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Fairness in Cellular Mobile Networks

Abstract

Channel allocation algorithms for channelized cellular systems are discussed from a new perspective, viz.,
fairness of allocation. The concepts of relative and absolute fairness are introduced and discussed. It will be
shown that under certain reasonable assumptions, there exists an absolute (max-min) fair carried traffic
intensity vector (a vector describing the traffic carried in the cells of the system). We also show that this vector
is unique. We describe some properties of the max-min fair carried traffic intensity vector in an asymptotic
limit where the traffic and the number of channels are scaled together. For each traffic pattern, we determine a
fixed channel allocation which attains this max-min fair carried traffic intensity vector independent of the
value of the offered traffic, in the same asymptotic limit. Finally, we discuss a tradeoff between being max-min
fair and trying to maximize revenue. We conclude this correspondence by discussing some possible extensions
of our work.
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Asymptotic analysis, cellular networks, channel assignment algorithms, fairness, max-min fairness, revenue
maximization
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Fairness in Cellular Mobile Networks

Saswati SarkarMember, |IEEE,and
Kumar N. SivarajanMember, IEEE

Abstract—Channel allocation algorithms for channelized cellular sys-
tems are discussed from a new perspectiveiz., fairness of allocation. The
concepts of relative and absolute fairness are introduced and discussed. It
will be shown that under certain reasonable assumptions, there exists an
absolute (max-min) fair carried traffic intensity vector (a vector describing  Fig. 1. Three-cell system.
the traffic carried in the cells of the system). We also show that this vector
is unique. We describe some properties of the max-min fair carried traffic

intensity vector in an asymptotic limit where the traffic and the number of E le: C ider the th I t h in Fia. 1 d
channels are scaled together. For each traffic pattern, we determine a fixed xample: Lonsider the three-cell system shown In Fg. 1 an

channel allocation which attains this max-min fair carried traffic intensity ~ @ssume that a total of 80 channels are available. Adjacent cells are
vector independent of the value of the offered traffic, in the same asymptotic forbidden from using the same channel, but cells 1 and 3 can reuse
limit. Finally, we discuss a tradeoff between being max-min fair and trying  the same channel. Consider two fixed channel algorithms, FCAA1
to me_tximize revenue. We conclude this correspondence by discussing some; 4 ECAA2. FCAAL1 allocates 40 channels to each cell and FCAA2
possible extensions of our work. allocates 42 channels to cells 1 and 3 and 38 channels to cell 2. Let the
Index Terms—Asymptotic analysis, cellular networks, channel assign- offered traffic in each cell be 35 Erlangs. Let us assume that there are no
ment algorithms, faimess, max-min fairess, revenue maximization. handovers and no intercell calls. We also assume that neither algorithm
allows any queuing of call requests. If there is a free channel in the cell
|. INTRODUCTION AND SUMMARY in which a call is requ_ested, the CQII request i§_honored; qtherwise itis
blocked. FCAA1 achieves a blocking probability of 5.4% in each cell
In a cellular system, the coverage area is logically divided into cellgnd the total carried traffic is 99.3 Erlangs. For FCAA2, the blocking
Each cell has a cell site or a base station. The communication from gigbability is 3.6% in cells 1 and 3 and 7.8% in cell 2. The total carried
mobile user is directed to a central switching office by the base statigfaffic is 99.8 Erlangs, slightly better than that of FCAAL. FCAA1 can
The central switching office directs this communication to the destinge said to be “fairer” than FCAA2 since it treats the individual cells more
tion. Depending on the mode of multiple access used by the mobile ctisqually.” It is reasonable to assume that in this case a network operator
tomers, cellular systems can be broadly classifiedéhamnelizec&nd  will prefer FCAA1 to FCAA2 even though his total carried traffic is
nonchannelizedystems. In a channelized cellular system, the multiplightly reduced. Otherwise, he will risk the desertion of customers in
access is time-division multiple access (TDMA) or frequency-divisiogell 2 for a competitor operator. Thus, the problem of ensuring some
multiple access (FDMA), or a combination of both. The teimannel level of fairness in channel allocation becomes an interesting one.
refers to a time slot in TDMA, a frequency slot in FDMA, and a com- . S ; .
bination of both in TDMA/FDMA systems such as the Global System We remark that fairness does not necessarily imply “equal blocking

for Mobile Communications (GSM). Calls arrive and depart at randoR{Obab”.'ty' Various definitions of falr_ness ?re pos§|ble_ but th? most
. . . : appropriate one appears to be the notion of “max-min fairness.” A sim-
times in the cells of the system andchannel assignment algorithm

must assign a channel to each call for its duration, while obeying Cllar notion of fairness is widely used in the context of flow control [3].

. . . oughly speaking, max-min fairness minimizes the overall blockin
tain channel reuse constraints. These reuse constraints can be moc?e{? c? y SP 9 9

by a hypergraph [2], as explained in [7]. This correspondence will d rlo ability without decreasing the blocking probability in any cell at

. . . e expense of other cells which are already worse off. More precise
entirely with channelized systems. The cellular network operatorwhoggﬁnitions follow in later sections
task it is to choose an appropriate channel assignment algorithm is usu- )

allyinterested in maximizing his revenue and this amounts to maximiza- /& make the following assumptions regarding the cellular system.

tion of the total traffic carried in the system, if we assume calls in ajln€ System consists of cells and the underlying offered traffic model

cells are charged at the same rate (dollars per unittime). In addition'S ngepgndent frodm ie” to”cellll; |anart|cuIar.,t WeI'II(ng]O:k? tthe effect of
order to keep his customers satisfied, the operator has to providethe?ﬁé andovers and intercetl calls. However, 1L1S ikeély that we can ex-
minimum grade of service (maximum blocking probability). Howevettend our results to the case in which this independence assumption is
iropped and handovers and intercell calls can be included. Our opti-

many channel assignment algorithms provide unequal grades of serylca P . .

