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Abstract
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pages. All primary objects, including memory segments and protection domains, are constructed out of
these fundamental objects, and inherit their persistence. EROS is a pure capability system: access to
objects is provided exclusively through the invocation of kernel enforced, secure capabilities. This paper
describes the EROS Abstract Machine and the mechanisms used to achieve efficient consistency
management within the system. The implementation, including all primary objects, a low overhead
checkpoint/migration subsystem, and an efficient interprocess communication mechanism, requires less
than 64 Kbytes of supervisor code (prior to size tuning).

Comments

University of Pennsylvania Department of Computer and Information Science Technical Report No.MS-
CIS-96-06.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/185


https://repository.upenn.edu/cis_reports/185

Consistency Management in the EROS Kernel

MS-CIS-96-06

Jonathan S. Shapiro
David J. Farber
Jonathan M. Smith

University of Pennsylvania
School of Engineering and Applied Science
Computer and Information Science Department

Philadelphia, PA 19104-6389

1996



Consistency Management in the EROS Kernel

Implementing Efficient Orthogonal Persistence in A Pure Capability System

Computer and Information Sciences Technical Report MS-CIS-96-06

Jonathan 5. Shapiro
David J. Farber
Jonathan M. Smith
University of Pennsylvania ™

24 February. 1996

Abstract

EROS is a persistent operating system targeted to-
wards managing resources with great longevity. The
system provides a persistent single-level store sup-
porting two fundamental object types: nodes and
pages. All primary objects, including memory seg-
ments and protection domains, are constructed out
of these fundamental objects, and inherit their per-
sistence. EROS is a pure capability system; access to
objects is provided exclusively through the invocation
of kernel-enforced, secure capabilities.

This paper describes the EROS Abstract Machine
and the mechanisms used to achieve efficient con-
sistency management within the system. The im-
plementation, including all primary objects, a low
overhead checkpoint/migration subsystem, and an
efficient interprocess communication mechanism, re-
quires less than 64 Kbytes of supervisor code (prior
to size tuning).
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2 THE PERSISTENCE LAYER

1 Introduction

EROS, the Extremely Reliable Operating Svstemn.
provides an environment for the construction of per-
sistent application systems. The motivation for this
eflort is to facilitate research in user environments.
reliable application design, scheduling, security. and
recoverable distribution in such systems. EROS may
he viewed as a single large-scale persistent application
that serves multiple mutually suspicious users. A pri-
mary design objective 15 to achieve a software mean
{ime between failures (MTBF) measured in years.
This 13 achieved through a combination of carcful
object design, enforcement of containment. aggres-
sive fault detection, effective fault 1solation, and user-
provided recovery policies.

FROS is system. INevINOS
[Hardy&5], developed by Key Logic, Inc. to support

similar to a prior

reliable tiime sharing services among mutually suspi-
cious nsers. Like KeyKOS, EROS implements global
orthogonal persistence based on a stmple fundamen-
tal object model; all system state, including pro-
cesses. are checkpointed on a periodic basis. Also like
NevIKOS, EROS is designed as a small microkernel
with a high performance message passing subsystem
[Bomberger92].

Uinlike WeyINOS, EROS is designed as a distributed,
real-time systemn. Threads in EROS are first class ob-
jects associated with a particular compute resource.
INevIXOS meters have been abandoned in favor of
schedule capabilities, which distribute more easily
and are better suited to real-time scheduling recuire-
ments. EROS implements a distributed single level
store. These changes have necessitated an entirely
new implementation that departs significantly from
the KeyKOS system.

This paper describes the EROS persistent system, in-
cluding all of the significant primary objects. We de-
scribe the fundamental objects, the abstract machine
crafted from those objects, and the mechanisms used
to elficiently and consistently map these abstractions
onto the underlying hardware. In addition. we de-
scribe a number of cacheing techniques nsed to facil-
itate efficient execution.

With minor differences in the sizes of a few fields. the
While
untuned, the techniques used are similar enough in
spirit to prior implementations that we are confident

system described here is currently running.

they will perform well as the implementation is re-
lined.

2 The Persistence Layer

The primary objects of the EROS system are do-
mams. segments. stall queues, threads, nodes, and
pages. From one perspective, these object types have
co-equal status. Each is persistent, each has a well de-
fined. kernel implemented object protocol, and each
can be manipulated by any holder of an appropriate
capability.

