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Fairness in Cellular Mobile Networks

Abstract
Channel allocation algorithms for channelized cellular systems are discussed from a new perspective, viz.,
fairness of allocation. The concepts of relative and absolute fairness are introduced and discussed. It will be
shown that under certain reasonable assumptions, there exists an absolute (max-min) fair carried traffic
intensity vector (a vector describing the traffic carried in the cells of the system). We also show that this vector
is unique. We describe some properties of the max-min fair carried traffic intensity vector in an asymptotic
limit where the traffic and the number of channels are scaled together. For each traffic pattern, we determine a
fixed channel allocation which attains this max-min fair carried traffic intensity vector independent of the
value of the offered traffic, in the same asymptotic limit. Finally, we discuss a tradeoff between being max-min
fair and trying to maximize revenue. We conclude this correspondence by discussing some possible extensions
of our work.
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Fairness in Cellular Mobile Networks

Saswati Sarkar, Member, IEEE,and
Kumar N. Sivarajan, Member, IEEE

Abstract—Channel allocation algorithms for channelized cellular sys-
tems are discussed from a new perspective,viz., fairness of allocation. The
concepts of relative and absolute fairness are introduced and discussed. It
will be shown that under certain reasonable assumptions, there exists an
absolute (max-min) fair carried traffic intensity vector (a vector describing
the traffic carried in the cells of the system). We also show that this vector
is unique. We describe some properties of the max-min fair carried traffic
intensity vector in an asymptotic limit where the traffic and the number of
channels are scaled together. For each traffic pattern, we determine a fixed
channel allocation which attains this max-min fair carried traffic intensity
vector independent of the value of the offered traffic, in the same asymptotic
limit. Finally, we discuss a tradeoff between being max-min fair and trying
to maximize revenue. We conclude this correspondence by discussing some
possible extensions of our work.

Index Terms—Asymptotic analysis, cellular networks, channel assign-
ment algorithms, fairness, max-min fairness, revenue maximization.

I. INTRODUCTION AND SUMMARY

In a cellular system, the coverage area is logically divided into cells.
Each cell has a cell site or a base station. The communication from the
mobile user is directed to a central switching office by the base station.
The central switching office directs this communication to the destina-
tion. Depending on the mode of multiple access used by the mobile cus-
tomers, cellular systems can be broadly classified intochannelizedand
nonchannelizedsystems. In a channelized cellular system, the multiple
access is time-division multiple access (TDMA) or frequency-division
multiple access (FDMA), or a combination of both. The termchannel
refers to a time slot in TDMA, a frequency slot in FDMA, and a com-
bination of both in TDMA/FDMA systems such as the Global System
for Mobile Communications (GSM). Calls arrive and depart at random
times in the cells of the system and achannel assignment algorithm
must assign a channel to each call for its duration, while obeying cer-
tain channel reuse constraints. These reuse constraints can be modeled
by a hypergraph [2], as explained in [7]. This correspondence will deal
entirely with channelized systems. The cellular network operator whose
task it is to choose an appropriate channel assignment algorithm is usu-
ally interested in maximizing his revenue and this amounts to maximiza-
tion of the total traffic carried in the system, if we assume calls in all
cells are charged at the same rate (dollars per unit time). In addition, in
order to keep his customers satisfied, the operator has to provide them a
minimum grade of service (maximum blocking probability). However,
many channel assignment algorithms provide unequal grades of service
in the various cells of the system, and are thus “unfair.” This correspon-
dence attempts to study the concept of fairness in cellular networks.
First, we shall motivate the study of fairness with an example.
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Fig. 1. Three-cell system.

Example: Consider the three-cell system shown in Fig. 1 and
assume that a total of 80 channels are available. Adjacent cells are
forbidden from using the same channel, but cells 1 and 3 can reuse
the same channel. Consider two fixed channel algorithms, FCAA1
and FCAA2. FCAA1 allocates 40 channels to each cell and FCAA2
allocates 42 channels to cells 1 and 3 and 38 channels to cell 2. Let the
offered traffic in each cell be 35 Erlangs. Let us assume that there are no
handovers and no intercell calls. We also assume that neither algorithm
allows any queuing of call requests. If there is a free channel in the cell
in which a call is requested, the call request is honored; otherwise it is
blocked. FCAA1 achieves a blocking probability of 5.4% in each cell
and the total carried traffic is 99.3 Erlangs. For FCAA2, the blocking
probability is 3.6% in cells 1 and 3 and 7.8% in cell 2. The total carried
traffic is 99.8 Erlangs, slightly better than that of FCAA1. FCAA1 can
be said to be “fairer” than FCAA2 since it treats the individual cells more
“equally.” It is reasonable to assume that in this case a network operator
will prefer FCAA1 to FCAA2 even though his total carried traffic is
slightly reduced. Otherwise, he will risk the desertion of customers in
cell 2 for a competitor operator. Thus, the problem of ensuring some
level of fairness in channel allocation becomes an interesting one.

We remark that fairness does not necessarily imply “equal blocking
probability.” Various definitions of fairness are possible but the most
appropriate one appears to be the notion of “max-min fairness.” A sim-
ilar notion of fairness is widely used in the context of flow control [3].
Roughly speaking, max-min fairness minimizes the overall blocking
probability without decreasing the blocking probability in any cell at
the expense of other cells which are already worse off. More precise
definitions follow in later sections.

