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Polarization reorientation in ferroelectric lead zirconate titanate thin films
with electron beams

Abstract

Ferroelectric domain patterning with an electron beam is demonstrated. Polarization of lead zirconate titanate
thin films is shown to be reoriented in both positive and negative directions using piezoresponse force and
scanning surface potential microscopy. Reorientation of the ferroelectric domains is a response to the electric
field generated by an imbalance of electron emission and trapping at the surface. A threshold of 500 uC/cm?

and a saturation of 1500 uC/cm? were identified. Regardless of beam energy, the polarization is reoriented
negatively for beam currents less than 50 pA and positively for beam currents greater than 1 nA.
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Polarization reorientation in ferroelectric lead zirconate
titanate thin films with electron beams

D.B. Li
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D.R. Strachan
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Ferroelectric domain patterning with an electron beam is demonstrated. Polarization of
lead zirconate titanate thin films is shown to be reoriented in both positive and
negative directions using piezoresponse force and scanning surface potential
microscopy. Reorientation of the ferroelectric domains is a response to the electric
field generated by an imbalance of electron emission and trapping at the surface. A
threshold of 500 wC/cm? and a saturation of 1500 wC/cm® were identified. Regardless
of beam energy, the polarization is reoriented negatively for beam currents less than
50 pA and positively for beam currents greater than 1 nA.

I. INTRODUCTION

Ferroelectric domain switching, also referred to as po-
larization reversal or reorientation, in thin films has tra-
ditionally attracted attention due to applications in non-
volatile storage devices.'” Recently, a new process for
fabricating complex nanostructures based on ferroelec-
tric domain patterning has shown promise.>* In these and
other applications, domain reorientation and patterning
are accomplished by applying an electric field with mac-
roscopic or patterned metal electrodes or with a metallic
scanning probe microscope tip.>~’ The latter is particu-
larly effective for producing nanometer-sized features
with desired polarization orientation. An alternative
process for patterning small scale domains is based on
e-beam induced polarization reorientation. Ferris et al.
produced nanometer-sized domain patterns on polycrys-
talline lead zirconate titanate (PZT) thin films,® and ear-
lier studies produced macroscopic features on single-
crystal LiNbO,”'? by e-beam irradiation.

When an insulator surface is irradiated by electrons
with energy higher than 1 keV, elastic and inelastic col-
lisions in the crystal lead to the excitation of secondary
electrons and the backscattering of incident electrons.
Secondary electrons that are sufficiently close to the
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surface (less than 50 nm) are emitted from the surface,
while the other electrons are either trapped in defect sites
or self-trapped as polarons in the crystal. When the num-
ber of incident electrons is not equal to that of the emitted
electrons, charge develops and an internal local electrical
field is established in the film. When the field generated
by the trapped charges is stronger than the coercive field
of the ferroelectric compound, domain reorientation at
the surface should occur.

While domain reorientation by e-beam irradiation has
been demonstrated for the two cases mentioned above,
quantitative aspects of the mechanism are not known. For
example, excitation cross sections are beam energy de-
pendent, which implies that surface charging will also be
energy dependent. This dependence is documented for
many compounds from scanning electron microscopy
studies'' but is not determined for ferroelectric com-
pounds. Both transient and steady-state dynamics are re-
lated to dosage, and these effects have not been exam-
ined. In this paper, we determine the dosage, energy, and
current density dependence of polarization reorientation
in polycrystalline PZT thin films and relate them to the
mechanism of poling.

Il. EXPERIMENTAL PROCEDURE

PZT has the perovskite structure with Ti** ions and
Zr** ions occupying B-sites with random distribution. At
a Zr/Ti-ratio of 53/47, the composition corresponding to
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morphotropic phase transition, PZT has the highest di-
electric constant and piezoelectric coefficient.'> Poly-
crystalline PZT thin films with a thickness of 160 nm and
average grain size of 100 nm were prepared by a sol-gel
process on Pt/Ti/Si0,/Si substrates. The composition of
the film was Pb(Zr, 55Tiy 47)O5; a 10 nm Pt layer was
used as the back electrode.'? Piezoresponse force micros-
copy (PFM) confirmed that the PZT grains exhibited
random polarization orientation.