The persistence architecture is defined in terms of
nodes. pages. and threads. Domains, stall queues.
aud segments are composed from nodes and pages.
Their persistence is a consequence of their composi-
tion from these indivisible units. Where it is impor-
tant to distinguish between these layers, this paper
refers Lo nodes. pages, and threads as fundamental
objects.

Thread Pool Primary Objects

' Domains
B

Segments
Stall Queues

Nodes
Fundamental Objects

Pages

Host

Figure 1: The Object. System

A page is a repository of user data. It contains an
architecture-defined number of bytes. A node is a
repository of a fixed number of secure capabilities
knowu as keys. In all current EROS implementa-
tions. nodes contain 16 keys. A thread is a stateless
binding agent hetween a domain and a host. Threacds
therefore act as

the locus of scheduling. Threads.

nodes and pages are persistent.

All EROS objects are accessed exclusively through
kernel-implemented, secure capabilities. Posession of
a key for an object is a necessary and sufficient con-
cdition for accessing that object with the authorities
conveyed by that key. A read-write page key, lor ex-
ample. convevs the authority to examine or modify a
particular persistent page.

Every node and page has a unique (possibly du-
plexed) home location. which defines the ohject’s
unique identifier (OTD). Main memory 1s used as a
cache of the persistent store. When a key is refer-
enced. the object named by the key is faulted into
nmemory from the disk. Once the object isin memory,
the referencing invocation proceeds on the in-memory
copy. At some later time, the object will be written
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hack to the persistent store, making the modification
permanent. Efficiency is achieved by cacheing this
state in a form convenient to the hardware, and en-
suring that the cached images and the objects remain
consistent.

Objects on the persistent store are organized in con-
tiguously numbered clusters known as ranges. Ev-
ery range has a type (node or page), a starting OID.
and an ending O1D. Once the appropriate range is lo-
cated, the offset of that object within the range can
be calenlated by straightforward arithmetic.

2.1 The Object Cache

At startup time, the EROS kernel allocates a small
number of static data structures. Machine conlig-
uration and driver initialization code then allocate
whatlever dedicated memory is required to support
the hardware present on the machine. All remain-
ing memory is used as an object cache for nodes and
pages. On a Pentium PC with 16 Megabytes of mem-
orv. our (bloated) research kernel’s object cache holds
3497 pages and 3572 nodes. '

I’rior to its first use. a key to a node or page contains
a tvpe. a 16-bit key data field, the object identifier.
and the object’s allocation count. The format ol such
a key is shown in Figure 2.

000 Type| SubTym Key Data
Allocation Count[31:0]
0ID[47:32] | Alloc Count[47:32]
OID[31:0]

Figure 2: An unprepared key

Objects in memory are linked into a hash table on
the basis of their OID. When a key to an object is
first. invoked, the object. cache hash table is searched
to determine if the object is in core. If necessary. an
object fault is initiated to bring the object into the
main memory cache.

Once the object is found in memory it is consulted to
locale its current object table entry. If no object
table entry exists for the object, one is allocated from
the core object table. The object and the object
table entry point to each other. When an object table
entry has been located, the key is converted into its
prepared form., which points to the object table entry.
This provides eflicient access to the ohject for future
references. The prepared form of the key 1s shown in

Figure 3.

001 Type| SubType [  Key Data
Allocation Count[31:0]

01D[47:32] I Alloc Count[47:32]
Object Table Ptr
Object Table Entry
= OID[31:0] | Page
Object Ptr Node

[Figure 3: A prepared key

2.2  Object Versions

All pages and nodes are imitially owned by a user-
level domain known as the space bank (see below).
Applications wishing to obtain storage must obtain
that storage from a space bank. A space bank holds
the authority to fabricate page and node keys for all
of the objects in the ranges it controls. Space banks
are {rusted syvstem components.

Over the course of its lifetime, a given page or node
may be acquired and relinquished by many different.
users. Kevs to this object can be copied arbitrarily
by the holder. so it is necessary to have a way to
ensure that a previous user cannot access the new
user's data. This is accomplished by use of a A8 hir
allocation count. which tracks the number of times
that an ohject has heen allocated.! Both the object
and 1t's associated kevs have an allocation count.

Whenever a prepared key is referenced, the allocation
count ol the key is compared against the allocation
connt stored in the object header.® If the allocation
count in the key does not match the allocation count
i the object. ihe key is invalid, and conveys no au-

thority on the object. A key that 1s discovered 1o

"Giiven that the designed MTBF of the EROS svstem is
measured in vears. the possibility of allocation count overflow
must be considered. Assuming a 32 cycle round-tripinvocation
time (an implausibly small number). a 48 bit counter takes 27*
cyveles to roll over. On a machine with a femtosecond (27

sec) clock. this works out something over 8 thousand vears.