We make the following assumptions regarding the cellular system.
The system consists ofN cells and the underlying offered traffic model
is independent from cell to cell; in particular, we ignore the effect of
call handovers and intercell calls. However, it is likely that we can ex-
tend our results to the case in which this independence assumption is
dropped and handovers and intercell calls can be included. Our opti-
mism is derived from the fact that the results of [7], to which we shall
refer extensively, have been extended to include handovers in [9]. The
call requests form a Poisson process and the call duration is exponen-
tially distributed. TheN cells share a common set ofn channels. IfAi

denotes the offered traffic in celli (the expected number of calls that
would be in progress in celli if all call requests could be honored),
thenAi=n is theoffered traffic intensityin cell i. The offered traffic
intensity in the system,r, is the sum of the offered traffic intensities
in the cells, thusr = Ai=n. The ratiopi = Ai=

N

i=1
Ai rep-

resents the fraction of the total offered traffic in celli and the vector
~p = (p1; p2; . . . ; pN) is the traffic pattern. The carried traffic in-
tensity in celli, xi, is the carried traffic (expected number of calls in
progress) in celli per available channel in the system. We call the vector
~x = (x1; x2 . . . ; xN ) thecarried traffic intensity vector. When a call
request arrives in a cell, the channel assignment algorithm either as-
signs it a channel for its entire duration, or blocks it. (A blocked call

0018-9448/02$17.00 © 2002 IEEE
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Fig. 2. Scale diagram. In all three cases illustratedB is fairer thanA. In (a) and (b)N = 2. In (c)N = 5. For bothA; B of (a) and (b) andA of (c) components
are represented in order, with component 1 the lowermost. ForB of (c) the order is 1, 2, 3, 5, 4, component 1 being the lowermost on the vertical line. Note that
corresponding components ofB are joined with those ofA. The numbers are the values of the corresponding call acceptances.

disappears from the system.) The decision regarding blocking or hon-
oring a call request is taken by the channel assignment algorithm based
entirely on the current value of a suitably definedstate vector. Fur-
ther, we assume that the state vector assumes a finite, or countably
infinite, set of values. In a nutshell, we assume that channel assign-
ment algorithms can be modeled by continuous-time Markov chains
(CTMCs). Further, we assume that there exists a probability distribu-
tion on the states of the CTMC, which satisfies the balance equations
and all state probabilities are positive.1An example of a state vector is a
list that specifies the calls in progress in each cell of the system and the
channels assigned to them. The assignment of channels to calls at any
stage must satisfy certain reuse constraints which essentially specify
the sets of cells that may simultaneously use the same channel. Each
possible channel assignment algorithm corresponds to one and only
one carried traffic intensity vector under fixedr, ~p, andn. We denote
the set of achievable carried traffic intensity vectors under fixedr, ~p,
andn, byF (r; ~p; n) or simplyF . The blocking probability in celli is
bi = 1 � xi=pir. We denoteci as the call acceptance in celli, where
ci = xi=pi. ~c = (c1; c2; . . . ; cN ) is denoted as thecall acceptance
vector. ci=r is the call acceptance probability in celli. We consider
only systems in whichpi > 0 for all i.2 The carried traffic, blocking
probability, and call acceptance probability depend on the channel as-
signment algorithm used and we shall denote this by an appropriate su-
perscript. For example,~xA is the carried traffic intensity vector under
channel assignment algorithmA.

We will proceed as follows. In Section II, we formally define the con-
cept of relative fairness and present a simple necessary and sufficient
condition for relative fairness. In Section III, we introduce the notion of
absolute fairness and prove its existence and uniqueness. In Section IV,
we deal with fairness in the asymptotic limit, i.e., when the number of
channels is arbitrarily large. We also discuss the computation of the ab-

1This is equivalent to assuming the CTMCs to be positive, recurrent, and reg-
ular.

2This means that we eliminate from the system cells with no offered traffic.

solutely fair carried traffic intensity vector in the asymptotic limit and
give the corresponding channel allocation strategy to attain it. In Sec-
tion V, we discuss the loss of revenue brought about by fairness and dis-
cuss a tradeoff between being fair and maximizing the revenue. We con-
clude this correspondence by discussing how our work can be extended.

II. RELATIVE FAIRNESS

Informally, a channel assignment algorithmA is fairer than another
channel assignment algorithmB, for givenr, ~p, andn, if for every cell
iwhose blocking probability is decreased byB compared toA, there is
some other cellj whose blocking probability was already no less than
that ofi underA and has been increased further byB. A more formal
definition of relative fairness is as follows.

A channel assignment algorithmA is fairer than another channel
assignment algorithmB, under the samer, ~p andn if

• ~xA 6= ~xB and

• if there exists ani such thatbAi > bBi , then there exists aj such
that bAj � bAi andbBj > bAj . Equivalently, if there exists ani
such thatcAi < cBi , then there exists aj such thatcAj � cAi and
cBj < cAj .

Since a channel assignment algorithm corresponds to a unique car-
ried traffic intensity vector for fixedr, ~p, andn, we will usually speak
of the fairness of carried traffic intensity vectors rather than the fairness
of channel assignment algorithms. Note that given any one of the vec-
tors,~x, ~b = (b1; . . . ; bN), and~c = (c1; . . . ; cN), we can determine
the other two uniquely (sincer and ~p are fixed). Thus, we may also
equivalently consider the fairness of the vectors~b or ~c instead of~x.

Fig. 23 shows pairs of carried traffic intensity vectors. In each case,
one is fairer than the other.

3Scale diagram is a schematic representation of vectors. The components (call
acceptances for the cellular examples) are represented as points on a vertical
line. Corresponding components of vectors are joined.
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Theorem 1: A channel assignment algorithmA is fairer than an-
other channel assignment algorithmB if and only if there exists an
Amin 2 S � U = f1; 2; . . .Ng such thatcAA = mini2S c

A
i and

cAA > cBA , whereS = fi: cAi 6= cBi g.

