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Electromagnetic Waves in Faraday Chiral Media

Abstract

Plane wave propagation in two kinds of Faraday chiral media, where Faraday rotation is combined with optical
activity, is studied to examine methods of controlling chirality. The two types of media studied are
magnetically biased chiroplasmas and chiroferrites. For propagation along the biasing magnetic field, four
wavenumbers and two wave impedances are found which are dependent on the strength of the biasing field.
Dispersion diagrams for the chiroplasma case are plotted. Propagation at the plasma frequency of the
chiroplasma is also investigated.
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Electromagnetic Waves in Faraday Chiral
Media

Nader Engheta, Senior Member, IEEE, Dwight L. Jaggard, Fellow, IEEE, and
Marek W. Kowarz

Abstract—Plane wave propagation in two kinds of Faraday
chiral media, where Faraday rotation is combined with optical
activity, is studied to examine methods of controlling chirality.
The two types of media studied are magnetically biased chiro-
plasmas and chiroferrites. For propagation along the biasing
magnetic field, four wavenumbers and two wave impedances are
found which are dependent on the strength of the biasing field.
Dispersion diagrams for the chiroplasma case are plotted. Prop-
agation at the plasma frequency of the chiroplasma is also
investigated.

I. INTRODUCTION

ANY of the previous reports on chiral media, which
are also known as optically active media in the optical
regime, have been devoted to the properties of isotropic
media. However, once such an isotropic chiral material is
created, there is very little control over the degree of chiral-
ity. Therefore, it has now become important to develop
methods of achieving chirality control. One such method may
be realized by introducing certain forms of anisotropy. With
this goal in mind, this paper investigates the concept of
chirality control in a Faraday chiral medium combining Fara-
day rotation with optical activity.! Two candidate models of
this medium immediately come to mind: 1) a chiroplasma
consisting of chiral objects embedded in a magnetically bi-
ased plasma, and 2) a chiroferrite made from chiral objects
immersed in a magnetically biased ferrite. The main empha-
sis of this paper will be directed towards understanding the
properties of the chiroplasma. However, several key analo-
gous results for the chiroferrite will be presented in order to
show the extensive similarities that exist between the two
cases.
The behavior of electromagnetic waves in a simple isotropic
chiral medium has been a topic of interest since the beginning
of the nineteenth century. The early researchers, Arago [1],
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! Chiral media exhibit optical activity, which refers to the rotation of the
plane of polarization of light, while Faraday media exhibit Faraday rotation.
The first is reciprocal whereas the second is not.

Biot [2], Pasteur [3] and Fresnel [4], focused their attention
on the optical activity displayed by solid and liquid chiral
media. They discovered that these media are capable of
rotating the polarization ellipses of light because of the
media’s polarization birefringence. Their work also estab-
lished that the handedness of the uniformly distributed and
randomly oriented chiral objects, which compose the chiral
medium, is responsible for the observed optical activity.

It was not until one century after the initial research on ’
chiral media that research into wave propagation in a magne-
tostatically biased plasma began. Appleton [5] and Hartree
[6], pioneers in the area, investigated the propagation of
electromagnetic waves at arbitrary directions with respect to
the static magnetic field. Their work revealed that, similar to
chiral media, magnetostatically biased plasmas also exhibit
polarization rotation. However, unlike chiral media, the
biased plasmas are anisotropic and nonreciprocal.

Work in general bianisotropic media has been done by Post
[7], Kong [8], and Chawla and Unz [9] among others. In
contradistinction to these general considerations, here we
examine the physical and mathematical properties of two
cases of special interest and applications.

In subsequent sections, we investigate the marriage of
chiral and Faraday rotation with the goal of controlling the
effect of chirality. We outline the properties of waves in
Faraday chiral media and examine their properties through
their dispersion relations.

