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Efficient Re-rendering of Naturally Illuminated
Environments?

Jeffry S. Nimeroff 1 Eero Simoncelli1 Julie Dorsey1;2

1 Department of Computer and Information Science
2 Department of Architecture

University of Pennsylvania, Philadelphia PA 19104, USA

Abstract

We present a method for the efficient re-rendering of a scene under a directional illumi-
nant at an arbitrary orientation. We take advantage of the linearity of the rendering op-
erator with respect to illumination for a fixed scene and camera geometry. Re-rendering
is accomplished via linear combination of a set of pre-rendered “basis” images. The
theory of steerable functions provides the machinery to derive an appropriate set of
basis images. We demonstrate the technique on both simple and complex scenes illumi-
nated by an approximation to natural skylight. We show re-rendering simulations under
conditions of varying sun position and cloudiness.

1 Introduction

In recent years, researchers have begun to treat the simulation of natural illumination
(overcast or clear skylight [15]) with global illumination algorithms [15, 22]. A major
difficulty with modeling daylight is that the direction of the sun varies continuously
throughout the day. In addition, cloud conditions may also change (e.g., from clear to
overcast). This paper addresses the problem of efficient dynamic re-rendering of a scene
under such changes.

An example application of the technique is in the rendering of naturally illuminated
architectural environments. In order to qualitatively assess a daylit interior, designers
need to see subtle lightingeffects such as soft shadowing, indirect illumination,and color
bleeding. These effects are generally only available through costly global illumination
algorithms. For instance, in order to compute an animation of the appearance of an
interior space during the course of a typical day, one would need to compute a global
solution at each of a large number of time steps corresponding to a sequence of sun
directions. Furthermore, varying the sky conditions (e.g. cloudiness) would require an
entirely new animation with new global solutions.

Rather than computing a global solution for each time step, we describe a technique
for computing a time-independent basis—a small number of global solutions—that
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suffice to simulate the entire animation. The theory of steerable functions provides the
means to construct the basis images (one per solution) needed for rendering via linear
combination.

2 Linearity of Rendering

For our formulation, the rendering operator R takes an illumination description L(û)
(the illuminant intensity as a function of illumination direction û), a scene and camera
geometry G, and yields an image I:

R(L(û); G)! I : (1)

Since the geometry G is fixed, an individual rendering operator can be thought of as
existing for each chosen geometry. We denote this operator as:

RG(L(û)) ! I : (2)

If one is willing to discount physical and quantum optics and work with static scene
geometries, the rendering operation is linear with respect to the illumination [11, 8, 4]
operator. More specifically, rendering obeys the rules of superposition:

– the image resulting from an additive combination of two illuminants is just the sum
of the images resulting from each of the illuminants independently,

– multiplying the intensity of the illumination sources by a factor � results in a
rendered image that is multiplied by the same factor.

What is the advantage of this linearity? Consider an illuminant constructed as the
combination of simpler “basis” illumination functions Li(û),

L(û) =
NX
i=1

�iLi(û) : (3)

Linearity allows us to write the desired rendered image as a linear combination of images
rendered under each of the basis functions:

RG(L(û)) = RG

 
NX
i=1

�iLi(û)

!
=

NX
i=1

�iRG(Li(û)) : (4)

The RG(Li(û)) constitute a set of images rendered under each of the basis illuminants
Li(û). The equation states that we may compute an image for any linear combination
of the basis illuminants via a linear combination of these pre-rendered images.
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3 Choosing the Illuminant Basis

In order to make use of this property, we must select an appropriate basis set of
illumination functions Li(û). Some desirable properties for this set of functions are
as follows:

1. The basis functions should be general enough to form any light source we desire
(via linear combination).

2. The number of basis functions, N , should be small, since this corresponds to the
number of basis images we must actually render.

3. For each illumination function that can be represented, we should also be able
to compute (via linear combination) the same function rotated by any three-
dimensional rotation. In other words, the (linear) space of illumination functions
that we represent should be rotation-invariant .

The first two of these properties have conflicting requirements: the smaller the number
of basis functions, the less flexibility we have in the variety of representable illumi-
nants. This is true of any sort of function expansion, such as Taylor or Fourier series
approximations.