[

While its conceivable that a single system image might run
that long. we [eel reasonably confident that we can scavenge
the persistent store every few thousand vears without noticable
overhead.

?Node object headers are kept with the object. Hardware
constraints require that pages be placed in physical memory
ai page addresses. The object “headers™ [or pages are kept in
a parallel data structure rather than with the page iiself.
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have an invalid invocation count is converted by the
kernel to a number key containing the number 0.

When an obhject is sold back to a space bank, its al-
location count is incremented. This is known as -
scinding the object, and ensures that “cangling keys”
o the object are rendered 1impotent.

The decision to accept an extra level of indirection
[or key validation is a deliberate engineering tradeoff’
n the vast majority of key invocations, only one kev
needs o be validated for the invocation to proceed.
Ney invocations involve a privilege transition, so the
additional memory reference is essentially lost in the
noise on most architectures.

In the case of an interdomain call, several keys may
he copied by a key invocation. Copied kevs need not
be validated: if the original is stale, the copy will be
Just as stale, and can be invalidated in a lazy fashion.

2.3 Ageing and Scavenging

Objects are placed on a “free list™ by an ager, and re-
allocated in response to memory demands. Objects
on the free list retain their content, and can be re-
covered if they are discovered to be in active use.

When a node is removed from memory by the ager.
its contained keys are first converted to their on-disk
format. If the key 1s prepared, its associated ohject
table entry is consulted to obtain the low word of
the key's OID, and this OID is rewritten into the key
data structure.

The object named by a key may be removed from
memory before the key is removed. When this oc-
curs. no altempt is made to locate the keys that point
1o the corresponding object table entry. The object
pointer field of the object table entry is simply set to
1. rendering the object pointer invalid (the low bit is
testecd) whenever a key 1s referenced).

As an efficiency, a new object table entry i1s allocated
every time an in-core object is rescinded. In this
event, the object pointer field is set to 3. This al-
lows invalid keys to be deprepared to the null key.
which climinates the need to fault in the object later
to discover that the key is invalid.

Stale object table entries are recovered by the OT
Scavenger, a low-priority background task. The OT
scavenger first passes over the object table entries.
nsing an available bit in the invalid object pointer
to indicate which entries are to be cleaned. Tt then
passes through key space, depreparing all keys that
reference object table entries marked for cleaning. Fi-
nally. it frees those object table entries. Making two

passes over the object table allows the OT scavenger
to operate without disrupting ongoing computation.

3 The EROS Abstract Machine

IEROS defines an abstract machine using nodes and
pages as the basic building blocks. The abstract ma-
chine is mapped onto the underlying hardware using
the mechanisms described later in this paper. With
the exception of threads, all of the pieces of the ah-
stract machine are built out of nodes and pages, and
iherefore nherit their persistence. Thread persis-
tence is managed specially by the kernel.

The EROS abstract machine exposes the basic node.
page and thread objects, and provides lour additional
abstractions:  domains, segments, and stall queues
(the last. a means for arranging efficient. invocation
retry. is not discussed by this paper). In addition, the
abstract machine defines the mechanism by which ob-

Jects are accessed: mvocation.

3.1 Domains
Domains are assembled from nodes, one of which acts
as the domain root.” A domain consists of:

o An address space segment, containing the pro-
gram that the domain obeys and any data that
the domain may construct.

o A sel of general registers, which change as the
domalin executes. The register set includes all
ol the non-privileged registers of the underlyving

wachine architecture.

o A set of 16 key requsters, which identify the ser-
vices that the domain can invoke.

e A priority key, delining the priority at which the
domain should he scheduled.

o A Leepers which 1s a start key (see below) to
another domain that is invoked when a domain
takes an exception. The keeper is established
when a domain is first created. Most domains
are unable to change their keeper.

Register values in a domain are stored in number
keys. A number key is a self-describing capabili-

ity coutaining (in the current implementation) a 10

“Tn all current implementations, domains occupy three
nodes: the domain root. the general registers node, and the
keyv registers node. The general registers node holds any reg-
ister values that do not it within the domain root, and may
turn ont not to be required for 1486 domains.
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byte data string.? The zero number key is also known
as the null key.