II. PROBLEM STATEMENT

An electromagnetic description of Faraday chiral media
may be obtained by making a tensor generalization of the
scalar constitutive relations for an ordinary isotropic chiral
medium. The latter are D = ¢ E + i§{ B and H = i§{ E +
B/u,, where £_ is the chirality admittance,” ¢, is the permit-
tivity, and g, is the permeability. For a chiroplasma, from a
phenomenological point of view, we select

D=¢-E+itB 1)

H= lEcE+B/u' (2)

as the appropriate form of the constitutive relations, where

é -—ig 0
e=|& ¢ 0 (3)
0 0 €

z

% When the handedness of the medium changes, £, changes sign.

0018-926X/92803.00 © 1992 IEEE
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TABLE 1
CoMPARISON OF SEVERAL KEY RESULTS FOR THE CHIROFERRITE CASE WITH THOSE FOR THE CHIROPLASMA
Chiroplasma Chiroferrite
Constitutive D=¢ E+itB D =¢E + i( B
Relations H=itE+B/yu H=itE+p ' B
¢ -ig 0 io—ik 0
Anisotropy Tensor e= 114 é 0 =ik Q 0
Tlo 0 g = 10 0 g
Helmholtz Equation VXVXE-20u,VXE— wpeE=ioud UXxVx(p ' B)—20f,VXB-w'eB=Vx]
Wavenumbers* -
(Parallel) kp.= topf, + \/w2u2£3+w2p.(€i§) kpo= (i £ ), + \/w2(ﬁif)223+w2(ﬁi!?)é
(Antiparallel) koo= Fopb + V£l + Ou(éF §) ko .= Foli ¥ O, — \/wz(ﬂ¥f)2£§+wz(ﬁ.=}=f)e
Impedances™
1 1
(Positive Helicity) N = m
2, (€+8) 2y €
£ p (A + %)
1 1
(Negative Helicity) = 1 =
£2 4 (€-8) £24
¢ 3 (&-4%)
*These are for propagation along the biasing magnetic field.
is the modified dielectric tensor of a magnetically biased relations:
plasma, which takes into account contributions due to chiral- D =¢E + i¢ B (7
ity. The biasing magnetostatic field B, is chosen to be along H=i¢E+u ' B (8)
the positive z-axis. Here p is the scalar permeability which where =
includes effects of chirality. The quantities €, €, and § are io—ik 0
modified forms of those of a collisionless biased plasma and —lic " 0 )
are given by [10] £ s N
0 0 P,

Here €, is the high frequency permittivity of the medium
when the chirality admittance £, goes to zero, taking into
account all contributions to the permittivity due to chirality.
Furthermore w is the wave frequency, w, is the plasma
frequency, and w, (~ B,) is the electron gyrofrequency.

We note that it is possible to have a medium where
permittivity is anisotropic and chirality and permeability are
isotropic. Likewise, it is possible to have a medium with an
anisotropic permeability and isotropic chirality and permittiv-
ity. We turn now to the second material which we call
chiroferrite.

A chiroferrite is described by a set of tensor constitutive

k? — wué — k2
W= | —k,k,—2iopt k, — iw’ug

—kk, + 2iopt k,

—kk,+2iopt k, + iw*ug
k% — w?ué — ki

—k,k, - 2iopt k,

is the permeability tensor. Relationships exist for 4, 4,, and
& which are similar to those for €, €, and §. However,
these are not of interest here, since in the remainder of the
paper, we will discuss almost exclusively the chiroplasma
case. Nevertheless, several key results comparing the two
cases can be found in Table I. These results will be derived
in subsequent parts of this paper.

From the chiroplasma constitutive relations, (1) and (2),
and the time-harmonic Maxwell equations with e’ excita-
tion, the Helmholtz equation with current excitation J is
found to be [11]

VXVXE-2wpt, VXE - e E=iopd. (10)
It should be noted that if the anisotropy were extended to u
or £., the Helmholtz equation would no longer be of the
same form as (10). This is evident for the chiroferrite case,
where one must solve for B instead of E in order to obtain a
useful relation (see Table I).

