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Abstract 

Data defined on spherical domains occurs in various applications, such as 
surface modeling, omnidirectional imaging, and the analysis of keypoints 
in volumetric data. The theory of spherical signals lacks important con- 
cepts like the Gaussian function, which is permanently used in planar 
image processing. We propose a definition of a spherical Gaussian func- 
tion as the Green's function of the spherical diffusion process. This allows 
to introduce a linear scale space on the sphere. We apply this new filter 
to the smoothing of 3D object surfaces. 
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1 Introduction 

Different ways have been proposed to define a Gaussian function on the 
sphere. One possibility is to define a spherical Gaussian function using the 
spherical coordinates (cp,6) instead of the (x, y) coordinates. This has the 
undesired effect, that a mere translation of the function in the (cp,d)-plane 
leads to a distortion of the filter on the sphere. Furthermore, an isotropic 
Gauss function on the (9, d)-plane is generally elongated on the sphere 
[ l l ] .  Another way is to stereographically project a planar Gauss function 
centered at the origin to the sphere and translate it to the desired center 
by rotation on the sphere [I, 21. This overcomes the aforementioned prob- 
lems. However, the problem remains that a convolution of two Gaussians 
on the sphere is not a spherical Gaussian! Thus, this definition cannot be 
used in order to define a spherical scale space. 

In image processing linear scale-space has been defined in [lo] and, 
as Weickert et al. point out [9], already in [S]. The linear scale space of 
an image is defined as the set of solutions of a linear diffusion equation 
with the original image as initial condition. It turns out that this set 
can be created by convolving the image with Gaussian functions of dif- 
ferent scales. The Gaussian function is the Green's function of the linear 
diffusion equation. 

In this paper we propose the analogous approach on the sphere. We 
solve the linear spherical diffusion equation and define its Green's function 
as the spherical Gaussian function. It will be shown that the spherical 
convolution of two such defined Gaussians is again a Gaussian, such that 
a spherical scale space can be build upon this definition. 

In the following section we recap mathematical preliminaries related 
to spherical harmonics, which will be used for the solution of the spheri- 
cal diffusion equation, and convolution on the sphere. After that we will 
present the main result of this paper in Sect. 3. Section 4 is devoted to 
one example application, namely smoothing of 3D surfaces. 

2 Mathematical Preliminaries 

In this section we summarize some facts about spherical harmonics func- 
tions which we will use in the rest of this article. As an overall reference 
on this subject we refer to [5,4]. In the following we parameterize the unit 
sphere S2 embedded in EX3 using standard spherical coordinates. Thus, 
an element of 7 E S2 will be written as 



with cp E [O, 27r) and 19 E [0, 7r]. 
The spherical harmonic functions xm : S2 -+ C are defined as the ev- 

erywhere regular eigenfunctions of the spherical Laplace operator. These 
functions constitute a complete orthonormal system of the space of square 
integrable functions on the sphere L ~ ( S ~ ) .  

21 + 1 (1 - m ) !  Xrn(..) = , / T P l m ( c o s ( d ) ) e z m ~ ,  4i.r (1 + m)! 

With 1 E N and Iml 5 1. Here PLm denote the associated Legendre func- 
t ions 

(-l)m(l - x2)m/2 dl+m 
PLrn (x) = 2 1 -(x - 1) . 

2l1! dxL+m (3) 

Any function on the sphere can be expanded into spherical harmonics: 

The coefficients flm can be extracted from a given function f as follows 

For the surface element on the sphere we use the shorthand notation 
dq := sin(l9) d19 dp. If firn = 0 for all 1 > L, f is called band-limited with 
band-width L. The set of coefficients flm is called the spherical Fourier 
transform of f. 

Rotations in R3 will be parameterized by Euler angles such that any 
g E SO(3)  will be written as 

where Ry and R, denote rotation about the y-, and z-axis, respectively. 
In matrix notation Ry and R, take the form 

cos(@) 0 sin(@) cos(a) - sin(a) 0 

- sin(@) 0 cos (p) 

Rotating a function f E L ~ ( S ~ )  will be performed by the operator A ( g )  
which is defined by 

4 g ) f  (7) := f (g-lrl). (8) 



We will need the convolution operation in later in this paper. Spherical 
convolution can be defined as1 

Driscoll and Healy [7] proof a convolution t,heorem for this kind of spher- 
ical convolution 

Theorem 1. For junctions f ,  h E L ~ ( S ~ )  the spectrum of the convolution 
is a pointwise product of the spectra o f f  and h 

3 Spherical Gaussians 

3.1 Mapping Planar Functions to the Sphere 

Recently, the following definition of dilation on the sphere has been pro- 
posed [I]: Dilating a function on the sphere about the north-pole is per- 
formed by subsequently (1) projecting the function stereographically from 
the south-pole to the plane tangent to S2 at the north-pole, (2) dilate the 
mapped function within the tangent plane, and (3) map the dilated func- 
tion back to the sphere by inverse stereographic projection. Along the 
same line the construction of filters on the sphere can be performed [6]. 
A filter is defined in R2 and mapped by inverse stereographic projection 
to the sphere. 