many cha g g P “ a “g . mism is derived from the fact that the results of [7], to which we shall

in the various cells of the system, and are thus “unfair.” This correspon-, . . )
. . efer extensively, have been extended to include handovers in [9]. The

dence attempts to study the concept of fairness in cellular networks

First, we shall motivate the study of faimess with an example qall regugsts form a Poisson process and the call duration is exponen-
' ' tially distributed. TheV cells share a common setofthannels. If4;

denotes the offered traffic in cell(the expected number of calls that

Manuscript received February 5, 1997; revised January 18, 2000. The wavkuld be in progress in cellif all call requests could be honored),

of S. Sarkar was supported in part by the National Science Foundation ung@én A, /» is the offered traffic intensityin cell i. The offered traffic

Grant ANI01-06984. A portion of this work was performed at the Indian In‘l(ntensity in the system;, is the sum of the offered traffic intensities
stitute of Science, Bangalore, supported under a grant from Nortel Networ|

S. . N

The material in this correspondence was presented in part at the 34th Anrdlathe cells, thusi = 2_Ai/n. The ratiop; =. 4’/ 2=y Ai rep-

Allerton Conference on Communications, Control, and Computing, Allertof€Sents the fraction of the total offered traffic in cetind the vector

IL, September 1996, and published in f@ceeding®f that conference. p = (p1, p2, ..., pn) is thetraffic pattern The carried traffic in-
S. Sarkar is with the Department of Electrical Engineering, University qnsity in celli, «;, is the carried traffic (expected number of calls in

Pennsylvania, Philadelphia, PA 19104 USA (e-mail: swati@ee.upenn.edu). 54 ress) in cell per available channel in the system. We call the vector
K. N. Sivarajan is with Tejas Networks, Bangalore, 560 012, India (e-maB 9 ) P Y )

kumar@tejasnetworks.com). ¥ = (x1, 22 ..., xn) thecarried traffic intensity vecta'When a call
Communicated by R. Cruz, Associate Editor for Communication Network§eguest arrives in a cell, the channel assignment algorithm either as-
Publisher Item Identifier 10.1109/TIT.2002.800495. signs it a channel for its entire duration, or blocks it. (A blocked call
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Fig. 2. Scale diagram. In all three cases illustraieis fairer thanA. In (a) and (b)N = 2. In (c) N = 5. For bothA, B of (a) and (b) and! of (c) components
are represented in order, with component 1 the lowermostBrof (c) the order is 1, 2, 3, 5, 4, component 1 being the lowermost on the vertical line. Note that
corresponding components Bf are joined with those aft. The numbers are the values of the corresponding call acceptances.

disappears from the system.) The decision regarding blocking or haolutely fair carried traffic intensity vector in the asymptotic limit and
oring a call request is taken by the channel assignment algorithm bagae@ the corresponding channel allocation strategy to attain it. In Sec-
entirely on the current value of a suitably defingtdte vector Fur- tion V, we discuss the loss of revenue brought about by fairness and dis-
ther, we assume that the state vector assumes a finite, or countallys a tradeoff between being fair and maximizing the revenue. We con-
infinite, set of values. In a nutshell, we assume that channel assighide this correspondence by discussing how our work can be extended.
ment algorithms can be modeled by continuous-time Markov chains

(CTMCs). Further, we assume that there exists a probability distribu- Il. RELATIVE FAIRNESS

tion on the states of the CTMC, which satisfies the balance equations

and all state probabilities are positivAn example of a state vectorisa Informally, a channel assignment algorithiris fairer than another

list that specifies the calls in progress in each cell of the system and ff@nnel assignment algorithB, for givenr, p, andn, if for every cell
channels assigned to them. The assignment of channels to calls at‘atfjose blocking probability is decreasedByompared toi, there is
stage must satisfy certain reuse constraints which essentially spe&@ne other celf whose blocking probability was already no less than
the sets of cells that may simultaneously use the same channel. E&@h ofi under4 and has been increased further®yA more formal
possible channel assignment algorithm corresponds to one and d#finition of relative fairness is as follows.

one carried traffic intensity vector under fixedp, andn. We denote A channel assignment algorithah is fairer than another channel

the set of achievable carried traffic intensity vectors under fixgd, ~assignment algorithn, under the same,  andn if

andn, by F'(r, p, n) or simply F'. The blocking probabi_lity incellis « it £ #¥ and

b; = 1 — x;/p;v. We denote:; as the call acceptance in céliwhere

¢i = ai/pi. ¢ = (c1, cas ..., cn) is denoted as theall acceptance « if there exists ari such thab? > bP, then there exists asuch
vector ¢; /r is the call acceptance probability in céllWe consider thatb;! > 45;-,4 ar;%d v? > b, Equivalently, if ther4e exisAts an
only systems in whiclp; > 0 for all i.2 The carried traffic, blocking such that]” < ¢, then there exists asuch that; < ¢ and

probability, and call acceptance probability depend on the channel as- ¢} < c;'.
signment algorithm used and we shall denote this by an appropriate s

- "’,/‘ - . . . .
perscript. For example; is the carried traffic intensity vector underried traffic intensity vector for fixed, p, andn, we will usually speak

channel_ assignment algorithr . ) of the fairness of carried traffic intensity vectors rather than the fairness

We will proceed as follows. In Section I, we formally define the CONzt channel assignment algorithms. Note that given any one of the vec-
cept of relative fairness and present a simple necessary and suffick pi #h = (by.....bx), andé = '(61 ... cn), we can determine
condition for relative faimess. In Section Ill, we introduce the notion g lotr'1er Wo l;niquely 4('since andp a{re fi;<ed) lThus we may also
absolute fairness and prove its existence and uniqueness. In Sectioré % : '

we deal with fairness in the asymptotic limit, i.e., when the number o lvalently consider the faimess of the vectocs ¢ instead of:.
ymp T Fig. 2 shows pairs of carried traffic intensity vectors. In each case,

channels is arbitrarily large. We also discuss the computation of the %?fe is fairer than the other

