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Abstract Existing approaches to semantics of algebraically specified data types such as Initial Algebra 
Semantics[Goguen et al., 19781 and Final Algebra. Semantics[IVand 1979, Kalnin 19831 do not take into 
account the possibility of general recursion and hence non-termination 211. the ambzent programming language. 
Any technical development of this problem needs t80 he in the sett,ing of domain theory. In this paper we 
present extensions of initial a.nd final algebra selllant,ics tmo algebras with an underlying domain structure. 
Four possibilities for specification methodologies arise: two each in the Initial and Final algebra paradigms. 
We demonstrate that the initial/final objects (a.s appropriat,e) esist in all four situations. The final part 
of the paper attempts to  explicate t,he not.ion of ahst.ract,ness of ADT's by defining a notion of operational 
semantics for AD'T's, and then studying t.he rela.tionship bet~ireen the various algebraic-semantics proposed 
and the operational semantics. 

1 Introduction 

1.1 Background 

Data Abstraction is a.n important issue in progra,ln design: inlportant enough that  a variety of 
programming languages beginning wit11 hiLODULA-2. a,nd languages such as ADA and ML have 
supported data  encapsulatioil fea,tures. The al~stra.ct data t.ype ( X D T )  facility in a programming 
language allows the user to create a collectioil of representing types and functioils defined on these 
types, hiding the representatiolls of the types, and the implementations of the functions, and al- 
lowing only the use of the functions defined. A progralnmer, in crea.ting a data  abstraction, uses 
some form of specification. Oftentimes these are equations [Ehrig S_; Mahr 19851, Horn Clauses, 
first-order formulas (John Guttag's LARCH specifica,tion Language), or modal equational formu- 
las [Moss & That te  19911. Various specifica,tion ~nethodologies exist : inter alia Initial Algebra 
Semantics [Goguen et al., 19781, Final Algebra Sema.nt,ics [l,T'aild 1979, I<amin 19831, Loose Se- 
mantics [Ehrig & Mahr 19851 a.nd Optimal Sernant,ics [Moss & T1la.tte 19911. Adopting any one of 
these specification methodologies, given a. specific,a.tion. a meaning for the specification is obtained. 
In reasoning about the ADT, no mat,t.er what the inlplemei~ta.tioi is. one uses this meaning as the 
basis for reasoning. 

1.2 The Problem 

In the theory of programnlillg languages, the theory of doixlains is an "inlportant tool for making 
meanings". No doubt other algebraic structures lmve beell proposed and studied: arguably, domain 

'This research was done while visiting the Softxva1.r Principles Rebea.rch (;roup a t  XTkT Bell Laboratories, Murray 
Hill, NJ 07974, during May-July 1991. 
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has proved the most successful. The basic need for this cos~lplicated development is driven 
considerations: interpret,ing general recursion, type constructio~~s such as type sum and type 
t ,  and interpreting higher types. Both [Stoy 19771 and [Gunter 19911 are excellent references. 

When we use algebraic specifications to specify abstra.ct data. types in such a setting, it is not clear a 
priori that  any of the semantics alluded to ea.rlier is adequate. In all of the semantic methodologies 
mentioned , the meanings are C-algebras. If one wants to support the view that  an abstract 
data  type defined is yet another data type in the langua.ge, if one wants t o  interpret recursive 
programs involving these da,ta types, one must look for semantics of algebraic specifications in a 
universe where one can interpret genera,l recursion, the va,rious type coilstructions (sums, products, 
recursive types,..), in particular, higher types: since dolllain theory (a.nd in particular, the category 
of complete partial orders) provides one such setting, we will try to  reconstruct the spirit of these 
semantic methodologies in domain theory. More precisely. the problei~l is t,his: C-Algebras do not 
come with fixpoint theorems. How then ca.n we give nleanings to espressio~ls in the programming 
language, that  (possib1y)contain symbols in the signa,ture of the ahstract data. type? 

This paper studies the semantics of algebraically specified abstract clata types in the context of 
a language featuring general recursion. It is quite clear. that it would be profitable to make this 
study in the setting of doinain theory. In extending these s ~ ~ l l a n t i c  specification methodologies t o  
domain theory we need to develop new conhtructions in dolllain theory. 

1.3 Related Work 

Quite clearly the Initial Algebra Senlantics work of the .4DJ group [Cioguen et  u.l., 19781, and the 
F i n d  Algebra work in a1gebra.i~ semantics jpart,icularly [T&;a,nd 1979, I<a.lnin 19831) are an inspira- 
tion for the research presented here. Dei~ota~tional Semantics developed by Dana Scott and others 
(see [Gunter 1991, Stoy 19771 for a,n i i~troductio~l)  is bhe other area of research on which this work 
rests. However, in developing algebraic sema.ntics in a doma,in theoretic setting, the only other 
work we are aware of is by the ,4DJ group[Goguen et nl.. 19771. Tlris work studies continuous 
initial algebras in a setting without equa.tions. To the best of our Iil~o\vledge all the results in this 
paper are original with us. John Mit.chell's ~vorli on represent,a.tion independeace and data  abstrac- 
tion ([Mitchell 19851) is rela,ted to  ou1.s; t,he precise relationship of our results to  his representation 
independence theorem is not clear: tve plan to st,udy it in the f11tul.e. 

1.4 Preview 

Once we have agreed that  the objects of specificationh have to be do~nains equipped with appropriate 
functions for interpreting the synlbols in the ADT signature. lve need to  exallline methods of such 
specifications. Several different styles of specificat ions may I)e considered. In the first two styles, all 
the operations are assumed to  be strict: the equationi in the specification are expected of only the 
terminating expressions, or semantically. of only the n o n - i  elementi. TVe call these, specifications 
with I-exceptzons. 

(I) Initial Algebra Specifications wit11 I-exceptions specify the structure of the part of the domain 
algebra excluding the bottom element. -411 operations specified here will be taken to be strict in d l  
the arguments (of course, nullary operators ha\ e no arguments. ho they side-step this issue). 

Example 1.1 The specificatio~z ({Nat ) .  (0. s. -1. El ) .  crht r c  



E l  = {x - x = 0, s ix )  - y = s ( x  - y) .  x - 0 = x, 0 - x = x) (1) 

can be given as a specification of the flat naturu,ls ulitlz eclger operations( the symbol - denotes proper 
subtraction), in the semantics described ir2 section 2.2. 

Roughly speaking, the structures defined are all those dornain algebras whose n o n - l  elements 
satisfy these equations, and all the functions interpreting the constant symbols in the signature are 
strict. 

(11) Final Algebra Specifications with 1-esceptions describe the observable behavior of all the 
non-bottom elements of the ADT. Once again all operatiolls are implicitly strict. The specification 
makes use of an existing observa.ble type. and gives equationh that characterize the equality between 
terms of observable type. 

E x a m p l e  1.2 To specify the flat elonlazr7 of .fiizztc .wts of rleiturnls. ulr could use the fiat domain of 
naturals and booleans (and nriy f~ inr t io~~ . i  nlrecrdy clefiilrtl. .iuch ni  cq-Yclt, the equality o n  naturals 
or por, "the parallel or"), and ulrzte t116 sperzfirntrorl 

({Nat ,  Bool, Se t s ) ,  {E.  ins. 8, por .  t r u e .  false. e q N a t ) .  E2): where 

E2 = {x E 0 = false. x E iils(y. S )  = e q N a t ( x ,  y )  poi- x E S )  ( 2 )  

This semantics is described in section 2.3. Once again the structures are domain algebras, the 
interpretations of function synlbols are all strict. the equations hold of all the n o n - i  elements, and 
the domains corresponding to  the observal~le sorts, Eat  and Bool, are  the standard standard flat 
naturals and flat booleans, respectively. 