The stereographic projection 17 : S2\{(0, 0, -1)) -+ R2, (9, l9) H 

( ~ ( c p ,  4, Y (cp, 6))  is given by 

Lets consider the Gauss function in IK2: 

We say "can" since this is not the only possible definition of spherical convolution. 
It is as well possible to take out the integration over S2 only and have the result be a 
function on SO(3). This is especially useful if we deal with non-isotropic, directional 
filters as in [3] 



The inverse stereographic projection is actually not defined on the south- 
pole of the sphere. However, since the Gauss function goes to zero for 
1x1 -+ co we will assign the value 0 to the south-pole. 

It is easy to see that convolving two thus defined spherical Gauss 
functions the result will be greater than zero everywhere, including the 
south-pole. Thus, two-fold application of a smoothing procedure with 
this filter will lead to a result not obtainable by a single application of' 
the Gaussian, whatever value for kt is chosen. We will thus abandon this 
approach. In the following we will propose the definition of a Gaussian 
filter on the sphere as the Green's function of the diffusion equation on 
the sphere. 

3.2 Spherical Diffusion 

In this section we derive the Green's function of the spherical diffusion 
equation. This Green's function can then be considered as an extension 
of the Gauss fuiiction to the sphere. 

In image processing a scale space can be constructed by convolving 
the image with the Gaussian kernel 

This is equivalent to letting the image evolve under the diffusion equation 

The spherical diffusion equation is given by 

where Asz is the spherical Laplace operator given by 

For solving (15) we work with a product ansatz for u(p,  d l  t )  

We will make use of the fact that spherical harmonics are eigenfunctions 
of the spherical Laplace operator: 



Using this fact it is easily verified that 

solves (15). In order to obtain a Green's function we will impose the initial 
condition 

~ ( 9 '  8 '0 )  = a s 2  (9, d) ,  (20) 

where the spherical Dirac function is defined by 

where n = (0,0,1) is the north-pole. Expanding S S 2  into spherical har- 
monics yields 

21 + 1 ss2 = c / T K O .  
1EN 

Thus we obtain for the Green's function G the final result 

Figure 1 shows G for different values of k t .  We show only the de- 
pendence on cos(z9) since G does not depend on cp. We can now perform 

Fig. 1. The Green's function G from (23). The horizontal axis shows cos(8) .  The 
vertical axis shows G 

spherical diffusion with any given function f E L' (5') as initial condition 
of the diffusion process by convolving f with the Green's function (23). 



Since G is a superposition of zonal spherical harmonics, i.e. spherical 
harmonics with m = 0, G is rotationally symmetric. We can use this by 
observing that the convolution by integration over SO(3) as given in (9) 
contains an integration about the rotational degree of freedom of G about 
its center. This integration does merely contribute a factor 27r. We thus 
replace (9) by 

For isotropic filters h we find 

We make use of this fact and perform the diffusion process on the spectra 
o f f  and G. 

= flm exp ( - 1 ( 1  + 1)kt)  . (28) 

This is the main result of this paper. It is now easy to proof that spherical 
diffusion fulfills the half-group property. Convolving f with G(., 0) yields 

Thus for t = 0 spherical diffusion has no effect on f ,  as expected. Further- 
more, applying diffusion to an already diffused image turns out to have 
the same effect than diffusing the image once, where the time-parameter 
is the some of the time-parameters of the concatenated diffusions. 

After briefly describing our implementation in the following section we 
will present results in Sect. 4 

4 Surface Smoothing 

We show one example for the smoothing filter proposed in this article, 
i.e. convolution with the newly defined spherical Gaussian. 



The surface representation we use is based on the assumption that 
we deal with a star-shaped object. That means that there exists a point 
within the object, such that each ray originating from this point intersects 
the object's surface exactly once. This allows us to assign to each ray 
(representing an orientation in space and thus an element of the sphere 
s2) a real number, namely the distance of the ray-surface-intersection to 
the origin of the ray. This results in the definition of a surface as a real 
function on the sphere. One smoothing example is shown in Fig. 2. 

Fig. 2. From left to right: Original data. Smoothed with kt = 0.01. Smoothed with 
kt  = 0.001. 

5 Conclusion 

In this paper we proposed a new smoothing operation for surface data 
defined as a scalar function on the sphere. The smoothing is performed as 
a diffusion on the sphere. This leads to a natural definition of a "Gaussian 
function" on the sphere. 

This Gaussian function fulfills the half-group property, i.e. there exist 
a neutral element (the spherical delta function) and twofold convolution 
with a spherical Gaussian is identical to convolution with a single Gaus- 
sian with a larger variance. 

In future work we will analyze the resulting spherical scale space in 
more detail. 
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