A scanning electron microscope (SEM) equipped with
a LaB, filament and commercial lithography system was
used for ferroelectric domain pattering. The experimental
setup is shown in Fig. 1. PZT samples were grounded on
the sample stage in the vacuum chamber, which main-
tained a pressure less than 1 x 107° Torr during electron
irradiation. Focused electron beam energies ranged from
1 to 30 keV and currents ranged from a few pA to tens
of nanoampere (nA). Electron beam dosage, beam energy,
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FIG. 1. Experimental setup for electron beam ferroelectric lithography
and surface charge measurement. A scanning electron microscope
equipped with lithography software is used to control the ferroelectric
polarization by exposing the sample to a focused electron beam. Elec-
trons penetrate the sample to a depth (\) and develop the charges on
ferroelectric surface. Electron penetration depth can be varied to be
either greater or less than the film thickness (%) by changing the beam
energy.

and beam current were independently adjusted to deter-
mine the relationship between polarization reorientation
and ferroelectric lithography conditions. Although
nanometer scale patterning is possible with this instru-
mentation, exposure areas in this study were on the order
of micrometers to minimize the measurement error.

Domain polarization was quantified by PFM and scan-
ning surface potential microscopy (SSPM). PFM im-
poses a small oscillating local electric signal on the sur-
face and records the resulting piezoelectric deformation.
The difference in phase between the imposed signal and
deformation yields the domain orientation. A sinusoidal
voltage with an amplitude of V,,, = 5 V and frequency
of 70 kHz was applied to the Cr—Au coated atomic force
microscope (AFM) tip. These conditions did not result in
local domain switching, perhaps due to a local dielectric
layer, which partially screens the effective electrical field
between the tip and ferroelectric surfaces. The typical
set-point voltage was 500 mV. The orientation and the
magnitude of the electromechanical coupling coefficient
were characterized by phase and amplitude signals, re-
spectively.'* In SSPM (also called Kelvin probe micros-
copy), a driving voltage of 2 V and a lift height of 40 nm
were used. Nulling the force between the tip and sample
yields the local surface potential. To quantitatively com-
pare the domain surface potential resulting from different
beam switching conditions, SSPM scan parameters were
kept constant.

lll. RESULTS AND DISCUSSION

Figure 2 illustrates the process of charging and the
underlying domain polarization reorientation in a PZT
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FIG. 2. Illustration of charging and polarization reorientation by an
electron beam. Accumulation of positive charges causes the domains
to point downwards (yielding the c— domains shown on the left). In
contrast, negative charging leads to positive domain orientation (c+
domains on right). The schematic shows only the dominant charge and
does not reflect the actual charge distribution in the film.
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thin film under the electron beam irradiation. When posi-
tive net charging develops, polarization is reoriented
such that a negative domain terminates the surface (often
referred to as a c— domain). In contrast, negative net
charging leads to positive domain orientation (c+ do-
mains).

The dosage dependence of polarization switching
is shown in Figs. 3(a) and 3(b). Figure 3(a) covers a
range of exposures from 500 to ~5000 pC/cm?. At each
dosage level, the fraction of the irradiated area that is in
the c+ orientation is determined from PFM images. Note
in Fig. 3(b) that there is both a threshold dosage for the
onset of switching and a saturation value at which the
entire area is switched. At dosages below 500 wC/cm?,
no effect is observed; at dosages higher than 1500 uC/cm?
all domains are reoriented. Between these values, there is a
monotonic increase in the switched area.