Remarks: In other words, this theorem states that the necessary
and sufficient condition for fairness of a channel assignment algorithm
A over anotherB is that the least call acceptance probability (over
all cells, ignoring those with equal call acceptance probabilities under
both A and B) underA is strictly greater than the corresponding
call acceptance probability inB. This theorem will be useful in
discussing absolute fairness. Note that relative fairness is different
from lexicographic ordering.4 If a vector is fairer than another, it is
lexicographically greater as well. However, a vector may be lexico-
graphically greater than another, but neither of the two may be fairer
than the other. Thus, the necessary and sufficient condition in this
theorem is sufficient but not necessary for lexicographic comparison.

Proof of Theorem 1:The proof will be given in two steps. First,
the sufficiency will be proved and then the necessity

Let cAA > c
B
A ; where cAA = min

t2S
c
A
t ; Amin 2 S: (1)

Then for everyj 2 U , for which cAj < cBj , there existsAmin 2 U

such thatcBA < cAA and

c
A
A = min

t2S
c
A
t � c

A
j :

(SincecAj 6= cBj , j 2 S.) SinceAmin 2 S, S is nonempty and thus
~xA 6= ~xB . Thus,A is fairer thanB.

Let A be fairer thanB. Thus,~xA 6= ~xB and henceS is nonempty.
If possible, let

c
A
A � c

B
A

for all Amin satisfying (1). SinceAmin 2 S; cAA 6= cBA . Hence,

c
A
A < c

B
A (2)

fo all Amin satisfying (1).
SinceA is fairer thanB, there existsj 2 U , for which

c
A
j � c

A
A (3)

and

c
A
j >c

B
j : (4)

Forj 2 UnS, (cAj = cBj ) and, hence, inequality (4) is never satisfied
for anyj 2 U n S. For j 2 S, from inequality (3), and the definition
of Amin in (1)

c
A
j = c

A
A = min

t2S
c
A
t

i.e., j satisfies (1). Hence, from (2), (4) cannot be satisfied for any
j 2 S. Therefore, there is noj 2 U for which both inequalities (3)
and (4) are satisfied and that is a contradiction. }

We now prove another interesting result which we shall use in ob-
taining some results on absolute fairness.

Lemma 1: If the channel assignment algorithmA is fairer than the
channel assignment algorithmB, thenB cannot be fairer thanA. (In
other words, fairness is an antisymmetric relation.)

4Two vectors can be lexicographically compared as follows. If the minimum
components are unequal, then the vector with a larger minimum component
is lexicographically greater. If the minimum components are equal, then the
second minimum component must be considered, and so on.

Fig. 3. Scale diagram. This figure compares the fairness of two vectorsA and
B with two components each. NeitherA norB is fairer than the other. ForA,
components are represented in order, with component 1 the lowermost. ForB,
the order is 2,1, component 2 being the lowermost on the vertical line. Note that
the corresponding components ofB are joined with those ofA. The numbers
are the values of the corresponding call acceptances.

Proof of Lemma 1:Assume there exist channel assignment algo-
rithmsA andB, each fairer than the other. SinceA is fairer thanB, by
Theorem 1

9Amin 2S such thatcAA = min
i2S

c
A
i > c

B
A

c
B
A � min

i2S
c
B
i sinceAmin 2 S: (5)

SinceB is fairer thanA, by Theorem 1

9Bmin 2 S such thatmin
i2S

c
B
i = c

B
B > c

A
B :

Again cAB � mini2S cAi = cAA , sinceBmin 2 S and by in-
equality (5).

Combining the above inequalities we get

c
A
A > c

B
A � c

B
B > c

A
B � c

A
A :

This is a contradiction. Hence the existence of two channel assignment
algorithms mutually fairer than each other is not possible.

III. A BSOLUTE FAIRNESS

A channel assignment algorithm isabsolutely fairor max-min fairif
it is fairer than any other channel assignment algorithm which achieves
a different carried traffic intensity vector under the samer, ~p, andn.
We shall refer to the carried traffic intensity vector corresponding to
the max-min fair channel assignment algorithm as the MMF carried
traffic intensity vector, or simply the MMF. Informally, a carried traffic
intensity vector is the MMF if the blocking (probability) in any cell
under it cannot be decreased without increasing the blocking in any
cell already experiencing greater or equal blocking.

It is not obvious that every set of carried traffic intensity vectorsF

has an MMF. Consider the following examples.

Example III.1: Let F consist of only the carried traffic intensity
vectors corresponding to the vectors~cA and~cB shown in Fig. 3. Neither
A norB is fairer than the other. Hence, no MMF exists inF in either
case.

Example III.2: Let F = RN . (RN is the set ofN -dimensional
vectors with real components.) For any vector~xV 2 F , there exists
another vector,~xC 2F , each of whose components is greater than the
corresponding one in~xV . Thus,~xV is not fairer than~xC and hence is
not the MMF. The same observation applies for

F = f~x = (x1; x2; . . . ; xN ): 0 � xi < 1g:

In view of the above examples, it becomes necessary to prove the
existence of an MMF. In this section, we will first show that any set of
vectors with certain properties has an MMF. The definition of fairness
in any set ofN -dimensional vectors remains the same as that for carried
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traffic intensity vectors.cVi = xVi =pi, wherexVi , is theith component
of the vector~V . ~p = (p1; p2; . . . ; pN) is the same for the entire set.
pi > 0, for all i 2 U . The necessary and sufficient condition given in
Theorem 1 for relative fairness of channel assignment algorithms holds
for that of vectors in anyN -dimensional vector set as well. A vector
is the MMF if it is fairer than all other vectors in the set. Next, we
discuss whether the set of achievable carried traffic intensity vectors
of a cellular system has these properties. We end this section with the
result that the MMF is unique.

Theorem 2: If P is a nonempty, coordinate convex,5 convex, closed,
bounded subset ofRN , P has an MMF.

