the minimum encoding length according to Shannon. In fact, if we divide the 

above equation by n to get the per-symbol coding length, we see that the inequality asymptotically 

becomes Shannon's inequality converted to per-symbol coding length. In Shannon's theory the optimal 

code length for xi is -logz(pi). Rissanen's theory is a generalization of this and the optimal code length 
1 for xn asymptotically equals -10g2f,(x~)+(~&)k logzn, the non-predictive complexity. Thus, the non- 

predictive complexity is asymptotically equal to the optimal coding length. It can also be shown that the 

predictive complexity is asymptotically optimal. 

As mentioned previously, no partial recursive lower bounds on descriptive complexity exist. Note that 

the lower bound mentioned above is not a lower bound in this sense. Rissanen's stochastic complexity is 

computable and so there is no need to compute lower bounds. This lower bound is a theoretical lower 

bound on the complexity with respect to all conceivable d i g  schemes based on the actual distribution 

of the data. 



3.2. Implementation 

3.2.1. MDL for Gaussian ARMA Models 

Now we consider using MDL to select the order of ARMA models. ARMA models are typically used for 

prediction and so we employ the predictive complexity to select the model order. We consider a Gaussian 
excitation source, (G). Recall that in an ARMA model with parameters a=(a.l ,...,ap) and b=(bl ,..., bq), 

the value at step t is defined as: 

with the requirement that the filter is stable and has stable inverse. Now define $1: 

Then: 

or: 

each et-i can be determined from xt and thus, so can R. Substituting into the conditional density: 

Note that a=(p;al, ..., ap;q,bl, ..., bq). Since at+, is determined by xt and et+l is zero mean, Gaussian and 

independent of xt-1, we have: 

In order to determine the predictive complexity, gt+l is replaced by Qt+i(t), the estimate based on the 
model chosen from the data up to time t, &t): 



The predictive complexity is therefore the sum of the squared errors of the estimates at each time t with 

sonie additive constant : 

This is the exact value of the predictive complexity, but, in choosing a model based on this complexity, 

we can disregard the additive and multiplicative constants since they are constant with respect to the 

minimizations in question. The expression which is minimized to determine the number of parameters k 

(step 2 of Fig.3) is the sum of the actual squared errors and Rissanen calls it the accumulated prediction 

errors. Now fix p, q, ai and bi and define: 

For fixed p and q, to determine a;(t) and bi(t) (step 1 of Fig. 3), the following is what must be minimized: 

Note that this is exactly the ubiquitous least squares criterion. Thus, for Gaussian ARMA processes and 

fixed p and q, the MDL criterion corresponds with the least squares criterion. At time t, we choose the 

number of parameters p(t) and q(t) which minimizes the complexity with p and q held fixed over time, 

which is the sum of the squared errors based on the models ai(t) and bi(t) for that p and q, or the 

accumulated prediction errors. 



3.2.2. Experimental Results for AR Models 

In order to evaluate the MDL criterion, I experimentally tested it for Gaussian AR processes. The data 

was taken from AR and MA models and the fitted models were AR since the nlinirnization is easier to 

compute (MA process estimation requires nonlinear programming). The AR process estimation was 

implemented using the least squares lattice algorithm[7] which works well in conjunction with MDL since 

models with varying order can be computed iteratively and since the a priori estimation errors are available 

(these are used to determine the predictive complexity and the accumulated prediction errors). Also, it is 

easy to test for stability for lattice filters since they are modular and stability can be tested for each module 

separately. Further implementation details can be found in [2]. 

In fitting an AR model to a sequence of data, it is important to restrict attention to only stable IIR filters. 

The theory behiid MDL requires that the parameter space be compact. The space of coefficients of W 

filters is a compact space. In fact, there is no reason why MDL should not work on unstable models as 

long as a compact subset of Euclidean space is chosen for the parameter space (the set of all unstable 

models is all of Euclidean space which is not compact). However, in practice, MDL shows poor 

performance in choosing model order for stable data when the parameter space is large and includes 

unstable models. The convergence was very slow for such model classes. 

