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Paraffin-Based Process for Producing Layered Composites with Cellular
Microstructures

Abstract
A paraffin-based process that results in high-strength bimaterial ceramic layered composites is reported. The
process facilitates rolling, folding, and shape retention at room temperature and allows the transition from a
laminar to a cellular microstructure during deformation. The strength of sintered alumina/zirconia/alumina
composites reached 700 MPa, higher than that of conventional zirconia-toughened alumina composites
containing dispersed particles.
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Paraffin-Based Process for Producing Layered Composites with
Cellular Microstructures

Aleš Dakskobler and Tomaz Kosmač*
“Jozef Stefan” Institute, Jamova 39, Ljubljana, Slovenia

I-Wei Chen*
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272

A paraffin-based process that results in high-strength bimate-
rial ceramic layered composites is reported. The process
facilitates rolling, folding, and shape retention at room tem-
perature and allows the transition from a laminar to a cellular
microstructure during deformation. The strength of sintered
alumina/zirconia/alumina composites reached 700 MPa,
higher than that of conventional zirconia-toughened alumina
composites containing dispersed particles.

I. Introduction

CERAMIC powder suspensions containing paraffins are suitable
for plastic forming and shaping. Paraffins (waxes) are hydro-

carbons with low molecular weights and melting points. Therefore,
their ceramic powder mixtures can be deformed at, e.g., 60°C, and
solidified at room temperature. Debinding of these polymers is
also relatively easy; it is typically conducted at no higher than
200°C.1 For these reasons, industrial processes such as low-
pressure injection molding have been using paraffin suspensions to
produce ceramic parts. In fact, using paraffin oils can further
reduce the deformation temperature, since paraffin oils belong to
the same hydrocarbon series but have even lower molecular
weights. The ceramic suspension thus obtained is both plastic and
shape-retaining at room temperature. In this paper, we report on a
paraffin-oil-based process that produces high-strength laminated
composites of alumina and zirconia.

Our method incorporates deformation processing by the re-
peated folding and rolling of ceramic slurries. As reported by Chen
and co-workers,2–4 a large variety of microstructures, from flat to
wavy laminates to cellular composites, are obtainable in this way.
This is because the relative viscosity of suspensions can affect the
deformation stability of the interface, which leads to the entrap-
ment of the rheologically harder phase in the softer matrix. The
suspensions used in the previous work,2,5 however, cannot be
deformed and solidified at the same temperature. Paraffin-based
suspensions thus offer an attractive alternative solution.

II. Experimental Procedure

The starting powders in this work were high-purity alumina
(A16, Alcoa, Pittsburgh, PA) and yttria-stabilized zirconia (TZ-
3YS, Tosoh, Japan). The average particle size was 0.6 �m for the

alumina and 0.3 �m for the zirconia. They were first milled in an
acetone solution of stearic acid (0.6–1.0 wt% with respect to
powders) to condition the powder surfaces into hydrophobic ones.
The powders were then dried at 120°C for 4 h.

Powder suspensions were prepared using a paraffin oil
(Kemika, Zagreb, Croatia) as the main component of the liquid
phase. Various amounts (20 wt% for alumina and 5 wt% for
zirconia) of a low-melting-point (58°C) paraffin (INA 58/62, INA,
Zagreb, Croatia) were added to the suspension to adjust the
viscosity. In addition, a small amount (0.4 wt% with respect to the
powders) of poly(ethylene glycol) (PEG 400, Merck, Germany)
was used as a plasticizer. The initial suspensions were mixed at
80°C through a (water-heated) three-roller mill. After typically
three to four passes, the suspensions acquired a stable viscosity
because they became sufficiently homogeneous. Tapes of 1-mm
thickness were then prepared from cooled suspensions using a
twin-roller mill operated at room temperature. Laminates were
obtained by rolling an initial stack of alumina/zirconia/alumina
(AZA) composite tapes from 3 to 1 mm (66% reduction), followed
by repeated folding and rolling at 50% reduction to maintain a
constant thickness of 1 mm. For comparison, laminates of alumina/
alumina/alumina (AAA) and zirconia/alumina/zirconia (ZAZ)
were also prepared in an identical way. To facilitate handling
during rolling, the laminate was placed between plastic carrier foils
(PET 75, Richard E. Mistier, Inc., USA). Specimens of dimensions
25 mm � 4 mm � 1 mm were cut from the laminate tapes, which
were subjected to debinding at 200°C for 2 h (heating rate �
0.5°C/min). Final sintering was performed at 1520°C in air for 4 h.

