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Abstract

Type systems commonly used in practice today fail to capture essential aspects of program
behavior: The effects and dependencies of the programs. In this paper, we examine a prototypi-
cal effect type system in the style of Gifford et al. and a canonical example of a dependency type
system based upon the work of Zdancewic. Finally, we show how these two type systems can
be embedded in a more general framework, a monadic type system as developed by Pfenning
and Davies.
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2 1. INTRODUCTION

1 I

The ability to precisely reason about programs is important both for automated tools
and for programmers. For example, understanding the behavior of a program allows
a compiler to perform optimizations that might not otherwise be possible. Likewise,
descriptive signatures for application programming interfaces, or other library routines,
give programmers a concise understanding of how these functions will interact with
the code they themselves write. Just as importantly, if the programmer’s tools can
automatically provide feedback about the behavior of their code, the programmer will
have greater confidence that their code meets their informal specifications.

Dating back as far as theF [Bac81] language in the 1950s, type specifications
have guided tools and programmers in understanding the behavior of programs and
individual functions. A typical type specification will give types to the inputs that a
function expects and a type to the output it produces. At a minimum this is a vague
form of documentation, allows a compiler to produce the correct invocation and return
handlers, and yields a simple method to catch errors caused by feeding a function
nonsensical input. Recently, parametric and bounded polymorphism, sometimes
called “generics”, have become part of mainstream languages[LSAS77, Rey83, IPW01,
ECM02]. Polymorphic types document that a function can be reused on any input
without changing the behavior, or in the case of bounded polymorphism, that the
function can operate on any input with the required interface. For some languages
with polymorphism, it is even possible to derive properties and equational laws about
functions solely from their type specifications [Rey83, Wad89, PAC94].

However, these type systems still fail to capture essential program behaviors. Re-
alistic programs are more than just collections of idealized mathematical functions
composed together: They print information to the screen, write data to memory or
external storage, communicate with other programs on the same computer or over a
network, or simply fail due to an error condition. Mainstream languages today are not
equipped with type systems that can effectively describe and document these sorts of
“effectful” behaviors.
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. E

effect (E"fEkt) 1.a. Something accomplished, caused, or
produced; a result, consequence. Correlative with cause.
[. . .] 3.a. An outward manifestation, sign, token,
symptom; an appearance, phenomenon. Obs. [ . . . ]
4.a. Something which is attained or acquired by an
action. Obs.

The Oxford English Dictionary Online

Before we examine type systems that capture the “effectful” behaviors of functions
and programs, it is worthwhile to review just what is meant by an “effect”. Much like
the dictionary definition above describes, an effect can be very informally described
as some observable manifestation of the program’s execution. Typical examples of
effects are allocation and mutation in the heap, drawing to the screen, divergence
and non-local control transfers. Unfortunately, in the literature examined as part of
this survey, there were no attempts to give a general theory or taxonomy of effects.
We conjecture that it would actually be difficult to provide such an account of effects,
because the notion of possible effects is very tightly coupled with the machine model
used to execute a program. However, in our survey we left that there are two technical
accounts that provide a promising start towards a complete classification of effects.

Park and Harper [PH04] split effects into control effects and world effects. A control
effect is a change in the state of the machine executing the program that cannot be
explained by a finite number of machine transitions. For example, in a functional
language where the machine model is a small-step semantics, raising an exception
or calling a continuation would be a control effect. Their notion of a world effect
is an action that transitions the program from one “world” to another, much like a
Kripke-style possible worlds interpretation of modal logic [Kri63]. Examples of world
effects are program behaviors like writing or reading from mutable storage.

Game semantics provides another classification effects that is strikingly similar
to the one devised by Park and Harper [AM97]. Briefly, game semantics provides an
interpretation for typed programs as a game where a player and opponent ask each
other questions. The simplest game is the game of type integer, where the player asks
the opponent for an integer and they respond with an integer. An instance of the game
would look like the following:

Player ?
Opponent 42

The game for the type of integer to integer functions involves a reversal in roles,
capturing the contravariance of function spaces. The player starts by asking a question,
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but instead of answering, the opponent responds by asking the player as question. After
the player answers, the opponent will answer the original question. An instance of the
game would look like the following:

Player ?
Opponent ?
Player 21

Opponent 42

This game actually models the space of all integer to integer functions. Each function
corresponds to a strategy for playing the game. So the game played above could be the
strategy for the function λx:int.x+ x.

Now that the fundamentals have been explained, we can explain two classes of
strategies that correspond to effects. First, is the notion of a bracketed strategy. Brack-
eted strategies are ones where the interaction between player and opponent follows a
strictly nested structure, like in the game above. The following game is not bracketed:

Player ?
Opponent ?
Player 21

Player ?
Opponent ?
Player 42

Opponent 42

This strategy could correspond to a program that uses a captured continuation to
return to the start of execution.

Conjecture 1.1. Strategies that are not bracketed correspond exactly to programs that
will exhibit a control effect.

A second useful category of strategy are the innocent strategies. Innocent strategies
must behave the same regardless of context. In the following instance, the same game
is played twice consecutively:

Player ?
Opponent 21
Player ?

Opponent 42

In this case the opponent’s strategy is not innocent, otherwise it would have given the
same answer every time it was queried.
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Conjecture 1.2. Strategies that are not innocent correspond exactly to those programs
that will exhibit a world effect.

The similarity between these two accounts of effects is pleasing, but it is not clear
whether either of these accounts are complete in the sense that there are no behaviors
we would call effects that they do not capture.

. D

dependency (dI"pEnd@ncI) 1. The condition of being
dependent; the relation of a thing to that by which it is
conditioned; contingent logical or causal connexion;

The Oxford English Dictionary Online

Where we informally described an effect as “some observable manifestation of
the program’s execution,” we will take a similar cue from the dictionary definition of
dependency and say that a dependency is a logical connection with an observable
manifestation of the program’s execution. Consequently, we believe the notion of
program dependencies to be tantalizingly close to the dual of effects.

The distinction is subtle. For example, if a program writes to a memory cell and
then returns the integer zero we could give the observable manifestation of that write
a name, say W. The fact that the program produced W is an effect. If the program
returned the integer zero, rather than some other integer, because W occurred, then W

is a dependency of that integer.
Knowing about the dependencies of a program or function is just as important

for a compiler or a programmer as knowing the effects it may produce. Tracking
the dependencies of a program with a type system has become extremely popular
in the context of language-based security. In what are called information-flow type
systems [Zda02], types are annotatedwith information about the privilege level required
for a given value to be computed. This provides programmers and tools with ameans to
ensure that programs do not inadvertently or maliciously choose to release privileged
information.

