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Magnetohydrodynamic flow of RedOx electrolyte

Abstract
Magnetohydrodynamic MHD flow of a RedOx electrolyte in a straight conduit is investigated theoretically.
Inert electrodes are deposited along segments of the opposing walls of a straight conduit that is filled with a
RedOx electrolyte solution. The conduit is positioned in a uniform magnetic field. When a potential
difference is applied across the opposing electrodes, the resulting current interacts with the magnetic field to
induce Lorentz forces. The species' mass transport and the momentum equation are coupled and must be
solved simultaneously. We compute the various species' concentration distributions, the current flux
distribution, and the liquid's motion in the absence and presence of pressure gradients. The pressure gradients
may either assist or oppose the MHD flow. At low potential differences, the current and the induced MHD
flow increase nearly linearly as the potential difference increases. When the potential difference exceeds a
certain critical value, the current and the flow rate saturate. We demonstrate that it is advantageous to use
multiple electrode pairs with dielectric gaps between adjacent electrodes rather than a single electrode pair
with an equivalent length. Finally, MHD flow with RedOx solution in the presence of abundant supporting
electrolyte under limiting current conditions is analyzed using boundary layer theory. The approximate
analytical solutions for the ions concentrations and the current agree well with the numerical solutions.
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MagnetohydrodynamicsMHDd flow of a RedOx electrolyte in a straight conduit is investigated
theoretically. Inert electrodes are deposited along segments of the opposing walls of a straight
conduit that is filled with a RedOx electrolyte solution. The conduit is positioned in a uniform
magnetic field. When a potential difference is applied across the opposing electrodes, the resulting
current interacts with the magnetic field to induce Lorentz forces. The species’ mass transport and
the momentum equation are coupled and must be solved simultaneously. We compute the various
species’ concentration distributions, the current flux distribution, and the liquid’s motion in the
absence and presence of pressure gradients. The pressure gradients may either assist or oppose the
MHD flow. At low potential differences, the current and the induced MHD flow increase nearly
linearly as the potential difference increases. When the potential difference exceeds a certain critical
value, the current and the flow rate saturate. We demonstrate that it is advantageous to use multiple
electrode pairs with dielectric gaps between adjacent electrodes rather than a single electrode pair
with an equivalent length. Finally, MHD flow with RedOx solution in the presence of abundant
supporting electrolyte under limiting current conditions is analyzed using boundary layer theory.
The approximate analytical solutions for the ions’ concentrations and the current agree well with the
numerical solutions. ©2005 American Institute of Physics. fDOI: 10.1063/1.1933131g

I. INTRODUCTION

In recent years, there has been a growing interest in de-
veloping minute systems for biodetection, biotechnology,
chemical reactors, electronic cooling, and medical, pharma-
ceutical, and environmental monitoring. In many of these
applications, it is necessary to propel fluids from one part of
the device to another, control fluid motion, stir, and separate
fluids. In microdevices, these tasks are far from trivial. Mag-
netohydrodynamicssMHDd offers an elegant, inexpensive,
flexible, customizable means of performing some of these
functions.

The application of electromagnetic forces to pump, con-
fine, and control fluids is by no means new, however, MHD
has been mostly thought of in the context of highly conduct-
ing fluids such as liquid metals and ionized gases.1,2 Re-
cently, though, Jang and Lee,3 Lemoff and Lee,4 Bau,5 and
Zhong, Yi, and Bau6 constructed MHD micropumps with
silicon and ceramic substrates and demonstrated that these
pumps are able to move liquids around in small conduits.
Bau and co-workers7–9 demonstrated the feasibility of using
MHD forces to control fluid flow in microfluidic networks.
By judicious application of potential differences across elec-
trode pairs, one can direct the liquid to flow along any de-
sired path without a need for valves and pumps. Westet al.10

fabricated a MHD continuous flow microreactor with three
thermal zones in an attempt to facilitate the thermocycling
needed for DNA amplification. Eijkelet al.11 proposed a cir-
cular, open tubular chromatographic system based on the cir-
cular flow motion induced by MHD. Indeed, MHD propul-

sion is one of the few methods that allow pumping of liquids
along a closed loop, thereby forming a conduit with an “in-
finite length.”

In addition to pumping, MHD can facilitate stirring.
West et al.12 and Gleesonet al.13 constructed and tested a
toriodal MHD stirrer that takes advantage of Taylor
dispersion14 to increase the surface area between two inter-
acting fluids. Alternatively, one can pattern electrodes of
various shapes to induce electric fields in different directions.
The interaction of such electric fields with the magnetic field
induces secondary flows that may benefit stirring and
mixing.7 Although these secondary flows significantly en-
hance the mixing process, they are still laminar and the mix-
ing is poor. One can do better, however. By periodically or
aperiodically alternating among two or more different flow
patterns, one can introducesLagrangiand chaotic
advection.15–18

Although MHD technology has significant promise, it is
not completely problem-free. Some of the issues of concern
are potential bubble formation, electrode corrosion, and the
depletion of electrolyte during operation. RedOx electrolytes
that undergo reversible electrochemical reactions at the elec-
trodes’ surfaces eliminate many of these problems while fa-
cilitating relatively high current fluxes at low potential dif-
ferences. Examples of such RedOx pairs are FeCl2/FeCl3
and potassium ferrocyanide(K4fFesCNd6g)/potassium ferri-
cyanide(K3fFesCNd6g) operating with inertsi.e., platinumd
electrodes. In this paper, we will study the performance of a
MHD pump operating with the RedOx pair FeCl3/FeCl2.

In all the papers cited above, the electrolyte was treated
as an Ohmic conductor. Unlike in liquid metals,2 the inten-
sity of the electric current in electrolyte solutions depends
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strongly on the mass transfer. Hence, in this paper, we take a
more rigorous approach and account for the effect of convec-
tion on the transport of ions in the electrolyte solution. In
other words, we solve the conjugate problem in which the
momentum and advection equations are coupled.