(111) Initial Algebra Specificatioi~s of donlain algebras. that is described in section 3 does not make 
implicit the strictness of the operators wit11 respect to their argullleilt positions. The specification 
describes the algebraic structure of the entire d o ~ n a i l ~  algel~ra: the eclilatiolls hold of all elements 
of the algebra. 

E x a m p l e  1.3 Consider the clonzctiil of lazy  i r t . s  : oric coulcl t lzcu. zl 0.5 the domain obtained by 
starting with the domain of .stream.s;. a n d  collwp.s;iizy by t h t  eyu,innle~-rce relution that relates two 
streams that differ only zn the or(lrr o f  r1crvct~t.i crltrl izur~lbel- oj occ I I I ~ I I T C C  i of tllezr members2. TVe 
can descrzbe zt via the sp~czficcrtloi,'. ({Sets) .  ((3. ins. c o i ~ v ) .  E ) .  ~c*hcrr E 7s the following set of 
(conditional) equatzons4: 

  noth her way of viewing it  is that each e l e i ~ ~ e r ~ t  of this donlain. vie\vi~tg tlre clolnain as a domain of information, 
is a positive description of a set. 

3Notice the use of I t,o specify strictuess information. I ib treated ah a pervasive that can be used in any 
specification. 

4 ~ n d e e d  we are stepping out of equat.iona1 logic, hut t,his is largely for purposes of exposition. It is possible to 
rewrite tis as a pure equation, by introducing a col~st.ant I f  then e1.w and writing the corresponding equational axioms. 



C O ~ V ( X )  = t r u e ,  conv(y) = t r u e  ==> i n s ( x , i n s ( y , S ) )  = i n s ( y , i n s ( x , S ) )  

conv(0) = t r u e  conv(s (x )>  = conv(x1 

In a sense made precise in section 3. the dolllain of lazy sets with constants empty set and set 
insertion, is indeed the initial algebra of the specification. 

(IV) Final Algebra Specifications of C'PO S-algebras describe the structure in question by describ- 
ing the category of domain algebras in which it is final (section 1 defines this more accurately). 

E x a m p l e  1.4 Consider the specificcrtion of lazy sets rcs before but ~ ~ ~ i l h  the operations of membership 
and insertion. The observable types we use n w  agc~,in the ncrtlrrols nnc1 the boolec~ns. The specification 
is: 

({Nat ,Bool ,  Se t s ) ,  {€ , ins ,  8, par, t r u e .  f a l se , eqNat ) ,  E4) ,  ci'hcjr 

E4 = {x E 0 = false, x E i n s ( ~ , S )  = e q N a t ( x . y )  poi- x E S.  

i n s ( l , S ) =  I,I E S = I . x E  I = I) 

In the final algebra selilantics that  will be esplaiiled in Section 4 this sl>ecification has as its meaning 
the domain of lazy sets with the standard dolllaill operations of null yet, set insertion (strict in its 
first argument, and non-strict in its second). and meillbership testing (strict in both arguments). 

In section 5 we formalize a notion of operational semantics of a prograiilming language with abstract 
data  types, and a noti011 of valid ii~lplelllentatio~ls given an algebraic specification. This allows us t o  
study the relationship between the evalliatioil relation in a valid inipleilzentatio11, and the meaning 
of program expressiolls over the XD'T signature. The three theorem\ stated there can be seen as 
explaining the sense in ~vhich ADT's ale abstract. 

Most work in Algebraic Specifica.tion sta.5.s aloof of progranlnling 1angua.ges. This is probably 
reasonable. Languages do not support, specifications of -4DT.s. There a.re merely features for 
creating ADT declarations. But: in t,hc contest of supporting forrllai program developme~lt in a 
language with ADT's (or ~rlodules), a prograalrner should he able to specify the ADT in some logical 
language (see, for example, Don Sannella,'~ xvorli on Esteildecl MI2, [Sannella 19901). A semantic 
specification methodology then illforms us of the meaning of the ~pecifica~tion. This becomes the 
foundation for reasoning about t,he correct,iless of progranis developctl. 

1.5 Results 

1. Existence of initial a,nd final objects in the cat.egory of :-strict doma.in algebras and strict 
continuous C-homomorphisr~~s (Theorems 2.1 a.nd 2 . 3 ) .  

2. Existence of initial object in the category of CPO S -  Algebras and strict continuous C-homomorphisms 
(Theorem 3.1). 

3. A Wand-like Final Algebra theorem for the category illeiitionecl in (2)(Theorem 4.1). 

4. Relationships between the final algebra semantics mrilt~orletl in ( 1 ) and ( :3) ,  and their respective 
operational semantics(T11eorems .5.1 . 5.2 , ant1 7.13 ). 



2 Specifications with I-Exceptions 

2.1 Equational Specifications: Defiilitiolls 

Definition 2.1 Given sorts S and sigrznture Y, alz S-.sorted Strict Donznin C-algebra (C-SDA) 
is an  S-indexed collection of CPO's (Ds)sES,  and on interpr.etatiorz fzrr7ctzon 1, such that for any 
constant i n  the signature f : s l ,  .., s,, - S ~ ~ + I .  

Z ( f )  E D,, ?:..I? D,,, -, D,,,,, 

where @ is the "smash-procluct" opemtoi on domuins, nrzd -, z.q thc .strict frrrzction space construc- 
tor. 

When we deal with Final Algebra Semantic5 cel tail1 type5 will be gilen a przori, and their deno- 
tations will be given. 111 that case, in any S-SDX. the uni~erse5 corresponding to these sorts will 
have to be  t o  be given. 

The definition of a C-SDA homonlorptiisrll is straightforivarcl. 

Definition 2.2 Given two C-SDA '.< DA4(l)  cr ncl D A ( ~ ) .  (1 Y-,?D,4 hor~zo/~zorpIzisnz f m n ~  D A ( ~ )  to 
D A ( ~ )  is a S-indexed fafnzly of mnps ( 1 1 ,  : DA!') - ~ ~ 4 : ~ ) )  allcl l  thnt: 

1. Each h, is strict and continzrons. 

2. Ignoring the order strrrcttrre of D.-l(l) crrld ~ : 4 ( " ) .  ( 1 ~ ~ ) ~ ~ ~  (1 Z-n1gebr.a Izonzonxorphism. 

We consider only strict (continuous) filllctioils between algebras. hecause the notion of homomor- 
phism embodies the notion of a range eleilleilt "mimicLing" the behavior of its preimage, and if 
the observation of behavior incllidei ol),erving teriniilation (as n e  intend to  do) we have to build 
in the notion that  the image of the bottoiu e l c r n ~ ~ l t  cannot be  on-bottom. 

Given a C-SDA, the meaning of a te1.111 with respect to an a ~ ~ i g n ~ l l e n t  p is a straightforward 
adaptation of that  in the case of Y-algebras. That is. n e  ignore the ortlei structure of the universe 
and pretend we are dealing with a Y-algebra. 