The last property is a more explicit and restricted version of the first property and
is not necessary for linear combinations. Nevertheless, it is extremely useful in the case
of sunlight illuminants, since the direction of the sun varies along a path on a sphere.
This property places a strong constraint on the functions known as “steerability” [9].
A steerable function is one that can be written as a linear combination of rotated
versions of itself. Freeman and Adelson [9] have developed a theory of such functions
and demonstrated their use in two-dimensional image processing problems. For the
purposes of the present paper, we will develop a set of steerable functions in three
dimensions and demonstrate their use as illumination basis functions for the linear
re-rendering problem.

3.1 Steerable Functions: Directional Cosine Example

We begin by illustrating the idea of steerability using the simplest form of steerable
function. Let c(û; ŝ) be defined as:

c(û; ŝ) = û � ŝ ;

where ŝ and û are unit vectors in IR3 and (�) indicates an inner product. We consider
c() as a function on the sphere parameterized by the unit vector û, with ŝ a fixed
direction vector. Clearly, the function computes the cosine of the angle between a point
on the sphere and the fixed direction ŝ. We therefore refer to this as a directional cosine
function.

We can expand the equation as:

c(û; ŝ) = sx(û � êx) + sy(û � êy) + sz(û � êz)

= sxc(û; êx) + syc(û; êy) + szc(û; êz) ; (5)
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where the ê� are the unit vectors corresponding to the three Euclidean coordinate
axes, and s� are the components of ŝ. We have written the directional cosine function in
direction ŝ as a linear combinationof directional cosines along the three coordinate axes.
That is, we can compute any rotated version of this function via linear combinations of
a fixed set of rotated copies. We say that the set of three functions, c(û; ê�), constitute a
steerable basis set.

Of course, there is nothing particularly special about the coordinate axis directions
fêx; êy; êzg. We could choose any three non-coplanar directions, fŝ1; ŝ2; ŝ3g, and still
perform this computation. The easiest way to see this is by working from (5). We can
write c(û; ŝi) for each i in terms of the axis cosine functions:

c(û; ŝi) = si;xc(û; êx) + si;yc(û; êy) + si;zc(û; êz) :

This is a set of three linear equations, which we can write in matrix form as:0
@ c(û; ŝ1)
c(û; ŝ2)
c(û; ŝ3)

1
A =M3

0
@ c(û; êx)
c(û; êy)
c(û; êz)

1
A ;

whereM3 is a 3 � 3 matrix containing the vectors ŝi as its rows.
If the three vectors ŝi are non-coplanar, they span IR3, and we can invert the matrix

M3 to solve for the axis cosines:0
@ c(û; êx)
c(û; êy)
c(û; êz)

1
A =M�1

3

0
@ c(û; ŝ1)
c(û; ŝ2)
c(û; ŝ3)

1
A :

Given the axis cosines, we can compute any directional cosine function via (5):

c(û; ŝ) = ŝTM�1
3

0
@ c(û; ŝ1)
c(û; ŝ2)
c(û; ŝ3)

1
A :

Thus, we have an expression for computing the directional cosine in any direction ŝ
from the cosines in three fixed but arbitrary non-coplanar directions, ŝi.

3.2 Directional Cosine Polynomials

The steerable basis we have derived is not yet suitable as an illuminant basis, since the
functions take on both positive and negative values. We can form a simple steerable
illuminant basis by simply adding unity to these:

L(û; ŝ) = 1 + c(û; ŝ)

= 1 + sxc(û; êx) + syc(û; êy) + szc(û; êz) :

The function L is written as a sum of four terms. This equation is still not in a steerable
form, but we can write it steerably using the same trick as before. We choose four
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arbitrary non-coplanar unit vectors fŝ1; ŝ2; ŝ3; ŝ4g, write four linear equations for L in
each of these directions, and invert this to get:

L(û; ŝ) =

0
B@

1
sx
sy
sz

1
CA

T

M
�1
4

0
B@
L(û; ŝ1)
L(û; ŝ2)
L(û; ŝ3)
L(û; ŝ4)

1
CA ; (6)

whereM4 is now the matrix:

M4 =

0
B@

1 s1;x s1;y s1;z

1 s2;x s2;y s2;z

1 s3;x s3;y s3;z

1 s4;x s4;y s4;z

1
CA :

The directional cosine functions described thus far are quite broad in their extent:
the magnitude of each function is significant over a large fraction of the sphere. When
used for purposes of scene illumination, these functions may be too diffuse. How can we
build narrower illuminants? One simple generalization can be achieved by considering
polynomials of directional cosine functions.