Figures 4 ,5 ,6  and 8 show the results of the accumulated prediction errors for AR models of different 

orders and with data generated by a different model for each figure. In step 2 of the predictive MDL 

model choice, we choose the model order for which the accumulated prediction error is minimum. In all 

of these results, the variance of the white noise process is 1. This is the theoretical asymptotic minimum 

for the accumulated prediction errors. If the model parameters are estimated exactly for a sufficiently long 

period of time, then the accumulated prediction errors will fall below I+& for any 00. Figures 4 and 5 

demonstrate the convergence of the accumulated prediction errors to the desired relative values (with the 

accumulated prediction errors of the correct model order being smallest). Figure 4 shows the accumulated 

prediction errors for models of orders 1 through 4 where the data is generated by an AR(2) model with 

coefficients al=0.25 and a2=0.5. Figure 5 shows the accumulated prediction errors for models of orders 

1 through 4 where the data is generated by an AR(3) model with coefficients al=O, a2=0.375 and a3=0.5. 

Note that these coefficients were chosen by setting each module of the lattice filter to be half way in 

between the stability boundary and 0. This is to prevent the coefficients from being too large and the 

model becoming unstable and also to prevent the coefficients from being too small and the model 

degenerating to a lower order model. In Figures 4 and 5, the accumulated prediction errors for the order 

2 model becomes the smallest at roughly time step 45. In Figure 5, the accumulated prediction error for 

the order 3 model becomes smallest again at roughly time step 45. Thus, in these experiments, MDL 

chooses the correct model based on roughly 45 data points (n=45). 
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Figure 5 

Accumulated Prediction Errors for Several Model Orders 
Averaged over 256 Sample Paths of AR(3) Data 
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Figure 6 shows the accumulated prediction errors for models of orders 1 through 4 where the data is 

generated by an AR(2) model with coefficients a1=0.4375 and a2=0.125. Note that this model is more 
nearly degenerate than that of figure 4. Since the second coefficient is relatively small, the model can be 

approximated fairly well by an AR(1) model. In other words, given the same input sequence, the filters 

of the AR(2) model and of the AR(1) model to which the AR(2) model degenerates would yield similar 

output sequences. This is demonstrated in Figure 7. Figure 7 shows a sample path from the AR(1) 

model to which the AR(2) model nearly degenerates as well as a sample path from the AR(2) model. 

Both sample paths are generated by using the same white noise sequence. Thus, the sample paths have 

the same likelihood in their respective models. The figure shows that even out to 1000 time steps, it is 

difficult to distinguish between the AR(1) and AR(2) models. Thus, it requires roughly 700 steps for the 

accumulated prediction error of the AR(2) model to become the minimum. Before this point, the 

accumulated prediction errors are smallest for the AR(1) model. 

Figure 6 
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Figure 7 

A Single Sample Path of AR(1) Data 
Compared with Nearly Degenerate AR(2) Data 
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Figure 8 shows the accumulated prediction errors for models of orders 1 through 4 where the data is 

generated by an MA(1) model with coefficient bl=0.5. In this case, none of the models in the chosen 

model class of AR models is the true model which generates the data. In fact, any MA model is the limit 

of a sequence of AR models with increasing order (this may be informally viewed as an infinite order AR 
model except AR models are only defined for finite orders). Thus, the AR model with the highest 

possible number of parameters should be chosen asymptotically. Figure 8 shows the accumulated 

prediction errors for the AR(3) model becoming smaller than those for the AR(2) model. Also, just 

before the first time step shown in the figure, the accumulated prediclion errors for the AR(2) model 

overtook those for the AR(1) model. Finally, as can be extrapolated from the figure, the accumulated 

prediction errors for the AR(4) model overtake those for the AR(3) model at roughly time step 6000. 



Figure 8 
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3.3. Discussion 

The MDL principle is essentially an application of the philosophy behind descriptive complexity theory to 

statistical inference. It overcomes the problems of computability which occur in the more general 

descriptive complexity and, in this sense, it is a more practical tl1mr-y. However, there may be cases 

when one should not perform statistical inference by minimal encoding length. In the case of Shannon's 

entropy, the applications are clear, one uses minimal encoding for transmission of information in order to 

minimize the use of the channel (the communication medium) which is presumably the limiting resource. 