Yince a channel assignment algorithm corresponds to a unique car-

IThis is equivalent to assuming the CTMCs to be positive, recurrent, and regsscale diagram is a schematic representation of vectors. The components (call
ular. acceptances for the cellular examples) are represented as points on a vertical
2This means that we eliminate from the system cells with no offered traffidine. Corresponding components of vectors are joined.
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Theorem 1: A channel assignment algoritha is fairer than an-
other channel assignment algorithBhif and only if there exists an
Amin ES CU ={1,2,...N} such tha’kﬁmin = minses ¢t and 0.40 0.40
in cgmin, whereS = {i: ¢! # P},

0.20 0.20
Remarks: In other words, this theorem states that the necessary

and sufficient condition for fairness of a channel assignment algorithm
A over anotherB is that the least call acceptance probability (over A B
all cells, ignoring those with equal call acceptance probabilities under

both 4 and B) under A is strictly greater than the correspondingFig 3. Scale diagram. This figure compares the fairness of two vedtarsl

C‘?’l” acgeptance probaplllty i3, This theorem W'”, be us.eful. n B with two components each. Neithdrnor B is fairer than the other. Fot,
discussing absolute faimness. Note that relative fairness is differ@giponents are represented in order, with component 1 the lowermosg, For
from lexicographic orderingIf a vector is fairer than another, it is the order is 2,1, component 2 being the lowermost on the vertical line. Note that
lexicographically greater as well. However, a vector may be lexic#ie corresponding components Bfare joined with those off. The numbers
graphically greater than another, but neither of the two may be faidf the values of the corresponding call acceptances.

than the other. Thus, the necessary and sufficient condition in this ) _

theorem is sufficient but not necessary for lexicographic comparison. ~ Proof of Lemma 1: Assume there exist channel assignment algo-

] ) ) . rithms A and B, each fairer than the other. Sindds fairer thanB3, by
Proof of Theorem 1:The proof will be given in two steps. First, Thegrem 1

the sufficiency will be proved and then the necessity

i

“Amin

3 Alnin € S such thati .= IIliél 024 > C’E
min CS

Let Cﬁnlin > Cfnlin’ where Cﬁnlin = min C;fdﬂ Amin € 5. (1) B B )
tes ca . > mig c; sincedmin € 5. (5)
min 2 T
Then for everyj € U, for which¢? < ¢, there existsdin € U
- ' J 7 i SinceB is fairer than4, by Theorem 1

suchthar’ . < c4 . and 4

A oA 4 3 Buin € S such thatinin c? = cgmin > cém.

CA i = 1’111%1 cp <cj. ies

tE S

Again ¢a . > minies ¢ = ¢4 ., sinceBmin € S and by in-
Bmin < € Amin

(Sinceci' # ¢?,j € 5.) SinceAmin € S, S is nonempty and thus equality (5).

~A ~B H H L . .
" # a7, Thus,A is fairer thanB. Combining the above inequalities we get
Let A be fairer thanB. Thus,#* # #® and hences is nonempty. | 5 5 | N
If possible, let CAmin ~ CAmin 2 Bin 2  Bmin 2 CAnin®
A B This is a contradiction. Hence the existence of two channel assignment
CAmin = Amin algorithms mutually fairer than each other is not possible. O
for all Amin satisfying (1). Sincelmin € S, ¢4 # 5 . . Hence, L. ABSOLUTE FARNESS
A B . . . . . ..
Chmin < CAmin (2)  Achannel assignment algorithmabsolutely fairor max-min fairif

it is fairer than any other channel assignment algorithm which achieves
a different carried traffic intensity vector under the samg, andn.
We shall refer to the carried traffic intensity vector corresponding to
c}'ﬁ < 3 (3) the max-min fair channel assignment algorithm as the MMF carried
' traffic intensity vector, or simply the MMF. Informally, a carried traffic

A B intensity vector is the MMF if the blocking (probability) in any cell
ey >cj- (4)  under it cannot be decreased without increasing the blocking in any
(fell already experiencing greater or equal blocking.

It is not obvious that every set of carried traffic intensity vectbrs

has an MMF. Consider the following examples.

fo all A..in satisfying (1).
SinceA is fairer thanB, there existg € U, for which

and

Forj € U\S, (¢} = ¢’) and, hence, inequality (4) is never satisfie
foranyj € U\ S. Forj € S, from inequality (3), and the definition
of Amin in (1)

. Example Ill.1: Let F consist of only the carried traffic intensity
¢; =c4,,, =min ¢ vectors corresponding to the vectéfsande® shown in Fig. 3. Neither
A nor B is fairer than the other. Hence, no MMF existshnn either
i.e., j satisfies (1). Hence, from (2), (4) cannot be satisfied for armase.
Jj € S. Therefore, there is ng € U for which both inequalities (3)

- . L .2: = RN (RN N -di i
and (4) are satisfied and that is a contradiction. & Example 1l.2: Let I B (B s the set ofN-dimensional

vectors with real components.) For any vecidr € F, there exists
We now prove another interesting result which we shall use in obnother vectori“ € F, each of whose components is greater than the
taining some results on absolute fairness. corresponding one in"". Thus," is not fairer thani:“ and hence is

not the MMF. The same observation applies for
Lemma 1: If the channel assignment algorithsis fairer than the PP

channel assignment algorith®, then B cannot be fairer thad. (In F={z=(x1, 22, ..., 2n): 0 < a; < 1}.
other words, fairness is an antisymmetric relation.)
. ) . In view of the above examples, it becomes necessary to prove the
4Two vectors can be lexicographically compared as follows. If the minimu