Definition 2.3 A C-SDA sntz.s.fic5 nn rqrrtctfon t l  = t 2  zj (rnd ordy i j jor every asszgnnzent p into 
the C-SDA, such tlzat no vcrrloblc 71 cc<<tgr~~rl I by p .  [tl]p = ( [ t 2 ]p .  TI?(< ~ l t o z d s  straight-forwardly 
to a set of equatzons. 

2.2 Initial Algebra Sei~lailtics 

Suppose we want to  specify the struct,ure of a flat dolllaill . ~vit,h every operator being strict. Very 
often in computing practice it is important to  specify such st,ructures. For esa.mple, a programmer 
might specify the flat natura,l nunlbers with the opera.tiolls of strict successor, strict addition, and 
the consta~lt  0. One call view the structure as being the st,andard .algebra of naturals with these 
operations given, with a const,ant I a.djoined to it .  Since strict.ness is implicit, specifying the 
structure of the universe escludiilg i is suffic,ient to specify the entire structure. 



Initial Algebra Specifications with I-exceptions specify the stiucture of the part of the domain 
algebra excluding the bottom element. All operations specified here will be taken to be strict in all 
the arguments (and of course, nullary operatols have no arguments, so they side-step this issue). 
Let us re-examine Example (1.1). We want to specify the algebra whose universe is the flat domain 
of natural numbers, and the operations of strict and strict proper subtraction, and the constant 0. 
Let us call this algebra NL.  The specification is the folloning: ( {Nat) ,  El, El), where 

El = {x - x = 0, S ( X )  - y  = s(x - y ) ,  x - 0 = x. 0 - x = x) 

Roughly speaking, the structures defined are a,ll those domain  algebra,^ whose n o n - l  elements 
satisfy these equations, and a.11 the fulictions interpreting the constant symbols in the signature are 
strict. 

The basic idea in initial algebra semantics is this: given an equa.tiona1 specification ( C , E ) ,  if one 
considers the category of all C-a,lgehras that sa.tisfy E. there is an initial object (i.e.) an algebra, 
unique up to ison~orpliisin froin which t,here is a unique Y-l~omomorphisi~~ t o  any other algebra in 
the category. This algebra is then taken to be the inea.ning of the specification. 

The idea of initiality extends to the case in hand. Our 5pecification describes a class of strict 
domain algebras, namely those that satisfy the ecluation> in it. The initial object in this class of 
algebras is then taken as the ineaning of the specification. But doe5 an initial object always exist? 
First let us establish that  one exists in this particular ca5e. 

Lemma 2.1 In Example  (1.1) the  ir-ritinl crlgcbrcr i12 tllc catcgo1.y ofY1-,SDA ..s satisfying El i s  N I .  

Proof : Consider any other Strict Donlain Algebra D nlith signatule (0. a ,  +) (call i t  El)  satisfying 
the equations E ~ ~ .  Every n o n - l  element in &ITI i, of the foiin i n  ( 0 ) .  for soine 11 > 0. By the 
definition of C-SDA homomorphisi~~ in clefinition 2.2. an! hoillo~llorpl~ism has to  be strict, and 
hence the image of 1 is determined. Also the element 0 in -ITL ha5 to nlap to the denotation of 0 
in the range SDA. Since for any hoinomoiphi~m h .  

by induction on the structure of s 1 7 0 )  it is c1ea.r that, the isnage of all eleillents in ATl is determined. 
Thus the homomorphisn~ froin NI (if one exists) is unique. 

Existence is verified by noting that  the strict map. that maps each iulimll~er 11 in N I  t o  the denotation 
of sn(0) in D is indeed a SDA4-homomorphisi~~. Thi:, involve5 cl~ecl\ing several cases. For example, 
to check that  

we do a routine induction on n ancl 111 (lrere is the interpretatiolr of .S ill the algebra D; the 
unsubscripted s refers to  the interpretatioii of .5 in AI-I). 

Thus N I  is initial in the category of Yl-strict dolllaill algebras \atisf~.ing E l .  1 

The construction in the esaiilple above i:, easily generalized. 

50f course satisfaction in the  sense of strict donlain algebras. i h  as htated iii clcfiilit,ion 2 . 3 .  



Construction 2.1 Given a set of eyuotions, clefi1,t n Y-,YD,-l IE (1.5 folloros: 

Let I(E) = {[s]=,  I s E Tc(@)}  

The universe II(E) is  the flat donznz12 whost n u n - l  elenzents (ire exactly the elements of I(E). 
Every n-ary function symbol f is interpreted by cr corre.iponrli~zg ftrr,ctzon f ' ~ ( ~ ) :  

if for some i e, = I 
f I ~ ( ~ ) ( e ~ ,  .., e n )  = 

( [ . f ( t l ,  .-, t n ) ] Z E  1 i .fvi.et = [tz] 

It is easily verified that  this is a C-SDA. It is a a  ea.sy exercise to verify tha.t it satisfies the equations 
E.  We can go on further, generalizing the proof of Lemnla. 2.1, t,o establish the following theorem: 

Theorem 2.1 The category of S-SDA 's satisfying equations E,(icnd C-.SDA homomorphisms has Z 
as its initial object. 

2.3 Final Algebra Senlalltics 

The idea in Final Algebra Specification is to describe observable hel~avior of terms. Certain sorts in 
the specification amre stated a.s being observa.hle, and a. certain pa,rt of the signature is given as the 
observable signature (from which the olxervable tenns a.re constructed). The sets and associated 
operations corresponding to the observa,ble sorts are given before hand (they may be presented via 
a set of equations, whose initial algehra is then taken as the interpretation of those sorts). We 
look at  the category of those C-algebras ( a )  that sa.tisf1- the equations in the specification, (b) are 
reachable and (c) whose universes corresponding to the observable sorts are exactly the sets that  
are given a priori as the mea,nings of the observable sorts. The ~llea,iling of the specification is then 
taken to be the final object in this cat,egory. FTrhen call this object I)e guaranteed t o  exist? We 
describe some properties tl1a.t a.re illlposed t,o t,his end. 

We have not completely specified the behavior of the objects of our obbervable data  type if there is 
some observable context and some tern1 of the type heing defined. slich that  upon inserting the term 
in the context, the resultant tern1 is not provable equal to any tern1 o\-er the observable signature. 
So we require the following property. 

Definition 2.4 An equationcrl spccijiccitiorz is  sufficient co inp le te  if and only i f f o r  any closed 
term t of observable type there is sonze closet1 term s over the ob.fic~.crible signature such that E 1 
t = s .  Given t ,  the function eval   return.^ t h e  clcnotntioll of.. in the obscr.ucible type. 

The observable types are known, it is not the specification writer's ii~teilt t o  specify them. Thus 
the following property is reasonable to reqnire. 

Definition 2.5 A n  eqwntioizerl s ~ ~ e c ~ f i c c ~ t i o / ~  E is. snicl to prese rve  obse rvab les  if and only if 
for any two closed ternas t l  nnd t 2  ove~ .  tl tr  ob.$cl.r~rrblt .siqucitlrr.r, E t tl = t 2  if  and only if 
OBS )= tl  = t 2 .  

Adding these properties to  our list. the follo~i-ing theorenl due to llitcll \17and follows [Wand 19791: 



T h e o r e m  2.2 (F ina l  A l g e b r a  T h e o r e m )  For every sz(@cient completr theory that preserves i ts  
observables, the category of reuchuble ~~zoclels of E 1zcr.s (1 fiiznl object. 

In attempting to  extend Final Sema.nt,ics t,o our ca.se similar assumptiolls have to be made. The 
given observable sorts are required to be fla.t doina.ins '; the equat.ions should preserve observables 
and be sufficient complete. 