Dependency type systems have also been used in program analyses such as slicing
and binding-time analysis. Program slicing tracks the overall dependencies within
a program – “the value computed by function f depends upon function g” [Wei84].
Binding-time analysis attempts to divide computations in the program into those that
can be performed statically and those that must be performed dynamically; binding-
time analysis is particularly important in the context of partial-evaluation [Con90,
Dav96]. Liveness analysis in optimizing compilers is another example of a dependency
analysis, though it is generally not formalized within a type system.
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. T -

Given the importance of tracking effects and dependencies in programs, the problem
has, not surprisingly, received considerable attention since the earliest optimizing
compilers were written. However, we feel thatmuch of this work can be characterized as
program analysis and heuristics for discovering the effect and dependency relationships
in programs, rather than formal systems for reasoning about effects and dependencies.
Limiting our scope to type systems in particular, there are three paradigms we feel
have proven enormously influential.

• Effect type systems: In Section 3 we present λ, an idealization of prototypical
effect type systems.

• Information-flow type systems: In Section 4 we present an information-flow
type system, λ, that captures of the essentials of dependency tracking.

• Monadic type systems: In Section 5 we present λ1, a language capable of for-
malizing the reasoning about both effects and dependencies through a monadic
structure.

Finally, in Section 6 we conclude our survey by briefly noting other approaches to
tracking effects and dependencies that we have not discussed and avenues for future
exploration.

2 L

We want to concentrate on the essential differences between formalizing effects and
dependencies, so we have chosen to use represent individual effects and dependencies
through a unified syntactic category we will call labels. A language with labels is then
parameterized by a label structure.

Definition 2.1. A label structure 〈L,≤,∅,1〉 consists of:

• A partially-ordered set of labels, 〈L,≤〉.

• A distinguished least-element of L, written as ∅, called the empty label.

• An associative, commutative binary operator, 1, on elements of L×L that we call
label join. The set of labels, L, must be closed under label join: If `1 and `2 are in
L, then so is their join `1 1 `2. The empty label must act as a unit for label join: If
` in L then `1 ∅ = ` and ∅ 1 ` = `.
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Abstractly, a label structure is a commutative monoid over a poset. It would be
straightforward to use any commutative monoidal structure 〈L,∅,1〉 by defining the
partial order as ∅ ≤ ` for all ` in L and `1 ≤ `1 1 `2 for all `1, `2 in L.

We call a label atomic if it cannot be expressed as the join of two or more other
labels in L.

. E

As an aid to understanding how label structures are used to represent effects and
dependencies, we describe two example label structures.

Regions

A common application of effect systems is to keep track of how a program will interact
with heap allocated memory. To simplify the analysis, the focus is often restricted to
interactions with regions of the heap rather than individual memory locations. Regions
evolved out of the work by Talpin and Jourvelot [TJ92] on effect type systems and
memory management. We use the metavariable ρ to range over regions of the heap.

We can then define two atomic labels, read(ρ) and write(ρ), corresponding to the
action of reading and writing to a region ρ in the heap. The label set L is the free
commutative monoid over read(ρ) and write(ρ) for all regions ρ. We then order L by
set inclusion.

The label write(ρ1)1 read(ρ2) indicates the act of writing to the region ρ1 and
reading from the region ρ2. Labels as we have defined do not capture the order in
which the operations occur. It is possible to design type systems that capture this level
of precision, but we do not explore them in this paper.

Security levels

Another concrete label structure is the two-level security lattice commonly used in
information-flow type systems [BL75]. A label> indicates the dependence or use of
“high-security” information while ⊥ indicates the dependence or use of only “low-
security” information.

We then take L to be the set {⊥,>}. We define the partial order on L as⊥ ≤ >,
label join as `1> = >1 ` = >, and⊥ is the empty label.

3 T λ 

The language λ is our creation, but is novel only as a distillation of effect type systems
as originally developed by Gifford et. al [GJLS87]. The grammar for λ can be found
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Types τ ::= int | τ1
‘
−→ τ2 | . . .

Terms e ::= i | x | λx:τ.e | e1e2 | . . .

Term variable context Γ ::= · | Γ, x:τ

Figure 1: The grammar for λ.

Γ ∅̀ i : int
:

x:τ ∈ Γ
Γ ∅̀ x : τ

:

Γ, x:τ1 ‘̀ e : τ2

Γ ∅̀ λx:τ.e : τ1
‘
−→ τ2

:
Γ ‘̀1

e1 : τ1
‘
−→ τ2 Γ ‘̀2

e2 : τ1

Γ ‘̀1 1 ‘2 1 ‘ e1e2 : τ2
:

Γ ‘̀1
e : τ1 `1 ≤ `2 τ1 ≤ τ2

Γ ‘̀2
e : τ2

:

Figure 2: The static semantics for λ.

in Figure 1. The only difference from the simply-typed λ-calculus is that function
types in λ are annotated with a label. For now, we do not assume any concrete label
structure. We write the type τ1

‘
−→ τ2 to mean the type of a function from values of

type τ1 to values of type τ2 that may cause some effect ` as a result of evaluation. This
effect is sometimes called the latent effect of the function.

The static semantics for λ can be found in Figure 2. We write the judgment
Γ ‘̀ e : τ to mean “term e has type τ and may produce an effect ` with respect to
the context Γ .” The key difference between judgments in λ and in the simply-typed
λ-calculus is that we decorate the turnstiles of the judgments with a label. This label is
intended to provide a conservative estimate of the effect that will be produced when
evaluating the term. We sometimes describe terms where the concluding judgment is
the empty label as inert.

Because λ-abstractions suspend the evaluation of their bodies, the rule:
correspondingly captures the effect that may be produced by the body and records it in
the function type. Abstractions are themselves values, meaning that they can take no
reduction steps. Because they have no reductions, there is no opportunity for them to
cause an effect. Consequently, we deem them inert and indicate this by the empty label
in the conclusion. Similarly, integer values are considered inert in the rule:.
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τ ≤ τ
:

τ1 ≤ τ2 τ2 ≤ τ3
τ1 ≤ τ3

:

τ3 ≤ τ1 τ2 ≤ τ4 `1 ≤ `2
(τ1

‘1−→ τ2) ≤ (τ3
‘2−→ τ4)

:

Figure 3: The subtyping relation for λ.