3.1.1 User-Defined Objects

A domain acts as the interpreter of the program con-
{ained in its address space, interpreting that program
according to the user-mode instruction set of the un-
In this sense. do-
mains are both objects in their own right and im-

derlying hardware architecture.

plementors of objects. The holder of a domain key
can fabricate a key known as a start key. The in-
voker of a start key invokes the program embodied in
that domain. Once started, the program runs at the
priority of its interpreting domain.

The key data field of a start key is set as part of its
fabrication, and is passed to the recipient program
by the kernel whenever that start key is invoked. Be-
cause it does not originate with the caller. the key
data value is unforgeable. It can be used by the re-
ceiving program to denote multiple clients. multiple
authorities. or choose among interfaces.

3.1.2 Domain States

In addition to providing services, domains provide a
mechanism for synchronization. Domains are single-
threaded. A domain can be occupied by at most one
thread. Tf a client invokes a domain that is currently
ruuning, the client blocks until the domain becones
available. More precisely, a domain can be i one of
three states:

Available An available domain is currently idle. and
can be invoked by any holder of an appropri-
ate start key. This 1s the state of most of the
domains in the system. An available domain is
nol. occupied by any thread. A domain becomes
available when it performs a refurn operation.

Running Once it has been invoked, a domain moves
from the available state to the runnimg state. A\
running domain is busy servicing an invocation.
and is occupied by a thread.
invoked while the domain i1s running, the mvoker

16 a start key is

will block until the domain becomes avaifable.

Waiting A domain that has invoked a key and is
wailing for a response moves from the runnimg
state to the wailting state.

It remains in this

state until its current resume key is invoked. Il a

TTEROS keys will shortly be growing from 3 words (o 4. The
size of the number key payload will grow accordingly.

start key is invoked while the domain is waiting,
the invoker will block until the domain becomes
available.

3.1.3 Domain Keepers

As a domain mterprets a program, it may take ex-
ecution faults due to invalid or privileged instruc-
tions. mappropriate runtime data values. or execution
of a trap instruction. Except in the case of the kev
mvocation trap, the EROS kernel does not directly
resolve such faults. Instead. the kernel encapsulates
the fanlt into a message and delivers this message to
the domain’s keeper. The keeper is responsible for
deciding what 1o do.”

Execution faults are distinguished from access faults.
Access faults include references to invalid pages
and accesses to pages mapped with insufficient access
rights. 1T a segmont heeper (see below) is defined, ac-
cess faults will he delivered to the segment keeper in
preference to the domain keeper. The segment keeper
receives sufficient authority to pass the fault message
bhack to the domain keeper for resolution.

Note that both access and execution faults are «n-
dogenous faults. Both can be traced directly to some
action by the program. It is the responsibility of the
keeper(s) (o handle endogenous faults. Exogenous
faults. sucl as memory errors, are the responsibility
of the EROS kernel. A domain that takes an endoge-
nous fault without. a keeper defined beconies broken.
and ceases 1o execute instructions.

The essential notion behind keepers is that whatever
may prove to be wrong, the kernel lacks
imformation to correct the problem. Tt is better {o
place fault handling in a user domain which mighi

be able to do something constructive to address the

sullicient

probleni.

3.2 Segments

A segment provides a mapping (rom offsets to pages
(Figure -1). Segments serve as both the files and the
address spaces of the EROS system. Segments are
tree-structured. following the style of traditional tree-
strirctured mapping tables. Each layer in the segment

"\ notable exception is software emulation of unimple-
mented instruetions or unimplemented boundary concditions,
which are performed transparently by the kernel in some im-
plementations. Emulation could in fact be handled by the
domain keeper, hut this would place an unnecessary burden of
implementation on all keepers and render them highly machine
dependent. On halance, it appears that in-kernel instruction
emulation is a hetter solution provided it is not excessive.
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tree translates four bits of a segment offet.

Node

4] 15

Page Key

1 Zero Number Key
1 Node Key

Node

Figure 4: A 19 page segment

ivery domain has an associated address space seg-
ment, which is referenced by load and store instruc-
tions. Programs access other segments by mapping
portions ol them into their address space segment.,

3.2.1 Segment Keepers

Segment keepers subsume most of the memory policy
management decisions of conventional kernels. Just
as programs can execute invalid instructions. they
can perform invalid references. A segment can op-
tionally provide a start key to a segment keeper,
a domain that should handle access faults encoun-
tered within that segment. This receives notification
of both invalid accesses and protection violations.