An analogous description of reachability nlust be made. In a Y-SD-4. elelneilts which are the 
denotations of closed Tc,(ll terms will be called recrchoblc clcn,cr>ts. 

Reachab i l i ty  Assumpt ion :  The category of Y-SDA's considered has as objects those C-SDA's 
in which the set D of reachable elements belo~v every elen~ent d is directed. Also, d = U D. 

The reachability assumption on Y-SDA's force5 the SDA's to  have a flat domaill structure wherein 
all the n o n - l  elements are deilotatioils of closed Ty  tenns. The reasoil for stating the assumption 
in this seemingly complicated fashion is that for donlain algebras in which not all operations are 
strict (whicl~ we will have occasion to conbider in the 5ection 4 ) .  tllih lllorc general statement will 
be applicable. 

Let us revisit Example 1.2. We want to specify the '.eager set of natural numbers", denoted 
N a t S e t l .  The universe of this algebra is the flat donlain whose 11011-1 elenlents are the finite sets 
of natural numbers. The operat.ions are 8, E and i l l s .  \\-it11 8 denoting the einpty set, E denoting 
the membership operation which is strict in  both a.rgument s. ant1 i71.5. the set insertion operation 
that is strict in both arguments. TVe a.re given as t,he obser~ahles t,he sort of nat,ural numbers (i.e. 
the domain algebra NI of the previous section). and the flat domaill of boolean values, with the 
following observable signa.ture: {por. i7.11.c.. . f(llse. ~ q ~ 9 ' ( 1 i )  '. 

The specification is ({Nat,  Bool ,  Sets}.Y2.E2 ). wit11 

Cz = { E ,  ins.  0. por .  t r u e .  false. e q N a t ) .  E ). and 

E2 = {x E 0 = false. x E i n s ( y . S )  = e q N a t ( x .  y )  por x E S) 

We claim the following: 

L e m m a  2.2 The  equations in E2 pt3tarr.i.r. o0.5c.rr~rblf.s . nt?d n / . ~  .sil.@gicic.r~tly con2plete. 

P r o o f  : That the equations are sufficientl!, complete i5  trivially 5rell. - 1 s  for the preservation of 
observables, one can make the following argunleilt. 

Observe that  orienting the equations left to right gives a ground co~lfluent and strongly normalizing 
rewrite system (in the presence of the equations betnee11 tlie ohservahle\). where the signature being 
considered is Cz extended by a constant I, and for every function sylnbol and every argument place 
there is an equation asserting t11a.t the fiirrction is strict in that argliinent. For instance f ( x ,  I) = I 
asserts that  f is strict in its second a,rgunlent position. This ~lat,ura,ll~- ~llea,ns that  any two provably 

6We require the domains given a.s observahles to be flat. Equality on lion-flat donlains is non-monotone, and hence 
is not computable; so it  does not make sense t.o allow observable types to be non-flat.. 

7The presentat,ion of t,he two-sorted algebra of flat naturals and flat booleans is by a set of equations holding over 
the observable signature. T h e  init,ial algebra of these equat.ions (whose esist,ence wa.s derno~lstrated in the previous 
section) will be this two-sorted algebra. \Ve have chose11 not to go illto the  details of these ecluations. 



equal terms reduce t o  the same normal form when reduced using this rewrite system. A simple 
analysis of the norind forms suffices to  establish that every teriil of the form I , y ,  IB,,~, sn(0) ,  true 
or false is in normal form. Also the equations over observables prove every ground term over the 
observable signature equal to  a tel.111 of oile of these foriils: thus there are terilis sl and sz in the 
form mentioned, such that  t ,  is provable equivalent using the equations about the observables to  
3,. Thus sl and s2 are provable equal using E 2 .  This lneans that  they reduce t o  the same normal 
form term. But sl and s2 are already in ilorillal form, and hence they are identical. 1 

Lemma 2.3 Consider the category of r~~richcrble Y2-SD<A '.i(u'lzose obsservnble sorts are the standard 
flat naturals and .flat booleans) satisf!jing the cqtintio11.i E 2 ,  nrztl Sz-,S1L).4 l~omomorphisms. The 
algebra NatSet l  is final in  this cntegory. 

Proof : Let D be any reachable S2-SDB satisfying E2. Every element in the sort Sets of D has 
t o  be the denotation of a term of the for111 1, 8, or / n a ( n l .  ... iil.i(n,. O)..). If h : D + NatSet l  is 
any homomorphism then necessarily 

This means that  h ,  if i t  exists is unique. To prove is esistence. note that the denotation of a term t 
in D is mapped to  the set of all those naturals n such that in D the ineaning of the term sn(0)  E t 
is true: call this set elem(t). Also observe that for any two closed t e r n ~ s  t l  and t 2  whose meanings 
are equal in D, the fact that D has to  preserve its obherval~les guardntees that  e l e m ( t l )  = elem(tz) .  
Thus h is well-defined. I 

We now give a general coi~strllctioil for the final T-SD-i for an arbitrary equational specification. 

Construction 2.2 Given a .sl~eci'rrrticrij (.S'.S.Ej, ti3t cor~s/r.trrf n Y-,SDA .Fl as follows: 

Consider the final algebra 3 of E. Corz.htrzict n .fltit tlomci111 b y  zritr odtrr ~ n y  n bottonz element. Extend 
the interpretation of fi~nct?o?? sy17~bols ( ~ I I ' P I S  t h c  11?t~r1)/(tofior1 .T to t h ~  j 70 f  domain, so as  to 
make all the functions strzct in (111 thcrr argrtn,tr?tq. 

We now establish that  this co~ l s t ruc t io~~  iiitleed yieltis the final ol~jrct  in the category of reachable 
C-SDA's satisfying equations E. 

Theorem 2.3 Let E be a .set of equotiorl.s tlznt i.5 obsel-val~le preserving nrzd .suficient complete. 
The category of reachable C-SDA k .i.citi.sfyiltg E,  with Y-.S'D:l l ~ o r ~ ~ o ~ ~ ~ o r ~ l ~ h i . ~ r i ~ . s  lzas a final object. 

Proof : We will work with one representation of the final algebra of E. essentially the one due to  
[Wand 19791. Consider the set of closed terln, over Y .  If n e  consider a closed tern1 t of observable 
type, then sufficient completeness gual-antees that there is a tern1 ovei the observable signature (and 
hence a value in the observable dortlaill) to which i t  is pro~able  equal: we will define the function eual 



to  be the niap that  takes t to  this value. Define a, biimry rela.tion of iiidistinguishability(notation : 
N )  between closed terms as follows: 

where C[] ranges over contexts of observable type. It is easy to  see that N is a congruence, and 
therefore the closed term algebra over the signature Y wheil quotiented by N results in a C- 
algebras. This C-algebra satisfies the equations E, and is final in the category of C-algebras and 
C-homomorphisms[Wand 19791. 

Construction 2.2 yields the algebra. in which every sort is a fla,t doma.in whose 11011-I elements come 
from the above final algebra,, aad in ~vllicli a11 opera,t,ors a.re strict in all their arguments. This is 
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Let D be any other reachable C - S D A  satisfying equatioils E.  If we ignore the I elements in each 
of its universes, as well as the order st]-ucture we have a Y-algebra satisfying E (call it D-), from 
which there is a unique homomorphism to F. Any Y-SD-1 hoinoiiiorphisil~ from D to F, when 
restricted to  elements of D- is a ~-11oi~ioi11orphisi11; this illealls that a homomorphism is unique in 
its definition on the n o n - i  part, of D. Of course strict,iiess deten~iines its value on the I element 
in the various sorts. Therefore, there is a uliicllle homoniorpl~~sn~ ilrto Fl. 