Intuitively, when a function application is evaluated the two terms will produce
some effects, this is formalized in the premises of the : rule. Additionally, the
actual evaluation of the resulting function will release its latent effect, as indicated by
the effect label decoration in the conclusion of the the: rule.

The typing rule: provides for subsumption of the effect annotation and
types. Because labels have a partial order and occur in types, this partial order induces
a standard subtyping relationship defined in Figure 3.

It is important to note that the static semantics we present for λ in Figure 2 is
only sound for a call-by-value operational semantics. This is because the typing rule
for variables, :, assumes that only inert values will be substituted for variables.
Therefore, rather than the most general substitution theorem we might expect, only
the following weaker theorem holds

Theorem 3.1 (Substitution). If Γ ∅̀ e1 : τ1 and Γ, x:τ1 ‘̀ e2 : τ2 then
Γ ‘̀ e2[e1/x] : τ2.

Proof. By straightforward induction over the structure of Γ, x:τ1 ‘̀ e2 : τ2.

. E

We now sketch a few examples to illustrate how λ can be used to model various kinds
of effectful operations.

Region based memory management

One natural extension of λ is region-based memory management. We extend the
languagewith a new type constructor for reference cells, ref� τ, which is used to indicate
a value of type τ stored in region ρ of the heap. Additionally, we introduce four new
term forms: Region allocation (νρ.e), reference cell allocation (ref� e), dereferencing
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Γ ‘̀ e : τ ρ 6∈ τ
Γ ‘̀-� νρ.e : τ

:
Γ ‘̀ e : τ

Γ ‘̀1 new(�) ref
� e : ref� τ

:

Γ ‘̀ e : ref� τ

Γ ‘̀1 read(�) !e : τ
:

Γ ‘̀ e1 : ref� τ Γ ‘̀ e2 : τ

Γ ‘̀1write(�) e1 := e2 : ref� τ
:

Figure 4: Extensions to the λ type system for regions and reference cells.

(!e), and assignment (e1 := e2). The static semantics of these new terms is shown in
Figure 4. This extension does not change the subtyping relation, but it is important to
note that this implies that reference cell types are invariant under subtyping.

Next we need to define the label structure for this extension to λ. The label
structure is essentially the same as we described for regions in Section 2, but with a
third atomic label new(ρ). The term ref� e allocates a new reference cell in region ρ,
initializing it with the result of evaluating e. This propagates an effect label new(ρ)

indicating that evaluating the term will allocate a reference cell in region ρ. Similarly,
the rules for dereferencing a cell and assigning to a cell propagate effects read(ρ) and
write(ρ) respectively.

The typing rule for region allocation is the most interesting. Operationally we
would like the region allocation term to evaluate in the following manner:

1. allocate a new region for ρ;

2. evaluate its body, e;

3. deallocate the region ρ;

4. return the value produced by evaluating its body.

In order for this sequence of operations to be sound, we must ensure that, after ρ has
been deallocated, there will be no further references to it. In λ, the only way that this
could occur is if ρ were captured in the closure of a λ-abstraction and then used later.
However, if this were the case, ρ would show up in the latent effect of the function.
This is the motivation behind the precondition ρ 6∈ τ in:.

The other interesting aspect of region allocation is that can also “mask” or eliminate
effects involving the allocated region. This not only helps eliminate spurious effects
appearing in types and the effect decoration, but is necessary because it would mean
that ρ would escape its scope via labels. Therefore, in the conclusion of the rule we
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write `− ρ. This is shorthand for the finding the largest ρ-free `1 such that there exists
some `2 where their join, `1 1 `2, is equal to `.

With these extensions to λ we can now write and type terms like the following

· ∅̀ λx:int.(λy:ref
� int.0)(ref� x) : int

new(�)
−−−−→ int (1)

This function takes an integer and allocates a reference cell in region ρ using the integer
argument as its initial contents. This allocation is not captured in the return type of the
function, int, because the function does not actually return this reference cell. However,
because the type system tracks effects, the allocation is captured in the overall type

of the function, int
new(�)
−−−−→ int. This says that every time this function is invoked it

allocate a new reference cell in region ρ.
To see how the region effect discipline can be used to implement static memory

reclamation, consider the implementation of a hypothetical swap function. For sim-
plicity, we assume additional extensions for let expressions, sequencing expressions,
and unit values.

· ∅̀ λx : ref�1 int.λy : ref�2 int.

νρ.let z:(ref� int) = (ref� !x) in
(x := (!y);y := (!z); 〈〉)

: ref�1 int ∅
−→ ref�2 int

read(�1)1 read(�2)1write(�1)1write(�2)
−−−−−−−−−−−−−−−−−−−−−−−−−→ 1

(2)

This function takes two reference cells, x and y, containing integers and swaps the
contents of cells. To do so, a new region ρ is allocated to store a new reference cell, z,
to be used as a temporary while swapping. Because there no references to the region
ρ outside of the scope of the ν expression, as is enforced by the typing rule:,
the compiler may generate code to free the reference cell allocated region ρ when the
expression has finished evaluating.

Region based memory management is just one example of how an effect system
allows us to statically describe effectful behavior.

Nontermination

Another property of programs we might want to track statically is the control effect
caused by nontermination. Being able to track non-termination is useful in a number
of contexts. If a compiler knows that a bit of code is guaranteed to terminate it can
perform optimizations that would otherwise not be possible. In languages with rich
dependent type systems, it is important that it is possible to decide type equality. If only
terminating terms may appear in dependent types, the problem becomes significantly
more tractable.
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Because λ is only sound for call-by-value semantics, we will define general recur-
sion here using recursive function definitions (fun f(x:τ1):τ2.e) rather than a simpler
fixed-point operator.

Γ, f:τ1
‘
−→ τ2, x:τ1 ‘̀ e : τ2 div ≤ `

Γ ∅̀ fun f(x:τ1):τ2.e : τ1
‘
−→ τ2

:

We define the label structure for this extension to be the free commutative-monoid
formed from the single atomic label div (short for divergence). The precondition
div ≤ ` in the rule : enforces that the label `must at least indicate the effect of
divergence, but could perhaps have additional effects as well.

However, this typing rule is necessarily conservative because determining whether
arbitrary general recursive functions terminate is undecidable. Therefore, functions
that we intuitively know are terminating, such as factorial (assuming extensions for
multiplication, subtraction, booleans, integer comparison, and and conditionals) will
be deemed to potentially diverge

· ∅̀ fun fact(x:int):int.if x ≤ 0 then 1 else x ∗ fact(x− 1) : int div
−→ int (3)

One solution would be to add primitive recursive operators to the language so that
simple recursive operations will not be incorrectly flagged a possibly diverging.