components are unequal, then the vector with a larger minimum componréhqswnce_c’f an M_MF- In th's_ section, we will first ShOW_t_hat any set of
is lexicographically greater. If the minimum components are equal, then tHECtOrs with certain properties has an MMF. The definition of fairness
second minimum component must be considered, and so on. in any set ofV -dimensional vectors remains the same as that for carried
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traffic intensity vectorse) = «} /p;, wherex! , is theith component X; >0 (7
of the vectoV. § = (p1, p2, ..., pn) is the same for the entire set. M
pi > 0,foralli € U. The necessary and sufficient condition given in ZX;» =1 (8)
Theorem 1 for relative fairness of channel assignment algorithms holds j=1
for that of vectors in anyV-dimensional vector set as well. A vector z; <pir, t=1,2,...N 9)
is the MMF if it is fairer than all other vectors in the set. Next, we z; >0, i=1,2,...N (10)

discuss whether the set of achievable carried traffic intensity vectors

of a cellular system has these properties. We end this section with the ) ] )
result that the MMF is unique. wherea;; = 0 or1 depending on the system configuration and channel

reuse constraint. The; can be found by modeling the system by a hy-
Theorem 2: If P is a nonempty, coordinate convexpnvex, closed, pergraph [7]. This set is closed. For the finite channel case, we could
bounded subset d¢"', P has an MMF. not prove that the set of carried traffic intensity vectdtss closed.
Proof of Theorem 2:For brevity, we only give a construction for This remains an assumption. However, even if the assumption turns
a vector that can be proved to be max-min fair using Theorem 1. Ffiiit to be invalid our result is not seriously weakened. It can be shown
details, refer to [11]. Unless otherwise stat&d= {1, 2, ..., N}. that the closure of any convex, coordinate convex, and bounded set is
Construction: Start from the all-zero vecta, = 0,Vi € U. also convex, coordinate convex, and bounded and obviously closed.
Always find the largest subsét C U such that;'s, 7 € I;, can be Also, clearly closure of a nonempty set is nonempty. We are going to
increased equally without decreasing anyIncrease the:’s of this  show that the set of carried traffic intensity vectors is convex, coordi-
subset equally without decreasing anytill it is no longer possible to nate convex, and bounded. Thus, the closure of the set of carried traffic
do so. intensity vectors is nonempty, convex, coordinate convex, bounded, and
The procedure terminates when the largest subset which can beditiosed subset a8 and hence has an MME" (by Theorem 2).
creased equally without decreasing anys empty, i.e., na; can be Even if " does not belong t@ (closedness is not necessary for the
increased without decreasing some other existence of MMF,z"' may belong taF’), we have carried traffic in-
Informally, the procedure goes as follows: Start from the vect@gnsity vectors inF' arbitrarily close toi*?. For practical purposes,
(0,0...,0). Suppose the largest subset which can be increasedtiguffices to assume that the set of carried traffic intensity vectors is
{1,2,..., k}, wherel < k¥ < N. Increase, ..., ¢, equally tila ¢losed.
vector(pia, ..., pra, 0, ..., 0) is reached and > 0 is such that Bounded: The set of carried traffic intensity vectdtss bounded.
This is because the carried traffic intensity can neither exceed the of-
(pr(ate),....pr(a+€),0,...,00¢ P fered traffic intensity in any cell nor can it exceédsince the total

for anye > 0. Again increase the largest possible subset equallywithonulfmber of channels available in the system jshe traffic carried in
cell cannot exceed) and it is also nonnegative. Thus < »; <

decreasing any component. The largest possible subset will be a prcﬁﬂé’r , A ; -
subset off 1, ..., k}. Letitbe{L. ..., m}, m < k. The increase of Min{Pi" 1) for eachi and henc® < c; < min(r, 1/p:) for eachi,

this subset continues till where0 < p; < 1.

Theorem 3: The set of achievable carried traffic intensity vectors

(105 oo pmfs prgras ey pras 0,05 0) for a cellular systenf is convex.

is reached and For brevity, we give an outline of the proof of this important result.
. Refer to [11] for details. Our assumptions about channel assignment
Pr(B+e) oo, Pm(B+ ) prmpras oo pra, 0,00, 0) € P algorithms, the call arrival process, and call duration distribution allow

for anye > 0. The procedure terminates when no element can be iiie operation of the channel assignment algorithms to be modeled by
creased without decreasing some other(s). a CTMC. Furthermore, we assume the CTMCs to be positive recurrent

Note that this is a generalization of the construction of max-min feffd irreducible. Let there be two carried traffic intensity vecicrsand
rate allocation presented in [3]. The construction in [3] applies to poly- €a@lized by channel assignment algorithrhand B, respectively.
tope feasible sets defined by linear constraints of the g, < B. LetSa = {Ai, A2, ..., }(resp.Ss = {Bi, Bz, ..., })denote the
The construction we present here applies to more general feasible sSf{€ space aft (resp.,3). Denote one null state (state in which the

We discuss the validity of the assumptions that the set of carriB§mber of calls in progress in the systenfi)sof A by 74 and one of

traffic intensity vectors is nonempty, closed, bounded, convex and ¢3-0Y T A third channel assignment algorith whose state space

ordinate convex. is the union ofS'4 andS, operates as follows. WhenT, it switches
Nonempty: The set of carried traffic intensity vectors is clearl§Ver 07 atrateyas and when il it switches over td's at rate
nonempty. ~vBa. OtherwiseC' behaves in the same manner4sr B depending

Closed: In an asymptotic limit where the number of channels aifl Whether itis in a state that belongsda or S5, respectively (all
the offered traffic are made arbitrarily large while keeping the ratigner transition rates remain the same). It can be shown that the CTMC
finite, and which we consider in the next section, for the model \A;g)rresE)andlng td'is p05|t|ve4recuj;renjf1nd irreducible.” = o =+
have assumed (underlying model of offered traffic independent fro%_“)ig swherea = (1+vymi, /m7,)" 7 = yas/ysa,and{n” }
cell to cell, etc.), the set of carried traffic intensity vectors is given b§ndi7 "~ } are the steady-state probability distributions of algorithins

the following inequalities (refer to [7]): andB, respectively. By adjusting we can get any: € (0, 1).
M Theorem 4: The set of achievable carried traffic intensity vectors
z; < ZXJ'“’"'J’ i=1,2....N (6) for a cellular systenf’ is coordinate convex.
7=1