Proof of Theorem 2:For brevity, we only give a construction for
a vector that can be proved to be max-min fair using Theorem 1. For
details, refer to [11]. Unless otherwise stated,U = f1; 2; . . . ; Ng.

Construction: Start from the all-zero vectorci = 0, 8 i 2 U .
Always find the largest subsetIl � U such thatci ’s, i 2 Il, can be

increased equally without decreasing anyci. Increase theci ’s of this
subset equally without decreasing anyci, till it is no longer possible to
do so.

The procedure terminates when the largest subset which can be in-
creased equally without decreasing anyci is empty, i.e., noci can be
increased without decreasing some otherci.

Informally, the procedure goes as follows: Start from the vector
(0; 0 . . . ; 0). Suppose the largest subset which can be increased is
f1; 2; . . . ; kg, where1 � k � N . Increasec1; . . . ; ck equally till a
vector(p1�; . . . ; pk�; 0; . . . ; 0) is reached and� � 0 is such that

(p1(�+ �); . . . ; pk(�+ �); 0; . . . ; 0) 62 P

for any�>0. Again increase the largest possible subset equally without
decreasing any component. The largest possible subset will be a proper
subset off1; . . . ; kg. Let it bef1; . . . ; mg, m < k. The increase of
this subset continues till

(p1�; . . . ; pm�; pm+1�; . . . ; pk�; 0; . . . ; 0)

is reached and

(p1(� + �); . . . ; pm(� + �); pm+1�; . . . ; pk�; 0; . . . ; 0) 62 P

for any� > 0. The procedure terminates when no element can be in-
creased without decreasing some other(s).

Note that this is a generalization of the construction of max-min fair
rate allocation presented in [3]. The construction in [3] applies to poly-
tope feasible sets defined by linear constraints of the type,AX � B.
The construction we present here applies to more general feasible sets.

We discuss the validity of the assumptions that the set of carried
traffic intensity vectors is nonempty, closed, bounded, convex and co-
ordinate convex.

Nonempty: The set of carried traffic intensity vectors is clearly
nonempty.

Closed: In an asymptotic limit where the number of channels and
the offered traffic are made arbitrarily large while keeping the ratio
finite, and which we consider in the next section, for the model we
have assumed (underlying model of offered traffic independent from
cell to cell, etc.), the set of carried traffic intensity vectors is given by
the following inequalities (refer to [7]):

xi �

M

j=1

Xjaij ; i = 1; 2; . . .N (6)

5A subset ofR (R is the set of allN -dimensional vectors with real non-
negative components),F , is said to be coordinate convex if for each vector
~x = (x ; x ; . . . ; x ) in F , ~x = (x ; x ; . . . ; �x ; . . . ; x ), belongs
to F for all � satisfying0 � � < 1 and for alli 2 f1; 2; . . . ; Ng.

Xj � 0 (7)
M

j=1

Xj =1 (8)

xi � pir; i = 1; 2; . . .N (9)

xi � 0; i = 1; 2; . . .N (10)

whereaij = 0 or1 depending on the system configuration and channel
reuse constraint. Theaij can be found by modeling the system by a hy-
pergraph [7]. This set is closed. For the finite channel case, we could
not prove that the set of carried traffic intensity vectorsF is closed.
This remains an assumption. However, even if the assumption turns
out to be invalid our result is not seriously weakened. It can be shown
that the closure of any convex, coordinate convex, and bounded set is
also convex, coordinate convex, and bounded and obviously closed.
Also, clearly closure of a nonempty set is nonempty. We are going to
show that the set of carried traffic intensity vectors is convex, coordi-
nate convex, and bounded. Thus, the closure of the set of carried traffic
intensity vectors is nonempty, convex, coordinate convex, bounded, and
a closed subset ofRN and hence has an MMF~xM (by Theorem 2).
Even if ~xM does not belong toF (closedness is not necessary for the
existence of MMF,~xM may belong toF ), we have carried traffic in-
tensity vectors inF arbitrarily close to~xM . For practical purposes,
it suffices to assume that the set of carried traffic intensity vectors is
closed.

Bounded: The set of carried traffic intensity vectorsF is bounded.
This is because the carried traffic intensity can neither exceed the of-
fered traffic intensity in any cell nor can it exceed1 (since the total
number of channels available in the system isn, the traffic carried in
any cell cannot exceedn) and it is also nonnegative. Thus,0 � xi �
min(pir; 1) for eachi and hence0 � ci � min(r; 1=pi) for eachi,
where0 < pi < 1.

Theorem 3: The set of achievable carried traffic intensity vectors
for a cellular systemF is convex.

For brevity, we give an outline of the proof of this important result.
Refer to [11] for details. Our assumptions about channel assignment
algorithms, the call arrival process, and call duration distribution allow
the operation of the channel assignment algorithms to be modeled by
a CTMC. Furthermore, we assume the CTMCs to be positive recurrent
and irreducible. Let there be two carried traffic intensity vectors~xA and
~xB realized by channel assignment algorithmsA andB, respectively.
LetSA = fA1; A2; . . . ; g (resp.,SB = fB1; B2; . . . ; g) denote the
state space ofA (resp.,B). Denote one null state (state in which the
number of calls in progress in the system is0) of A by TA and one of
B by TB . A third channel assignment algorithmC, whose state space
is the union ofSA andSB , operates as follows. When inTA it switches
over toTB at rate
AB and when inTB it switches over toTA at rate

BA. Otherwise,C behaves in the same manner asA orB depending
on whether it is in a state that belongs toSA or SB , respectively (all
other transition rates remain the same). It can be shown that the CTMC
corresponding toC is positive recurrent and irreducible.~xC = �~xA+
(1��)~xB , where� = (1+
�AT =�BT )�1,
 = 
AB=
BA, andf�Ag
andf�Bg are the steady-state probability distributions of algorithmsA
andB, respectively. By adjusting
 we can get any� 2 (0; 1).