Consider a general second order polynomial of the directional cosine function de-
fined in (5):

f(û; ŝ) = a0 + a1(û � ŝ) + a2(û � ŝ)2

= a0

+ a1[sxux + syuy + szuz]

+ a2 [s2
x(u

2
x) + 2sxsy(uxuy) + 2sxsz(uxuz)

+ s2
y(u

2
y) + 2sysz(uyuz) + s2

z(u
2
z)] :

(7)

As in the previous section, this equation may be placed in steerable form by considering
a set of 9 direction vectors fŝiji 2 [1; 9]g:

f(û; ŝ) =

0
BBBBBBBBBBBBB@

1
sx
sy
sz
s2
x

sxsy
sxsz
s2
y

sysz
s2
z

1
CCCCCCCCCCCCCA

T

M
#
9

0
BBBBBBBBBBB@

f(û; ŝ1)
f(û; ŝ2)
f(û; ŝ3)
f(û; ŝ4)
f(û; ŝ5)
f(û; ŝ6)
f(û; ŝ7)
f(û; ŝ8)
f(û; ŝ9)

1
CCCCCCCCCCCA

;

where the rows of the matrix M9 contain the combinations of the ŝi found in each of the
terms of (7). The symbol # indicates a least-squares pseudo-inverse operation. This is
used in place of a standard matrix inverse: the matrix M9 is not of full rank because the
functions f(û; ŝi) do not span the full space of second order polynomials. Nevertheless,
the interpolation of (7) is exact.



6 Nimeroff et. al.

The function f(û; ŝ) may be made narrower (through proper choice of the ak) than
the first order polynomial of the previous section. But note that we have paid a price
for this: we now require nine basis functions for steerability as opposed to four. This is
a fundamental tradeoff in steerable basis sets: a narrower steerable function requires a
larger number of basis functions . 3

4 Bases for Natural Illumination

In this section, we discuss the design of illuminant basis sets for approximating sunlight.
We consider overcast skylight and clear skylight separately and then discuss general
skylight.

4.1 Overcast Skylight

Overcast skylight [6, 15] is the illuminationthat emanates from the sun but is completely
absorbed and re-radiated by the atmosphere (clouds) before illuminating the scene. It
is a function that describes an overcast/cloudy day. The function has a cosine falloff
relative to a fixed point (zenith) but does not depend on the sun’s position in the sky:

L(û) = Lz(1 + 2(uz))=3 ; (8)

where uz is the z-component of û, and Lz is an overall illumination constant. Since the
orientation of this function never changes, there is no need to construct a steerable basis
for it.4

ẑ

û
�

Fig. 1. Overcast skylight geometry

3 In two dimensions, this is simply a restatement of the Nyquist criterion for sampling of
bandlimited signals [20].

4 We could construct a basis of size 4 using (6).
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Fig. 2. Overcast skylight distribution

4.2 Clear Skylight

Clear skylight [1, 15] describes the distribution of the sun’s energy on a clear day. It
is very complex and is dependent on the sun’s position in the sky and on the direction
relative to a fixed point (zenith):

L(û; ŝ) = Lz
(0:91 + 10 exp(�3 arccos(û � ŝ)) + 0:45(û � ŝ)2)(1 � exp(�0:32=uz))

0:274(0:91+ 10 exp(�3 arccos(sz)) + 0:45(s2
z))

;

(9)
where ŝ is the unit vector pointing to the sun.