A segment keeper can respond to a segment fault in
one of two ways: it can modify the segment so as to
allow the access to proceed, or it can decide that the
reference 1is truly invalid and hand off the responsi-
bility 1o the domain’s domain keeper. Object cache
misses are not reported to the segment keeper, but
are transparently handled by the object cache.

3.3 Threads

A thread binds a domain to a particular machinc.
In this capacity, threads may be thought of as the
roots of the state reachable from a given host. A
running domain is occupled by a thread, and executes
instructions on the host identified by the thread. A
host implements a fixed supply of threads.

I'hreads are the unit of scheduling in the EROS ab-
stract. machine. When a domain calls another do-

1

main. the thread is said to magrate to the called do-
ai.

3.4 Invocation and Messages

A program wishing to access an object must possess
a kev naming that object. Access is obtained by n-
voking the key with a message that is delivered to
the object. An EROS message consists of an order
code. exactly four keys, and a contiguous data string
of up to 64 kilobytes." Message responses contain a
return code. four keys, and up to 64K of data. Key
register zero of every domain always contains the null
kev. [ sending or receiving four keys is not required
for a given message. unneeded keyv arguments can be
senl [rom or received {o key register zero.

EROS supports three types of invocation: call. fork,
and refurn. The call invocation passes a resume
key in the last slot of the message (overwriting any
key sent in that slot). and places the invoking domain
in the wartimg state until the generated resume key is
invoked. The recipient object is placed in the running
state as a consequence of the call. The return invo-
cation is the inverse of the call operation. [t places
the invoker in the cvailable state and the recipient in
the running state. Resume keys are self-consuming;:
any mnvocalion ol a resume key causes all copies of
that resune kev to be efficiently invalidated. This
ensures that every call receives al most one reply.

The fork invocation transfers the message to the re-
ciptent and leaves both sender and receiver in the
runining state. Unless the caller makes explicit pro-
vision [or a reply, no response to a fork is possible.

Because domains are single-threaded, entry to a do-
main provides an implicit guarantee of mutual exclu-
ston. This fact 1s exploited by a number of different
EROS objects.

4 Realizing the Machine

The abstract machine must be mapped onto the un-
derlving hardware. This is principally a matter of
constructing the appropriate mapping table struc-
tures and finding a way to structure context informa-
tion to lacilitate efficient context switching. EROS
views the mapping tables as a cache of the state em-
hodied in the segment structures. Any domain state
that is needed for efficient context switching 1s main-

[ M M : . - - -

“The current implementation restricts messages (o be no
larger than the architecture’s page size.
message datra pavloads (o 64K shortly.

We p]an to extend
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tained in the context cache. For both caches. de-
pendency structures are maintained that allow the
caches to be invalidated as objects are modified or
removed from memory.

The design of the dependency mechanisms must meet
three objectives:

I. New dependency structures must be con-
structable without long delay, if necessary by
reclaiming other dependency-related data struc-

Lures.

2. Tt must be possible to reclaim dependency struc-
tures incrementally.

v

The dependency structures must facilitate an ef-
ficient realization of ageing and checkpointing.

In this section we present the dependency tracking
mechanisms that EROS uses to realize the abstract
machine.

4.1 Key Slot Hazards

Because a key's value may be cached, care must be
taken when reading or writing key slots to ensure
that any dependent cache mformation is appropri-
ately fushed and/or updated. Such
known in EROS kernel terminology
Hazards are divided into two flavors:
and write hazards.

a conditlon is
as a hazard.
read hazards

A write hazard indicates that the content of some
cache depends on the current value of the key occu-
pyving a slot, and the cache must be flushed before
a slot write can safely proceed. Write hazards arise
in segment trees, where mapping cutries may need to
be invalidated, and in domains, where writing a slot
may require updating the context cache structure as-
sociated with the domain.

A read hazard indicates that the current content
ol the slot is not up to date, and must be Hushed
back to the key from a cache. Read hazards arise in
domains, where up-to-date register values may need
to be flushed back to the domain from the context
cache. All read hazards are also write hazards.

On multiprocessors, both read and write hazards may
imply the need for interprocessor signalling to ar-
range for translation caches and/or register sets to
be Aushed.

4.2 'The Context Cache

While nimiber keys provide a space-efficient storage
medium for register values. they are not an espe-
cially eflicient format for loading and saving registers
during a context switch. For this reason, the reg-
ister valnes of a domain are loaded into a machine-
specific context structure before the domain contexi
is loaded onto the hardware. The domain lavout is
chosen for the convenience of the ahstract machine.
Because cross-domain message passing and contexi
switching performance 1s critical, the context strue-
ture lavout 1s chosen for efficient context switch. .\
number of implementation tricks are used to facilitate
rapid context structure save and restore.