In addition to the usual type soundness properties of preservation and progress, an
added soundness property of this extension to λ is that if the concluding judgment of
a term’s typing derivation does not contain the label div, then it must always terminate.
We could express this formally in the following conjectured theorem.

Conjecture 3.2 (Termination soundness). If · ‘̀ e : τ and div is not in `, then evaluation
of e always terminates.

Combining effect systems

Given the two effect systems we have seen, it is natural to desire an effect type system
that combines the benefits of region-basedmemorymanagement and general recursion.
Unfortunately, it is not possible to naïvely combine the two. Consider the following
program

· ǹew(�)1

write(�)1

read(�)

let x:ref� int
read(�)
−−−−→ int = ref� (λy:int.0) in

let z:ref� int
read(�)
−−−−→ int = (x := (λy:int.(!x)y)) in

(!z)0

: int (4)
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Types τ ::= int‘ | τ1→‘τ2 | . . .

Terms e ::= i | x | λx:τ.e | e1e2 | . . .

Term variable context Γ ::= · | Γ, x:τ

Figure 5: The grammar for λ.

While well-typed in a naïve combination of the extensions we have presented for region-
based memory management and general recursion, it is not sound. This program
will diverge, but the effect label div will not appear anywhere in the typing derivation.
This violates the desired termination soundness theorem we proved in the preceding
subsection.

It is possible to recover termination soundness by changing the typing rules for
region-based memory management to introduce the divergence label, div, this will,
however, result in an even more conservative description of a program’s termination
behavior.

4 T λ 

We present λ as a canonical example of a type system for tracking dependencies.
Originally developed by Zdancewic [Zda02] as a core calculus for studying secure
information-flow, λ could, with minor modifications, be a suitable basis for statically
describingmany dependency analysis such as program slicing, call-tracking, or binding-
time analysis. The grammar for λ can be found in Figure 5.

In λ integer types are labeled, as are integers. However, unlike like λ, these
labels are used not to represent effects that a term with that type might produce, but
a conservative estimate of their dependencies. The stock example of a dependency
analysis is secure information-flow using the two level label lattice we introduced in
Section 2. We write ⊥ for a dependency on low security information and > for a
dependency on high security information. Therefore, the type int⊥ describes terms
whose computation will only depend upon low-security information, while those with
type int> may depend upon high-security information. The label on a function type,
τ1→‘τ2, indicates that the computation by which the function itself is created will
depend upon information `.

The typing rules for λ can be found in Figure 6. We write the judgment Γ `e : τ

to mean that “term e has type τ with respect to term variable context Γ”. Because
dependencies are captured entirely through a term’s type, no additional decoration is
on the judgment is needed like in λ.



14 4. THE λ LANGUAGE

Γ `i : int∅
:

x:τ ∈ Γ
Γ `x : τ

:
Γ, x:τ1 `e : τ2

Γ `λx:τ.e : τ1→∅τ2
:

Γ `e1 : τ1→‘τ2 Γ `e2 : τ1

Γ `e1e2 : τ2 1 `
:

Γ `e : τ1 τ1 ≤ τ2
Γ `e : τ2

:

Figure 6: The static semantics for λ.

τ ≤ τ
:

τ1 ≤ τ2 τ2 ≤ τ3
τ1 ≤ τ3

:
`1 ≤ `2

int‘1 ≤ int‘2
:

τ3 ≤ τ1 τ2 ≤ τ4 `1 ≤ `2
(τ1→‘1τ2) ≤ (τ3→‘2τ4)

:

Figure 7: The subtyping relation for λ.

As defined in the rules: and:, integer and functions values have
no dependencies initially because nothing needed to have happened for them to be
created. Term variables just receive whatever type is specified by term variable context,
as the type completely describes the dependencies of the terms that may be substituted
for it. As with, λ, the partial order on labels induces a subtyping relation for λ
and the rule: can be used to change the type of a term by subsumption. The
subtyping relation for λ is defined in Figure 7.

The most interesting typing rule is:, for application. Here given a function
with type τ1→‘τ2 and an argument of type τ1 the application will be of type τ2 1 `.
We write τ1 ` as shorthand for the following:

int‘1 1 `2 , int(‘1 1 ‘2)

(τ1→‘1τ2)1 `2 , τ1→(‘1 1 ‘2)τ2

The application receives this type because the result necessarily depends upon the
function that computes it. Therefore, we must augment the dependencies of τ2 with
the additional dependencies, `, that the function contributes.

Unlike, λ, the type system of λ is agnostic to evaluation order. Again, as a
consequence of dependencies being captured entirely within types, the most general
substitution theorem possible is true.
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Γ `passwd : int>
:

Γ `e1 : int‘ Γ `e2 : τ Γ `e3 : τ

Γ `if0 e1 then e2 else e3 : τ1 `
:

Figure 8: Extensions to λ for secure information-flow

Theorem 4.1 (Substitution). If Γ `e1 : τ1 and Γ, x:τ1 `e2 : τ2 then Γ `e2[e1/x] : τ2.

Proof. By straightforward induction over the structure of Γ, x:τ1 ` e2 : τ2.

. E

Now we examine instantiations of λ for comparison with λ.
We will not examine how λ interacts with region-based memory management

because it introduces significant complications that are beyond the scope of this paper.
Without presenting region-based memory management, we do not have a direct exam-
ple, but we conjecture that as with λ, it is not sound to naïvely compose instantiations
of λ.

Secure information-flow

As we have mentioned previously, a common application for λ is as a security-type
system. Here the goal is to track what parts of a programwill depend upon high security
information. This is valuable both prescriptively and descriptively: Type annotations
can enforce that inputs and outputs do not make use of sensitive information and type
inference allows for the discovery of unexpected places to which sensitive information
might flow.

As a simple example, we can consider adding a distinguished integer constant,
passwd, to λ that corresponds to a password, and a conditional for integers. The
typing rules for this extension can be found in Figure 8. We again use the two level label
lattice we introduced in Section 2. Unlike the usual integers, the typing rule:
gives passwd a type that is labeled with>.

The typing rule for conditionals is abstractly an elimination form for integers,
much like function application is the elimination form for function values. Therefore,
just like the typing rule for applications,: relabels the type of the branches to
indicate that result of the computation will inherit the dependencies of the scrutinee.
Consider the following trivial example.

· `if0 passwd then 0 else 1 : int> (5)
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Here the type of the entire term is given a “high-security” label, because the choice of
whether to return 0 or 1 depends upon high-security information. However, the typing
rule is necessarily conservative and will give the same type in the following example.