ẑ

�

û

�

ŝ

�0




Fig. 3. Clear skylight geometry
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Fig. 4. Clear skylight distribution for sun at zenith

4.3 Steerable Sunlight Approximation

In order to re-render naturally illuminated scenes via linear combinations of rendered im-
ages, a steerable approximation to the clear skylight function in (9) must be constructed.
We rewrite the equation as:

L(û; ŝ) =
�

Lz
0:274(0:91+ 10 exp(�3 arccos(sz)) + 0:45(s2

z))

�
�
�
1 � exp(�0:32=uz)

�
�
�
0:91 + 10 exp(�3 arccos(û � ŝ)) + 0:45(û � ŝ)2�

= L1(ŝ) � L2(û) � L3(û � ŝ) :

In order to compute L(û; ŝ) from a set of illuminants L(û; ŝi), note that only L3 must be
steerable. L2 is a function of û only and does not affect the steerability. L1 is a function
of ŝ only and acts as an illumination scaling constant. Therefore the steerable form of
L(û; ŝ) may be written as:

L(û; ŝ) = L1(ŝ) �
X
i

(�i(ŝ) �

Basis lightsz }| {
L2(û) � L3(ŝi � û)| {z }

Steerable

) : (10)

We must construct a steerable approximation to the function L3. For purposes of
this paper, we use a second order approximation:

L3(û � ŝ) = 0:91 + 10 exp(�3 arccos(û � ŝ)) + 0:45(û � ŝ)2

� 0:5012 + 1:9116(û � ŝ) + 3:3911(û � ŝ)2 : (11)
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Fig. 5. Approximated clear skylight distribution at zenith

This steerable function requires a basis set of size ten. We note again that higher order
polynomials would provide better approximations at the expense of a larger basis set
requiring additional executions of the costly global illumination algorithm.

Using the linearity of the rendering operator and (10) we can write an expression
for re-rendering an image for any sun direction ŝ from the images rendered under 9
different sun directions si:

RG(L(û; ŝ)) = L1(ŝ) �
X
i

�i(ŝ)
RG(L2(û) �L3(ŝi � û))

L1(ŝi)
; (12)

where the �i are the components of:�
1 sx sy sz s2

x sxsy sxsz s2
y sysz s2

z

�
M

#
9 : (13)

4.4 General Skylight

As demonstrated above, a steerable approximation for an overcast day requires a first-
order expansion, while the clear day requires a second-order expansion. To generate an
image for a partially overcast day, we have to gradually phase in the second order terms.
This can be done by linearly interpolating between the two sets of coefficients.

Let b be a number in [0; 1] indicating the brightness of the day (1=sunny, 0=cloudy).
Let

v0 =
�
�0 0 0 �1 0 0 0 0 0 �2

�
;

and

v1(ŝ) =
�

1 sx sy sz s2
x sxsy sxsz s2

y sysz s2
z

�
;
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where v1(ŝ) is the interpolation vector for the clear skylight function with sun in direction
ŝ, and v0 is the interpolation vector that gives a least-squares best fit to the overcast
skylight function (8). Then let

v(ŝ; b) = (1 � b)v0 + bv1(ŝ):

The interpolation functions �i in (12) are the components of:

v(ŝ; b)M#:

5 Implementation and Results

Figure 6 provides an overview of our approach. There are two main components to
the system: the pre-processing stage, which entails computing the basis images using
a renderer, and the post-processing phase, which involves re-rendering the scene at a
specific time of day under desired sky conditions (e.g. overcast or clear).

Rendering Engine
(Pre-process)

Re-rendering Engine

Scene Geometry

Camera Geometry

I

Sun Direction 2

R

Sun Direction N

Sun Direction 1

Basis Image 2

Basis Image 1

Basis Image N

I

I

R

R

*

*

*

Coefficient 
Generator

Cloudiness

Sun Position

W_1

W_2

W_N

Final
Image

+

Fig. 6. Implementation architecture

Once the basis images have been computed, the scene can be quickly re-rendered
based on a new sun position and desired sky conditions. This is accomplished by
performing a linear combination of the basis images, given the coefficients for the sun
direction and sky definition. Thus, a designer can see a variety of lighting configurations
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throughout a typical day or observe an animation of these effects in the time required
to combine the basis images together. That is, no calls to the costly global illumination
operator are required for this interaction.

We used the illuminant approximation of (11) to generate our set of nine basis
images for a sample architectural scene.