We need to prove that if there exists a carried traffic intensity vector
5A subset ofRY (RY is the set of allV-dimensional vectors with real non- #4 € F, then any vector of the form
negative components};, is said to be coordinate convex if for each vector
Z = (21, %2, ..., 2n)INF, & = (21, 22, ..., 2, ..., xx), belongs 5 4 A A
to F for all o satisfyingd < o < 1 andforalli € {1, 2, ..., N}. 27 =(x], 2y, oo, iTiy ..., Tn) EF
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where0 < «; < 1, foranyi € U. A slight variation of the technique construction remains identical for some timié. may be the all-zero
used to prove Theorem 3 in conjunction with Theorem 3 can be usegttor) and then let the constructions differ (if the constructions never
to prove this theorem. Refer to [11] for details. differ #Me< (1) = #Moe (12), ¢} (r1) = e} (ro) foralli € U
Thus, the set of achievable carried traffic intensity vectors for a calnd there is nothing to prove). Let the largest subset of components
lular system is closed, bounded, convex, and coordinate convex. Iofsi” whosec;s can be increased equally without decreasing others
also a subset aR” . Hence, it has an MMF by Theorem 2. bel, andI; atr,; andrz, respectively. Since the constructions differ,
. . . henceforthl; # I,. Let, if possible ; be nonempty. At any, if I is
Thsr)or;?;fs'l.'r,:/e'\c/)lrlzerlrsr E'Tgtjtehe max-min fair carried traffic intensit the largest subset of components of any vestore F.o(r), whose
vector (MMF) not be un'ique Hence, there exist at least two differ/ec"t,S can be increas_ed egually without decreasing any other compqnent,
' ’ fflen noc) of ¥ with j in U \ I can be increased without decreasing

~M ~ M. ; ;
Zlgﬂansth;qundﬂQ ;ggljﬁ tfgﬁéo{r::lipgggﬁ]ngtﬁgig?e;azf(/'[g?me%tny other component, els_e from convexi_ty and coordinate cenvexity
This violates Lemma 1. Hence this is not possible <> of Fw(r-)’ all e's of I {j} 3 I can be increased eqyelly without

) ) decreasing any other component. Thus, no component af U \ I,
(U \ I.) can be increased ai (r2). ObserveF..(ri) C Fu(r2)
for r, < 7. Thus, thee;’s of 2V in I, can also be increased equally
without decreasing others at. Hence,I; C I.. Sincec;’s of &V
In this section, we shall consider an asymptotic limit whére— oo in I2 \ Ii can be increased at, but not atr,, without decreasing

IV. PROPERTIES ANDCOMPUTATION OF MMF IN THE
ASYMPTOTIC LIMIT

andn — oo but others, from inequalities (6)—(10),.”"7: ri, fori € I, \ I, but from
construction principle at,, ¢’ = ¢} foralli, j € I (till this point
lim Ai/n =pir ¢;’s of setsD I, have been increased equally and that is lidwhas

been reached). Thus; = r, foralli € I, > I, and no component
is finite. Thus, both the offered traffic and the number of channels a@&#" in I; can be increased at (inequality (9)). Thus/, = ¢, i.e.,
made arbitrarily large while keeping the ratio—the offered traffic inconstruction at, has terminated and = "/~ (7). Sincei" is
tensity—finite. The properties of channel assignment algorithms in tf§ intermediate vector in the construction procedure for MMF,at
asymptotic limit were studied in [7]. The feasible set of carried traffifrom construction principle

vectors can be described by some linear inequalities in this case. In- Mo Vv Moo

cidentally, [5] studied a different notion for fairness, proportional fair- ¢ Tlr2) 2z e =7 (n)
ness, for resource allocation in wireline case, and presented compéd@all ; € U and this part of the theorem is proved.

tional strategies for obtaining the same. Also, [5] showed that max-minc;%o(r) = 0 foreachi € U atr = 0. Thus, for each € U, there
fairness is a limiting case of a generalization of proportional fairnessxists somer; > 0 (possibly0) such that for alt < «;, Cf"foo(r) = r.
and as such a max-min fair allocation can be approximated arbitralearly, for eachi € U, there exists some finite > 0, such that
closely using the techniques for computing proportionally fair aIIocaaz.’Woo (r) < r (e.g., forr > M). Let

tion. The similarity between the wireline case considered in [5] and the

asymptotic case for cellular networks considered in this section is that Bi = Minf r < 0o

the feasible sets can be described by linear inequalities in both cases rees <

(the nature of the inequalities differ in the two cases though). The copr?Uoo (r) = rforr < Bi. Sincec?f'foo(,,,) is a nondecreasing function
putational approaches differ in the two cases. The important advaf+, andc’=(3,) < 3; (inequality (9))

tage of our approach is that we exploit specific properties of max-min e )

fair allocation and the feasible set in the cellular mobile case to de- c; <= (Bi) € [Bi —e B, foralle > 0.

velop parametrized close_d-form expressions for_MMFs and the Corﬁénce,cff”w (3:) = /. Consider any, > 4, for which (Moo (1) <
sponding channel allocations. The parameters in the closed-form e);!-sa | !

ressions can be obtained by solving linear proarams. The approachh clearly, there exists e}tleastone such fimitsinces; isfindte).Con—
p Yy 9 prog : PP ider anyrs > 7. Let#Y be a vector With:}/ = min(ry, c;j‘” (r2)),

[5] is to use a nonlinear optimization based iterative update technrqftée eachj € U. Clearly,iV € Foo(r1). Sincec]’.”w(r) is 2 nonde-

for obtaining the proportionally fair allocation, and the iterative proce- ) . M . .

dure is not guaranteed to converge in finite number of iterations. \WEeasing function of, andc," (r) < r (from inequality (9))

present our results in what follows. Mo (p1) < min(ry, ¢
LetzMe (r) denote the MMF carried traffic intensity vector atload ’ - :

in this asymptotic limit. In this limit, the set of achievable carried traffi®incei " is not fairer thani*'= ()

intensity vectorsF,(r) atr is described by inequalities (6)—(10) for Moo

our model [7]. The proofs in this section use results from [7]. €

. r Mee ., ) Moo (1o} — Moo (.
Theorem 6: There exist finite nonnegativg?: } such that for each [0F €achy € U andc;"> (r1) < ri. Thus,e;”=(r1) = ;"> (r2) and
ieUandr >0 from the definition ofs3;

Mo (ry)) = cf for eachj € U.