It is easily established that  the strict lriap which on the l ion-I  elenlent:, of D is equal to  the final 
map from D- to  3 is indeed a Y-SD-4  hoi~loiiiorphisn~. Thu5 Fl i5 indeed the final object in the 
category of reachable C-SDA's  hatisfying E. I 

3 Another Initial Algebra Semantics 

We now turn our attention t o  specificatioils that  are expected to hold over the entire domain (thus 
the I element is not excepted in determining the satisfaction of eqiiationb). and in which operations 
may be specified t o  be strict or 11011-btrict n i th  respect to any argument position. Specifications 
may refer t o  the constalit I in specifying strictnesb inforil~atioil . The specification of strictness 
for a function f (in its second argument. ha?.) ~vould be \tated a5 fix. I) = I. This means that 
strictness information specification can 1)e dolie a5 palt of the ecluational specification, and special 
specification mechanisms need not be instituted for it. Object5 of specification will be CPO C- 
algebras defined below. 

Definition 3.1 (i) A partied-ortlcr S-nlgcbr.(r I.$ onr ~ohoi t  ur7drrlyir7g urzzuerses are partially or- 
dered sets, and the functions rrs.soc?rrtcd t ~ i t 1 1  ~y~izhol.\ 1 1 )  flrr .ilgrt(ltl~x ( I I C  nzaps monotone with 
respect t o  the partzal orclerzng. ..ld(lztto~~nlly ~j 1 1 ~  191lor f I h r  or elf r rrrg 017 the unzverses, the struc- 
ture should k a C-algebra. 

(ii) A CPO C-algebrm has ci.s its 11 tlil:er.~;es ~ l i r ~ c f ~ ~ l - ~ o r ~ ~ ~ ~ I ( f C  pc~.rticr~l or.(ier~d seta ? Each function 
symbol should be interpreteel 0.5 cr contirruoit.i. frrrlction. nr7rl i f  (re ignor.cl il tc or.cler-irlg o n  the universes, 
the structure sho,uld be o Y-n1gcbr.cr. 

'1t is easy to  see that  the preservat,ion of ohservahles gua.rantees that an!. sort correspo~tdiilg to  an observable 
type will be the  initial algebra of tile ecluat,ions used 1.0 present t,he t.ype. 

'Directed Complete Partial Orders are clefinetl in Definitioll 3.4. .A11 tlomain theoretic terminology used here 
should be explained in detail in a.ny introductory test on domain t.heory. 



Definition 3.2 A CPO C-ho1720172orl1171~1~1 I <  a ~ o r t - ~ ~ ~ d ~ ; ~ ' c r I  ~oIle~tzor2 of .strzct continuous maps 
from one CPO C-cilgebru to elnother. < u c h  thcrt ?f tllc orclcr atr ucttrrc z i  zgnored, the map is a 
C-homomorphism. 

The notion of satisfaction of equations in a CPO 3-algel~ra is as expected: me ignore the order 
structure, and determine whether the equations hold in tlie resultant Y-algebra. 

Let us examine Example 1.3 again. Let S3 denote the signature of that specification, namely, 
{@,ins,conv). Let E3 be the set of equations below: 

ins(l,S) = I 

CO~V(X) = true, conv(y) = true ==> ins(x,ins(y,S)) = ins(y,ins(x,S)) 

conv(0) = true conv(s(x)) = conv(x) 

We would like to show that  in the cat.egory of all (:!PO Ys-a1gebra.s satisfying equations E3, where 
the arrows are CPO X3-homornorphis~11s. the a,lgel)ra. L,S'cl ta of 1a .z~  sets wi th  the operations of 0, 
set insertion, with a sort of 1iat11ra.l ullnlbers endowet1 with the strict opera,tion of convergence, 
conv, which evaluates to true on all the n o n - l  elenlent,~. is indeed initia.1. 

Consider the following algebra FinLS':  its universe is the follo~ving dibjoint sum of tlie set S of all 
finite sets with itself : (0) x S U (1) x S'. \vitli a partial ordering given by: 

Define: 

Here is the intuition. JVe are constructing the algebra of bet5 that are finitely constructed from 
the signature( i.e. not employing recui5ion). hilice n c  ha\e in our signature a I element over 
the sort of sets, and we have an insertion operatol  la^\- 111 1t5 second argument, we call construct 
"incomplete sets" such as ~ n s ( O .  1). 'Thebe incomplete bet 5 are ieple5ented 111 our model as (0, A). 
The elements (1, A) replesent the "complete bet\". 

Lemma 3.1 The algebra FinL,S' is (1. l~ar?i(rl or*dcr* Y:3-(rlgrbrur thlrt srriiqfies the equations Eg.  Fur- 
thermore it is initicr.1 in the ccltegory of ptrrticrlly or(lci.c.tl Y:i-nlgcbra.i satisfying E3. 

Lemma 3.2 The universe of eilgebrrr L,S'ct. 1 5  obta7r1ed b y  ro~~.itrrrrtrr,g the zdeal completion of the 
universe of F i n L S .  Its operators r r ~ c  thc rot,trr~uou< e.~tcr,.tort< oj tlzc operators of F i n L S .  



Lemma 3.3 The  algebra L S e t s  is irlrtiol irj the ccttegory of CPO Y3-cr1gebrm.s satisfying the equa- 
t ions E3. 

Proof : Since F i n L S  embeds into L S r t s  via the inclusion map, any S-l~omon~orphic map from 
L S e t s  must be a C-homomorphism on FinL,S .  Thus the map restricted to F i n L S  is unique. By 
the previous lemma any continuous map from L S e t s  is colnpletely determined by its values on the 
elements in F i n L S .  This establishes the uniclueness. 

To prove the esisteilce of the map, show that the conti~luous estensioll of the initial map from 
F i n L S  is indeed S-ho~nomorphic. I 

We generalize this construction to a.rbitra.ry specifications. 

Definition 3.3 The  closed terna pre-order. hns (1.5 its lrrl,iuerne ctll clo.s.e(l ternzs: constructed from 
C U { I ) .  The  ordering between terii1.c is given by the follozrrirzg rules rrrzcl crxioms: 

t'c .?+ congruence 
f(t'1 c .f(.'i 

tl E t2 t Z  t l ,  where ( t l  = t 2 )  E E .  

The closed t e rm  partzal order zs obtcrlizctl frotjz Ihc rloqcl i t  rrrr prtor tic 1 by con.itructzng equivalence 
classes of the relatzon (5 n 3) .  Thr  or dcr trjg or2 ~qurccilc ncr clnsit i t i  rr,her.rted from the pre-order. 
W e  will wrzte CTPc for thzs pnrtzrtl orclcr. 

Lemma 3.4 The closed terrih partitrl orcler i.5 (I l~ar.tict//y orr/cr,ed y-cllgc-brer. It satisfies the equations 
E. Furthermore it is  initial ill the clrtegory of ljc~r~tierlly ordrr,cd Y-t/lgebrcr.s. tlznt satisfy E. 

Since we are looking for an initial object in the category of C'PO Y-=\lgebras, the partial order 
CTPc needs to  be completed into a CPO in soine initialit!. preher! ing fashion. The technique of 
ideal co~npletion turns out to  be the right tecllnical device. 