Although this paper focuses on microfluidic systems, the
work presented here is also related to various electrochemi-
cal processes ranging from electroplating to fuel cells in
which mass transfer and surface morphology can be con-
trolled with external magnetic fields.19 Electrochemical pro-
cesses with magnetically assisted mass transfer have been
dubbed magnetoelectrolysis.20 Most of the prior works were
experimental or consisted of order of magnitude
estimates.21–23 For example, when the gap between the elec-
trodes is narrow, the flow is fully developed, and the Lorentz
force balances the viscous forces, the limiting current is pro-
portional toB1/2C0

3/2. When the gap between the electrodes is
wide,23,24 the flow consists of developing boundary layers,
and the Lorentz force is balanced with inertial forces, the
limiting current is proportional toB1/3C0

4/3. In the above,B is
the magnetic field intensity andC0 is the bulk concentration
of the RedOx active species. These asymptotic relationships
are consistent with experimental data.

Boum and Alemany25 solved numerically the MHD flow
of an electrolyte solution between two parallel electrodes in
the presence of abundant supporting electrolyte and fast elec-
trochemical reactions. These conditions allowed them to as-
sume that the electric conductivity is uniform throughout the
solution, to introduce an effective electric potential, and to
ignore the electrode kinetics.

In this paper, we do not make the approximations men-
tioned above. We solve numerically the concentration, cur-
rent, and flow distributions in flow driven by both pressure
and Lorentz forces accounting for the electrochemical reac-
tions at the electrode surfaces. The calculations are per-
formed for sublimiting current conditions. We also derive a
boundary layer theory under limiting current conditions that
allows us to calculate the concentration and velocity fields
with a relatively simple analytic formula without any adjust-
able parameters.

The paper is organized as follows. Section II introduces
the mathematical model for the conjugate problem of MHD
flow and ion transport. Section III describes the code valida-
tion by comparing our numerical predictions with a few spe-
cial cases reported in the literature. Section IV provides the

ions’ concentration distributions and the flow field as func-
tions of the external pressure gradient and the induced Lor-
entz force in the absence of supporting electrolyte. Section V
provides an approximate boundary layer-based analysis of
MHD flow with RedOx electrolyte in the presence of abun-
dant supporting electrolyte under limiting current conditions.
The approximate, analytical solutions are compared and fa-
vorably agree with the results of the numerical simulations.
Section VI concludes the paper.

II. MATHEMATICAL MODEL

In this section, we introduce a mathematical model to
describe the transport of ions in the solution. This model
accounts for the oxidation and reduction reactions at the
electrodes’ surfaces and the convection induced by both the
Lorentz force and the external pressure gradient. The device
consists of a planar conduit of lengthL with a rectangular
cross section of widthW and heightH. We use a Cartesian
coordinate systemx, y, andz with its origin at the conduit’s
center. The coordinatesx, y, andz are aligned, respectively,
along the conduit’s axis, depth, and widths−L /2øxøL /2,
−H /2øyøH /2, and −W/2øzøW/2d. The width of the
conduit is assumed to be much larger than its heightsW/H
@1d, and the flow is considered two dimensionalsin the x
-y planed. Figure 1 depicts schematically the conduit’s cross
section that lies in thex-y plane. We consider two different
electrode arrangements. In the first casefFig. 1sadg, a single
pair of electrodes of lengthLS are deposited along the con-
duit’s walls s−LS/2øxøLS/2, y= ±H /2d. The leading edge
of the electrodes is located a distanceL1 downstream of the
conduit’s entrance. In the second arrangementfFig. 1sbdg,
few shorter electrode pairs, each of lengthLE, are positioned
along the opposing walls. There is a dielectric gapSbetween
adjacent electrode pairs, and the first electrode pair is located
a distance L1 downstream from the conduit’s inletsx
=−L /2d. The portions of the conduit’s walls that are not
coated with electrodes are dielectric. When we compare Figs.
1sad and 1sbd, the total length of the electrodes in Fig. 1sbd
will be equal to the length of the electrodes in Fig. 1sad.
There are two reasons to consider the case in Fig. 1sbd. As
we shall see, for equivalent total lengths of the electrodes,
Fig. 1sbd offers an advantage as this configuration allows for
higher current flow through the conduit than Fig. 1sad does.
Furthermore, the arrangement of Fig. 1sbd offers yet another

FIG. 1. A cross section of a straight conduit equipped with two long electrodessad and a number of short electrodessbd positioned along opposing walls. The
conduit is filled with RedOx electrolyte solution and subjected to a uniform magnetic field of intensityB. A potential differenceDV is imposed across the
electrodes that are facing each other.
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means of controlling the flow rate in the conduit. In Fig. 1sad,
the flow rate is controlled by modifying the potential differ-
encesor the currentd across the electrode pair. In Fig. 1sbd,
the flow rate can also be controlled by adjusting the number
of electrode pairs engaged. For example, one can apply ei-
ther zero or a predetermined potential difference across any
pair of electrodes in Fig. 1sbd. As the number of engaged
electrode pairs increases so does the flow rate.

The conduit is filled with a dilute RedOx electrolyte so-
lution. The potential difference imposed across the opposing
electrodes induces an electric current with density
J sA/m2d=Jxêx+Jyêy+Jzêz. Hereafter, bold letters denote
vectors.êx, êy, and êz are, respectively, unit vectors in the
x, y, andz directions.Jx, Jy, andJz are the components of
the current flux in thex, y, andz directions, respectively. The
device is placed in a uniform, magnetic field of intensityB
=Bêz directed in thez direction. The current and the mag-
netic field interact to produce a Lorentz force of densityJ
3B=JyBêx−JxBêy. In addition to the MHD force, the flow
may also be driven or opposed by an external pressure gra-
dient.

A. The mathematical model for the fluid motion

The motion of the incompressible fluid induced by the
combination of the external pressure gradient and the Lor-
entz force is described with the Navier–Stokes equations

= ·u = 0 s1d

and

r
Du

Dt
= J 3 B − =p + m¹2u. s2d

In the above,u=uxêx+uyêy+uzêz is the fluid’s velocity;
ux, uy, and uz are, respectively, the velocity components in
the x, y, andz directions;t is time; p is the pressure; andr
and m are, respectively, the liquid’s density and viscosity.
The first term on the right-hand side of Eq.s2d represents the
Lorentz force. The Lorentz force plays a similar role to that
of the pressure gradient. We assume that the natural convec-
tion induced by the density variations due to electrochemical
reactions on the surfaces of electrodes does not play a major
role. In the above, since the magnetic Reynolds number is
very small, we neglected the induced magnetic field.