· `if0 passwd then 0 else 0 : int> (6)

Here, the result will be 0 regardless of the value of passwd, so it would be sensible to
actually give the term the type int⊥ because the answer does not really depend upon
passwd. However, in general deciding whether the branches of the conditional will
always yield the same result is undecidable. So, erring toward a decidable typechecking
algorithm means that we have no choice but to accept this imprecision.

Because passwd is the only innately high-security value in the language, we can
necessarily conclude that any term that has a type labelled with>may have depended
upon its value. However, we can draw the much more definitive conclusion for terms
with a type labeled with the empty-label – that they did not depend upon the value of
passwd.

We can make this informal reasoning precise in a theorem called noninterference.

Theorem 4.2 (Noninterference). If ·, x : int> `e : int⊥ then for any two · `e1 : int>
and · `e2 : int> the result of computing e[e1/x] and e[e2/x] will be equivalent.

Proof. The canonical proof is a corollary of a more general proof of substitution for a
logical relation, but purely syntactic techniques also exist.

Nontermination

For comparison with λ, we can also examine nontermination using dependency in
λ. Because λ is agnostic to evaluation order, we can most easily define general
recursion using a fix-point operator.

Γ, x:τ `e : τ div ≤ τ
Γ `fix x:τ.e : τ

:

This rule looks much like the rule for recursive functions we gave for λ. In the rule
we have written ` ≤ τ as short-hand for

`1 ≤ int‘2 , `1 ≤ `2
`1 ≤ (τ1→‘2τ2) , `1 ≤ `2

Instead of requiring that the latent effect on the recursive function have at least the
effect of divergence, for λ we simply check that type is labeled as being dependent
upon on at least divergence.



17

As in λ, tracking nontermination is conservative, but if we revisit our factorial
example, we see that it unexpectedly more conservative.

· `fix fact : (int‘→divint(‘1 div)).λx:int‘.
if x ≤ 0 then 1 else x ∗ fact(x− 1)

: int‘→divint(‘1 div) (7)

Here the type system has said that the function itself may depend upon a diverging
computation, which is not what we might have expected. It is entirely correct however.
Instead of defining factorial directly using a recursive function, we have written a
program that computes the factorial function using a fix-point. Because we must
conservatively assume that the result of fix-point computation may depend upon a
diverging computation, the function it computes inherits this dependency.

However, it is straightforward to define recursive functions in λ.

Γ, f:(τ1→∅τ2), x:τ1 `e : τ2 div ≤ τ2
Γ `fun f(x:τ1):τ2.e : τ1→∅τ2

:

This looks even more like the rule from λ, except that instead of ensuring that the
latent effect of the function is at least that of divergence, we check that the result of
computing the body indicates that it could depend upon a diverging computation.

It is now possible to rewrite factorial, obtaining a more suitable type and depen-
dency analysis.

· `fun fact : (x:int‘):int(‘1 div).

if x ≤ 0 then 1 else x ∗ fact(x− 1)

: int‘→∅int(‘1 div) (8)

In general, introducing functionality as a primitive, rather than reducing it to syntactic
sugar, will allow for more precise reasoning about its dependencies.

Just as we could in λ, we could use this machinery to prove additional soundness
properties about λ.

Conjecture 4.3 (Termination soundness). If · `e : τ and div 6≤ τ, then evaluation of e
always terminates.

5 T λ1 

We presented λ as an example of how to capture effectual computations in a type
system and we presented λ as a prototypical type system for tracking dependency
relationships. Interestingly, despite the seemingly dual relationship between effects and
dependencies, we can embed them both into a single language, λ1.
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We call 1 the “lax” modality because λ1 is the computational interpretation of
what is known as “lax logic” [FM97]. Lax logic is in turn actually a logical interpretation
of EugenoMoggi’s monadicmeta-language [Mog91], which he developed for reasoning
about programs with effectful behavior. The lax modality’s strong monadic structure
has become so pervasively used for encapsulating effects in pure languages, such as
Haskell [PHA+99], that it is often simply called a “monad”.

. C  

Before introducing λ1, we will take a brief detour through the category theoretic
foundations of the lax modality.

Definition 5.1. A monad (also called a triple or Kleisli triple) over a category C is a
structure 〈F, η, ?〉 consisting the following components:

• F : Obj(C) → Obj(C), a function from objects of a category C to themselves.

• A family of morphisms ηX : X → F(X), for all objects X in the category C.

• An operator ? such that for any morphism f : X → F(Y) in the category C, where
X and Y are objects of C, there exists a morphism f? : F(X) → F(Y) in C.

Furthermore, a monad must satisfy the following equational laws:

• For all objects X in the category C, η?
X = idF(X).

• For all morphisms f : X → F(Y) in the category C, f? ◦ ηX = f.

• For all morphisms f : X → F(Y) and g : Y−〉F(Z) in the category C, g? ◦ f? =

(g? ◦ f)?.

The morphisms ηX are called the units of the monad. The operator ? is often called
the extension. However, it is often convenient to treat the extension as a binary operator,
called bind, that takes objects F(X) and morphisms f : X → F(Y) in C to objects F(Y)

in C. In practical programming, the bind operator turns out to be a more intuitive way
of working with extension. So for the remainder of our presentation we treat ? as the
binary bind operator.

Returning to the domain of programming languages, it is common to model the
simply-typed λ-calculus by a Cartesian Closed Category. Precisely, a Cartesian Closed
Category is any category with finite products, terminal objects, and exponentials.
Informally, we can think of a Cartesian Closed Category as a category where the objects
are types and the morphisms f : τ1 → τ2 are terms of type τ2 with a single free
variable of type τ1. Using this model, it straightforward to show that any number of
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Types τ ::= int | τ1 → τ2 |1τ | . . .

Terms e ::= i | x | λx:τ1.e | e1e2 | val E | . . .

Expressions E ::= [e] | let val x = e inE | . . .

Term variable context Γ ::= · | Γ, x:τ

Figure 9: The grammar for λ1.

type constructors and associated operations form a monad. A very simple example is
forming a monad from the list type constructor.

F , list
η� , λx:τ.[x]
? , λx:F(τ1).λf:τ1 → F(τ2).flatten(map f x)

Here we take the monad’s function F to be the type constructor list. The monad’s units
are the family of functions from any given type to the singleton list of that type. The
monad’s bind operator maps its function argument over its list argument, and flattens
the result back into a list. As it stands, this monad is rather boring because it only ever
computes with singletons lists. However, the structure itself can form the basis for a
rich theory of list comprehensions [Wad92].