In certain cases, we may have an explicit loss function which may differ from the channel use loss 

function which is used implicitly in Shannon's theory. In such cases, the encoding length is not the 

criterion which should be minimized (since we have an explicit loss function). However, when the loss 

function is not known, the minimum description length approach still maintains the highly intuitive 

theoretical foundation of performing inductive inference by minimal encoding. Within this foundation, it 

provides a consistent framework in which to handle statistical inference with only a small number of 

assunlptions. 

The choice of the class of models in MDL is roughly equivalent to the choice of interpreter in descriptive 

complexity theory. The difference is that in the case of MDL, we choose statistical models of which there 

is a wide variety which have been well developed in the literature. Rather than arbitrarily choosing an 

interpreter, we can choose from among many standard statistical models. These commonly used 

statistical models are usually those for which analysis or computation is particularly feasible. However, 



there are several aspects of model choice which cause MDL to be limited in scope. First, Rissanen limits 

his theory to sequences of real numbers. Of course, something as general the minimum description 

length can be defined for data other than sequences but Rissanen only develops the specific theory for 

such sequences. For example, in computer vision, where tlie data is indexed by two variables and there 

is no inherent order in the index set, it is unnatural to describe the model as a sequence of reds. 

Secondly, as Dr. Mintz points out, because of tlie choice of a parametric model class, it is not clear how 

to go about handling tlie data in a non-parametric or robust manner. Perhaps one of the greatest strengths 

with the MDL principle is that, given two model classes, we can determine which class better fits 

(describes) the data in order to choose between them. However, MDL gives us no guidance as to how to 

choose the original model class from the set of all model classes. 

Another potential source of controversy with MDL is the discretization of the models. The the data space 

of the models is discretized with fixed precision r. This is equivalent to assuming that the data is 

represented as fixed point numbers since the precision of floating point numbers is dependent upon the 

size of the numbers. Thus, if the data is actually in the form of floating point numbers (for example, data 

from a digital voltmeter), certain modifications would be required. This should not occur in most cases 

though, because most data is measured on a single scale. Another problem with discretization of the 

model is that the discretized model could be significantly different from the original continuous model. 

For example, the discretized model could have completely different extrema. This is a problem because 

one would like to optimize the continuous model so that calculus can be used rather than extensive 

searches. However, if the discretized version of the model does in fact differ significantly from the 

continuous version, then it suggests that the model was chosen with detail on a scale finer than the 

precision of the data. Thus, perhaps this problem suggests poor choice of model class rather than a 
problem with discretization of the model. 

As with descriptive complexity theory, there may be other important factors which are not accounted for 

in MDL. For example, one model may provide an extremely good encoding of the data but prediction 

based it might be computationally infeasible. The advantage of MDL over descriptive complexity theory 

is in providing a computable inference procedure and yet it does not consider computational feasibility in 

its comparison of models. It is essentially up to the practitioner to weigh computational feasibility versus 

description length of models. This is natural since the computational feasibility is an aspect of the 

algorithms used rather than the models chosen (for any one mode1,there may be many algorithms which 

can be used). Again, it is contrary to a general theory of inductive inference to include details about the 

specific situation at hand. However, this may be a consideration in many practical instances. 

The previous section demonstrates the application of the predictive MDL principle to AR processes. In all 

cases, the procedure gave the appearance of converging asymptotically to the correct choice of models. In 

the simplest cases, the convergence was rapid with the procedure choosing the correct model order in 

roughly 45 time steps. For the more tricky case of a nearly degenerate model, the convergence was 

slower requiring on the order of 700 time steps to choose the correct model order. For the early time 



steps, the procedure choose the lower order model to which the higher order model degenerates. This 

may actually be more appropriate since, as demonstrated by the graph of the sample paths, the lower 

order model could be used to perform accurate predictions of the data. As the procedure obtained more 

data, it gradually determined the correct model order. Thus, although convergence was slow for the 

nearly degenerate case, it is not clear that faster convergence could be achieved nor that it is desirable in 

this case. The last case discussed was when the model class is inappropriate in that the data are not 

generated from a model in the class. In this case, the procedure choose appropriate low order models for 

the early time steps and gradually increased the model order to find closer approxinlations to the true 

model. One final point is that, although the results are not given here, the MDL criterion seems to have 

difficulty in determining the order of stable AR models when unstable models are included in the model 

class. Of course, such unstable models are rarely used at present and so there is little reason to include 

them in the model class. But one should keep in mind that MDL does have limitations. 