Theorem 4: The set of achievable carried traffic intensity vectors
for a cellular systemF is coordinate convex.

We need to prove that if there exists a carried traffic intensity vector
~xA 2F , then any vector of the form

~xB = (xA1 ; x
A

2 ; . . . ; �ixi; . . . ; x
A

N) 2 F
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where0 � �i < 1, for anyi 2 U . A slight variation of the technique
used to prove Theorem 3 in conjunction with Theorem 3 can be used
to prove this theorem. Refer to [11] for details.

Thus, the set of achievable carried traffic intensity vectors for a cel-
lular system is closed, bounded, convex, and coordinate convex. It is
also a subset ofRN . Hence, it has an MMF by Theorem 2.

Theorem 5: MMF is unique.
Proof of Theorem 5:Let the max-min fair carried traffic intensity

vector (MMF) not be unique. Hence, there exist at least two different
MMFs, ~xM and ~xM . Thus, the corresponding channel assignment
algorithms,M1, M2 are both fairer than each other(~xM 6= ~xM ).
This violates Lemma 1. Hence this is not possible. }

IV. PROPERTIES ANDCOMPUTATION OF MMF IN THE

ASYMPTOTIC LIMIT

In this section, we shall consider an asymptotic limit whereAi !1
andn ! 1 but

lim
A !1; n!1

Ai=n = pir

is finite. Thus, both the offered traffic and the number of channels are
made arbitrarily large while keeping the ratio—the offered traffic in-
tensity—finite. The properties of channel assignment algorithms in this
asymptotic limit were studied in [7]. The feasible set of carried traffic
vectors can be described by some linear inequalities in this case. In-
cidentally, [5] studied a different notion for fairness, proportional fair-
ness, for resource allocation in wireline case, and presented computa-
tional strategies for obtaining the same. Also, [5] showed that max-min
fairness is a limiting case of a generalization of proportional fairness,
and as such a max-min fair allocation can be approximated arbitrary
closely using the techniques for computing proportionally fair alloca-
tion. The similarity between the wireline case considered in [5] and the
asymptotic case for cellular networks considered in this section is that
the feasible sets can be described by linear inequalities in both cases
(the nature of the inequalities differ in the two cases though). The com-
putational approaches differ in the two cases. The important advan-
tage of our approach is that we exploit specific properties of max-min
fair allocation and the feasible set in the cellular mobile case to de-
velop parametrized closed-form expressions for MMFs and the corre-
sponding channel allocations. The parameters in the closed-form ex-
pressions can be obtained by solving linear programs. The approach in
[5] is to use a nonlinear optimization based iterative update technique
for obtaining the proportionally fair allocation, and the iterative proce-
dure is not guaranteed to converge in finite number of iterations. We
present our results in what follows.

Let ~xM (r)denote the MMF carried traffic intensity vector at loadr
in this asymptotic limit. In this limit, the set of achievable carried traffic
intensity vectorsF1(r) at r is described by inequalities (6)–(10) for
our model [7]. The proofs in this section use results from [7].

Theorem 6: There exist finite nonnegativef�ig such that for each
i 2 U andr � 0

cMi (r) = min(r; �i):

Proof of Theorem 6:First we shall prove thatcMi (r) is a
nondecreasing function ofr. Consider0 � r1 < r2. We show that
cMi (r1) � cMi (r2) for all i 2 U . Carry out the construction given
in proof of Theorem 2 for both, in the asymptotic limit. The outputs
will be the respective unique MMF’s,~xM (r1) and ~xM (r2). Let
the construction procedures for both remain identical upto a certain
point, when the carried traffic intensity vector reached is~xV (since
construction for both start from the same vector, i.e., the null vector, the

construction remains identical for some time.~xV may be the all-zero
vector) and then let the constructions differ (if the constructions never
differ ~xM (r1) = ~xM (r2), c

M
i (r1) = cMi (r2) for all i 2 U

and there is nothing to prove). Let the largest subset of components
of ~xV whosecis can be increased equally without decreasing others
beI1 andI2 at r1 andr2, respectively. Since the constructions differ,
henceforthI1 6= I2. Let, if possible,I1 be nonempty. At anyr, if I is
the largest subset of components of any vector~xV 2 F1(r), whose
ci ’s can be increased equally without decreasing any other component,
then nocVj of ~xV with j in U n I can be increased without decreasing
any other component, else from convexity and coordinate convexity
of F1(r), all ci ’s of I [ fjg � I can be increased equally without
decreasing any other component. Thus, no component of~xV in U n I1
(U n I2) can be increased atr1 (r2). ObserveF1(r1) � F1(r2)
for r1 < r2. Thus, theci ’s of ~xV in I1 can also be increased equally
without decreasing others atr2. Hence,I1 � I2. Sinceci ’s of ~xV

in I2 n I1 can be increased atr2, but not atr1, without decreasing
others, from inequalities (6)–(10),cVi = r1, for i 2 I2 n I1, but from
construction principle atr2, cVi = cVj for all i; j 2 I2 (till this point
ci ’s of sets�I2 have been increased equally and that is how~xV has
been reached). Thus,cVi = r1 for all i 2 I2 � I1 and no component
of ~xV in I1 can be increased atr1 (inequality (9)). Thus,I1 = �, i.e.,
construction atr1 has terminated and~xV = ~xM (r1). Since~xV is
an intermediate vector in the construction procedure for MMF atr2,
from construction principle

cMi (r2) � cVi = cMi (r1)

for all i 2 U and this part of the theorem is proved.
cMi (r) = 0 for eachi 2 U at r = 0. Thus, for eachi 2 U , there

exists some�i � 0 (possibly0) such that for allr � �i, c
M
i (r) = r.