No-slip boundary conditions are specified on the sur-
faces of all solid walls. The boundary conditions at the con-
duit’s inlet and exit are

ps− L/2,y,zd = P1, s3ad

êy ·us− L/2,y,zd = 0, s3bd

psL/2,y,zd = P2, s3cd

and

êy ·usL/2,y,zd = 0. s3dd

The external pressure gradient issP1−P2d /L.

B. The model for multiion mass transport

In order to maintain relatively high current fluxes and
achieve high flow rates without bubble generation and elec-
trode corrosion, dilute RedOx electrolyte solution, consisting
of ions such as Fe3+, Fe2+, and Cl−, is used. We assume that
the RedOx electrolyte solution containsN dissolved ionic
speciessk=1,… ,Nd. The model can account for the pres-
ence of a supporting electrolyte. The flux density of each
dissolved species due to convection, diffusion, and migration
is given by

Nk = uck − Dk = ck − zkmkFcks=V + u 3 Bd,

s4d
k = 1,…,N.

In the above,ck is the molar concentration,Dk is the diffu-
sion coefficient,zk is the charge, andmk is the electrical
mobility of the kth ionic species.F is Faraday’s constant
sF=96 484.6 C/mold, and V is the electric potential in the
electrolyte solution.u3B is the induction term. Typically, in
microfluidic systems iui,10−2 m/s, iBi,1 T, i=Vi
.103 V/m, iu3B / =Vi,10−5, and the induction term can
be neglected.

Using the Nernst–Einstein relation, the mobility of spe-
cies k is expressed in terms of diffusion coefficientDk, the
universal gas constantR, and the absolute temperatureT,

mk =
Dk

RT
, k = 1,…,N. s5d

The concentration of each species is governed by the Nernst–
Planck equation26

]ck

]t
+ = ·Nk = 0, k = 1,…,N. s6d

We assume that there are no homogeneous reactions.
Equationss6d consist of N+1 unknown variables: the

concentrations of theN dissolved species and the electric
potentialV. The electroneutrality condition provides thesN
+1dth equation

o
k=1

N

zkck = 0. s7d

In the above, we neglected the electrical double layer next to
the electrodes since the height of the channel is much larger
than the thickness of the electrical double layer.

The current fluxJ in the electrolyte solution due to con-
vection, diffusion, and migration is given by

J = − Fo
k=1

N

zkNk. s8d

The currentJ induces magnetic fieldb, which according
to Ampere’s law satisfies the equationmJ= = 3 sB+bd. To
determine the significance ofb, we estimate its order of mag-
nitude. iJi,is=Vi,s1 S/mds103 V/md=103 A/m2, the
permeabilitym,10−6 T m/A, andb,10−3 T, ib /Bi,10−3.
Thus, in most cases, the induced magnetic fieldb can be
neglected.

067105-3 Magnetohydrodynamic flow of RedOx electrolyte Phys. Fluids 17, 067105 ~2005!
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The boundary condition for an inert speciessno elec-
trode reactions occur for that speciesd and for all species at
insulated boundaries is

n ·Nk = 0, s9ad

wheren is the unit vector normal to the surface.
The concentrations of each species at the inlet cross sec-

tion sx=−L /2d are given by

cks− L/2,y,zd = ck0, k = 1,…,N, s9bd

and obey the electroneutrality conditionok=1
N zkck0=0.

Furthermore, far upstream of the electrodes, we assume
insignificant electric field

n · = Vs− L/2,y,zd = 0. s9cd

The transport of species at the exit cross sectionsx=L /2d is
dominated by convection:

n ·Nk = n · sck,ud, k = 1,…,N s9dd

and

n · = VsL/2,y,zd = 0. s9ed

For the RedOx couple, oxidation and reduction reactions oc-
cur, respectively, at the surfaces of the anode and cathode:

Ox + ne− ⇔ Red. s10d

When the RedOx couple is FeCl3/FeCl2 electrolyte solution,
Ox and Red in the above reaction correspond, respectively,
to Fe3+ and Fe2+, andn=1. The Bulter–Volmer equation de-
scribes the kinetics of the electrodes’ reactions:26

n ·NRed= − n ·NOx = kacOxe
s−anF/RTdh

− kdcRede
fs1−adnF/RTgh, s11d

wherecOx andcRed are the concentrations of the active ions
that are involved in the electrodes reactionss10d at the edge
of the electric double layer;a is the charge transfer coeffi-
cient for the cathodic reaction, usually ranging from 0.0 to
1.0; n represents the number of electrons exchanged in the
reaction;ka and kd are, respectively, the forward and back-
ward rate constants; and

h = sU − Vd − E0 s12d

is the overpotential difference. In the above,U is the im-
posed potential on the electrode,V is the potential of the
electrolyte solution at the edge of the electric double layer
next to the electrode, andE0 is the equilibrium potential drop
across the electric double layer.

Witness that the momentum and mass transport equa-
tions are strongly coupled. The flow field affects the mass
transport due to convection that affects the current flux,
which, in turn, affects the flow field.

C. Dimensionless form of the mathematical model

To examine the relative importance of the various pro-
cesses, we recast the equations in a dimensionless form. To
this end, we balance the Lorentz and viscous forces.
H , C0, D0, V0=RT/ snFd, sFD0C0d /H, Q0=sFD0C0BHd /m,
sFD0C0Bd, H /Q0, andD0C0/H are, respectively, the length

scale, the concentration scale, the diffusion coefficient scale,
the potential scale, the current flux scale, the velocity scale,
the pressure scale, the time scale, and the flux scale.C0 is the
bulk concentration of one of the RedOx couplesi.e., FeCl2d
at the inlet cross sectionfEq. s9bdg. D0 is the diffusion coef-
ficient of one of the ion speciessi.e., Fe2+d. The dimension-
less form of the mathematical model is

¹ · ū = 0, s13ad

ReS ]

] t̄
+ ū · =Dū = J̄ 3 êz − = p̄ + ¹2ū, s13bd

Pe
] c̄k

] t̄
+ = · N̄k = 0, k = 1,…,N, s13cd

and

o
k=1

N

zkc̄k = 0. s13dd

In the above, the variables with over bars represent dimen-
sionless quantities. Re=srQ0Hd /m is the Reynolds number
and Pe=sQ0Hd /D0 is the Peclet number.