MDL is one of the few principles of statistical inference which can help in determination of the number of 

parameters (for ARMA processes, for instance). Early in this report, it was mentioned that maximum 

likelihood and the least squares criterion will always choose, if possible, the distribution which gives all 

the mass to the data. Let us consider this distribution with the MDL criterion. Since the distribution gives 

probability one to the data, there is no cost in describing the data within the model, however, we must 

also describe the model. The model must be parameterized over each possible data sequence (since it 

gives probability one to the actual data sequence and this sequence is unknown beforehand unless there is 
significant prior knowledge) and so the data itself must be encoded to describe the model. Thus, this 

model has no value in the MDL sense, that is, it does not compress the data at all. 

Another principle which can be used to determine the number of parameters is Akaike's information 

criterion A (AIC)fl], which is both a pre-cursor and an alternative to MDL. Akaike's AIC is based on the 

idea that if the estimaling parameter is close to the actual parameter, then the log likelihood forms an 

estimate of the closeness of the model to the true model. It turns out to be similar to the Rissanen's non- 

predictive complexity. The theoretical justification of Akaike's criterion is perhaps not as strong as that 

for MDL. Further, Rissanen proves that MDL is provides consistent estimates, that is, estimates which 

converge to to the true model asymptotically, and that AIC does not provide consistent estimates. On the 

other hand, an empirical studyr7] suggests that AIC may yield better results for small numbers of data 

points than non-predictive MDL for ARMA processes. 



4. Minimum Description Length for Image Segmentation 

4.1. Introduction 

~ e ~ l e r c 3  applies the minimum description length principle to the problem of image segmentation. Thus, 

we choose a set of models of segmented images and for any given image, select from among these 

models, that which allows the original image to be described as concisely as possible (including the 

description of the model). Of course, as mentioned, much of Rissanen's MDL is restricted to sequences 

of data but LeClerc's approach relates to MDL in its general philosophy. He suggests that problems in 

computer vision in general can be handled with the MDL philosophy. The minimum description length 

provides an objective criterion on which to base computer vision algorithms. LeClerc argues that this is 

after all what we are attempting to do in computer vision; find simple models of images. 

LeClerc demonstrates an interesting equivalence between MDL and maximum a posteriori probability 
estimation (actually, these ideas are implicit in some of Rissanen's work but LeClerc explicitly discusses 

them). In MDL, we attempt to describe the data by describing the model and then describing the data 
withii the model: 

According to Shannon, we know that if the model and the data given the model are discrete random 

variables, then the above will be equivalent to: 

where f(xnl8) is the distribution of the model with parameter 8, g(8) is the prior distribution for the 

parameters and the model and the data are encoded optimally. We choose the model, 8, which minimizes 

this total description length. But by taking the exponential of the above, we see that this minimization is 

equivalent to the following maximization: 

which is equivalent the maximum a posteriori method of estimation. Note, however, that the difference 

between Rissanen's formalism and maximum a posteriori as it is used in practice, is that Rissanen also 

codes for the number of parameters which is the equivalent of giving a prior on the number of parameters. 



4.2. The Model Classes 

4.2.1. The Piecewise-Constant Model Class 

In order to apply MDL, LeClerc defines a model class for segmented images. The model class is 

gradually expanded to include models of increasing generality. The simplest model class used is the class 
of piecewise-constant intensity images. Rather than giving a prior distribution on the class of models, 

LeClerc equivalently defines a method of encoding the models. LeClerc suggests describing a piecewise- 

constant image by describing the boundary of each segment with a chain code (a list of directions) and 

describing the constant intensity value within the region. LeClerc then assumes that the data given the 

model is distributed normally with known variance. 