Clearly, for eachi 2 U , there exists some finiter � 0, such that
cMi (r) < r (e.g., forr > M ). Let

�i = inf
r: c (r)<r

r <1:

cMi (r) = r for r < �i. SincecMi (r) is a nondecreasing function
of r, andcMi (�i) � �i (inequality (9))

cMi (�i) 2 [�i � �; �i]; for all � > 0:

Hence,cMi (�i) = �i. Consider anyr1 > �i, for whichcMi (r1) <
r1 (clearly, there exists at least one such finiter1 since�i is finite). Con-
sider anyr2 > r1. Let ~xV be a vector withcVj = min(r1; c

M
j (r2)),

for eachj 2 U . Clearly, ~xV 2 F1(r1). SincecMj (r) is a nonde-
creasing function ofr, andcMj (r) � r (from inequality (9))

cMj (r1) � min(r1; c
M
j (r2)) = cVj ; for eachj 2 U:

Since~xV is not fairer than~xM (r1)

cMj (r1) = min(r1; c
M
j (r2))

for eachj 2 U andcMi (r1) < r1. Thus,cMi (r1) = cMi (r2) and
from the definition of�i

cMi (r1) = cMi (r2); for all r1; r2 > �i:

Again, from the nondecreasing property ofcMi (r), and since it is
upper-bounded byr

cMi (r) 2 [�i; �i + �]

for each� > 0 and for anyr > �i. Thus,cMi (r) = �i, for all
r > �i. }

The construction procedure given in proof for Theorem 2 can be
implemented using the inequalities (6)–(10) to yield~xM (r), at any
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r � 0, as follows. Start from the null vector. Find the largest� (pos-
sibly 0), such that(p1�; p2�; . . . ; pN�) 2 F1(r)

� = max

s: s�
M

j=1

Xjaij pi; i=1; 2; . . . ; N ;

M

j=1

Xj=1; Xj�0; j=1; 2; . . . ; M ; s�r

:

Next find I = fi: ~xV 2 F1(r)g, where~xV is any carried traffic
intensity vector of the form

cVj
> �; j = i

� �; otherwise

(inequalities (6)–(10) may be used to test whether~xV 2 F1(r)). I is
thus the largest subset whose call acceptances can be increased equally
without decreasing any other component of(p1�; p2�; . . . ; pN�).
Without loss of generality, letI = f1; 2; . . . ; kg, k < N . All
call acceptances ofI cannot be increased equally without de-
creasing any other component when a carried traffic intensity vector
(p1�; p2�; . . . ; pk�; pk+1�; . . . ; pN+1�) is obtained such that

(p1(�+�); p2(�+�); . . . ; pk(�+�); pk+1�; . . . ; pN+1�) 62 F1(r)

for any � > 0

�=max

s: s�
M

j=1

Xjaij pi; i2I;
M

j=1

Xjaij�pi�; i2U nI;
M

j=1

Xj=1; Xj�0; j=1; 2; . . . ; M ; s�r

:

Again, I1 = fi: ~xV 2 F1(r)g is the largest subset of components
whose call acceptances can be increased without decreasing any other
component of (p1�; p2�; . . . ; pk�; pk+1�; . . . ; pN+1�), where
~xV is any carried traffic intensity vector of the of the form:

cVj

> �; j = i

� �; j 2 I n fig
� �; otherwise .

The procedure terminates when no call acceptance can be increased
without decreasing others. The output will be~xM (r).

If ~xM (r) is found at some sufficiently larger, sayr0 for which
cMi (r0) < r0, for all i 2 U , thencMi (r0) = �i, for all i 2 U , from
Theorem 6. Thus, the�i ’s can be determined from~xM (r0). Using
these�i ’s, ~xM (r) can be determined for allr � 0 from Theorem 6.
Thus,~xM (r) need not be found separately at all values ofr. (Using
inequalities (6), (8), and (9), for anyr > 1=mini2U pi, cVi < r, for
all i 2 U , and any~xV 2 F1(r). Hence,cMi (r) < r for eachi 2 U ,
if r > 1=mini2U pi.]

Theorem 7: The carried traffic intensity vector corresponding to the
fixed channel assignment algorithm which allocatesbnpi�ic channels
to celli, for all i 2 U , is the MMF for allr � 0 in the asymptotic limit.

Remark: This fixed channel allocation scheme is similar to the one
used to attain the highest carried traffic intensity in [7].

First, we show that it is possible to allocatebnpi�ic channels to
each celli at all r. For somerl � maxi2U �i, c

M
i (rl) = �i, by

Theorem 6 (rl is finite). Thus,xi = pi�i satisfies inequality (6) at all
r wherefXjg of inequality (6) satisfies inequalities (7) and (8) at all
r. From [7] bn M

j=1
Xjaijc channels can be allocated to each celli

wherefXjg satisfies inequalities (7) and (8). Thus, from inequality (6)
bnpi�ic channels can be allocated to each celli at all r.

Again from [7], in the asymptotic limit any allocation which
gives bnfic channels to a celli attains a carried traffic intensity

Fig. 4. Nineteen-cell system.

of min(fi; ri) in cell i, if offered traffic intensity in celli is ri
for the model we have assumed. Thus, the algorithm allocating
bnpi�ic channels to each celli attains a carried traffic intensity of
pimin(�i; r) in each calli in the asymptotic limit, for allr, i.e.,
ci(r) = min(�i; r) = cMi (r) at allr (Theorem 6). }

Example IV.1: Consider the system of 19 cells (see Fig. 4) with the
following reuse constraint. A set of cells can use the same channel si-
multaneously if the interference in each cell of the set is� 3=8. The
interference in any cellu is given by

v2S; v 6=u
d(u; v)�4, whereS

is the set of cells using the same channel simultaneously andd(u; v)
is the distance between the centers of cellsu andv. We assume the cell
radius to be1=

p
3 or equivalently, the distance between the centers of

adjacent cells to be unity. (This system and reuse constraints are the
same as those in [7, Example 1.2].)