The dimensionless flux is

N̄k = Peūc̄k − D̄k = c̄k − zkD̄kc̄k = V̄, k = 1,…,N, s14d

whereD̄k=Dk/D0. The dimensionless current flux is

J̄ = − o
k=1

N

zkN̄k. s15d

At the inlet and exit,

p̄s− «1,ȳ,z̄d = p̄1, s16ad

êy · ūs− «1,ȳ,z̄d = 0, s16bd

p̄s«1,ȳ,z̄d = p̄2, s16cd

and

êy · ūs«1,ȳ,z̄d = 0. s16dd

In the above,«1=L / s2Hd. The inert species at all surfaces
and all species at insulated surfaces satisfy

n · N̄k = 0. s17ad

At the inlet sx̄=−«1d,

c̄ks− «1,ȳ,z̄d = c̄k0 = ck0/C0, k = 1,…,N s17bd

and

n · = V̄s− «1,ȳ,z̄d = 0. s17cd

At the exit sx̄=«1d,

n · N̄k = n · sPec̄kūd, k = 1,…,N s17dd

and

067105-4 S. Qian and H. Bau Phys. Fluids 17, 067105 ~2005!

Downloaded 18 Oct 2007 to 158.130.69.60. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



n · = V̄s«1,ȳ,z̄d = 0. s17ed

On the surfaces of the electrodes, the boundary conditions
for the active ions that are involved in the electrode reaction
s10d are

n · N̄Red= − n · N̄Ox = Dasc̄Oxe
−ah̄ − Kc̄Rede

s1−adh̄d, s17fd

where Da=kaH /D0 is the Damköhler number representing
the ratio between the diffusion and reaction time scales,K
=kd/ka is the ratio between the dissociation and association

rate constants, andh̄=sŪ−V̄d−Ē0.

III. SOLVER VALIDATION

To solve the strongly coupled systemfEqs.s13ad–s13ddg,
we used the finite element packageFEMLAB sversion 3.1,
www.femlab.comd. We employed nonuniform elements with
a larger number of elements next to the electrodes’ surfaces,
where concentration boundary layers are expected to be
present. To verify the code, we comparedFEMLAB predic-
tions with solutions available in the literature for special
cases such as an electrochemical reactor with known flow
field.

We simulated the parallel-plate electrochemical reactor
sPPERd described in the work of Georgiadou.27 The PPER
geometry is similar to the configuration depicted in Fig. 1sad.
The computational domain consists of an upstream region, a
downstream region, and the region between two parallel
electrodes positioned along the opposing wallsfFig. 1sadg. In
contrast to the MHD problem, in the PPER reactor, a para-
bolic flow field is specified. Our results are in excellent
agreement with the finite difference results of Georgiadou.27

The good agreement of our computational results with
previously published data obtained with a different compu-
tational technique as well as other comparisons with special-
ized solutions for the electrochemical problemsnot shown
hered give us confidence in our computational results. We
also verified that for the conditions studied here, the numeri-
cal solutions are convergent, independent of the size of the
elements, and satisfy the various conservation laws.

IV. MHD FLOW WITH REDOX SPECIES IN THE
ABSENCE OF SUPPORTING ELECTROLYTE

In this section, we present a few numerical results of
MHD flow in a two-dimensional conduit of the RedOx elec-
trolyte FeCl3/FeCl2 in the absence of supporting electrolyte.
The electrolyte solution contains the three ions Cl−, Fe3+,
and Fe2+ with the respective charge numbers −1, 3, and 2.
The diffusion coefficients of Cl−, Fe3+, and Fe2+ at room
temperature are, respectively, 2.03310−9 m2/s, 6.04
310−10 m2/s, and 7.19310−10 m2/s.28 We selectedD0

=DFe
2+=7.19310−10 m2/s as the diffusion coefficient scale.

For the reaction Fe3++e−⇔Fe2+, the reaction rate constant
ka<6.0310−6 m/s.29 We were not able to find documented
values forkd anda. We assume thata,0.5 ssymmetric en-
ergy barrierd andkd,ka=6.0310−6 m/s. When studying the
I-V characteristics of a ferricyanide/ferrocyanide couple,
Bortelset al.30 obtained a good agreement between their the-
oretical predictions and experimental observations when as-

sumingkd,ka. We will assume that this relationship is also
true in our case. Since the electrolyte is dilute, the density
and viscosity of the RedOx electrolyte are similar to those of
watersr,1000 kg/m3 andm,10−3 Pa sd. In all our compu-
tations, the inlet concentrationsC0=0.1M, the temperature
T=298 K, and the magnetic field intensityB=0.4 T. This
magnetic field can be generated with either a permanent
magnet or an electromagnet. The inlet concentrations of
FeCl3 and FeCl2 are taken to be equal. In the computations,
we will neglect natural convection due to concentration gra-
dients.

All our computational results are given for a conduit
with aspect ratioL /H=30, total electrode lengthLS/H=10,
andH=1 mm. Computations were carried out for a conduit
with a single electrode pairfthe configuration depicted in
Fig. 1sadg and two electrode pairsfa configuration similar to
the one depicted in Fig. 1sbdg both in the presence and ab-
sence of an external pressure differencep̄1− p̄2. When the
conduit is equipped with a single electrode pairfFig. 1sadg,
the anode is located atsȳ=−0.5, −5ø x̄ø5d and the cathode
at sȳ=0.5, −5ø x̄ø5d. When the conduit is equipped with
two electrode pairsfFig. 1sbdg, one electrode pair spans
−7.5ø x̄ø−2.5 and the other electrode pair spans 2.5ø x̄
ø7.5