In the case of vision, the data has two spatial dimensions. We will denote data by 

~ " ~ ~ = ( ~ 1 , 1 , . . . ,  XI,, ,... ,Xn,l ,..., xn,J where xij is the value of the intensity at spatial location (ij). Let the 
model be denoted by umn=(ul,l ,..., ul,, ,..., un,l ,..., u,,) where uij is the value which of the model at 
spatial location (ij). The model is piecewise-constant and so the boundary of the segments occurs 

between any two points which have different values. The outer boundary need not be described since this 

is always included in the boundary of the corresponding region. The length of the boundary, therefore 

equals the number of points and neighbors which have different values divided by 2 (since, assuming 4 

point neighborhoods, each boundary point will be counted twice, once from each side): 

where N(i,j) is the set of neighbors of (ij) and S(x) is the Kronecker delta function, which equals 1 when 

x=O and 0 elsewhere. In order to encode a region, we must give the the starting point of the chain code of 

the boundary, the lirks of the chain code and also the constant value within the region. The encoding 

length of the links of the chain code for the boundary equals its length times the average length of 

encoding each link in the chain, which we will denote by b (b will be roughly log2 3 for 4 pixel 

neighborhoods). Thus, the cost of encoding the chains of all segments is just b times the total length of 

the boundary which is given above. LeClerc assumes that the encoding costs of the starting point of the 

chain and the constant value within the region are averaged into the global constant, b, by which the 

above total boundary length is multiplied. This is an approximation but the actual value is difficult to 

calculate locally since it depends on the number of regions and also, it is relatively small compared to 

some of the other terms in the description length. Thus, the length of encoding the model is taken to be 
the total length of the boundary, given above, times a constant b. 



Now we must consider the length of encoding the data given the model. Assuming the data given the 
model is independent and normally distributed around the model value with known, constant variance o, 

the optimal encoding length of the data given the model will be: 

Note that this noise is meant to characterize features such as texture and camera noise which are not 

otherwise included in the models. We now find the model to minimize the total encoding length which 

will be, ignoring constants: 

Because of the 6 functions in the above, it will be difficult to minimize with common optimization 

procedures such as gradient descent or simulated annealing. Therefore, LeClerc implements a special 

optimization procedure to minimize the above which will be discussed in the next section. Note that this 

objective function has similarities with those used in regularization[ll]. 

4.2.2. The Piecewise Smooth Model Class 

LeClerc then extends the model class to piecewise smooth images. In this case, piecewise smooth means 

that the function can be approximated by a low-order polynomial. This assumption is reasonable since, a 

class of functions which is particularly smooth is the analytic functions which can be approximated with 

the low order terms of the Taylor series in most cases. LeClerc chooses to describe the polynomials 

locally. Thus, the model at point (ij) is a two dimensional polynomial centered at (ij) which has the 

following form: 

where M is the maximum degree of polynomials (that is, maximum sum of degrees in each term) being 
used and u y '  is the coefficient of the term which is degree m in x and degree n in y (actually, LeClerc 

includes a factor of as in the Taylor series but this is unimportant since it can be included in h e  



coefficient u?'). LeClerc uses polynomials which have a maximum total degree rather than a maximum 

degree in each variable so that the class of models is rotationally invariant. 

Now we consider coding the model. As before, we must describe the boundary across which the model 

changes. The model is the same at two points if and only if all the derivatives of the polynomials are the 

same at the midpoint (the polynomials are not the same but are translated to be centered at their 

corresponding spatial locations and so they are equal when translated to the midpoint). The derivatives 

can easily be obtained analytically in terms of the coefficients of the polynomials. Now the total region 
length will be the half the number of points and neighbors which differ in any of their derivatives at the 
midpoint: 

where U ? ' ( X , ~ )  is the mixed p-th panial derivative with respect to x and q-th partial derivative with 

respect to y of ui,j(x,y): 

As in the previous case, we multiply the total boundary length by a factor b which represents the average 

length of encoding a link in the chain code. However, in this case, we do not include the length of 

encoding the parameters (polynomial coefficients) of the region into the constant b because unlike the 

previous case, the length of encoding the coefficients may be a significant factor and may vary between 
regions. In this case, we encode the coefficients of the polynomials separately and allow for a different 

degree polynomial in each region. We encode all coefficients for terms with a given sum of degrees if 

any of them are non-zero. Thus, the total number of coefficients which must be encoded for a single 

region is: 

where (ij) is any point in the region. Here m' is the index for the surn of degrees and we multiply by 

ml+l since there are this many coefficients with surn of degrees m'. In order to get the encoding length 



of the parameters for the region, we multiply the above by a constant d, the length of encoding a single 

non-zero coefficient. This is the encoding length for a single region. Once again, it is difficult to locally 

calculate the total encoding length for all the regions since this is dependant upon the number of regions. 