Plane wave propagation in the chiroplasma can be exam-
ined by setting J equal to zero and assuming waves of the
form Eye’® "=, where k is the wave vector. Under these
conditions, the electric field must satisfy

W-E=0 (11)
with
—k ok, - 2iopt k,
—k k. + 2iop§ k,

k? — w*ué, — k2

(12)
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Here, k,, k,, and k, represent the three Cartesian compo-
nents of the wave vector k. Equation (11) only has nontrivial
solutions if the determinant of the wave matrix W is equal to
zero. In general, the polynomial expression obtained for £ is
cumbersome to solve. However, certain special cases, which
provide much insight into the physical properties of the
medium, can be solved. The two cases which will be exam-
ined here are: 1) propagation along the biasing magnetic field
and 2) propagation at the plasma frequency.

II1. PROPAGATION ALONG THE BIASING MAGNETIC FIELD
OF A CHIROPLASMA

If waves are confined to propagate along the z-axis, it is
possible to solve det W = 0 in a straightforward manner in
order to find the wavenumbers supported by the medium.
Thus, the following wavenumbers are found when &k, and k,
are set equal to zero:

k,,= topf. + V WHPEE + (€ £ 8)

= topf, + {07 WPEZ + w2u€m<1 -

ko= Fopt, — Vo @PE + *u(€ &)
w2
= Fopk, — || GPEL+ @pb|1 - ——2—~
w(w F wg)

(14)

The subscripts p and a refer to the parallel and antiparallel
directions of energy propagation, that is the direction of the
real part of the Poynting’s vector, with respect to the static
magnetic field, while the plus and minus subscripts denote
right-circular polarized (RCP) and left-circular polarized
(LCP) forward propagating waves,> respectively. Fig. 1 de-
picts these behaviors of the wavenumbers as a function of g.
To understand these results, note that when the biasing
magnetostatic field is not present the wavenumbers become
equivalent to those of a simple chiral medium [11}:

kpi(8=0) = —ko (£=0) =k,
= wp, + VOPEZ + k2 (15)
k, (8=0)= -k, (§=0) =k

= —opf, + VOPEL + k2 (16)

where k, = w\/ué is the wavenumber in the absence of
biasing.

The helicity and polarization state corresponding to each of
the wavenumbers can be found by substituting (13) and (14)
into (11). The results obtained by this substitution are sum-
marized in Table II. Note that positive (negative) helicity is
defined as right (left) handed with respect to the positive
z-axis and left (right) handed with respect to the negative

3 This notation is not valid for backward wave propagation, since the
handedness of the wave changes when k,_ or k,_ change sign.
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Ko

k.

a+

Fig. 1. A graph of the £ dependence of the four wavenumbers present
along the magnetostatic field of a Faraday chiral medium. Note that the
transition from k,, to k,_(k,_ to k,,) occurs at the minimum (maxi-
mum) of the appropriate parabola.

TABLE 1T
Tue HELICITIES, POLARIZATION STATES, AND SIGNS OF THE FOUR
WAVENUMBERS IN THREE REGIONS OF INTEREST ARE SHOWN; THE
CHARACTERS IN ITALICS REPRESENT REGIMES OF BACKWARD WAVE
PROPAGATION

E< -¢ —é<g<é £§>¢é
HEL SIGN POL HEL SIGN POL HEL SIGN POL
k,, POS + RCP POS + RCP POS + RCP
k,. NEG + LCP NEG + LCP NEG - RCP
k,, NEG - RCP NEG - RCP NEG - RCP
k POS + RCP POS - LCP POS - LCP

z-axis. Therefore, k,, and k,_ are of positive helicity
while k,_ and k,, are of negative helicity. It should be
noted that for this special case of propagation along By, the
propagating field vectors E, D, B and H are all perpendicular
to k. Also, E is parallel to D and B is parallel to H. This is
not true for propagation in an arbitrary direction, as will be
evident in the next section.