(r1) = min(ry, C}MOO(TQ))

o . el (ry) = el (ra), forall ri, 7o > f;.
e; = (r) = min(r, 35;).

’ Again, from the nondecreasing property(qu(r), and since it is
Proof of Theorem 6:First we shall prove that;”=(r) is a ypper-bounded by

nondecreasing function of. Consider0 < r; < r2. We show that

e (r) < e'=(ry) forall i € U. Carry out the construction given = (r) € [Bi, Bi + €]
in proof of Theorem 2 for both, in the asymptotic limit. The output%r eache > 0 and for anyr > 4:. Thus r{”w(r) — 4. for all
will be the respective unique MMF's;™= (r,) and #"= (r5). Let S 3, y o T o N

the construction procedures for both remain identical upto a certain
point, when the carried traffic intensity vector reached:is (since The construction procedure given in proof for Theorem 2 can be
construction for both start from the same vector, i.e., the null vector, theplemented using the inequalities (6)—(10) to yigld= (+), at any
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r > 0, as follows. Start from the null vector. Find the largestpos-
sibly 0), such thatpia, poar, ..., pyva) € Fuo(r)

M
5:5< <2Xja,ij>/pi, i=1,2,..., N;
a = max =
M

S X;=1; X;>0,j=1,2,..., M; s<r

=1

NextfindI = {i: #V € F..(r)}, wherei"? is any carried traffic
intensity vector of the form

v, |> o
Tz

(inequalities (6)—(10) may be used to test whethere F..(r)). I is

thus the largest subset whose call acceptances can be increased equally
without decreasing any other component(pf«, p2a, ..., pya).
Without loss of generality, lef = {1.2,..., k}, ¥ < N. Al

call acceptances of cannot be increased equally without de-
creasing any other component when a carried traffic intensity vector
(183, p25, ..y P&y Ph410%, .., pN41¥) iS Obtained such that

(pr(B+e), p2(B+e), ..oy pe(B+€), prrra, «ovy pryyr1) € Foo(r)

j=i
otherwise

for anye > 0 Fig. 4. Nineteen-cell system.
AI . . . . . . .
sis<| > Xjaq pi,i€l; of min(f;, r;) in cell 4, if offered traffic intensity in celli is r;
i=1 for the model we have assumed. Thus, the algorithm allocating
3 =max 3 [np:3:] channels to each cell attains a carried traffic intensity of

> Xja;j>pia, i €U\ " . - Je .
= p; min(f3;, r) in each calli in the asymptotic limit, for allr, i.e.,

ci(r) = min(f3;, r) = ¢} (r) atallr (Theorem 6). &

M ?
Example 1V.1: Consider the system of 19 cells (see Fig. 4) with the

2 X =1 X,;>0,j=12,...,

=1

M; s<r

Again, I, = {i: #* € F.(r)} is the largest subset of componentdollowing reuse constraint. A set of cells can use the same channel si-

whose call acceptances can be increased without decreasing any dthdraneously if the interference in each cell of the seti§/8. The

component of (p13, p23, ..., pef3, Pes1css ..., py41a), Where interference in any celt is given by>" o ., d(u, v)™*, whereS
#V is any carried traffic intensity vector of the of the form: is the set of cells using the same channel simultaneously/éndv)
) . is the distance between the centers of celisidv. We assume the cell
>pB, j=i . . -
Vi lS T radius to bd/\/§ or equivalently, the distance between the centers of
€ 2 B, J \_{L} adjacent cells to be unity. (This system and reuse constraints are the
> a, otherwise .

The procedure terminates when no call acceptance can be increase
without decreasing others. The output will B& = (r).

If #==(r) is found at some sufficiently large, sayr’ for which
cMee(#"y < ¢ foralli € U, thenc)=(+') = p;, foralli € U, from
Theorem 6. Thus, the;’s can be determined from™« (+'). Using
theses,’s, < (r) can be determined for all > 0 from Theorem 6.
Thus, "= () need not be found separately at all values.dfUsing
inequalities (6), (8), and (9), for any> 1/ min;evs pi, ¢/ < r, for
alli € U,and anyi" € F..(r). Hences = (r) < r for eachi € U,
if » > 1/min;er pi.]

Theorem 7: The carried traffic intensity vector corresponding to the
fixed channel assignment algorithm which allocdtes; 3; | channels
tocelli, foralli € U, is the MMF for all» > 0 in the asymptotic limit.

Remark: This fixed channel allocation scheme is similar to the one 2)
used to attain the highest carried traffic intensity in [7].

First, we show that it is possible to allocatep;3;| channels to
each cell at all . For somer; > maxicr i, ¢ (r) = 5, by
Theorem 64, is finite). Thus,z; = p;; satisfies inequality (6) at all
r where{ X} of inequality (6) satisfies inequalities (7) and (8) at all
r. From [7][n 12, X,a:;] channels can be allocated to each ¢ell
where{ X; } satisfies inequalities (7) and (8). Thus, from inequality (6)
|npiBi] channels can be allocated to each ceit all .

Again from [7], in the asymptotic limit any allocation which
gives [nf;] channels to a cell attains a carried traffic intensity

same as those in [7, Example 1.2].)