In our films, the grains differ somewhat in size and in
orientation with respect to the surface. The majority of
grains are of a single domain; the small size makes multi-
domains unlikely. A reasonable explanation for the ob-
served behavior rests on the orientation differences.
When the local electric field reaches the critical value,
domains with the most favorable polarization orientation
switch. The polarization switching process is schemati-
cally shown in the Fig. 3(c). The dosage dependence
could be related to the orientation dependence in nuclea-
tion or in domain wall motion. These critical dosages will
also likely vary with several film parameters that are not
investigated in our study; such as crystallinity, thickness,
conductivity, and defect concentration.

The local electric field in the film stems from the
charge buildup in the PZT caused by the irradiating elec-
tron beam. The net charge buildup is determined by the
interplay between the charge flow (i.e., current) of the
emitted secondary electrons (/g), the backscattered elec-
trons (Ig), and the leakage current (/;), to the primary
beam current (/,):

Ig + 15+ 1
o=,
I,

(M
where o is the electron emission yield depending on
beam energy and I, that determines the net charging
(where Iy + I + I, is not simply proportional to I,)."
The builtup charge in the dielectric can be accommo-
dated by the defects in the dielectric medium, which act
as charge traps.'® It is difficult to determine the exact
charge profile, with both positive and negative net
charges have been reported in dielectrics.'”> As the charge
builds up, this will lead to an induced electric field de-
termined by the positively and negatively charged re-
gions, and the capacitive interaction with the conduct-
ing ground plane. Positive charge is expected in a thin
(<50 nm) layer close to the surface due to secondary
electron emission, while a more disperse negative charge
is expected from the trapping of electrons down to the
penetration depth.'” At the interface of the positive and
negative charged region, a large electric field is devel-
oped, which can cause the dielectric to be poled in the
downward direction (see Fig. 2). When the total negative
charge is much larger than the positive, the system can be
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FIG. 3. (a) PFM phase image (over 20 x 20 pwm area, from Ref. 8) showing negative domain polarization switched by £ = 10 keV, I = 30 pA,
and dosages ranging from ~500 to 5000 wC/cm?. The exposure is increased from left to right and from bottom to top in the figure with the dosage
values (in wC/cm?) indicated for the corner positions. The darker regions are the negatively polarized domains. (b) The fraction of c— domains
switched perpendicularly to the surface, as determined by a bearing analysis, increases with electron dosage (from Ref. 8). (c) Model of domain

switching with electric field (E) as dashed arrows. For E greater than E,

critical®

the domains begin switching. The fraction of switched domains

increases with electron dose until the reorientation saturates at 1500 p.C/cmz, as in (b).
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approximated as a uniformly negatively charged cylin-
der. Cazaux has worked out the details of the resulting
surface potential in a bulk dielectric material with a uni-
form charge distribution'”-'®

Or

- mey(l + €,.)a

Vs ; 2
where Q. is the total trapped charge in the volume, €, is
the relative permittivity of the material, and a is the spot
diameter of electron beam. This can be extended to the
case of dielectric thin film on a metallic substrate, which
takes into account the image charge in the substrate and
gives to first order the surface potential'®

Or

- mey(l + €,)a

VS f s (3)
where fis a complex factor between 0 and 1 that accounts
for the geometry of the thin film. Though charge trapping
in dielectrics is complex with the concentration varying
considerably with sample, we can attempt an estimate of
the induced field with Eq. (3) for a typical polycrystalline
sample when negative charging is dominant. If the sole
mechanism of electron trapping in the PZT were due to
intrinsic defects, and a reasonable defect density is as-
sumed (~10%°/cm?),'® the resulting surface potential
would be estimated to be less than 51 mV. Over a film
thickness of 160 nm, this corresponds to an electric field
of 3.2 kV/cm, which is below the coercive field (~30—
100 kV/cm) typically found for PZT. Since the domains
do, in fact, switch, additional charge may be trapped by
other mechanisms or reside in the film as a transient
charge buildup that slowly dissipates away by electrical
conduction as a leakage current. A possible explanation
for this slight underestimate for the induced field may
stem from defects not accounted for, induced by e-beam
irradiation during exposure, which in turn could permit
an increased internal electrical field in the film.