Figures 2 and 3, respectively, depict the contours of the
dimensionless concentration of the ions Fe3+ when the con-
duit is equipped with a single electrode pairfFig. 1sadg and
when the conduit is equipped with two electrode pairsfFig.
1sbdg. The imposed potentials at the anode and the cathode
are, respectively, 0.5 V and −0.5 V,Dp=0, Re<2.8, and
Pe=3860. The contour lines for the concentrations of Fe2+

and Cl− are similar to the ones depicted in Figs. 2 and 3 and,
in the interest of space, are not reproduced here. In the up-
stream regionf−«1ø x̄ø−«2, and«2=«1−sL1/Hdg, the con-
centration of each ion is uniform and equal to the corre-
sponding inlet concentration. In the interaction and the

FIG. 2. The contours of the dimensionless concentration of the ion Fe3+ in
a straight conduit with the electrode configuration depicted in Fig. 1sad. The
imposed potentials on the surfaces of the anodesy=−0.5 and −5øxø5d and
the cathodesy=0.5 and −5øxø5d electrodes are, respectively, 0.5 V and
−0.5 V. Dp̄=0, C0=0.1M, H=1 mm,LS/H=10, andL /H=30.
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downstream regionss−«2ø x̄ø«1d, concentration boundary
layers form next to both electrodes. The boundary layers
arise from the electrochemical reactions on the electrodes’
surfaces. On the surface of the cathode, the Fe3+ ion is con-
sumed and the Fe2+ ion is produced through reduction. This
leads to a lower concentration of the Fe3+ ion and a higher
concentration of the Fe2+ ion next to the cathode. In order to
maintain charge neutrality, the concentration of the Cl− ion is
reduced next to the surface of the cathode. On the surface of
the anode, the ion Fe3+ is produced and the ion Fe2+ is con-
sumed through the oxidation reaction, leading to a higher
concentration of the ion Fe3+ and a lower concentration of
the ion Fe2+. Witness that when two electrode pairs are en-
gaged, the thickness of the boundary layer is smaller than
when only one electrode pairswith the same equivalent
lengthd is engaged.

Figure 4 depicts the difference between the concentra-
tions of the ions Fe2+ sdash-dotted lined, Fe3+ sdashed lined,
and Cl− ssolid lined and their corresponding bulk concentra-
tions and the potentialsdotted lined as functions ofy when
x=0. The magnitude of the concentration and potential are
specified, respectively, along the left and right axes of the
figure. The conditions of Fig. 4 are the same as those of Figs.
2 and 3. The lines without and with the symbolss•d repre-
sent, respectively, the cases when onefFig. 1sadg and two
fFig. 1sbdg electrode pairs are engaged. There is no signifi-
cant difference between the potential distributions in the case
of the single and double electrode pairs. Away from the sur-
faces, in the core region, the concentration of each ion nearly
equals its concentration at the conduit’s inlet. Next to the
electrode surfaces, boundary layers develop. Witness that the
concentrations at the bottomsanoded and the topscathoded
surfaces are asymmetricfcksx̄,−ȳd− c̄k0Þ−cksx̄, ȳd+ c̄k0g with
respect to the conduit’s center. The asymmetry is due to both
the nonlinear migration term in the expression for the flux

s14d and the nonlinear Butler–Volmer boundary condition
s17fd.

Figure 5 depicts the vector field associated with the cur-
rent flux at the electrodes’ surfaces when a single electrode
pair is engaged. The current flux is directed nearly normal to
the electrodes’ surfaces. As expected, the total amount of
current leaving the anode equals the amount of current that
goes through the cathode. The current flux depends strongly
on the axial coordinatex and weakly on the transverse coor-
dinatey.

Figure 6 depicts they component of the current flux as a
function of x along the conduit’s axissy=0d in the absence
sDp̄=0, solid lined and the presencesdashed lined of an as-
sisting external pressure differencesDp̄=90d. In the elec-
trodes’ upstream and downstream regions, the current flux is
zero. In the interactionselectrodesd region, the current flux

FIG. 3. The contours of the dimensionless concentration of the ion Fe3+ in
a straight conduit equipped with two electrode pairsfFig. 1sbdg. The im-
posed potentials on the surfaces of the anodesy=−0.5, −7.5øxø−2.5, and
2.5øxø7.5d and the cathodesy=0.5, −7.5øxø−2.5, and 2.5øxø7.5d
electrodes are, respectively, 0.5 V and −0.5 V.Dp̄=0, C0=0.1M, H
=1 mm,LE/H=5, andL /H=30.

FIG. 4. The dimensionless concentrationfcks0,ydg−fck0g of the ions Cl−

ssolid lined, Fe3+ sdashed lined, and Fe2+ sdash-dotted lined, and the potential
sdotted lined as functions ofy. The lines without and with the symbolss•d
correspond, respectively, to one pairfFig. 1sadg and two pairsfFig. 1sbdg of
electrodes. The imposed potentials on the surfaces of the anodesy=−0.5d
and the cathodesy=0.5d electrodes are, respectively, 0.5 V and −0.5 V.
Dp̄=0, C0=0.1M, H=1 mm,LE/H=10, andL /H=30.

FIG. 5. The current flux field in a straight conduit. The imposed potentials
on the surfaces of the anodesy=−0.5 and −5øxø5d and the cathodesy
=0.5 and −5øxø5d electrodes are, respectively, 0.5 V and −0.5 V.Dp̄=0,
C0=0.1M, H=1 mm,LS/H=10, andL /H=30.
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decreases asx increases. The reduction in the current flux as
x increases is due to the thickening of the concentration
boundary layers. The thickness of the boundary layers in-
creases as the electrodes’ length increases, the Peclet number
decreases, and the Damköhler number increases. As the as-
sisting pressure difference increases, the induced flow in-
creases, the thickness of the concentration boundary layer
decreases, and the current flux increases.