Lists, however, are rather orthogonal our central theme: effects and dependencies.
As suggested by Moggi, it is more useful to think of objects τ as being values of type τ
and objects F(τ) as computations of typeτ. This ledMoggi to call the function F anotion
of computation, because it abstracts away from the values used to represent a given
sort of computation. For example, mutable state and exceptions may be conveniently
abstracted by using the following notions of computation:

• mutable state: F , λα.σ → (α× σ), where σ is the type of the mutable store.

• exceptions: F , λα.α+ σ, where σ is the type of the exception packet.

Here, computations concerning mutable state are represented by values that are func-
tions and computations with exceptions are represented by values that are sums. The
function F abstracts away from these concrete representations of computation, letting
us reason about computations in the general.

. A  

If we wish to abstract away from specific instantiations of a notion of computation,
λ1 provides idealized language for distinguishing between values and computations.
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Γ ` i : int
:

x:τ ∈ Γ
Γ ` x : τ

:
Γ, x:τ1 ` e : τ2

Γ ` λx:τ.e : τ1 → τ2
:

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1e2 : τ2
:

Γ ` e÷ τ
Γ ` val e : 1τ

:

Γ ` e : τ

Γ ` [e]÷ τ
:

Γ ` e : 1τ1 Γ, x:τ1 ` E÷ τ2
Γ ` let val x = e inE÷ τ2

:

Figure 10: The static semantics for λ1.

Expression contexts E ::= • | [T] | let val x = T inE | let val x = val E inE
Term contexts T ::= • | Te |

(λx:τ.e1)e2 ;� e1[e2/x]
:

let val x = val [v] inE ;� E[v/x]
:

E ;� E
′

E{E} ; E{E ′}
:

e ;� e
′

E{e} ; E{e ′}
:

Figure 11: The dynamics semantics for λ1.

The grammar is given in Figure 9. Our presentation follows the judgmental precepts
of Pfenning and Davies [PD01], and separates the language into “pure” terms and
“effectful” expressions. We chose to use this definition because of its clear logical
foundation and felt that it made for a less ad-hoc dynamic semantics. Unlike in λ
and λ, in λ1 a complete program is an expressions rather than a term.

At the level of types, λ1 extends the simply-typed λ-calculus with the modal type
constructor 1. This type constructor serves as a generic instance of the monadic
function F. At the level of terms, val E provides an injection from the language of
expressions into the language of terms.
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In λ1, computations are represented using a new syntactic category called expres-
sions. The square bracket operator [·] serves as the unit operator of1 by lifting terms
to expressions. The expression let val x = e inE serves as the bind operator of the
monad. Here the bind operator essentially sequences computations – the computations
in e are forced to occur before those in E.

It is important to note that in λ1, variables only range over terms and not expres-
sions.

The static semantics of λ1 can be found in Figure 10. We write the judgment
Γ ` e : τ to mean “term e has type τ with respect to context Γ” and the judgment
Γ ` E÷τ to mean “expression E has type τ with respect to context Γ”. The typing rules
for the portion of λ1 corresponding to the simply-typed λ-calculus are standard. The
rule: allows for internalizing expression judgments into the term judgments
witnessed by the lax modality to denote that the value is a suspended computation.
Dually the rule : allows lifting term judgments to expression judgments, but
in this case the injection is not witnessed by a type constructor, because all terms are
trivially computations. Finally, the rule: shows how let val expressions provide
a destructor for computations.

Because λ1 has such a different operational character from λ, λ, and the
simply-typed λ-calculus, we provide its complete dynamics semantics in Figure 11. To
be concise, we formalize reduction using call-by-name evaluation contexts. We could
have equally well chosen call-by-value. There are three evaluation judgments: e ;� e

′

for terms making a β-reduction, E ;� E
′ for expressions making a β-reduction, and

E ; E ′ for expressionsmaking a reduction under an evaluation context. An expression
E is either a finished computation or it can be decomposed into an evaluation context
E and a term or expression with a β-redex. val terms are lazy and act as suspensions
or thunks, with bind forcing their evaluation.

. E

To capture specific notions of computation we can extend the language of λ1 expres-
sions. Consequently, the monadic structure of the lax modality ensures that the bind
operator will correctly sequence computations, that is, effects and dependencies.

Mutable references

We can extend λ1 with mutable references by adding expressions for allocating and
initializing a reference cell, ref e, reading from cells, !e, and writing to them, e1 :=

e2. The static semantics for these new expressions is straightforward, and given in
Figure 12.
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Γ ` e : τ

Γ ` ref e÷ ref τ
:

Γ ` e : ref τ

Γ ` !e÷ τ
:

Γ ` e1 : ref τ Γ ` e2 : τ

Γ ` e1 := e2 ÷ ref τ
:

Figure 12: λ1’s static semantics extended with mutable references

Heaps E ::= {l1 7→ v1, l2 7→ v2, . . .}

Expression contexts E ::= • | [T] | let val x = T inE | let val x = val E inE
| ref T | !T | T := e | l := T

(λx:τ.e1)e2 ;� e1[e2/x]
:

〈H, let val x = val [v] inE〉 ;� 〈H,E[v/x]〉
:

〈H, ref v〉 ;� 〈H ∪ {l 7→ v}, [l]〉
:

〈H, !l〉 ;� 〈H, [H(l)]〉
:

〈H, l := v〉 ;� 〈H ∪ {l 7→ v}, [l]〉
:

〈H,E〉 ;� 〈H ′, E ′〉
〈H,E{E}〉 ; 〈H ′,E{E ′}〉

:
e ;� e

′

〈H,E{e}〉 ; 〈H ′,E{e ′}〉
:

Figure 13: λ1’s dynamics semantics revised for mutable references
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Adding mutable references to λ1 requires more complicated changes to the dynam-
ics semantics. These are described in Figure 13. Aside from extending the language
of expression contexts, we must introduce a notion of a heap, H, a set of mappings
between locations, l, and values. We also revise the evaluation judgments for expres-
sions: 〈H,E〉 ;� 〈H ′, E ′〉 for expressions making a β-reduction with respect to a
heapH, and 〈H,E〉 ; 〈H ′, E ′〉 for expressions making a reduction under an evalu-
ation context with respect to the heap H. It is important to note that the evaluation
judgment and reduction rule : for terms did not need to change because the
strict separation enforced by the lax modality means that terms remain pure and evolve
completely independently of the heap.