We shall consider uniform traffic, i.ep; = 1/19 for each cell
i € U. The carried traffic intensity in the system under an MMF
is given by

T (7) = Zw;wm(r) = min(r, 247/49)

(see Fig. 6 (a))x)'=(r) = min(r/19, 13/49), Vi € U.
Thus,c;’>=(r) = x}'>=(r)/p; = min(r, 247/49),Vi € U.

In Fig. 5(a), these call acceptances have been plotted. A fixed
channel allocation algorithm allocating3»/47| channels to
each cell achieves the MMF carried traffic intensity vector at all
r in the asymptotic limit.

Let us consider nonuniform traffic

1/24,  i€{l,2, 3,4, 7.8, 12
- 13, 16, 17, 18, 19}
Pr=91/16, i€{5.6.9 11,14, 15} and
/8,  i=10.

This pattern of nonuniform traffic resembles that in cities in
which traffic is maximum in the central portion and decreases as
we move toward the outskirts. The max-min fair carried traffic
intensity in the systerif (r) = min(r, 2+ £, 1) (refer to

Fig. 6 (b)].
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M (r) = pimin(r, 8;),Vi € U. 6 T T T T T
5 ten
14/3,  i€{1,2,3,4,7,8,12, =X 4L N
2. — v ' pi
8 = / 13., 16, 17, 18, 19} Erlang/ 3L _
4, otherwise. channel 2 - _
In Fig. 5(b), call acceptances have been plotted for these cells. 1r 7
The following fixed channel allocation algorithm gives the MMF 0 ' L 4 - ‘
at all » in the asymptotic limit £, is the number of channels 0 1 2 3 4 5 6
allocated to theth cell): Offered Traffic Intensity (r) (Erlangs/channel)
@
[7n/36], i€{l1,2,34,78,12, 6
o 13, 16, 17, 18, 19} 5| ' ! ' ‘ ]
) /4l i€ {5 6,9, 11, 14, 15} and .
[n/2], i = 10. a=3 4r
Erlang/ 3 [ ies —
channel 2 - ieU\S —
V. TRADEOFFBETWEEN FAIRNESS AND REVENUE MAXIMIZATION 1+ -
More often than not, MMF is not the carried traffic intensity vector 0 0 i 2' :; zll 5' 6
which yields the maximum revenue. At present, we consider the )
rate-per-call-per-unit time to be uniform throughout the system and Offered Traffic Intensity (r) (Erlangs/channel)
hence the total carried traffic intensity in the system gives the rate at (b)

which revenue is earn_ed,except_foramultiplicative constant which &y 5. Maxmin fair call acceptances:J in a 19-cell system.S; =
take as unity. We define thmarginal revenugsee [8]) of a channel {5, 6, 9, 10, 11, 14, 15} (central cell and its neighbors). (a) Uniform traffic.
assignment algorithm (or the corresponding carried traffic intensity(p) Nonuniform traffic.

vectori“(r)) at loadr and number of channels as

? T I T
N = —
Total
Ta(r,n) =Y ai(r). Carried 6 /’/ 1
=1 Traffic 5 [ .
Intensity 4 [ TMe (1) — .
So the marginal revenue of a channel assignment algorithm is the (Erlangs/3 - TRe (1) — T
rate at which revenue is earned per channel using that algorithm. Let  channel)% | 7]
T (r, n) be the marginal revenue of the MMF. Let (1) / N ) ] ]
N 0 5 10 15 20
Th(r. n) = ZT R () Offered Traffic Intensity (r) (Erlangs/channel)
i=1 (@)
8 T T T

be the maximum marginal revenue [8] aRdr) the channel assign-

PR . : e Total *
ment algorithm §**(r) the corresponding carried traffic intensity Carried 6 | -
vector at load') yielding this marginal revenue at loadLet Ty, _ (r) Traffic 5 [ -

and Tr_ (r) be the corresponding asymptotic marginal revenues. Intensity 4 [~ 7

Consider the following examples. (Erlangs/g - nggrg — .
L 2 (1) — N
Example V.1: channel)]" | -
1) Consider the system of Example IV.1 T)s__(r) andTr__(r)® 0 0 ; 1'0 1'5 2'0
Tfl?ve(?geznTilot(t(:()j. versusin Fig. 6(a). Forr > 247/49, Offered Traffic Intensity (r) (Erlangs/channel)
(b)

2) Consider the system of Example IV.1 2). For > 4.0,
T (1) < Tr,, (r) (refer to Fig. 6(b)). Fig. 6. Loss in revenue brought about by max-min fairness for a 19-cell
system. (a) Uniform traffic. (b) Nonuniform traffic.
Clearly, Tw (r, n) < Tr(r, n) for all systems. Generally this in-

equality is strict. Whenever this inequality is strict, the channel as- . e
signment algorithm attaining(r, n) is unfair compared to that at- intensity vector which fetches less revenue but is fairer, customer de-

taining Thr(r, n). In other words, revenue is maximized at the exSertion may have been less and it is possible that the ultimate revenue
pense of fairness. If the operator maximizes revenue at the cost of tgfrned would be greater. Wh'_le we are still in the process_of modeling
ness, it may cause customer dissatisfaction (customers will be diss _§|—eﬁﬁCts Ef c_ustolmehr deselrtlon_on falrnesls an_dhrev_enue, itseems plau-
fied throughout the system as they will experience poor-quality serviﬁl? e that the ideal channel assignment algorithm in many situations

when they move to certain cells) and possibly customer desertion ty/au!d €am less marginal revenue thgie(r, ) (which we get by not
competitor operator, which will result in reducednd hence reduced Caring about fairness) and more ttin (r. ) (which we get by being

revenue. Instead, if the network operator had opted for a carried traff@X"mn fair). It would also, in some sense (not necessarily that of Sec-
tion II), be “fairer” than R(r) but not “as fair” as the MMF channel

6Computation ofT'z_ () has been discussed in [7]. assignment algorithm () at loadr. A possible approach is to fix the
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revenue at some value betweBy (r, n) andTr(r, n), saym, and where we sayy; < Vs if =}* < x)2, for eachi € U. We call D,

choose the channel assignment algorithm corresponding to the MR coordinate convex extension®Bf Thus, for every vectd¥ € D,,

among those carried traffic intensity vectors thatn a marginal rev- there exists some vecter € D such thad < ¢} < ¢/ foralli € U.

enue of at leastn. We denote this carried traffic intensity vector byClearly, D, D D, henceD;, is coordinate convex.