The dispersive properties of the medium are illustrated in
Figs. 2 and 3. All variables are made dimensionless through
the following substitutions: @ = w/w,, @, = w,/w,, K=
kos/w,\/méu(a =a, p and B =+, —) and ¥ =
ut?/é,. Furthermore, phase velocities are shown in terms of
Q/K, but group velocities, as defined by 9Q/0K, are
omitted because they lack physical significance.* We intro-
duce the four quantities w,;, w,;, W, and w,,.

2
g wg\? @p
We = '—7+ (7) +—_—u£3 ) (17)
— + 1
em
1) w,\2
O = -7"+ (—25) +w? (18)

* The physical meaning usually associated with group velocity is less
applicable to this medium since the energy and group velocities can be in
opposite directions. Similar phenomena can occur in achiral biased plasmas
[10].
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2.0

Q
1.0
¥ =-0.75 Re(K}
Im{K)
0.0 T ¥ v
6.0 3.0 0.0 3.0 6.0
K
30
20
Q
1.0
¥ =0.00 s Rc(K}
— Im(K}
0.0 T ' T
-6.0 3.0 0.0 3.0 6.0
K
30
20
Q
1.0
— )
Im(K}
0.0 v . r
-6.0 3.0 0.0 3.0 6.0
K
(a)

30
2.0
Q
1.0-——_/
—_—
Im{K}
00 T T
6.0 -3.0 0.0 3.0 6.0
K
3.0
20
Q
1.01
— ()
- — (K}
00 T T
-6.0 -3.0 0.0 3.0 6.0
K
30

2.01

] ¥

00 T T
-6.0 -3.0 0.0 3.0 6.0

s Rc(K}
Im{K}

K
(b)

Fig. 2. Brillouin diagrams of waves of (a) positive and (b) negative helicities for several values of £_. The right-hand branch of
each graph corresponds to parallel waves while the left hand branch corresponds to antiparallel waves. At points where the two

branches join, the same wavenumbers occur for both types of waves.

13 w, \? W’
W = — + (—g) + —=— (19
2 2 pée
— + 1
Ecxz
w w, \?
ap= 2+ (Tg) 2 (20)

where the subscripts » and ¢ refer to null and complex. For
positive values of chiral admittance,’ different kinds of wave
behavior are seen in the following frequency ranges.

*If the chiral admittance is made negative instead of positive, the com-
ments made about parallel and antiparallel waves should be interchanged.

1

2)

For k,, and k,_:

When 0 < w < w,,, the waves of positive helicity asso-
ciated with k,, and k,_ decay as they propagate
since both wavenumbers are complex. However, the
phases of each advance in the same direction and with
equal velocities.

When w, = w <wy, k,, and k,_ are purely real
and positive, thus signifying that here the phases also
advance in the same direction. Furthermore, as will be
shown later, the antiparallel LCP wave with wavenum-
ber k,_ is a backward wave because the energy veloc-
ity is opposite in direction to the phase velocity.
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6.0

3.0

0.0

Phase Velocity

-3.07

-6.0 T
0.0 1.0 2.0 30

6.0

3.0

Phase Velocity

®)

Phase velocities as a function of frequency for waves of (a) positive
and (b) negative helicities.

Fig. 3.

3) When o = w,,, the usual plane wave propagation
occurs.

For k,_ and k,:

4) When 0 < @ < w,, the usual plane wave propagation
oceurs.

5) When w = w,, waves of negative helicity are resonant
with the gyrofrequency of the electrons.

6) When w, < @ < w,,, the waves of negative helicity
behave much like the waves of positive helicity in 1).

7) When w, < w < w,,, the parallel LCP wave with
wavenumber k,_ is a backward wave similar to that
of 2).

8) When « = w,,, the usual plane wave propagation
occurs.