Our simple example of memory allocation from Section 3 naïvely becomes

· ` λx:int.(λy:1ref int.0)(val ref x) : int → int (9)

Notice that because the reference cell that we allocated is never used, no bind is nec-
essary. Furthermore, there is no indication from the type of the term that any effect
occurred. This may seem a little strange, until we realize that this function does not
actually implement the same behavior as the similar looking function we defined for
λ. This is because val suspends the computation of its body, and no allocation ever
actually takes place. A semantically equivalent version would look like

· ` λx:int.val (let val z = (val ref x) in [(λy:ref int.0)z]) : int → 1int (10)

This revised version correctly captures the intended behavior, and now the lax modality
in the function’s type reflects that the result is actually a computation.

Secure information-flow

Interestingly, the sequencing of the monad can also be used to track dependencies.
Consider our example from Section 4, where we wish to track which parts of a program
may depend upon high-security information. We can again introduce a high security
constant for a password.

Γ ` passwd÷ int
:

Here instead of giving the password a high-security label, we simply add passwd to
the language of expressions. For any piece of code to actually make use of passwd, it
must first bind it, as such

· ` let val x = passwd in . . .÷ τ (11)
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However, because the bind operation requires that the body must be an expression,
the result of the entire expression will be forced to live in the world of computations.
Therefore, if we have only a simple two-level security lattice, we could distinguish those
parts of the program that depend upon high-security information by the fact that they
have monadic types.

We can even state an analogous noninterference theorem for λ1

Theorem 5.2 (Noninterference). If ·, x : 1int `e : int then for any two · `e1 : 1int
and · `e2 : 1int the result of computing e[e1/x] and e[e2/x] will be equivalent.

Proof. The canonical proof is a corollary of a more general proof of substitution for a
logical relation, but syntactic techniques also exist.

Nontermination

Finally, we can also track nontermination in λ1 by making the fix-point operator an
expression, such that any potentially diverging computation must be explicitly forced
by using bind. However, the design of this fix-point takes some care.

Γ, x:1τ ` E÷ τ
Γ ` fix x:τ.E÷ τ

:
fix x:τ.E ;� E[val (fix x:τ.E)/x]

:

Because the fix-point evaluates by unwinding to its body, and because the fix-point is
an expression itself, we require that the body be an expression too. However, because
variables in λ1 only range over terms, when substituting itself in its body, the fix-point
must first wrap itself inside a val.

Our running example of factorial would become

· ` fix fact:1(int → 1int).
[λx:int.if x ≤ 0 then

val [1]
else
val (let val fact ′ = fact in [x ∗ fact ′(x− 1)])]

÷int → 1int (12)

As with λ and λ this type is quite conservative. Because of the use of a fix-point to
compute the factorial function, the type of function itself is marked as a potentially
diverging computation. Similarly, even though the result of computing factorial will al-
ways be a value, the return typemust be conservatively declared an integer computation
to indicate that the function could diverge.
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Types τ ::= . . . |1‘τ | . . .

Γ ` e : τ τ1 ≤ τ2
Γ ` e : τ2

:

Γ ` E÷‘ τ

Γ ` val E : 1‘τ
:

Γ ` e : τ

Γ ` [e]÷∅ τ
:

Γ ` e1 : 1‘1τ1 Γ, x:τ1 ` e2 ÷‘2 τ2 `1 ≤ `2
Γ ` let val x = e1 in e2 ÷‘2 τ2

:

Γ ` E÷‘1 τ `1 ≤ `2
Γ ` E÷‘2 τ

:

Figure 14: Labeled semantics for λ1.

τ ≤ τ
:

τ1 ≤ τ2 τ2 ≤ τ3
τ1 ≤ τ3

:

τ1 ≤ τ2 `1 ≤ `2
1‘1τ1 ≤ 1‘2τ2

:
τ3 ≤ τ1 τ2 ≤ τ4

(τ1 → τ2) ≤ (τ3 → τ4)
:

Figure 15: The subtyping relation for labeled λ1.

. L λ1

In the previous section we saw that the lax modality provides an elegant approach to
modelling effects and dependencies. However, it fails to be as descriptive as the labels
we used in λ and λ. A term with type1τ is some computation producing a value
τ, but the nature of the computation is completely hidden. For example, our simple
function that performs a vacuous allocation

· ` λx:int.val (let val z = (val ref x) in [(λy:ref int.0)z]) : int → 1int (13)

indicates by its monadic type that it is not pure, but it does not tell us it was because of
allocation, rather than reading or writing to a mutable reference.
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[[int]] , int

[[τ1
‘
−→ τ2]] , [[τ1]] → 1‘[[τ2]]

[[i]] , i

[[λx:τ.e]] , λx:[[τ]].val [[e]]

[[v]] , [[[v]]∗]

[[x]] , [x]

[[e1e2]] , let val x1 = (val [[e1]]) in
let val x2 = (val [[e2]]) in (let val x = x1x2 in [x])

[[·]] , ·
[[Γ, x:τ]] , [[Γ ]], x:[[τ]]

[[Γ ‘̀ e : τ]] , [[Γ ]] ` [[e]]÷‘ [[τ]]

Figure 16: Encoding of λ into labelled λ1

We can obtain the same level of precision as in λ and λ if we can extend λ1 so
that it has not just one monadic modality, but an entire lattice of them. This approach
has been taken by both Wadler [Wad98] and Abadi et. al. [ABHR99] for effects and
dependencies respectively. In Figures 10 and 15 we give the grammar, static semantics,
and induced subtyping relation for such an extension.

The new typing rule: for the monadic unit reflects the fact that because
values in labelled λ1 are pure, they can be labelled with the least dependency or effect
in the lattice. The typing rule : can be seen as capturing the requirement that
effects and dependencies are propagated during evaluation.

To illustrate the expressiveness of the labelled version of λ1, we show that it can
soundly encode both λ and λ. We stop short of showing that the encodings
bisimulate the source languages for reasons of space.

Encoding λ into labelled λ1

Our encoding ofλ into labelledλ1, shown in Figure 16, is inspired byWadler [Wad98],
but his target language did not make the same distinction between terms and expres-
sions, so it has been adapted some. However, the type encoding remains exactly
the same. Functions types in λ are encoded as pure functions in λ1 that return
computations.
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Our encoding makes a distinction between encoding values and terms. The op-
erator [[·]]∗ maps λ values to λ1 terms, and the operator [[·]] maps λ terms to λ1
expressions. This captures the intuition that in λ values are inert, just as terms in
λ1 are pure, and because λ terms may produce effects they should be mapped to
expressions in λ1, which isolate computations.