The interaction between they component of the current
flux and the external magnetic field in thez direction pro-
duces the axial Lorentzsbodyd force that propels the liquid.
Figure 7 depicts the axial velocity as a function ofy at x

=0. The solid and dashed lines correspond, respectively, to a
single pair of electrodesfFig. 1sadg and two pairsfFig. 1sbdg
of electrodes. In both the cases, there is no pressure differ-
ence between the conduit’s inlet and exit. The velocity pro-
file is nearly independent of thex coordinate, and it has the
parabolic shape,

ūsx̄,ȳd =
Ī + sP̄1 − P̄2d

8L̄
s1 − 4ȳ2d, s18d

where Ī is the dimensionless total electric current. Equation
s18d represents a balance between the sum of the Lorentz and
pressure forces and the viscous force in the momentum equa-
tion s13bd, and it is derived by integrating the right-hand side
sRHSd of the x-component momentum equations13bd from

x̄=−L̄ /2 to x̄= L̄ /2. The velocity profiles predicted by Eq.
s18d for the cases of one and two electrode pairs are depicted,
respectively, with the symbolssod and sDd in Fig. 7. The
approximationsssymbolsd are in a good agreement with the

results of the numerical simulationslinesd. The total currentĪ
sand the fluid flow rated can be controlled, to a degree, by
controlling the electrodes’ potentials. When multiple elec-
trode pairs are used, one can also control the current and the
flow rate by engaging a desired number of electrodes. Al-
though Eq.s18d appears simple, one must keep in mind that
the current is nota priori known and it depends on the ve-
locity.

Figure 8 depicts the dimensionless pressure along the
conduit’s axis as a function ofx in the absence of an external
pressure differencesDp̄=0, lines without symbolsd and in the
presence of an external pressure differencesDp̄=90, lines
with solid circlesd. The solid and dashed lines correspond,
respectively, to a single electrode pairfFig. 1sadg and two

FIG. 6. The dimensionlessy component of the current fluxJ̄ysx,0d along the
conduit’s midplane as a function ofx. The imposed potentials on the sur-
faces of the anodesy=−0.5 and −5øxø5d and the cathodesy=0.5 and
−5øxø5d electrodes are, respectively, 0.5 V and −0.5 V.C0=0.1M, H
=1 mm, LE/H=10, andL /H=30. The solid and dashed lines correspond,
respectively, to the absencesDp̄=0d and presencesDp̄=90d of an external
pressure difference.

FIG. 7. The dimensionlessx component of the velocityuxs0,yd as a function
of y. The imposed potentials on the surfaces of the anodesy=−0.5d and the
cathodesy=0.5d electrodes are, respectively, 0.5 V and −0.5 V. The solid
line and the open circlesssd correspond to the case of one electrode pair
s−5øxø5, y= ±0.5d. The dashed line and the open trianglessDd corre-
spond to the case of two electrode pairss−7.5øxø−2.5, y= ±0.5 and 2.5
øxø7.5, y= ±0.5d. The symbols and lines represent, respectively, the ap-
proximate formulas18d and the results of the numerical simulations.Dp̄
=0, C0=0.1M, H=1 mm, the total length of the electrodes is 10H, and
L /H=30.

FIG. 8. The dimensionless pressure distributionpsx,0d along the conduit’s
midplane as a function ofx. The solid and dashed lines represent, respec-
tively, the pressure distribution in the case of one electrode pairs−5øx
ø5, y= ±0.5d and in the case of two electrode pairss−7.5øxø−2.5, y
= ±0.5 and 2.5øxø7.5,y= ±0.5d. The lines without circles and with circles
represent, respectively,Dp̄=0 andDp̄=90. The imposed potentials on the
surfaces of the anodesy=−0.5d and the cathodesy=0.5d electrodes are,
respectively, 0.5 V and −0.5 V.C0=0.1M, H=1 mm, the total length of the
electrodes is 10H, andL /H=30.
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fFig. 1sbdg electrode pairs with the same total length. The
pressure is nearly uniformsindependent ofyd at any cross
section. When only one pair of electrodess−5ø x̄ø5, ȳ
= ±0.5d is engagedssolid linesd, the pressure decreases
nearly linearly in the upstream region, increases in the elec-
trode regionsthe pumping regiond, and then decreases again
nearly linearly in the downstream region. When two elec-
trode pairs are engaged, the pressure decreases in the dielec-
tric gap between the electrodes. Since the inlet and exit pres-
sures are externally dictated, the pressure behavior far from
the electrodes’ locations is similar regardless of whether we
have one or two electrode pairs. Recall, however, that when
all else is equal, the flow rate in the case of two electrode
pairs is higher than in the case of a single electrode pairsFig.

7d. The pressureP̄ can be approximated with the equation

P̄sx̄d = P̄1 −
sP̄1 − P̄2d

L̄
x̄ +E

−«2

x̄

J̄ydx̄−
Ī

L̄
x̄. s19d

In the upstream region,J̄y=0, the third term on the RHS

of Eq. s19d equals zero, andP̄sx̄d< P̄1−hfĪ +sP̄1− P̄2dg / L̄jx̄.

In the downstream region,e0
x̄J̄ysj , ȳddj< Ī, and P̄sx̄d< P̄1

+ Ī −hfĪ +sP̄1− P̄2dg / L̄jx̄.
Figure 9 depicts the flow ratekūxl=e−1/2

1/2 ūxdȳ slines with
open circlesd and the total electric currentslines with solid
circles •d as functions of the imposed dimensionless potential

differenceDV̄ between the anode and the cathode when one
pair ssolid linesd and two pairssdashed linesd of electrodes
are positioned along the opposing walls and in the absence of
an external pressure difference. The flow rate and current
scales are given, respectively, along the left and right axes of
the figure. When the applied potential difference is below a
threshold value, both the current and flow rate increase as the
potential difference increases. When the potential difference

exceeds a certain critical value, both the current and flow rate
reach their limiting values and become independent of the
potential difference. When two pairs of electrodes are en-
gaged, both the limiting current and the flow are higher than
in the case when one electrode pair is engaged. Further in-
creases in the potential difference will lead to undesired wa-
ter electrolysis.

Next, we investigate the effect of adverse pressure dif-
ference on the flow rate. Figure 10 depicts the flow ratekūxl
as a function of the adverse pressure difference when the
potential differencesDV=0.2 V sdashed line with symbols
md and DV=0.4 V ssolid line with symbols od are imposed
across a single pair of electrodes. As the adverse pressure
difference increases, the flow rate decreases until eventually
the flow stallsszero flow rated. When the adverse pressure
difference is increased above the stall pressure, the flow will
reverse direction. At low and moderate adverse pressure dif-
ferences, the flow rate decreases nearly linearly as the ad-
verse pressure difference increases. The rapid decline in the
flow rate when the pressure difference approaches the stall
pressure difference is due to the thickening of the concentra-
tion boundary layer and the reduction in the electric current

Ī. The flow rate can be expressed as

kūxl <
Ī + sP̄1 − P̄2d

12L̄
, s20d

where the electric currentĪ is a function ofkūxl. When the

electric currentĪ is directly controlled, the flow rate linearly
decreases as the adverse pressure difference increases.