Definition 3.4 Given ci pnr.t?crlly orrlcrc(1 \ t  1 ,  (1  iubsct .\(rrtl to be tlzructccl if gzven any two ele- 
ments  in the subset there i.5 crn el~nzcrit rn thr .iubsci u.11ich 1.i an upper. boirrael of those two elements. 

A partial ordering is  scrld t o  be c l~ r~c t c ( l - co r~ l~~ l c f c  (nrzd rnlltrl n C'PO) i f  ~ r ~ d  orzly if every directed 
subset of i t  has a least rrpper borrrrtl. 

A n  ideal i n  a partial ordering i.s. o dou:rtu.urd clo.s.e(l, clircctctl .ytrb.s;.tt of t11t partial order. 

The ideal completion o f  n particrl order D. rlrrjotcd Id l (D) .  1.i t11c .ct of crll idea1.s of the partial 
order, ordered by set inclu.szon. 

It is a well-known fact that  the ideal completion of a partial order re\ult\ in an algebraic cpo whose 
compact elements are isomorphic to  the partial ortler. 

Construction 3.1 Define the ('PO S-(rlqc brcr T (I\ fol1ou.i. Its ur,tr9cr*~r i (ire the CPO's obtained 
by taking the ideal co?izldetzon of thr vr?ri3rr-5c.i (11,) of  thc ~~(rrtirrl orfler- C'TPc. For any  function 
symbol f:s' + s, let F be the ir~trrl)rrtttiron o f f  111 C ' f  Py.  Lrf I n c ~  : 11 - Id l (  D )  be the inclusion 

A .  
mapping, and n z n c s ,  = i n c ~ ~  x .. x I I ~ L D ~ , .  L c ~  n 1r1cSJ : lJ1 x . x fl,? - Idl(D1) x .. x Idl(D,). 



Then the interpretation off in Z is the unique continuous nzcrp f fronz nIdl(D,,)  + Idl(D,) that 
makes the following diagram commute. 

We can now prove that  if a partial ordered C-algebra satisfies an ecluational theory then the CPO 
C-algebra obtained by taking its ideal colnpletion also satisfies the theory. This guarantees us that  
Z satisfies the equations in E. We can further go on and establish the following initiality result: 

Theorem 3.1 1 defined in Definitioi~ 3.1 is initiol in tllr cr t rgory  of C'PO C-algebras satisfying 
E, and CPO C-homomorphisnzs. 

4 Final Object in CPO 3-Algebras 

As we did in the previous three ca.ses we will esamine the corresponding example (Example 1.4 in 
Section 1.4). Here is the specifica.tion: 

({Nat, Bool, S e t s ) ,  {E, ins,  8, por, t r u e .  false, e q N a t ) ,  Eq).  \~llel.e 

E4 = {X E 0 = false,  x E ins(y, S )  = e q N a t ( x ,  y )  por x E S. 

Consider the category E 4 C A T  whose objects are ("PO Yl-algebras nit11 the following additional 
properties : the sorts N a t  and Bool are interpreted b!. the flat natural domain and the flat 
boolean domain, respectively. the constants truc and f(i1.v are interpreted in the standard manner, 
the operator eqNat is interpreted as the strict equality flunction on the doinain of naturals, and 
por is interpreted as the "parallel or" function on the dol~lain of 1,ooleans. The arrows are CPO 
C4-homomorphisms. 

The algebra LazySets 11a.s the algebra LS'ets of the previous section as a reduct; additionally, the 
symbol E is interpreted by the meinhership function that is strict in the first argument. Further, if 
the second a.rgument is a3n "incomplet~e sct" (0.-4). it ret,uriis true if the first a.rguinent is contained 
in A, and diverges otherwise. 

We aim to show the following: 

L e m m a  4.1 The algebra Lazy5'ct.i I . .  .finnl rn E4CAT 

Proof : Let us show the existence crf a mal> h :  Gi\.en dny  other algebra A in E 4 C A T ,  h behaves 
as follows: 



We leave it to  the reader to  verify that  11 is indeed a Y-hoii~omorpl~isir~. 

Uniqueness is shown from the siinple observatiorl t h a t  any hoi~roinorpl~ic map g has to  preserve the 
property that  for any natural nui1-~ber 11, 

since g is an identity on the observable sorts. In t,lre algebra Lnz:y,S'ets. given any two distinct 
elements S1 and S2, there exists a na.tura1 17 such that,: 

This guarantees that  there can be at. most one map g satisfyii~g the property asked for in Equa- 
tion (6), namely, the map h defined above. 1 

Once again we generalize the construction. The constrliction is clehcribed in the rest of this sec- 
tion; the proofs thereof are involved and arc esplainetl i n  adecluatc tietail in a companion paper 
[Subrahmanyam 19911. 

We now define a collection of sets of terms that n e  call Q ~ I N . ~ I - D ~ / C C ~ F I /  ,S'C~C. 

Definition 4.1 A set of closed fcr,)r.i Q r 5  .ctrrl to  bc Qtrnir D~ l r t t ed  / j  crnd only if the followzng 
two conditions hold: 

(i) For every tl , t2 E Q ,  for ez7cry fi127tc .<ct o j  roi~tc.z.t. {CI [I. ... C',, [I}. Ihc/-f zs a t E Q satisfying 
the following properties (for. 1 5 I 5 u ) :  

(ii) For every tl,t2 E Q ,  and for cz7cr-y f<ro  holc cor~tc.ct C'[-. -1. thr/.c 1.i a t such that, 

er7n1(C'[t. t ] )  2 t ca lC '[ l l .  t 2 ] )  

Let CON be the set of all single-holecl contests of obscr\,al)le t>pe. Let us assume, without loss 
of generality, that  there is exactly one observable type. Our observable type will be a flat domain 
D. With the discrete ordering on C O N .  the fuilctio~l ,pace [ C O N  - D] is easily seen to  be a 
bounded-complete partial ordering, wit11 pointwise ordering on tlie functions. We can associate 
each closed term with a function in this space Lia the follon ing iilap: 

Observe some simple properties. Let 11s denote the range of by 1.'. -4busing terminology, we 
will speak of quasi-directed subsets of F. -1 subbet of F i< quasi-directed exactly when its pre- 
image with respect to  T is quasi-directed. Every clirectecl sul15et of F,( the ordering being pointwise 
(notation: < f), is also quasi-directed. Observe non.  that ally quasi-directed set of functions in 
[CON i Dl is also a bounded subset of i t .  Thus, it malie, scnse to speab of the least upper bound 
of a quasi-directed set with respect t o  the partial ortle~ ([CON - Dl. sf). 
Define the set F* as follows: 

F* = { f  : CON -+ D / 3Q. Q is Quasi-directed. a.nd UQ = f )  



Construction 4.1 Define the CPO-alyebru F I N  us follou~s: 

The universe is the CPO F*. 114th each n-ury constant f in thc .\ignnturr n.ssociute the following 
F I N .  function f . 

FIN ( ( ( e l )  . . . l ( c , )  i f ( ~ l , . . , e , , ) E F  
f (el ,  --,%) = U, = h ( 5 ) ,  if (e l .  ... r,, ) $2 F 

.rEe] 

The proof of the well-definedness of the algebra above is non-trivial. The proof along with that  of 
the next theorem axe described in detail in our t,echnical report [Suhrahma.nya.in 19911. 