The set of ŝi used were0
BBBBBBBBBBB@

ŝ1

ŝ2

ŝ3

ŝ4

ŝ5

ŝ6

ŝ7

ŝ8

ŝ9

1
CCCCCCCCCCCA

=

0
BBBBBBBBBBB@

( 0:0000; 0:0000; 1:0000 )
( 0:9102; 0:0000; 0:4142 )
( 0:0000; 0:9102; 0:4142 )
( �0:9102; 0:0000; 0:4142 )
( 0:0000;�0:9102; 0:4142 )
( 0:6436; 0:6436; �0:4142 )
( �0:6436; 0:6436; �0:4142 )
( �0:6436; �0:6436; �0:4142 )
( 0:6436;�0:6436; �0:4142 )

1
CCCCCCCCCCCA

:

Fig. 7. a) Rendered image; b) re-rendered image (linear combination of nine basis images)

For each sun position ŝi, an image was rendered using a multi-pass global illumina-
tion algorithm. The renderer combines a progressive radiosity pass to simulate diffuse
lighting effects and a stochastic ray-tracing pass to simulate specular effects. The ren-
dering was performed on a 50 MHz SGI Crimson VGXT with 64 megabytes of RAM.
Each 640 by 486 image took approximately one hour to complete with a nine hour
total rendering/setup time. Once the initial nine hour rendering phase is performed, re-
rendering time becomes negligible (approximately one second per image, not including
I/O).

It is important to note that our rendering times are representative of a global il-
lumination (progressive radiosity) simulation running to convergence. However, our
re-rendering implementation does not require this. The basis images can be computed
with virtually any rendering algorithm—affording the possibility to trade quality for
time. For example, during the early design stages of a building design, one could use a
local illumination model or a very coarse global illumination solution to minimize the
time required to compute the basis images. Later, when greater precision is necessary,
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Fig. 8. Image rendered with CIE standard

Fig. 9. Image rendered with a steerable second order approximation

Fig. 10. Image rendered with a steerable fourth order approximation

more accurate images could be used. Also, we could use a larger number of basis images
to get a more exact description of the daylight distribution function.

Figure 7 shows two images. The first is an image of a simple scene rendered with
our sunlight model. The second has the sun at the same location as the first, but is a
linear combination of the basis images for the scene. The RMS error calculated on these
two images is negligable (> 0.008).

Figures 8-10 shows three images. The first is an image of a simple scene rendered
with the CIE standard clear day function. The second image uses our second order
approximation to the CIE standard and the third uses a fourth order approximation. As
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Fig. 11. Sun from 7:00am through 11:45am in 15 minute increments. Each of these 20 images is
computed via linear combination of the 9 basis images.

we increase the order of our approximation we can more closely match the CIE standard
function. In the limit, our approximation is exact.

Color plates 1-4 (see color section) show four images. The first two are basis images
(actually rendered). The third is a sunny-day image (computed via linear combination)
with the sun position between that of the two basis images. The fourth is a cloudy-day
image also computed via linear combination.

Figure 11 shows a sequence of twenty images corresponding to a sequence of sun
positions during the course of a day. This is the prototypical example for showing the
benefit of our approach. Once the small number of basis images are computed, obtaining
a rendering of the environment with a new sun position and sky description is reduced
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to a fast image combination step. Thus, the process is very interactive and alleviates
many of the problems involved with constructing animations.

6 Discussion

We have presented a method for the fast re-rendering of naturally illuminated scenes
using linear combinations of pre-rendered images. The method requires a set of “basis”
illumination functions. In general, this set is unconstrained, but we have imposed a
constraint of steerability in order to guarantee that the set of representable illuminants
is rotationally invariant. This constraint is particularly useful when modeling natural
illumination functions.

Our method allows for an interactive edit-render cycle by eliminating calls to the
renderer once the basis images have been computed. This provides the user with the
ability to animate naturally illuminated scenes in a fraction of the time that it would
require with conventional methods. The limitation of the method is that efficiency
requires broad extended illuminants. Narrower illuminants require a larger basis set and
consequently more pre-rendering computation.

Several interesting research directions remain. First, for most environments, con-
structing the approximation of sunlight over the entire sphere is not necessary. Interiors
are rarely exposed to sunlight from all directions as they often contain a limited number
of openings. Additional work is necessary to quantify the relationship between basis
size, basis quality, and spatial coverage. Second, we would like to take advantage of
common computation between the different renderings. Recomputing the geometric re-
lationships between objects is unnecessary in a static environment. Third, the approach
can extended to use the vertex radiosities as a basis set. This would allow images to
be created on the fly for any camera position. Although certain aspects of our approach
require further investigation, our preliminary results indicate that this method offers a
promising solution to daylight simulation.
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