In conventional operating systems, processor state s
saved to an interrupt stack, and later transferred to a
per-process s{ructure. In EROS. we contrive for the
initial iterrupt stack pointer to point to the top of
the coutext structure for the active domain. We save
the process state directly into the context structure
and then switch interrupt stacks. As a result, the do-
main state is saved into the process structure without.
the need for a later copy. This technique is similar
to technigques nsed in L3 [Liedtke93] and Mach 4.0
[Ford93].

Because [LROS programs can hold node keys to the
components of domains. however, we must be able to
cfficiently and selectively flush subsets of a context
cache entry back to the constituent nodes of the do-
main o cdemand. Tn clearing hazards associated with
kev slots in the domain root. portions of the context
cache entry may be unloaded. Before running a pro-
cess or examining its context structure. the kernel
must first verify that the domain is fully loaded into
the context. For efficiency in context switching. a
simple zero-test of the context save area field is suffi-
cient 1o determine if the context is fully cached and
runnable.

4.3 Mapping Table Management

When a translation fault occurs. the program’s ad-
dress space segment 1s traversed by the kernel to con-
Invalid
offsets and access rights violations are encapsulated
by the kernel and reported to a user-level fault han-
dler. "The hardware mapping tables, in effect, are a
lazily-generated projection of the access rights con-
veved by the segment.

struct an appropriate mapping table entry.

There are three circumstances under which a map-
ping table entry can cease to be valid:
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I. The content of a page frame named by the map-
ping entry can be removed from memory.

2. A key slot traversed in the construction of a map-
ping euntry can be overwritten with a different
key.

A

A node containing a slot traversed in the con-
struction of a mapping entry can be removed
from memory.

tach of these cases must be addressed by supporting
dependency management structures.

4.3.1 The Page Dependency Cache

Page reclamation is addressed by maintaining an in-
verted page table. Whenever a page table entry is
created that points to a page in the object cache. a
dependency entry is added to the page dependency
cachie. The page dependency cache is indexed by a
hiash on the page frame address. A three-sided data
structure is constructed, as shown in Iigure . When
the page frame is reclaimed, all mapping entries nam-
ing that page frame are located via the page depen-
dency cache and invalidated. Before any page de-
pendency cache entry is flushed, the corresponding

mapping entry is invalidated.

Mapping Entry

‘:‘—“

]

Page

Page Dependency Cache

Figure 5: Page dependency structure

As with the object table, no attempt is made to up-
date the page dependency cache when a mappiug
page is discarded by the ager. It is the responsibil-
ity of the mapping invalidation logic to verify that
the mapping entry pointer points to a valid mapping
entry that should be invalidated. On architectures
using hash structured or software-managed mapping
structures. this is not difficult; mapping structures

on these machines are taken from a reserved pool of

memory. On machines using page-sized mapping {a-
bles. mapping page frames are allocated out of the

page frame cache. Before invalidating the mapping
entry on such machines, the dependency cache must
verifv that the mapping page frame has not heen re-
claimed for other purposes.

Note that the hardware mapping table structures are
acache of the state captured by a segment tree. Map-
ping tables can always be discarded completely with
no loss ol information. If this is done, they will be
rehbuilt as necessary.

4.3.2 The Slot Dependency Cache

Node removal. surprisingly enough, is more straight-
forward. All of the segment-related dependencies in
a node are covered by the dependencies on the node’s
slots. 110 all of the key slot dependencies for the slots
in the node have been invalidated, the node can safely
be removed. This reduces the problem to the tracking
and management of key slot dependencies.

To understand how key slot dependencies are tracked.
it 15 useful to see how they are constructed by the seg-
ment traversal algorithm. A simplified version of the
traversal algorithim is shown in Figure 6. The crucial
line is the call to Depend: :AddKey (). This builds
an inverse projection from the mapping table entries
back to the kev slots that generated them, allowing
the dependency entries to be found and invalidated
when the slot is overwritten or its containing node is
removed.

Ax each slot is traversed on the path to construct-
g the mapping entry, the traversed slot is marked
as write hazarded. To clear the write hazard. the
associated slot dependency cache entries must be n-

validated.