In general, waves of negative helicity display more interest-
ing behavior than those of positive helicity because the
current associated with the static magnetic field is determined
by the right-hand rule. Therefore, the electrons in the plasma
gyrate in a counterclockwise direction with respect to the
positive z-axis and can interact resonantly with the waves of
negative helicity. The roles of the two helicities can be
reversed by placing B in the negative z direction.

Since each of the four propagating modes has a distinct
wavenumber, the polarization ellipses experience unequal

371
rotations per unit length in the parallel and antiparallel direc-

tions, as given by®
5]
2

(ka+— ka—
=5

These rotations are counterclockwise when viewed in the
direction of wave propagation. The frequency dependence of
both ¢,/z and ¢,/z is plotted in Fig. 4. In general, it is
possible for either ¢,/z or ¢,/z to equal identically zero.
When this occurs, the nonzero rotation becomes equal to
twice that of the simple chiral case [11]:

¢,/z(when ¢,/z = 0) = 2wpé,
6,/z(when ¢,/z = 0) = —2wp,.

Hence, the effective chiral length of the medium can be
increased by reflection. This is not possible in the case of an
ordinary chiral medium since the rotation is undone after
reflection.

As mentioned earlier, at certain frequencies, the parallel
and antiparallel LCP waves can be backward propagating
with opposite directions of phase and energy velocities. The
energy velocities’ directions are the same as those of the
Poynting’s vectors which are found directly from the Maxwell
equations and the constitutive relations:

S, = 2|Eo|?/2m,
S,-=2|E,|*/21,
Sa+= ‘2|E0|2/2712 (27)
S,-= —2|Ee|*/2m, (28)

where the carat denotes the unit vector and the wave
impedances of the positive and negative helicities, ; and 1,,
respectively, are found to be

1 1

m= — =
\/sf+(e+g) Y R .
Jz » o(ow+w,)

¢,/2 (21)

6,/2 = (22)

(23)
(24)

(25)
(26)

(29)
1 1
M= = .
2 (€-8) s fe W’
Jes Jer 22
(30)

Therefore, we see that the directions of the Poynting’s vec-
tors are frequency independent whereas the phase velocities
can change sign (see Fig. 3) as a function of frequency so as
to be opposite to the direction of power flow. This type of
backward wave propagation is also observed in backward
wave oscillators (BWO) [12], [13].

® These same relationships hold for the polarization rotation in a chirofer-
rite.
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4.0

Rate of Rotation of Polarization Eilipse

e Paraliel

Antiparallel

4.0 T T
0.0 1.0 2.0 3.0

Q

Fig. 4. The normalized rotation per unit length of the polarization ellipses
in the parallel and antiparallel directions. The normalization is provided by

dividing ¢,/z and ¢, /2 by w,/pés, -

IV. WAVE PROPAGATION AT THE PLASMA FREQUENCY
OF A CHIROPLASMA

When the wave frequency is equal to the plasma fre-
quency, the dispersion relation obtained from (11) has two
solutions off the z-axis:

k =0 (31)

1(w=wp)

= \/4(»;#253 + wf,u——g———

\/40)2#223 + wip@m .

These wavenumbers are valid for all directions of propaga-
tion except for propagation along the z-axis. In this case, a
limiting approach must be used so as to avoid automatically
setting the determinant of the wave matrix equal to zero.
Following such an approach, we again find wavenumbers
kper ks Koy and k,_ with 0 = w,,.