As we mentioned in subsection 2.3, a reachability assunlptioll must be iillposed on the algebras 
being considered. The subcategory of C'PO %Algebras considered has as objects those in which 
the set D of reachable elements belo~v every eleinent d is directed, -Also. (1 = UD.  

Theorem 4.1 The CPO-algebra F I N  zs .fir~crl 1 1 1  the rc11cgoi.y of ir(rchcrblf C'PO C-algebras and 
CPO C -homonzorl~hisn~s. 

5 Relating Computation and Meaning 

5.1 Operational Senlant ics 

An operational se~liantics for our language ca,il non- he give11 in one of the standard forms (say, 
Plotkin's SOS style [Plotkin 19811). Operationally. a progra.m with XU'T declarations in i t  should 
be viewed as a function that takes as its a.rgument a.n el lviron~~lel~t  ~vhich associates with the ADT 
an appropriate representing type, and a,ssocia,t,es each coilstailt in the signa.ture of the ADT with a 
closed term in the ambient langua,ge of appropria.te type. Isslles of type-checking t o  ensure that  the 
hidden representations a,nd iinplerilenta,t,io~~s stay hidclen a.re st,udied in [I~litchell & Plotkin 1985, 
Mitchell 19851. The value of a progra,ill expression t  is obtained by first repla.cing every function 
symbol by the term associated ~ v i t h  it ( the  result of this t,ra~lslation will he written i), and then 
using the operational semantics of the ainhient laagua.ge to evaluate the resulta.nt expression. 

We can now state formally the notion of a t7cllrrl r~7rplc~nentntro1~. Gi\,en an iillplernentation consider 
the domains that  are the senialltics of the lepreqeuting types. -4~sociate wit11 each symbol in the 
signature the function that  is denoted h> the term that implement\ that  \ymhol. We consider first 
the specification styles with I-exception5 de\cril~ed in Section 2.  

1. In any valid ir~lpleillentatioii of an  .IDT specification in tllc iililialfil~al specification with I- 
exceptions style, all such functions shnultl he htrict i n  all theii arguulenth. In such a case we have 
a C-SDA. Call it Imp. 

2. This depends upon t,he iia.t,ure of tllp specification: 

(a) Initial Specification: Imp must satisfy the equa~tionh E .  

(b) Final Specification: The substructure of Inip consi~ting of definable cleiueilts can be shown t o  
be a flat CPO. This substructure mubt batisfy the equations E. 

If we consider the initial algebra specification \ t>le of 5ection 3 then given an implementation, 
every element in every domain involved 1111lht be t1efinal)lc. 1 lie flui~ction:, that are the meanings of 



the terms implementing the various operations iillpose a C'PO C-algebraic structure. The imple- 
mentation is valid exactly when this structure satisfies E. the equations given, and is initial in the 
category of C P O  C-algebras satisfying E. 

If we consider final algebra specifications described in Section 1, Lve consider the collection of 
definable elements in each of the inlplernentii~g domains and construct the subdonlain generated by 
that  collection. This gives us a reachable CPO I=-algebra. The ii~~plenleirtatioi~ is correct exactly 
when the domains corresponding to the observable sorts are the ones given prior to  the specification, 
and the CPO C-algebra satisfies the specified equations E .  

We have assumed that  there is a lea.st subdonlain of a, donlain containing a, given set of elements. 
One might wonder whether such a. bea.st indeed exists. This is proved in some rigor in the next 
lemma (using the axiom of choice: is there a. proof ~vithout, recourse to it ,?).  

Lemma 5.1 Let D be 0 CPO and 5' be sonae strbset of it. Tllen there is a subdomain S* of D 
containing S, such that any other sub~lo111~1ii7 of D cont(1ini17g ,$ /)(I.\ ,Sx ~1.s ( I  .iubdonzuitz. 

Proof : Let P be the casdinaJit,y of L>. Define the following i i~nctio~i (froill :j + 2 to  2D by transfinite 
recursion: 

r ( a  + 1) = r ( a )  U {U E ( E is a directed hu11,et of T j n ) )  

In the second line, the least upper bound is taken in the partial order D.  I t  is easily seen that  
I'(P + 1) = r ( P )  (invoke the pigeonhole principle and use the fact that  the cardinality of D is P) .  
That  I'(P + 1) is the subdomain S" generated follows froni the inductive nature of the function. 
More formally, suppose it is not (i.e.) there is a subdonlaill R containillg S but not ,S". Then there 
is a least ordinal a such that  r ( S )  is not contailled in R hut for every ordinal a- < a r ( a - )  R. If 
a is a successor ordinal, then if r (n - I )  C R. inlplies the liinit of every directed subset of r ( a  - 1) 
is contained in R, R being a domain. This lileans that T(a) C R. leading to  a contradiction. If a 
is the limit of the sequence < a, > then since r(cr,) C R. it folio\\-s that r (a)  = Ul'(cu,) C. R, once 
again leading to  a contradiction. Hencc I'( 3 )  C R. I 

5.2 Fi i~a l  Algebras and Operational Sei~lailtics 

We will take the ainbient lailguage to he P('F(see [Guuter 19911. and for all practical purposes the 
same as LCF in [Plotkin 19771). Notions of o1)servational equivalence call be defined, now that  we 
have an operational semantics. IVe nil1 discuhs one l~nrticular case in dctail: Suppose the evaluation 
scheme for the ambient language is call-by-ila~ne. and the ob\er~.at io~ii  are C'BN( i.e. we observe 
values of observable types, and ternlillatioll at  observable t>pes I". 

In the denotational semantics. - is inter1)reted a, the continuou\ f~iinction space l l .  For the Final 
C-SDA case of section 2.3 the lnodel is the continuons type hie1 aich! oxer F' (see section 2.3): 
this model is notated CF. In the Final ( 'PO Y-Algehra caw \\e hale the contii~uous type-hierarchy 
over FIN: we call i t  CFIN. 

''For the definitions of these see [Bloom k. lliecke 1!)89]). ' r l ~ e  treatulellt of' the other two cases, as  we point out ,  
doesn't differ significantly. 

"For lazy observations, one needs to t,ake the  lifted ful~ctioll space 



What can we state about the relationship bettveen the denotational seinantics and the operational 
semantics?12 

Theorem 5.1 (Soundness) Given n tlalicl i i ~ap l e i~~e~z ta t i o r~ ,  if t JJ U ,  u.lzere t is a t e r m  of observable 
type, then v i s  a t e rm  over the obserz~oble sigi?utlrre, (!TIC/  C F  F ( I U ( ~ ~ C . S  t l x  z~nlue o f t  t o  the value of 
v .  

Proof Sketch: Consider C-SDA's. Given a valid iil~pleinentation we can construct the correspond- 
ing C-SDA Imp as outlined in the previous subsection. and the continuo~is type hierarchy on top of 
it; call this model Z . Clearly Z I= t = 7. C;iven that  there i, a soluntlne:,:, theoreill for call-by-name 
P C F  with respect to  C F ,  the ~neailiilgs of 7 and 1 )  in C 3 1  are equal. The find inap from Imp into 
.F can be extended t o  a logical relation over CF. By the fundamental theorein of logical relations 
the meanings o f t  and v in these t ~ v o  inotlel:, are related 1 1 ~  tlie logical relation. The logical relation 
on observable types being the identity(heca11se the final i m p  on observable types is the identity), 
the meanings o f t  and v are equal in CS. siurilar proof can he carried out for CPO C-algebras. 