4.3.3 Merging Related Entries

A tvpical slot ina segment tree is involved in the
generation ol multiple mapping entries. On machines
with tree-structured hardware mapping tables. these
entries tend 1o be contiguous within a common map-
ping page. On such machines, the slot dependency
cache will coalesce the shadowed mapping entries info
a common cache entry describing a set of adjacent
mapping entries.

This optimization proves to be an important source of
space efficiency. An open issue in the current design
is how 1o accomplish similar efficiencies on machines
with hashed mapping tables or software-based miss
handlers.
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while (depth < MAX_DEPTH) A
Word segBlss = pSegKey->blss;
if (pSegKey->readOnly && writeAccess)
SEGFAULT(FC_SegAccess);

pSegKey->Prepare();
Depend: : AddKey(pSegKey, thePTE);

// The last key might be a page key:
if ( pSegKey->IsSegKeyType() )
pSegKey->pObject->PrepAsSegment () ;

if (segBlss <= target_blss)
return pSegKey;

// Traverse this node:

Word shiftAmt = segBlss * 4;
Word ndx = address >> shiftAmt;
ndx &= Oxfu;

pSegKey = &(*pSegKey->pObject)[ndx];

depth++;

Figure 6: The traversal algorithm

5 The Checkpoint Mechanism

EROS implements persistence and exogenous fault
recovery using the same mechanism: a recoverable
The
checkpoint mechanism is similar to that of KeyKOS
[Landau92], but the use of a circular log malkes it

checkpoint using a circular checkpoint log.

more adaptable to runtime load variations.

Belore any object may be modified in memory, space
is reserved for it in the log. When the dirty object
is later written to the disk, it is appended to the log.
Object cache misses are satisfied from the log il the
object is found in the checkpoint log catalog, or from
the object’s home location if it is not (Figure 7).

Periodically. or when the available checkpoint log
space reaches a low watermark, the kernel declares
a checkpoint. When a checkpoint 1s declared. the
system 1s frozen and all dirty objects are flushed to
the log. The current log catalog is then flushed to
the log along with the current thread list. and the
checkpoint log header is revised to give the location
of the most recently committed catalog. At this point
the checkpoint has completed successfully, and a mi-
grator 1s started to copy the objects back to their
home locations. When the migrator has completed
its migration, it updates the checkpoint log header

Pageout
7 Pagein(1) A
Checkpoint Log | A
Main
Migration
Memory

Home Locations Y

Pagein(2)

Checkpoint

Figure 7: Flow of objects in the system

to tndicate that space in the log previously occupied
by the checkpointed state is now free. The netl effect.
is that the svstem is always able Lo recover from the
most recent successful checkpoint.

While conceptually accurate, the algorithm just given
would be intolerably slow in practice. Flushing the
dirty objects takes a significant amount of time. and
delavs as short as 100 ms are noticable to users in the
form of mouse Jitter and character echo stalls. To
avoid long delays. checkpoint is performed in three
phases.

5.1 TFreezing the Image

The first phase of the checkpoint is to freeze all dirty
objects in memory. ensuring that they will not be
modified unfil the checkpoint has completed. Ob-

Jects are frozen by marking them as write hazarded.

and disabling the write permission bits on all page ta-
ble entries. Finally. all user threads are deprepared.
and a [rozen copy is made of the in-core thread list.
Ioxecution is now permitted to resume. As each mu-
fating reference s performed, the associated objects
are duplicated using a copy-on-write mechanism.

As with key slots. hazards are set on an object frame
when that frame is involved in 1/0. During inbound
I/O. there is a brief window of time during which the
object frame exists but the inbound data transfer is
imcomplete. During this window, the object is read
hazarded. Siilarly, the object is write hazarded dur-
ing on onthound /0. Objects hazarded by 1/0 have
a non-zero [/O count in their object header.

The 100 ms target allows us to freeze up to hall a
gigabyvte of main memory with no noticeable delay,
and perhaps 128 times that much by rearranging the
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hazard bits Lo favor cache locality. Ultimately, hier-
archical or watermarking techniques can be used to
scale this phase further.

5.2  Writing the Dirty Objects

Once the mark phase has completed, the object write
phase can proceed at low priority. Objects marked for
checkpoint are incrementally written to the check-
point log, at a pace sufficient to complete the pro-
cess well before the next checkpoint occurs. No spe-
cial support is needed to cause this to happen. The
cleaning daemon simply pages the objects out, decre-
menting the number of pending checkpoint 1/0’s as
it goes along. When the count reaches zevo. it has
successfully written all of the checkpoint state.