1) We shall consider uniform traffic, i.e.,pi = 1=19 for each cell
i 2 U . The carried traffic intensity in the system under an MMF
is given by

TM (r) =

N

i=1

xMi (r) = min(r; 247=49)

(see Fig. 6 (a)).xMi (r) = min(r=19; 13=49), 8 i 2 U .
Thus,cMi (r) = xMi (r)=pi = min(r; 247=49), 8 i 2 U .
In Fig. 5(a), these call acceptances have been plotted. A fixed
channel allocation algorithm allocatingb13n=47c channels to
each cell achieves the MMF carried traffic intensity vector at all
r in the asymptotic limit.

2) Let us consider nonuniform traffic

pi =

1=24; i 2 f1; 2; 3; 4; 7; 8; 12
13; 16; 17; 18; 19g

1=16; i 2 f5; 6; 9; 11; 14; 15g and
1=8; i = 10.

This pattern of nonuniform traffic resembles that in cities in
which traffic is maximum in the central portion and decreases as
we move toward the outskirts. The max-min fair carried traffic
intensity in the systemTM (r) = min(r; 2 + r

2
; 13

3
) (refer to

Fig. 6 (b)].
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xM
i

(r) = pimin(r; �i), 8 i 2 U .

�i =

14=3; i 2 f1; 2; 3; 4; 7; 8; 12;

13; 16; 17; 18; 19g

4; otherwise.

In Fig. 5(b), call acceptances have been plotted for these cells.
The following fixed channel allocation algorithm gives the MMF
at all r in the asymptotic limit (ni is the number of channels
allocated to theith cell):

ni =

b7n=36c; i 2 f1; 2; 3; 4; 7; 8; 12;

13; 16; 17; 18; 19g

bn=4c; i 2 f5; 6; 9; 11; 14; 15g and
bn=2c; i = 10.

V. TRADEOFFBETWEENFAIRNESS ANDREVENUE MAXIMIZATION

More often than not, MMF is not the carried traffic intensity vector
which yields the maximum revenue. At present, we consider the
rate-per-call-per-unit time to be uniform throughout the system and
hence the total carried traffic intensity in the system gives the rate at
which revenue is earned, except for a multiplicative constant which we
take as unity. We define themarginal revenue(see [8]) of a channel
assignment algorithmA (or the corresponding carried traffic intensity
vector~xA(r)) at loadr and number of channelsn, as

TA(r; n) =

N

i=1

xAi (r):

So the marginal revenue of a channel assignment algorithm is the
rate at which revenue is earned per channel using that algorithm. Let
TM (r; n) be the marginal revenue of the MMF. Let

TR(r; n) =

N

i=1

xRi (r)

be the maximum marginal revenue [8] and~R(r) the channel assign-
ment algorithm (~xR(r) the corresponding carried traffic intensity
vector at loadr) yielding this marginal revenue at loadr. LetTM (r)
and TR (r) be the corresponding asymptotic marginal revenues.
Consider the following examples.

Example V.1:

1) Consider the system of Example IV.1 1).TM (r) andTR (r)6

have been plotted versusr in Fig. 6(a). Forr > 247=49,
TM (r) < TR (r).

2) Consider the system of Example IV.1 2). Forr > 4:0,
TM (r) < TR (r) (refer to Fig. 6(b)).

Clearly,TM (r; n) � TR(r; n) for all systems. Generally this in-
equality is strict. Whenever this inequality is strict, the channel as-
signment algorithm attainingTR(r; n) is unfair compared to that at-
taining TM (r; n). In other words, revenue is maximized at the ex-
pense of fairness. If the operator maximizes revenue at the cost of fair-
ness, it may cause customer dissatisfaction (customers will be dissatis-
fied throughout the system as they will experience poor-quality service
when they move to certain cells) and possibly customer desertion to a
competitor operator, which will result in reducedr and hence reduced
revenue. Instead, if the network operator had opted for a carried traffic

6Computation ofT (r) has been discussed in [7].

(a)

(b)

Fig. 5. Maxmin fair call acceptances (c ) in a 19-cell system.S =
f5; 6; 9; 10; 11; 14; 15g (central cell and its neighbors). (a) Uniform traffic.
(b) Nonuniform traffic.

(a)

(b)

Fig. 6. Loss in revenue brought about by max-min fairness for a 19-cell
system. (a) Uniform traffic. (b) Nonuniform traffic.

intensity vector which fetches less revenue but is fairer, customer de-
sertion may have been less and it is possible that the ultimate revenue
earned would be greater. While we are still in the process of modeling
the effects of customer desertion on fairness and revenue, it seems plau-
sible that the ideal channel assignment algorithm in many situations
would earn less marginal revenue thanTR(r; n) (which we get by not
caring about fairness) and more thanTM (r; n) (which we get by being
max-min fair). It would also, in some sense (not necessarily that of Sec-
tion II), be “fairer” than ~R(r) but not “as fair” as the MMF channel
assignment algorithm~M(r) at loadr. A possible approach is to fix the
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revenue at some value betweenTM (r; n) andTR(r; n), saym, and
choose the channel assignment algorithm corresponding to the MMF
among those carried traffic intensity vectors thatearn a marginal rev-
enue of at leastm. We denote this carried traffic intensity vector by
~xM (m; r; n) (~xM (m; r) in the asymptotic limit). Consider the fol-
lowing example.