Thus, we approximate it by calculating the above at each point and multiplying it by a factor which should 

be roughly the reciprocal of the average region size, which we incorporate into the constant d. To get the 

total encoding length of the data, we add the length of encoding the region boundaries derived at the 

beginning of this section, with the length of encoding the coefficients derived above and the length of 

encoding the squared errors, derived at the end of the previous section. We again choose the model 
which minimizes the total encoding length. 

4.2.3 Further Extensions 

LeClerc further extends the class of models in two ways. First, the model of the noise is changed so that 

the variance is unknown and varies between regions (thus, the variance becomes piecewise constant, 

rather than constant as in the previous cases), The following modifications must be made to the coding 
length which is to be minimized. Fist, since the variance is now spatially varying, o becomes oij at 

point (i j) everywhere in the equation for the coding length. Also, the constant which was ignored in the 

analysis of the squared errors must be included in this case since it is dependent upon the variance which 
is now unknown. Finally, changes in variance must be included as boundary points when calculating the 

region length. Again, LeClerc includes the small length required to encode the variance for each region 

into the constant in front of the region boundary length term. 

The other extension which LeClerc makes to the model is to include a known point spread function for the 

image sensor. This involves a convolution with a known kernel of the estimates formed with the model 

(before the noise is added). 

4.3. The Optimization Procedure 

LeClerc introduces an optimization procedure to minimize the functionals involving 6 functions which 

arise as the description length of partitioned images. The optimization method is one of a general class of 

numerical methods known as continuation or homotopy methods[17]. In a continuation method, one 

embeds the problem at hand into a class of problems indexed by some parameter, s, such that for one 

value of the parameter the problem is easily solved and for another value of the parameter, the problem is 

equivalent to the original problem. Also, it must be required that the solution varies continuously with s. 

In our case, the original problem is a minimization of a functional which will be denoted by L(umn). We 

embed this functional into a class of functionals L(um,s) such that: 



We require that u*(s), the minimum of L(u*n,s) at s, is continuous in s. Further, we choose L(umn,s) 

so that it is easily minimized for large s (it has a unique global minimum). 

Now we consider the optimization problem introduced in the previous sections. The main difficulty is 
with optimizing the 6 functions. Thus, the functionals L(u-,s) are formed by replacing the 6 functions 

with Gaussian functions: 

6(A) + exp - 
( 2 2 )  

where A is the difference in the models at two points (the difference in the constant value for the 

piecewise constant case and the difference in the derivatives of the polynomials at the midpoints for the 

piecewise smooth case). When s=O, this is equivalent to the original problem and as s gets large, the 

sharp valleys flatten out and the problem becomes easier to optimize. Thus, we start with a large value of 

s and multiply s by some fraction to gadually decrease it. For each value of s, we minimize the 

functional using the optimum from the previous value of s as the starting point. LeClerc optimizes the 

functional for each value of s by linearizing the derivative (which can be obtained analytically) of the 

functional and solving for a zero by using Gauss-Seidel iterations. This is the optimization procedure that 

LeClerc uses to minimize the functionals. 

For the case when the variance is unknown and spatially varying, the above optimization procedure has 

difficulty in optimizing for the variance and the coefficients of the polynomials. Thus, LeClerc modifies 

the procedure so that it starts with an estimate of the variance and for each value s, finds the optimum 

value of urn and then uses this to form the next estimate of the variance for each region. 