When all of the dirty objects have been paged out,
the thread list and the checkpoint catalog are written
oul to the checkpoint log. While space for the objects
in the log is prereserved, the placement of any given
object in the log is not known until the page daemon
forces that object to the disk. Writing the catalog
must therefore be delayed until all objects have been
written.

Finally, the checkpoint log header is updated io
reflect. the location of the catalog associated with
the most recently completed checkpoint. 'To guard
against write failure, the checkpoint log header is
written sequentially to two different sectors. This
ensures that one copy of the log header always has
valid data.

5.3 Migration

Once a checkpoint image has been completely writ-
ten to the checkpoint log, a migration phase must
be started to free space in the log for the next check-
point. The migrator examines the checkpoint catalog
(which remains in memory) to determine an efficient
order ol operation, and copies the objects from the
log to their home location. In practice, many of the
ohjects that need to go back to home locations are
still in memory. and these objects do not need to he
read back in from the log.

Oune advantage to the circular log structure is that

the migrator can proceed incrementally [Gray93]. If

there is significant pressure on the log, the migrator
can move a small number of objects, write a new
checkpoint catalog,
header to reflect the new “most recent checkpoint”

and update the checkpoint log

catalog.

6 Conclusions

The EROS system is currently running on 1486
and Peatinm class hardware.  The implementa-
tion requires less than 64 Kilobytes of supervisor
code. made up ol approximately 18,000 lines ol
44 source and 1400 lines of assembly code. The
C++ code is evenly split between machine depen-
Our inten-
tion is to make the implementation widely avail-

able when completed.

dent and machine independent code.

To be placed on the an-
nouncement lisi. please visit the EROS home page
at http://www.cis.upenn.edu/"eros

We will shortly be turning our implementation efforts
to the distributed version of the system.

6.1 Lessons Learned

The design deseribed here reflects knowledge gained
from several false starts, and several departures from
earlier worlk.

Threads

The Kev KOS svstem [[Tardy85] had no first-class no-
tion of a thread. aud nothing described in this pa-
per motivates their inclusion in the abstract machine.
Threads were originally introdiced in the EROS ker-
nel to support. prioritized scheduling of drivers, and
to provide a locus at which scheduling policy might
he attached independent of the domain for research
purposes. Schedulable kernel drivers are proving to
be asignificant and useful facility, but it is not clear
that they warrant the overhead of the thread abstrac-
on.

Once threads were included in the architecture, how-
ever. they provided a natural way ol specifying what
host a domain should compute on in a cluster. The
rule is that objects migrate to the requesting thread.
For this reason. they have been retained.

Capability Encryption

A mmber of prior capability systems have adopted
encryption as the mechanism for capability protec-
tion. Encryvpted capabilities allow the capability to-
kens to reside within the user address space. elimi-
[For
several reasons. we have chosen not to use this mech-
ANLSIN.

nating the need for direct kernel management.

IEnervpted capabilities rely in part on the ephemeral
nature of the holder to defeat forgery attacks. In
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most encrypted capability systems this issue 1s ig-
nored. In a few, time stamps are used to ensure
that capabilities are ephemeral. The EROS systeun is
persistent, which violates the ephemerality assump-
tion. Perhaps more important, encrypted capabilities
would not lend themselves well to the construction of
segments and domains out of fixed-size fundamental
objects, nor to the maintainance of cache consistency
via hazard tracking.

Node Size

A crucial part of EROS’s simplicity and small size
is that the kernel synthesizes all of the abstract ma-
chine’s objects out of two fundamental object (ypes.
This eliminates the need for the kernel to do dyvnamic
storage management, which improves both its perfor-
mance and its reliability. Objects on the disk are of
onlv two types, which substantially simplifies the im-
plementation of the single level store.

At the suggestion of Bryan Ford, we briefly consid-
ered following the path of L3 [Liedtke93], which cap-
fures all system state in objects of the same size. This
would increase the node size to 256 slots. Our initial
reaction was that this would be unduly wasteful. but
in thinking this we may have been mistaken. The
page-sized node is not significantly larger than rhe
current. domain of three nodes, and might well prove
better suited to the construction of small segnients.
many of which are over 16 pages and therefore oc-
cupy three or four of the current nodes in any case.
With the benefit of hindsight, the slight loss in space
efficiency might be more than recouped in simplifica-
tions of the dependency management structures and
the checkpoint mechanism. It would also allow the
kernel to respond gracefully to dynamic variations in
page pressure versus node pressure.
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