Despite the above underestimate of the induced elec-
tric field, comparison to charging in single crystalline
dielectric material is in rough agreement. Using a typical
coercive field value of 100 kV/cm for PZT, we can cal-
culate the necessary surface charge density from Eq. (3),
which yields 200 wC/cm?®. This is slightly less than the
measured (500 wC/cm?) critical dosage applied by the
SEM, which gives a value for o of about 3/5. This value
of o is in reasonable (order of magnitude) agreement
with the reported charging of single crystal dielectrics in
Ref. 18.

To determine the relationship between beam energy
and polarization reorientation, the PZT sample was irra-
diated with the electron beam at various energies E, rang-
ing from 1 to 30 keV at a constant dosage of 3000 wC/
cm? and beam current of 1 nA. Figure 4(a) shows the
surface potential variation of switched regions in a SSPM

> pm

—
o
—

Beam Energy (keV)
5 10 15 20 25 30

Surface Potential (mV)

L =
(b} _40 i 1 A L i L A 1 i 'l i L

FIG. 4. (a) A SSPM phase image showing that compensating surface
charges are negative and that the corresponding domains are c+. This
pattern was written with 3000 wC/cm?, 1 nA, and 10 keV. (b) Domain
surface potential exhibits energy dependence at constant beam current
of 1 nA and constant dosage of 3000 wC/cm?.

phase image. In Fig. 4(b), the degree of polarization re-
orientation is quantified. The magnitude of the surface
potential measured in ambient is not that of the polari-
zation charge because adsorbates compensate the charge
at the surface. However the relative differences in poten-
tial contrast are directly related to the area of switched
domains, a result confirmed by PFM. The monotonic
variation of polarization switching with beam energy at
1 nA is clear in Fig. 4(b).

The beam current dependence of the domain reorien-
tation is illustrated in Fig. 5, which demonstrates that
switching to both positive and negative orientations is
possible. In this figure, the sign and relative amplitude of

938 J. Mater. Res., Vol. 21, No. 4, Apr 2006
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70
Beam energy, keV

0.05nA<l<1nA

FIG. 5. Polarization reorientation dependence on beam energy and
current. Dots represent experimental determination of domain polarity
[such as in Fig. 4(b)] superimposed on a schematic representation of
Q. which should follow the expected trend of the total electron emis-
sion yield o for an insulator. The intercept along the y-axis represents
Qr = 0, which corresponds to o equal to 1. At high beam current
(>1 nA), a net negative charge accumulates in the film, which switches
the underlying domains in the positive direction (c+). At low beam
current (<50 pA), positive charges are more dominant, resulting in
negative domain polarization (c—). For beam currents between 50 pA
and 1 nA, the sign of net charge depends on beam energy. (Insets)
PFM phase images showing (bottom) positive polarization from a
1 nA beam and (top) negative polarization from a 0.05 nA beam,
switched with 3000 puC/cm? and 30 keV. The small square patterns are
5 x5 pm.

net charge, which was provided by polarity of switched
domains, shows dependences on both beam current and
energy. At beam currents <0.5 nA, net charge is positive
under all conditions and domains reorient with c— termi-
nation. At currents >1 nA the net charge is negative,
resulting in c+ surface domains. At intermediate currents,
the sign of the charge and induced domain polarization
depends on the beam energy.

The energy dependence of the electron penetration
depth is given by the Kanaya—Okayama range relation®°

0.0276AE"*’
T 2%
where A is the atomic weight in grams per mol, E is
electron beam energy in keV, Z is the average atomic

number, and d is the density in g/cm?®, (A = 235 g/mol,
Z = 63, and d = 7.5 g/cm® for PZT). The penetration

“)

TABLE I. Electron penetration depth in polycrystalline PZT.