There is another reason for the use of this choice of optimization procedure. The optimization procedure 

has an interpretation in terms of the discontinuities of the image. When the value of the Gaussian function 

shown above falls below a certain value, then a discontinuity is detected between the two points. When s 

is large, A must be large in order for a discontinuity to be detected. As s gets smaller, smaller variations 

in the models are detected as discontinuities. LeClerc defines the stability of a discontinuity as the first 

value of s at which it is detected. Discontinuities with high stability are those which are more easily 

detected. Thus, the stability of the discontinuity is a criterion for the scale at which the discontinuity can 

be detected. Also, it can be shown that, when s is large, the solution to the functional is roughly a 

linearly smoothed version of the image. As s becomes smaller, the smoothing becomes sharper and it 

does not spill over region boundaries. Thus, the procedure can be considered as a type of adaptive 

smoothing process. It starts out smoothing the entire image and gradually adapts (as s gets smaller) so 

that it doesn't smooth across detected discontinuities. 



4.4. Discussion 

The minimum description length approach to image segmentation follows from the previously discussed 

work on descriptive complexity and the minimum description length principle. Although it follows 

similar ideas to those of MDL, it is different in that the data are not sequences, i.e., single images have no 

inherent order or temporal index. 

The work presented by LeClerc only represents one choice of model classes. For example, the noise is 

modeled as a normal distribution with unknown variance. It is not clear that this is an appropriate model 

class, particularly since, image data is typically bounded while the normal distribution is not. The 

problem is not serious since MDL is based on the idea of choosing an appropriate model from the model 

class rather than the exact model which may not exist. Nonetheless, a more appropriate model class such 

as a Beta distribution might yield better results (although the analysis might be less clean). However, in 

other cases, the model choices (chain code boundaries and polynomial regions) seem roughly to represent 

the intuitive ideas we have about segmentations. Furthermore, the class of models is defined so that the 

description length can be computed locally and so the procedure is well-suited for implementation on a 

parallel computer. 

It is standard in the image segmentation field (as well as other areas of computer vision) to demonstrate a 

procedure by showing the resulting segmentations. The idea is that a human can generally tell what a 

good segmentation should look like. The results shown in LeClerc's paper3 appear to be good compared 

to other techniques found in [6]. However, only a few results are actually presented. In fact, the two real 

images (as opposed to synthetic images) presented are coarsely sampled and generally lack details (there 

are no textures, the backgrounds are solid, etc.). Furthermore, one of the greatest potentials of minimum 

description length applied to computer vision lays in the ability to use the description length as an 

objective criterion with which to compare procedures in almost any area of computer vision. This 

criterion is precisely what is sought after in computer vision, a procedure performs well if and only if it 

produces a more concise description of the image. In fact, the ultimate goal in computer vision can be 

seen as finding a concise description of an image in some representation language, for example, we might 

want a description like "a tree with a wide trunk and red leaves" (although perhaps English is not the ideal 

representation language for images). Unfortunately, LeClerc does not take advantage of the minimum 

description length as an objective criterion. He does not give the resulting description lengths of the 

images which were processed which would give the reader a basis for comparison. Also, LeClerc 

requires that the representations of the data be complete in the sense that an image can be recreated exactly 

from its representation. The ultimate representation used by humans is not complete in the sense that 

humans typically cannot perfectly recreate images which they view. They can usually recreate only the 

"essential" information in the image from the model (in fact, the "essential" information may be context 

dependent and can vary between different people and would be difficult to formalize). Nonetheless, 

complete representations of images can in fact be a good model for early vision, in which all information 

is retained and the data is merely put in a more convenient form. 



Many techniques for image segmentation are designed empirically. The approach presented here has the 

advantage that it is derived completely from a few simple principles. Another approach to image 

segmentation with a strong theoretical justification is the regularization approach. Regularization[121 is a 

general technique for solving ill-posed problems, that is, problems in which existence, uniqueness or 

stability of the solution is not guaranteed. The regularization method chooses an approximate solution 

which is stable with respect to changes of the initial data within some region. The regularization method 

requires choice of certain functionals (problem definition and regularizing functionals) which may be seen 

to be the analog of the choice of model class in the MDL approach. The problem is ultimately phrased as 

a problem in the calculus of variations. In certain cases, the regularization approach can be shown to be 

equivalent to maximum a posteriori estimation using Markov random field models[l2]. One difference 

between the regularization approach to image segmentation and the approach presented here is that in 

regularization, the underlying image is chosen from the class of all piecewise smooth functions. It is not 

clear how this would be handled in MDL since it would be required to code functions from the class of all 

piecewise smooth functions. One would have to parameterize the functions and then discretize them as 

LeClerc did via Taylor series. However, it does not seem that this would be invariant to the choice of 

parameterization. Regularization has also been applied to several other areas of computer vision. The 

theoretical foundations of the MDL approach are somewhat stronger, in that, as mentioned previously, the 

descriptive complexity approach is an intuitive approach to inductive inference. Perhaps the ultimate test 

of these approaches will be their relative performance in real tasks. 