I 
The argument sketched above can be ~ii~ifoiinly extendecl lo  the lazy and C'BV models. The only 
part of the argument that  depends on the illode1 (C'BN.lazy or CB17) is the one that  invokes the 
soundness theorem for the illode1 nit11 re>pect to the corresponding operatioilal semantics. The 
soundness theorem, with the appropriate operational >en~antich in place. holds for both, the CBV 
model and the lazy model (see [Gunter 19911). 

A similar argument can be applied to prove conlputational adequacj-. Essei~tially, we invoke compu- 
tational adequacy of the operational bemantics (without -1DT.s) n it11 respect to  the corresponding 
denotational model. 

Theorem 5.2 (Computational Adequacy) If cr trrriz oj B n v  type (aGstrrict or  concrete) di- 
verges, i n  a valid implenaentotwt, oJ fht  A4DT, fhfr? or C S  ~ f s  d~t701~111ot1 I <  I .  The  correspondzng 
statement for C F I N  2 s  trrrc crs ~ ~ 7 1 .  

The point that  these two theoreins demonstrate can be sli~limarizetl as follolvs: Consider given any 
valid implementation; there is a, seilse i l l  n.hic11 t h r ~  valur of an -1DT expression (in the appropriate 
model), is an  abstra,ction of the denotation (of the transla.t,ed expression) in the C-SDA correspond- 
ing to  the implementation. If we place a, t,erm t in an ohservatioi~al contest and evaluate i t  t o  v,say, 
the denota.tion of v is the sa.nle as the nleaning of f in tlie inodel of the iZDT. This fact is an easy 
corollary t o  the soundness theorem. Tlr us. rr3c curl ignore u.liclt coricr~tcly orir program expressions 
mean, and pretend t1zn.t we ci,re conz,prllirtg or!et. fllc ob.s.trcrct clor7,nin yii-ett L y  the ~ e m ~ a n t i c s .  In the 
C-SDA ca,se there is a.nother sense in which this "abstract, donlain" is abst.ra,ct. We ca.n prove that  
the final algebra is fully abstra.ct with respect to the operat,ioila,l semantics. As in the case of the 
soundness and co~llputa~tiona~l adeclua.cy t.11eorems this in\-olces tlie full a.bst,raction result for the 
operational semantics(n~inus ,4DT's) with respect to  the corresponding denotational model. 

Theorem 5.3 (Full Abstraction) Cbr~sicltr. Fir,lll ,S)jec~ficrrliora. crith I exceptions. Extend the 
language PCF (call-by-~aanze) rilitlt ( I  ' p ~ ~ . n l l c l  i f "  constcltlt pif. (l.rrc/ corr.~ider crizy valid implemen- 
tation. T h e n  C F  is  fully a,b.stract lrith r.e.~l~tct to  CIB!\: ob.s.c.r.l>ntior?.i.. 

1 2 0 f  course all this makes sense only lu a Flnal Specificatiou be t t~ng  (we clon't ]lave obselvables in the Initial 
Specificatio~~ setting). 



Proof : Proving full abstraction involves proving that  t n o  tcrlns tl  and t2  are denotationally equal 
if and only if they are behaviorally indistinguishable. Behaviola1 indistinguishability means that  
in any context of base type either they both diveige, or they 110th conLerge to the same value. 
If they are denotationally equal, computational adequac) and solundness guarantee that  they are 
behaviorally indistinguishable. To prove the converse, assume that they have different deilotations 
in the model C.F. Since there is a final map (which extends to a logical relation, a fact that  is 
needed later in this argument) froill Imp to  C F ,  which relates the meanings of t, in one to  the 
meaning o f t ,  in the other, and since the llleairings of tl and t2  in C F  are different, the denotations 
of t l  and t2  in Imp are different as well. By definition the CBN continuous type hierarchy over 
Imp equates the meaning of t l  with that of (and similarly for ti .  Therefore the meanings of 
and in this model are different. Invoking the full abstraction of the operational semantics in the 
presence of a parallel if (minus the ADT's) with respect to  tlre CBN continuous type hierarchy on 
Imp, we can obtain a context C[] of base type that  distinguishes them : if this base type is an 
observable type we are done; if it is the type of the abstract data type, use soundness to  observe 
that  C[tl]  and C[t2] have distinct meanings in the type corresponding to  the abstract data  type 
being defined, in the lnodel CF .  H o n e ~ e r  this base type is a final algebra. and given any two terms 
of different denotatioils (in this cabe C'[tl] and C'[tL]) t l i e~e  i i  a coirtest C'l[] such that  

Notice that  the denotatioils of C1[C[tl]] (=  denotatiolr of(C'1[C'[tl]]) and C1[C[t2]] in the contin- 
uous type hierarchy over Iinp are different. and by the 5oundnehs theorem the two expressions 
evaluate differently. The contest C'l[C'[]] i, the distil~guishing contcst, and we have the desired full 
abstraction theorem. 1 

Notice once again that  the part of the theoreill that is specific to the lnodels (CBN,lazy or CBV) 
merely depends on the esistence of a full abstraction theorem for the corresponding calculus(without 
ADT's). Thus, with the corresponding full ahstractioil theorclnz in place the proof carries over t o  
those cases as well. 

6 Conclusions and Future Work 

The question motivating this pa,per \va.s ~vhether t.he various paradigins of traditional algebraic 
semantics extend as specification technicliies for a,bstract data types. when the ambient language is 
a functional prograrnlning language feat,uring a general recursion priinit,i~-e. We have formulated the 
questions in a precise manner, by deinonstrati~lg four different specification nlethodologies for this 
setting. Two of these nlethodologies adapt the initial specifications approach, a,nd the other two 
extend the final specifica.tion approa.cl1. 1,Ve l ~ e l i e v ~  the four specifica.tion inetlrodologies described 
in this paper are fairly well-suited for practice. \Ire ha\-e instautia.ted the necessary technical 
machinery t,o guara.ntee that, t,hese i~lct~liotlologies lllalie mat hemat ical sellse. 

We have also addressed questions typically addreshed i l l  the theory of' progra,mming languages t o  
the setting a t  lmnd. Ha.ving fornlula.t.ed a, notion of opei~~t ional  se~uarltics for a lambda calculus 
featuring general recursion and abstract data types. we ha.1.e st,udied tlre relationship between the 
denotational sen~antics and the operational semantics. \\'e l~elieve the souirdlless a.nd colnputational 
adequacy theoreins give us soine justification for viewing tlre filial algebra, ~lrodels as the meanings 
of abstract data, types, adding ~veigllt to t11e argunrent for the final specification methodology. The 



full abstraction result for the final specification methodology ~vi th  1-exceptions is a. technical result: 
arguably, i t  call be viewed as a justification for the adjective "abstract" in ,4DT's. 

There are several open resea.rch questions. 

1. Can we obtain a full abstractioil theorem for the Final Algebra Specification methodology 
described in section 4? It might be possible to prove full a.bstraction for the semantics we have 
proposed, or one could look for a new construction in some category such as bounded complete 
partial orders, dI  domains, bifinite dornains or L-domains (see [Gunter 19911). 

2. Logics of Programs for each of the specificat,ion methodologies. 

3. We conjecture that  these results can be extended to specification forinalisins beyond equations: 
in particular, Horn Clauses a.nd Harrop formulas. 

4. Relationship between our theorems in the last section and t,he representation independence 
results in [Mitchell 19851. 
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