The viscosity of the suspension was measured with a rotational
viscometer (HAAKE VT 500, Germany) at room temperature using
the sensor Mode MV-1. Microstructural studies were performed using
light microscopy. Strengths were measured in the four-point bending
configuration using a servo-hydraulic testing machine (Instron 1362,
USA). The reported strengths were taken from an average of five
measurements.

III. Results and Discussion

Steady-state viscosity measurements at all strain rates shown in
Fig. 1 verified that the paraffin-oil mixture containing a higher
weight percent of paraffin is more viscous. Since the alumina
slurry was prepared using a higher weight percent of paraffin, it
should be harder than the zirconia slurry. Previous work on
laminates found that, after a large deformation, the rheologically
harder phase is preferentially trapped in a matrix of the softer
phase. However, a complication arises if the volume fractions of
the two phases are not equal, since there is a tendency for the
minority phase to appear entrapped, which may or may not reflect
the underlying mechanical stability. Therefore, to compare the
deformation stability of our suspensions we prepared AZA and
ZAZ laminates of 4 foldings. In the former case (Fig. 2(a)) the
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minority (zirconia) layers remained contiguous, albeit some wav-
iness developed along with shear banding, similar to that reported
in the previous study.2 In the latter case (Fig. 2(b)) the minority
(alumina) layers are not contiguous. Instead, they have broken
down in many places.

The above comparison suggests that the alumina suspension,
which is harder, is less stable and tends to be entrapped. Such an
effect is especially severe when alumina constitutes the minority
phase. In contrast, when the softer zirconia phase is the minority
phase, as in AZA composites, the layered structure is relatively
stable. Examples of the latter are shown in Fig. 3(a) (after 6
foldings) and Fig. 3(b) (after 7 foldings). Note that in Fig. 3(a) the
layer interfaces are highly corrugated but their long-range conti-
nuity remains intact, while in Fig. 3(b), discontinuities have
appeared and isolated layers have become the main feature in this
cellular microstructure.

The flexural strengths of the alumina/zirconia/alumina compos-
ites are significantly improved by repeated rolling and folding. As
shown in Fig. 4, the initial strength is low. This is not surprising

since sintering cracks are present for up to 3 foldings. The more
dramatic improvement begins after 6 foldings, which coincides
with the transition from corrugated, but still laminar, to a cellular
microstructure, and the improvement continues with more folding
and rolling. To determine whether this strength enhancement is
unique to the composite, we compared it with the strength of AAA
“laminates,” also shown in Fig. 4. In the latter materials, there is no
sintering crack since only one phase is present, but there is no
strength improvement either, despite repeated rolling and folding.
(Air bubbles trapped in the suspension led to sintering pores and
relatively low strengths.) Compared with AAA, the cellular com-
posite at 8 foldings is more than 3 times stronger. This strength-
ening effect is much larger than what has been typically observed
in conventional zirconia-toughened alumina composites contain-
ing a comparable amount of dispersed zirconia particles.6

Strength improvement due to rolling and folding of alumina/
zirconia composites was also reported in the previous study of
cellular composites.4 The most improvement was seen when the
zirconia suspension was softer than the alumina suspension, which
is consistent with the present result. The zirconia used in our work,

Fig. 2. Optical micrographs of sintered 4-times-folded AZA (a) and ZAZ
(b) composites.

Fig. 4. Dependence of flexural strength of sintered specimens on number
of foldings for AAA and AZA composites.

Fig. 1. Viscosity versus shear rate for liquid phases used for the
preparation of alumina (20% paraffin � 80% oil) and zirconia (5% paraffin
� 95% oil) suspensions.

Fig. 3. Optical micrographs of sintered 6-times-folded (a) and 7-times-
folded (b) AZA composites.
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however, has a lower transformability than the one used in the
previous study7 (CeO2-stabilized zirconia), so the toughening
effect of zirconia transformation is less pronounced (indentation
toughness � 6.8 MPa�m1/2 at 8 foldings). A large strengthening
effect may nevertheless arise because of grain size refinement. The
largest alumina grains in the 8-times-rolled AZA composite is 2
�m in size, compared with 20 �m in the single-phase alumina,
rolled or not. Large alumina grains are likely to be the controlling
flaws in these ceramics. If so, a 10-fold decrease in the grain size
could already cause a 3-fold increase in the strength, even with the
same fracture toughness.

IV. Conclusions

(1) A paraffin-oil-based process has been demonstrated for
the preparation of alumina/zirconia laminates by rolling, folding,
and shape forming at room temperature.

(2) A transition from a laminar to a cellular microstructure,
similar to the one previously reported in other slurry-based
processes, has been confirmed after repeated deformation.

(3) The strength of sintered alumina-rich composites reaches

700 MPa and is higher than that of conventional zirconia-
toughened alumna composites containing dispersed particles of a
similar composition.
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