At this point, it is worthwhile to examine the wave matrix
evaluated at ky(,_,, , and ko=, For simplicity, the y-z
plane is defined to be the plane containing the static magnetic
field and the wave vector k, thus making &, equal to zero.
Furthermore, the angle 6 is defined as the clockwise angle
between the z-axis and k, as shown in Fig. 5. Substituting
kuw:wp) into (11) we obtain

k2(«.u=mp)

(32)

—wiu@ iwf,ugA 0| E,
—iwi/zg' —wiué o||E[=0 (33)
0 o o]l
and similarly for &y,
4 G 43 || E,
a, ap ap E,|=0 (34)
al; @ ay||E,

with the asterisk representing the complex conjugate and

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 40, NO. 4, APRIL 1992

A N
y
ar
B, o
[aY
9 z
k
Fig. 5. A sketch of the coordinate system used in determining the modes
supported by the medium at the plasma frequency.
where
2 262 2 52/2
a, = 4""1)“‘ Ec — wHHE /E

a, = 2iwpp.£C\/4w;uzéf + w;u.e;, cos § + iw;uﬁ
a; = Ziwpp.fc\/4w;p.253 + wf,ueAm sin 0

ay = (4wf,u2£3 + wf,uéx) cos? § — wf,pE

@y = (4wl it2 + wypé,,) sin 6 cos f

a3 = (4‘*’2.“-253 + wiuém) sin? 4.

If (33) is to hold in general, either € = g or E, = E,, = 0.
The first case can only be true if the biasing magnetic field is
not present such that € = § = 0, which corresponds to the
cut-off condition in an isotropic plasma. The second case
represents a quasi-static field since it is possible for an
electric field with zero wavenumber £, ,,_,, , to exist in the z
direction. The rest of field vectors in the quasi-static field are
found directly from the Maxwell equations and the constitu-
tive relations:

kl(w—wp) X E

B = =0 (35)
@p
k1(w=wp) x H
D= - =0 (36)
“p

H, = Hy =0 (37)
H, = it E,. (38)

From (38), we observe that the chirality forces an H field in
phase quadrature with E. We also note that, when the
medium is achiral, the quasi-static field is purely electric.

On the other hand, the solution of (34) yields a wave with
elliptical polarization in the plane transverse to the direction
of propagation. This wave is peculiar because the wavenum-
ber is direction-independent whereas the polarization in direc-
tion-dependent. Note that when the plasma becomes isotropic
and chirality is removed, both (33) and (34) can be satisfied.
However, from physical considerations, the only wavenum-
ber that can exist must be K(,_, ).

V. CONCLUSION

We have examined the problem of electromagnetic wave
propagation in two types of Faraday chiral media, chiroplas-
mas and chiroferrites, with the goal of examining potential
methods for chirality control. We stress the properties of the
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chiroplasmas since those of the chiroferrites are quite similar
in nature (see Table I). It has been found that, for propaga-
tion along the magnetostatic field, four circularly polarized
eigenmodes, possessing differing wavenumbers, are present.
Two of these correspond to wave propagation parallel to the
biasing magnetic field and two others correspond to propaga-
tion antiparallel to it. All these wavenumbers can be altered
by varying the strength of the biasing magnetic field. Further-
more, their frequency dependence leads to a set of dispersion
diagrams which provide insight into wave propagation in this
complex material. We have also examined the behavior of the
chiroplasmas when the frequency of the propagating wave is
equal to the plasma frequency. In this case, two direction-
independent wavenumbers were found to exist. The blending
of chirality with anisotropy, that we have presented here,
may be the first step in understanding chirality control. Such
control may have potential applications in chirowaveguides
[14], in controlling the radar cross section of coated targets
[15], and the control of radiation and polarization properties
of antennas and arrays in chiral media [16], [17]. For in-
stance, if chiroferrite material is used as a substrate or
superstrate of printed-circuit antennas, the radiation proper-
ties of such radiators can be controlled by varying the biasing
magnetic field. Of particular interest, is the polarization
diversity afforded by chirality of these substrates. Likewise
for guided-wave structures, we anticipate control of mode
configuration and coupling within such guides. Finally, for
microwave and millimeter-wave coatings, one can control the
reflection and polarization properties of chiroferrite coatings
using concepts developed here. Work in these areas is in
progress.
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