Figure 11 depicts the stall pressure difference as a func-
tion of the imposed potential difference across the electrodes
when a single electrode pair is engaged. As the potential
difference increases, the stall pressure difference increases
until the limiting current has been reached. Once the limiting

FIG. 9. The dimensionless total currentslines with solid symbols •d and
cross-sectionally averaged dimensionless velocitykuxl slines with open sym-
bols sd are depicted as functions of the imposed dimensionless potential
difference across the electrodes. The solid and dashed lines correspond,
respectively, to a single pairfFig. 1sadg and two pairsfFig. 1sbdg of elec-
trodes.Dp̄=0, C0=0.1M, H=1 mm, the total length of the electrodes is
10H, andL /H=30.

FIG. 10. The cross-sectionally averaged velocitykuxl is depicted as a func-
tion of the adverse pressure difference when the potential differencesDV
=0.2 V sdashed line with symbolsmd andDV=0.4 V ssolid line with sym-
bols sd are applied across the electrodes in the case of a single electrode
pair s−5øxø5, y= ±0.5d. C0=0.1M, H=1 mm,LE=10H, andL=30H.
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current has been achieved, further increases in the potential
difference do not contribute to increases in the stall pressure
difference.

In this section, we studied the MHD flow in the conduit
under conditions when diffusion and migration contributed
nearly equally to the current flow. Under these circum-
stances, we were able to obtain relatively simple expressions
for the velocity profile and pressure distributions as functions
of the electric current. When the electrodes’ potentials are
controlled, the current depends on the velocity, and the
simple expressions presented above are not sufficient to pre-
dict the velocity. In the following section, we develop an
approximate analytical theory for the case when abundant
supporting electrolyte is being used. The supporting electro-
lyte does not participate in the electrode reactions and its
presence merely reduces the electric field in the electrolyte
solutions.

V. MHD FLOW WITH REDOX SPECIES IN THE
PRESENCE OF ABUNDANT SUPPORTING
ELECTROLYTE AND UNDER LIMITING CURRENT
CONDITIONS

The presence of abundant electrolyte allows us to ne-
glect the migration term in the advection equation. Under
steady state conditions, Eq.s13cd reduces to

Pe−1S ]2c̄k

] x̄2 +
]2c̄k

] ȳ2 D =
ūM

D̄k

s1 − 4ȳ2d
] c̄k

] x̄
, k = 1,…,N.

s21d

In the above, we substituted the parabolic velocity profile

fEq. s18dg, andūM = Ī +sP̄1− P̄2d /8L̄ is the fluid’s axial veloc-
ity at the conduit’s center.

Typically, the diffusion coefficients are quite small and
the Peclet numbers are large even when the velocities are
moderate. Thus, we consider the limiting case of large Peclet
numberssPe→`d. We divide the flow domain into two re-

gions: the core region away from the electrodes’ surfaces and
the concentration boundary layer regions next to the elec-
trodes. To the first-order approximation, the concentration of
each ion in the core region is equal to its concentration at the
inlet ssee Fig. 4d:

c̄k = c̄k0 + OsPe−1d. s22d

In the boundary layer region, dominant balance suggests
that]2c̄k/]ȳ2,OsPe2/3d and]2c̄k/]x̄2!]2c̄k/]ȳ2. It is conve-
nient, therefore, to introduce the boundary layer variableh
such thatȳ=Pe−1/3h− 1

2. Accordingly, Eq.s21d becomes

]2c̄kBL

]h2 =
4ūM

D̄k

hs1 − Pe−1/3hd
] c̄kBL

] x̄
, s23d

where subscript BL denotes boundary layer variables. For-
mally, in the boundary layer, we introduce the asymptotic
expansion

c̄kBL = c̄kBL
s0d + Pe−1/3c̄kBL

s1d + OsPe−1/3d. s24d

Substituting s24d into s23d and retaining only the leading
order terms, we have

]2c̄kBL
s0d

]h̃k
2 = h̃k

] c̄kBL
s0d

] x̃
. s25d

In the above, for brevity, we introduced the variables with

the wiggle superscripth̃k=s4ūM / D̄kd1/3h and x̃= x̄+sLS/2Hd.
The concentration satisfies the asymptotic matching condi-
tion imh̃k→0c̄kBL

s0d sx̄,h̃kd= c̄k0. Under limiting current condi-
tions, the concentration of the Ox ion at the surface of the
cathode and/or the Red ion at the surface of the anode equals
zero. Hence,

c̄3BL
s0d sx̃,0d = 0 s26ad

and

] c̄2BL
s0d sx̃,0d
]h̃2

= −S D̄3

D̄2

D2/3
] c̄3BL

s0d sx̃,0d
]h̃3

. s26bd

In the above,c̄2BL
s0d and c̄3BL

s0d are, respectively, the concentra-
tions of ions Fe3+ and Fe2+. At the leading edge of the anode
sx̃=0d, the concentration of each ion is the same as the inlet
concentration:

c̄kBL
s0d s0,h̃d = c̄k0, k = 2,3. s27d

Next, we introduce the similarity variablesLie groupd,

j̃k = x̃−1/3h̃k, k = 2,3, s28d

to reduce Eq.s25d to the ordinary differential equation

d2c̄kBL
s0d

dj̃k
2

= −
1

3
j̃k

2dc̄kBL
s0d

dj̃k

, k = 2,3. s29d

Integrating Eq.s29d twice yields

FIG. 11. The stall adverse pressure difference as a function of the imposed
potential difference across the electrodes in the case of a single electrode
pair s−5øxø5, y= ±0.5d. C0=0.1M, H=1 mm,LE=10H, andL=30H.
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c̄kBL
s0d sj̃kd = AkE

0

j̃k
expS−

z3

9
Ddz + Bk, k = 2,3, s30d

where Ak and Bk are integration constants. Based on the
boundary condition s26ad, we have B3=0. From the
asymptotic matching and boundary conditions27d, we have

A3 =
c̄30

E
0

`

exps− z3/9ddz

=
3Gs2/3d
2s3d1/6p

c̄30 < 0.5384c̄30. s31d

For the concentrationc̄2BL
s0d , based on the boundary condition

s26bd, we have

A2 = −S D̄3

D̄2

D2/3

A3 < − 0.5384S D̄3

D̄2

D2/3

c̄30. s32d

From the asymptotic matching with the core variable and
boundary conditions27d, we have

B2 = c̄20 + S D̄3

D̄2

D2/3

c̄30. s33d

Substituting the coefficientsA2, B2, A3 andB3 into s30d, we
obtain the concentration distributions of the active ions in the
boundary layer.