E (keV) Penetration depth (nm)
1 21.7
3.8 200
5 318
10 1013
20 3222
30 6316

depths for various beam energies are listed in Table I. For
thin films with the thickness of A, when N > h, some
fraction of the electrons will contribute to the leakage
current through the Pt film and the silicon substrate (see
Fig. 1). For beam energies higher than 3.8 keV, the pen-
etration depth of the incident electrons exceeds the PZT
film thickness of 160 nm. With electron beam energies
less than 3.8 keV, a substantial number of the electrons
should be trapped within the film. At beam energies
above ~10 keV, substantial numbers of electrons enter
the underlying Pt/Si substrate. The excitation cross sec-
tions that result in electron emission at the surface, /5 and
I, also scale with the beam energy. Thus, as beam en-
ergy increases, more electrons are lost at the surface, and
the PZT film should be less negatively charged.

The net charge in the dielectrics typically exhibits the
behavior superimposed schematically as dashed lines on
the data in Fig. 5. The behavior of the net charge should
closely follow the behavior of o as a function of beam
current and energy. At low beam energy, as the excitation
cross section increases with beam energy, o generally
increases, which results in the net charge becoming more
positive. At higher beam energies, the number of elec-
trons that are stopped within the depth of the PZT film
decreases (as the penetration depth increases), and o will
decrease leading to decreasing Q1. The combination of
these two effects results in a maximum of o and Q for
a given beam current. Evidence for the increasing Q
regime at lower energies is seen through the SSPM and
PFM data. PFM measurements were used to determine
the sign of the polarization (and thus Q) in Fig. 5, yet
they do not give clear information on the overall magni-
tude of the polarization as a function of beam energy and
current due to the difficulty of varying these parameters
over the course of an electron beam write. For the data in
the negative charging region of Fig. 5, the SSPM meas-
urements yielded curves similar to Fig. 4(b), which sug-
gests the trend schematically represented in Fig. 5. These
studies did not determine the high energy cross over to
o < 1, indicating that the crossover energy is above that
accessible by our SEM. The surface potential of the re-
oriented PZT domains exhibits similar beam current
dependence to those of Al,O5 and ZrO, irradiated with a
high beam current density.'> Additionally, the current
dependence indicates that the negative charging process
is a dynamic competition between secondary electron
emission and surface electron trapping.

These results are summarized in Table II. At low cur-
rent density (10° pA/cm?), polarization is always reori-
ented negatively, implying a positive charge. At high
current density (10° pA/cm?), the same beam dosage and
energies yield positively switched polarization. As noted
above, the concentration of intrinsic defects is not suffi-
cient to cause the negative charge necessary for polari-
zation switching. Consequently, a more complex electron

J. Mater. Res., Vol. 21, No. 4, Apr 2006 939
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TABLE II. Surface charging and polarization reorientation under dif-
ferent electron irritation conditions.

Beam Beam Total Sign of
Sample energy current exposure surface Polarization
number (keV) (nA) time charge direction
1 5 0.05 2 min + -
2 5 1 2 min - +
3 5 4.8 2 min - +
4 10 0.05 2 min + -
5 10 10 2 min - +
6 20 0.05 2 min + -
7 20 1 2 min - +
8 20 10 2 min - +
9 30 0.05 2 min + -
10 30 ~0.9 18s + -
11 30 20 2 min - +

interaction that results in electron trapping at the surface
must be occurring at high current densities.

IV. CONCLUSIONS

We have demonstrated an effective method to switch
ferroelectric polarization in polycrystalline PZT thin
films by e-beam lithography. Under various exposure
conditions, both positively and negatively poled features
can be created. With electron injection, trapped charge
develops, establishing a local electrical field, which
switches the underlying polarization when sufficiently
high. Due to the length scale accessible to conventional
e-beam tools, this method provides the opportunity for
domain engineering at the nanometer scale.
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