Now we consider the optimization procedure used by LeClerc. If s is decreased to 0 sufficiently slowly, 

then the global minimum of the problem will be found. However, in practice, the rate of decrease and the 

stopping point are determined for computational feasibility and other reasons and so a global minimum is 

not guaranteed. In fact, stopping with s greater than 0 causes another problem. In the original 

formulation, the region boundaries occur where the models differ by any amount, which forces the 

regions to have closed boundaries. With the optimization procedure, the 6 functions are approximated by 

Gaussian functions and so for any s greater than 0, the discontinuities are detected at points where the 

difference between the models of neighbors exceeds some threshold value. However, since s is not taken 

all the way to 0, the discontinuities found in an actual implenientation do not have to form closed curves. 

The reason that LeClerc uses such a system is for computational feasibility and to ensure stability of the 

solution. By using this threshold, the solution is not sensitive to small perturbations in the data. Thus, 

LeClerc's approach is not purely MDL but is more of a hybrid between MDL, in which description length 

is the primary criterion, and regularization, in which solutions are chosen from the set of stable solutions. 
As s 4 ,  the threshold loses importance since the models will be different only at discontinuities but the 

choice of a threshold is still somewhat arbitrary. Thus, the stability criterion has a degree of arbitrariness 

since it was included after the fact, rather than formulating the problem from the beginning so that it 

chooses a stable solution with the minimum description length. 



5. Summary and Conclusion 

We have introduced descriptive complexity approaches to inductive inference. The basic idea behind 

these approaches is that, in order to choose a model for a set of data, we choose the model which allows 

us to describe the data as concisely as possible. In the case of the very general descriptive complexity 

defined by Kolmogorov and others, this corresponds to choosing the shortest program which describes 

the data as a model for the data. This approach demonstrates an important correspondence between 

inductive inference and randomness. Random data is data for which cannot be induced, that is, no 

algorithm will allow prediction or equivalently compression of the data. Alternatively, random strings can 

be seen as those which possess no statistical regularities that can be found with an algorithm. However, 

this theory has the problem that the descriptive complexity cannot be computed by any algorithm. Also, 

the complexity is dependent on the programming language, when one considers the infinite number of 

possible programming languages. 

In order to solve some of the problems associated with descriptive complexity, Rissanen developed the 

minimum description length principle. With MDL, a class of probabilistic models is chosen from which 

to choose a model for the data rather than all possible models as in descriptive complexity. From this 

class of models, the model which allows the most concise description of the data is chosen. This 

approach differs from other common approaches to statistical inference in that the description length of the 

model must be included in the description length since otherwise the data is not fully determined by its 

description. This allows classes of models in which the number of parameters can vary to be handled 

within the MDL framework. Experiment has demonstrated that the MDL predictive complexity works 

reasonably well for the important class of AR processes. 

LeClerc applies the MDL principle to the problem of image segmentation. The class of models used by 

LeClerc consists of chain codes for region boundaries, polynomials for the region intensities and a normal 

distribution with unknown and spatially varying noise for the intensity noise. A special procedure is 

designed for the minimization of the description length because of the difficulty of the minimization. The 

results appear to provide good segmentations but LeClerc ignores the description length as an objective 

criterion of the appropriateness of the segmentation. Also, a result of making the optimization procedure 

computationally feasible is that the discontinuities do not form closed curves. 

The descriptive complexity approaches to inductive inference define an intuitively pleasing approach to 

model identification. However, as this report demonstrates, the framework is quite general and care must 

be used in its application. Perhaps of all that can be said about descriptive complexity, this is the most 

important: it provides general guidelines to approaching inductive inference problems but the final 

outcome is ultimately dependent on how it is used in practice. 
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