The dimensionless current density along the anode is

J̄sx̃d = − sz3 − z2dD̄3Pe1/3] c̄3BL
s0d sx̃,0d

]h
. s34d

Using s30d, we have

J̄sx̃d = − sz3 − z2dD̄3Pe1/3S4ūM

D̄3
D1/3

A3x̃
−1/3. s35d

In the above,z3=2, z2=3, D̄3=1, andc̄30=1. Hence Eq.s35d
simplifies to

J̄sx̃d = 0.8547 Pe1/3ūM
1/3x̃−1/3. s36d

Integrating s36d over 0ø x̃øLs/H, we have the total
limiting current

Ī lim = 1.282 Pe1/3ūM
1/3SLs

H
D2/3

. s37d

SubstitutingūM =fĪ +sP̄1− P̄2dg /8L̄, we have

8L̄ūM − sP̄1 − P̄2d = 1.282 Pe1/3ūM
1/3SLs

H
D2/3

. s38d

In the absence of an external pressure difference,

ūM = 0.0642 Pe1/2Ls

HS 1

L̄
D3/2

, s39d

and the total limiting current is

Ī lim = 0.5133 Pe1/2Ls

HS 1

L̄
D1/2

. s40d

The dimensional limiting current is proportional toB1/2C0
3/2,

which is consistent with the experimental observations of
Aogaki et al.24 for small conduits.

Based ons18d and s39d, the induced MHD flow under
limiting current conditions and in the absence of an external
pressure difference can be approximated by

ūsx̄,ȳd = 0.0642 Pe1/2Ls

L
SH

L
D1/2

s1 − 4ȳ2d. s41d

Thus, the induced MHD flow is proportional toQ0
3/2 and

sBC0d3/2, which is also consistent with the experimental ob-
servations of Aogakiet al.24 in small conduits.

Next, we compare the approximate analytical solutions
with the results of numerical simulations. We simulate the
presence of abundant supporting electrolyte by removing the
migration term from the expression for the fluxs14d. In the
case of a single electrode pair, in the presence of abundant
supporting electrolyte, under limiting current conditions, and
in the absence of an external pressure difference, Fig. 12
depicts the concentration of the active ions Fe3+ sdashed line
and symbolsDd and Fe2+ ssolid line and symbols od as func-
tions of y at cross sectionx=0. The lines and symbols cor-
respond, respectively, to the approximate analytical expres-
sionss30d and the results of the numerical simulations. The
analytical and numerical results are in excellent agreement.
Figure 13 depicts the limiting current flux as a function ofx̄
along the anode under the same conditions as in Fig. 12. The
solid line and the circles correspond, respectively, to the ap-
proximate analytical equations36d and the results of the nu-
merical simulation. Again the analytical and numerical re-
sults are in excellent agreement. The current flux attains its
maximum value at the electrode’s leading edge and decays as
the distance from the leading edge increases. The induced

FIG. 12. The concentration distributions of the active ions Fe3+ sdashed line
andDd and Fe2+ ssolid line and od as functions ofy at cross sectionx=0 in
the presence of abundant supporting electrolyte and under limiting current
conditions in the case of a single electrode pair. The lines and symbols
correspond, respectively, to the analytic boundary layer approximations and
the numerical simulation.
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velocity profile obtained from the approximate analytic solu-
tion s41d is also in excellent agreement with the numerical
resultssnot shown hered.

VI. CONCLUSIONS

We solved the coupled problem for the ion concentration
distribution and the flow field for magnetohydrodynamically
driven flow in a straight conduit equipped with pairs of elec-
trodes along its opposing walls. The concentration, current,
and potential distributions and the flow fields were presented
as functions of space coordinates. The calculations took into
account the electrochemical reactions on the electrode sur-
faces and were carried out both in the presence and in the
absence of external pressure differences.

Under conditions common in straight conduits, the ve-
locity achieves a fully developed, parabolic profile at a rela-
tively short distance from the conduit’s inlet. In contrast, the
concentration distributions exhibit boundary layer structures
next to the electrodes’ surfaces.

When the potential difference across the electrodes is
below a certain threshold value, both the current and the flow
rate increase as the potential difference increases. One can
also control the flow rate by equipping the conduit with a
large number of individually controlled electrode pairs and
adjusting the number of the electrode pairs engaged. The
selection of the various parameters such as the number of
electrode pairs, the electrode pairs’ lengthLE, and the dielec-
tric gapS that provide the highest flow rate is a design opti-
mization problem that we do not address here.

In the presence of abundant supporting electrolyte and
under limiting current conditions, we used boundary layer
theory to derive approximate analytical expressions for the
ion concentration distributions, the current flux, and the ve-
locity of the induced MHD flow. The approximate analytical
results are in excellent agreement with the results of numeri-
cal simulations. The limiting current and the induced flow
rate are proportional toB1/2C0

3/2 and sBC0d3/2, respectively.

The results of the work are applicable to the design of
MHD pumps that operate with RedOx electrolyte solutions.
The use of a RedOx electrolyte solution such as FeCl3/FeCl2
facilitates a relatively high current flux at a low potential
difference without electrode corrosion, electrolyte depletion,
or bubble formation. Additionally, the work is relevant to
various electrocatalytic and bioelectrocatalytic transforma-
tions and processes in which magnetic fields are applied to
enhance mass transfer.
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