Regardless of whether we take λ1 to be call-by-value or call-by-name, the above
encoding provides the correct call-by-value operational behavior as the sequencing
provided by the let val expressions in the encoding of applications ensures that both
the function and argument are evaluated before they are applied. The final nested
let val forces the computation produced by all encoded functions.

Theorem 5.3 (Encoding of λ sound).

1. If τ1 ≤ τ2 then [[τ1]] ≤ [[τ2]].

2. If Γ ∅̀ v : τ then Γ ` [[v]]∗ : [[τ]].

3. If Γ ‘̀ e : τ then Γ ` [[e]]÷‘ [[τ]].

Proof. Part 1 follows from straightforward induction over the subtyping derivation.
Parts 2 and 3 follow from mutual induction over the structure of the typing derivation.

Encoding λ into labelled λ1

Our encoding of λ into labelled λ1 is inspired by Abadi et. al.’s [ABHR99] encoding
of languages for tracking dependencies into a monadic calculus. Again, their target
language did not have an explicit separation between terms and expressions, so there
are some differences.

The encoding is in some respects almost a dual of the encoding used for λ, but we
will not attempt to formalize the duality here. In the encoding described in Figure 17,
λ values are encoded as λ1 expressions, and λ terms are encoded as λ1 terms.
This is because it is the values in λ that carry the dependencies, and to capture
this their encoding must live in the world of λ1 computations. Despite encoding λ
terms into λ1 terms, we must encode λ programs into a λ1 expression, because
expressions form the basis of evaluation in λ1. If we simply encoded λ programs
as λ1 terms, the resulting terms would be always be values and there would be no
correspondence in evaluations.

The encoding above will only suffice for the call-by-name version of λ, even if we
were to give λ1 a call-by-value semantics. For the encoding to produce a call-by-value
semantics, the case for application must be changed to the following

[[e1e2]] , val (let val x1 = [[e1]] in
let val x2 = [[e2]] in (let val x = x1(val [x2]) in [x]))
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[[int‘]] , 1‘int
[[τ1→‘τ2]] , 1‘([[τ1]] → [[τ2]])

[[i]]∗ , [i]

[[λx:τ.e]]∗ , [λx:[[τ]].[[e]]]

[[v]] , val [[v]]∗

[[x]] , x

[[e1e2]] , val (let val x1 = [[e1]] in (let val x2 = x1[[e2]] in [x2]))

[[·]] , ·
[[Γ, x:τ]] , [[Γ ]], x:[[τ]]

[[Γ `e : τ]] , [[Γ ]] ` let val x = [[e]] in [x]÷‘ τ
′

where [[τ]] = 1‘τ
′

Figure 17: Encoding of λ into λ1

Here the additional let val is used to force the evaluation of the function argument,
before it is packaged back up again using val and the monadic unit. This revised
encoding will produce the call-by-value semantics regardless of whether the semantics
of λ1 are call-by-name or call-by-value.

Theorem 5.4 (Encoding of λ sound).

1. If τ1 ≤ τ2 then [[τ1]] ≤ [[τ2]].

2. If Γ `v : τ then Γ ` [[v]]∗ ÷‘ τ
′ where [[τ]] = 1‘τ

′.

3. If Γ `e : τ then Γ ` [[e]] : [[τ]].

Proof. Part 1 follows from straightforward induction over the subtyping derivation.
Parts 2 and 3 follow from mutual induction over the structure of the typing derivation.

6 C

The type systems for reasoning and effects and dependencies presented in this paper
provide an important foundation for reasoning about realistic programs. We can objec-
tively say that the use of monadic structures to encapsulate effects has revolutionized
functional programming.
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Still, the survey in this paper has only scratched surface. Another important
paradigm for formalizing the effectful behavior of programs are substructural type
systems. Much of the interest in substructural type systems evolved out of research into
linear logic. Linear logic was originally conceived from research into domain theory
and coherence semantics [GLT89]. However, linear logic has since been recognized
as a natural language for communicating statements about state and resources. It was
only natural that computer scientists would consider the computational interpretation
of linear logic to model stateful computation and resources in programming.

Furthermore, there appears to be a strong connection between monadic type
systems and linear type systems. Benton and Wadler developed a language, the adjoint
calculus [BW96], that cleanly combines a monadic and linear computations such that
they are delightfully close to duals [BW96]. However, the adjoint calculus only models
monadic structures that are commutative. Pereira has conjectured [Per05] that their
may be a better fit in attempting to relate monadic languages with ordered substructural
logics such as the Lambek calculus [Lam58] and Polakow’s ordered linear logic [Pol01].

Recently, it has also been recognized that monads might not be the most funda-
mental structure for encapsulating effects and dependencies. In Pfenning and Davies’
judgmental reconstruction of modal logic [PD01], they were able to show that the
lax modality can be cleanly decomposed into a combination of modal possibility and
modal necessity. The fact that the lax modality seems to have properties of both ne-
cessity and possibility had already been noted by Fairtlough and Mendler [FM97].
What makes this result even more fascinating is that modal possibility and necessity
are duals, and while modal possibility itself has a monadic structure, modal necessity
forms a co-monadic structure. This naturally leads to the question of whether possibil-
ity and necessity in some way provide a more fundamental treatment of effects and
dependencies than the lax modality.

Indeed, it has actually been suggested previously that a co-monadic structure might
be more appropriate for representing effects that arise from the context in which a
program fragment may execute [Kie99, Par00,Nan04, PH04]. Kieburtz was the first
to propose the use of co-monads, and recently Nanevski took these ideas further in a
nominal account of effects in modal type systems. Nanevski’s calculus builds on the
idea of fresh names developed by Gabbay and Pitts [GP99] and the judgmental account
of modal logic by Pfenning and Davies. Nanevski’s thesis is that modal necessity
provides a way to demarcate which bits of code are impure and enforce the correct
propagation of effects and that modal possibility handles the single-threading of effects
and globalizing their scope [Nan04].

Because of the dichotomybetween possibility andnecessity, monadic and comonadic,
we believe that there exists more refined encodings of λ and λ into a language
with modal necessity and modal possibility than our monadic encodings into λ1. In
passing we have noted the seemingly dual nature of effects and dependencies. We
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conjecture that this duality will manifest itself as a natural encodings of dependencies
using modal necessity and effects using modal possibility. However, formalizing this
duality precisely will require further study. We believe that by making this duality
explicit in type systems it will provide a more unified account of program behavior and
provide additional expressive power.
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