Example V.2:

1) Consider the system of 19 cells with uniform traffic (refer to
Example IV.1 1)). Atr = 38=7, TR (r) = 37=7 = 5:2856
andTM (r) = 247=49 = 5:0408. A carried traffic intensity
vector ~xR (r) which maximizes the marginal revenue in the
asymptotic limit (computed as per [7]) has a blocking probability
of 50% in the central cell (cell 10) and 0% in all other cells.
On the other hand,~xM (m; r) at m = 5:2 gives following
blocking probabilities:

bi =

11:175%; i 2 f5; 6; 9; 10; 11; 14; 15g

0:287%; i 2 f2; 4; 7; 13; 16; 18g

0%; otherwise.

Clearly, ~xM (m; r) is much fairer than~xR (r), while it
fetches only slightly less revenue (5:2 as compared to5:286) at
r = 38=7. This suggests that a network operator may be better
off in the long run sacrificing the additional revenue achieved
by ~xR (r) and using~xM (5:2; r) instead, atr = 38=7.

2) Consider the system of 19 cells with nonuniform traffic (refer to
Example IV.1 2)). Atr = 4:5,TR (r) = 4:348 andTM (r) =
4:25. A carried traffic intensity vector~xR (r)which maximizes
the marginal revenue in the asymptotic limit (computed as per
[7]) has a blocking probability of 26.98% in the central cell (cell
10) and 0% in all other cells. On the other hand,~xM (m; r) at
m = 4:3 gives following blocking probabilities:

bi =

15:553%; i = 10

6:668%; i 2 f5; 6; 9; 11; 14; 15g

0%; otherwise.

Clearly, ~xM (4:3; r) is much fairer than~xR (r), while it
fetches only slightly less revenue (4:3 as compared to4:348)
at r = 4:5. Again this suggests that a network operator may
be better off in the long run sacrificing the additional revenue
achieved by ~xR (r) and using ~xM (4:3; r) instead, at
r = 4:5. MMF gives a blocking probability of 11.11% in cells
5, 6, 9, 10, 11, 14, 15, and 0% blocking in other cells.

The value ofm could possibly be the result of modeling customer
desertion in an appropriate manner. Further investigation in this direc-
tion is an interesting topic for future research.

We have so far assumed that the set of carried traffic intensity vectors
F (m; r; ~p; n) which fetch a marginal revenue of at leastm at r has
an MMF. This can be proved using the following theorem.

Theorem 8: If D is any nonempty, convex, closed, bounded subset
of RN+ , D has an MMF.

Note that the assumption of coordinate convexity is not required.
Consider a set

Ds =
~A2D

S( ~A)

where

S( ~A) = f~V : (0; 0 . . . ; 0) � ~V � ~Ag

where we say~V1 � ~V2 if xV
i

� xV
i

, for eachi 2 U . We callDs

the coordinate convex extension ofD. Thus, for every vector~V 2 Ds,
there exists some vector~A 2 D such that0 � cVi � cAi for all i 2 U .
Clearly,Ds � D, henceDs is coordinate convex.
Ds is closed, bounded, convex, nonempty ifD has these proper-

ties. (It can be shown that coordinate convex extension of a closed,
bounded, convex, nonempty set inRN+ is also closed, bounded, convex,
and nonempty.) Thus, by Theorem 2Ds has an MMF. Let it be~M .
Clearly, ~M is fairer than all vectors inD � Ds. Hence, ~M is the
MMF in D if it belongs toD. If ~M 62 D, ~M 2 Ds nD. Thus, there
exists ~V 2 D such that

cMi
< cVi ; for somei = j

� cVi ; i 6= j:

~M is not fairer than~V 2 D � Ds. This contradicts the fact that~M is
the MMF inDs.

F (m; r; ~p; n) = F \ R(m), whereF is the set of carried traffic
intensity vectors atr; n (and traffic pattern~p) and

R(m) � RN = ~V :

N

i=1

xVi � m wherexVi is the

ith component of~V

Clearly,R(m) is closed and convex.F is also closed and convex.
Thus, the intersection of these two is also closed and convex. Since
F is bounded,F (m; r; ~p; n) � F is also bounded.m � TR(r; n)
meansxR(r) which fetches revenue equal toTR(r; n) � m is in set
R(m) and it is also there inF . Thus, the intersection is nonempty.
F (m; r; ~p; n) � F � RN+ . F (m; r; ~p; n) is a nonempty closed,
bounded, convex subset ofRN+ . Hence,F (m; r; ~p; n) has an MMF
by Theorem 8.

VI. CONCLUSION AND FUTURE WORK

We have developed the notions of relative and absolute fairness. We
have obtained a simple necessary and sufficient condition for relative
fairness which is useful in determining if a vector is fairer than another.
We have shown that any subset ofRN satisfying certain properties has
an MMF and the set of carried traffic intensity vectors satisfies those
properties. We have shown that the MMF is unique. We have been able
to specify a fixed channel assignment algorithm which yields the MMF
at all loads, in the asymptotic limit. Future research may be directed
toward determining optimal channel assignment algorithms that would
maximize revenue taking into account the effects of customer deser-
tion.

We would like to point out that many of our results are very gen-
eral in nature and apply to a large class of other networks as well. The
problem of max-min fair bandwidth allocation is very relevant in con-
text of other networks as well, e.g., automated teller machine (ATM)
networks. The set of feasible allocations often satisfies the conditions
of Theorem 8. Thus, we know from Theorem 8 that the max-min fair
allocation exists uniquely (uniqueness follows from Theorem 5) and
the construction of Theorem 2 actually yields this allocation if the set
of feasible allocations is known. Our results may find application in
the problem of max-min fair allocation of available bandwidth to com-
peting available bit rate (ABR) traffic in ATM networks with minimum
cell rate requirements (MCR) [1].
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