#M(m, r, n) (" (m, r) in the asymptotic limit). Consider the fol- D, is closed, bounded, convex, nonemptylifhas these proper-

lowing example. ties. (It can be shown that coordinate convex extension of a closed,

Example V.2: bounded, convex, nonempty setftY is also closed, bounde_d, convex,

o ) . . and nonempty.) Thus, by TheoremI2, has an MMF. Let it bell.

1) Consider the system of 19 cells with uniform traffic (refer Kblearly, M is fairer than all vectors irD C D.. Hence, M is the
Example V.1 1)). Atr = 38/7, Tk (r) = 37/7 = 5.2856  \MmFin D if it belongs toD. If M ¢ D, M € D. \ D. Thus, there
andTu, (r) = 247/49 = 5.0408. A carried traffic intensity oyists7 € D such that
vector i:%*= () which maximizes the marginal revenue in the
asymptotic limit (computed as per [7]) has a blocking probability v o
of 50% in the central cell (cell 10) and 0% in all other cells. M {< ¢ ,  forsomei = j
On the other handi™=(m, r) atm = 5.2 gives following <el.  i#]
blocking probabilities:

M is not fairer thar¥’ € D C D,. This contradicts the fact that’ is

e e .
11.173%, i € {5, 6.9, 10, 11, 14, 15} the MME in D... o

b; = ¢ 0.287%, i€{2,4,7, 13, 16, 18}
0%. otherwise. F(m,r, p,n) = FN R(m), whereF is the set of carried traffic
’ intensity vectors at, n (and traffic patterrp) and
Clearly, "= (m, r) is much fairer thani™=(r), while it

fetches only slightly less revenu&.Z as compared t6.286) at N
r = 38/7. This suggests that a network operator may be bettg(m) c rY = {17’; ZL} > m wherez! is the
off in the long run sacrificing the additional revenue achieved i=1

by &%= () and usingi"'= (5.2, r) instead, ar = 38/7. N

) ) ) ] ith component o}
2) Consider the system of 19 cells with nonuniform traffic (refer to }

Example IV.12)). Atr = 4.5, Tr__(r) = 4.348 andTs_ () =

4.25. A carried traffic intensity vecta# > () which maximizes . .

the marginal revenue in the asymptotic limit (computed as p early, R(.m) IS clgsed and convexE Is also closed and convex.

[7]) has a blocking probability of 26.98% in the central cell (cell _usl,)the (;ntéarsgcnc’)’n /~0f these tvx_/o |s|, alsbo clczjse; and convex. Since

10) and 0% in all other cells. On the other hantf< (m, r)at L 1S oundedF'(m, r, p, n) C I is also boundedn < Ti(r, n)

m = 4.3 gives following blocking probabilities: meansr (r.) \.Nh'Ch fetches. revenue equal.m(r., n). 2 misin set
R(m) and it is also there irf". Thus, the intersection is nonempty.

15.553%.  i=10 F(m,r,p.n) C F C RY.F(m,r, §, n)is a nonempty closed,

/ bounded, convex subset R‘l. Hence,F'(m, r, p, n) has an MMF

bi = { 6.668%, i€{5,6,0,11, 14, 15}
0%, otherwise. by Theorem 8.
Clearly, #= (4.3, r) is much fairer thani**=(+), while it VI. CONCLUSION AND FUTURE WORK

fetches only slightly less revenué.§ as compared td.348)

atr = 4.5. Again this suggests that a network operator may We have developed the notions of relative and absolute fairness. We
be better off in the long run sacrificing the additional revenubave obtained a simple necessary and sufficient condition for relative
achieved byif=(r) and using #*=(4.3, r) instead, at fairness which is useful in determining if a vector is fairer than another.
r = 4.5. MMF gives a blocking probability of 11.11% in cells We have shown that any subset®¥ satisfying certain properties has
5,6,9,10, 11, 14, 15, and 0% blocking in other cells. an MMF and the set of carried traffic intensity vectors satisfies those

Th | f Id iblv be th It of modeli ¢ Froperties. We have shown that the MMF is unique. We have been able
€ value olm COuld possibly be Ihe resutt of modeting customey, specify a fixed channel assignment algorithm which yields the MMF
desertion in an appropriate manner. Further investigation in this dlreact-a” loads, in the asymptotic limit. Future research may be directed
tion is an interesting topic for future research. X

. - . toward determining optimal channel assignment algorithms that would
We have so far assumed that the set of carried traffic intensity VeCtAB ximize revenue taking into account the effects of customer deser-
F(m, r, p, n) which fetch a marginal revenue of at leastatr has

: . ) tion.

an MMF. This can be proved using the following theorem. We would like to point out that many of our results are very gen-
Theorem 8: If D is any nonempty, convex, closed, bounded subsetal in nature and apply to a large class of other networks as well. The

of RY, D has an MMF. problem of max-min fair bandwidth allocation is very relevant in con-
) ) o _ text of other networks as well, e.g., automated teller machine (ATM)
Note that the assumption of coordinate convexity is not requireeyorks. The set of feasible allocations often satisfies the conditions
Consider a set of Theorem 8. Thus, we know from Theorem 8 that the max-min fair
D = U S()l) allocation exi_sts uniquely (uniqueness fc_)llows f_rom The_orer_n 5) and

=T ~ the construction of Theorem 2 actually yields this allocation if the set

Aeb of feasible allocations is known. Our results may find application in

where the problem of max-min fair allocation of available bandwidth to com-

peting available bit rate (ABR) traffic in ATM networks with minimum
S(A) ={V:(0,0...,0) <V < A} cell rate requirements (MCR) [1].
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