
University of Pennsylvania
ScholarlyCommons

Departmental Papers (ESE) Department of Electrical & Systems Engineering

July 2001

Do What I Mean: Online Shopping with a Natural
Language Search Agent
Barry G. Silverman
University of Pennsylvania, basil@seas.upenn.edu

Mintu Bachann
Equidity

Khaled Al-Akharas
Equidity

Follow this and additional works at: http://repository.upenn.edu/ese_papers

Copyright 2001 IEEE. Reprinted from IEEE Intelligent Systems, Volume 16, Issue 4, July/August 2001, pages 48-53.
Publisher URL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=20376&puNumber=5254

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/ese_papers/42
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Barry G. Silverman, Mintu Bachann, and Khaled Al-Akharas, "Do What I Mean: Online Shopping with a Natural Language Search
Agent", . July 2001.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76362239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fese_papers%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese?utm_source=repository.upenn.edu%2Fese_papers%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=20376&puNumber=5254
http://repository.upenn.edu/ese_papers/42
mailto:repository@pobox.upenn.edu

Do What I Mean: Online Shopping with a Natural Language Search
Agent

Abstract
Ineffective search engines on e-catalog sites are driving away potential customers. Natural-language querying
improves precision and parsing capability, and with advances in the technology, it can also meet these
shopping sites' performance demands.

Comments
Copyright 2001 IEEE. Reprinted from IEEE Intelligent Systems, Volume 16, Issue 4, July/August 2001, pages
48-53.
Publisher URL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=20376&puNumber=5254

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/ese_papers/42

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=20376&puNumber=5254
http://repository.upenn.edu/ese_papers/42?utm_source=repository.upenn.edu%2Fese_papers%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages

48 1094-7167/01/$10.00 © 2001 IEEE IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t E - B u s i n e s s

Do What I Mean:
Online Shopping with
a Natural Language
Search Agent
Barry G. Silverman, University of Pennsylvania
Mintu Bachann and Khaled Al-Akharas, Equidity

M arket exchanges are Internet sites that virtually integrate multiple vendors’

catalogs. They let users browse, search for, bid on, finance, buy, or ship

products. Such sites—Amazon.com and Ariba.com are two examples among many—

constitute a major form of e-commerce in both the business-to-consumer and business-

to-business segments. Over half of today’s 80 mil-
lion Web users shop for or buy products online, and
analysts expect B2B purchasing to eclipse that level
rapidly.1

However, in the rush to establish an online pres-
ence, many enterprises have built their e-market sites
with little infrastructure and few of the capabilities
necessary for such an e-business. For example, in
March 2000, the Boston Consulting Group reported
that more than 80 percent of Web shoppers have at
some point left e-markets without finding what they
wanted and that 23 percent of all attempted e-shop-
ping transactions end in failure.1 Four of the top five
failure modes are search-related—long page-load-
ing times, failures to find the product, system
crashes, and calls to customer service.

Research also shows that about 15 percent of
online search failures stem from spelling errors and
another 40 percent result from customers using dif-
ferent terms from those in the Web site1,2—for exam-
ple, using “patching” when the Web site uses “con-
crete.” Because keyword-based search engines can’t
interpret the meaning of users’queries, they typically
bring back innumerable hits of everything even
remotely relevant, often burying the best choice deep
within the list or omitting it altogether. On top of that,
such search engines seldom help the shopper narrow
down the returned set of items.

Two approaches exist for improving keyword-
based search: conceptual query (CQ) and natural lan-
guage query (for a comparison, see the sidebar). This
article describes an agent that uses restricted natural
language to help users search product catalogs in
large-scale market exchanges.

The challenges
Before we turn to our NLQ search, let’s examine

the challenges that catalogs pose for any search
method. Specifically, in shopping site searches, one
challenge is handling incomplete and inconsistent
product descriptions. Some descriptions include par-
tial parameter information, such as “2�, black.” Oth-
ers focus on how the product might be used, and still
others are highly terse and omit most details.

A second challenge is the difficulty of matching
the buyer’s search terms to the wording in the descrip-
tive fields. When exact term matches don’t exist, the
search must consider issues such as word stemming,
spelling errors, abbreviations, and synonyms.

A third challenge is that although product descrip-
tions represent numeric attributes poorly and incom-
pletely, some users will nonetheless want to search
by size, weight, height, and so on. Every catalog
offers many products, the product lines are continu-
ally changing, and each of the thousands of product
categories has a different set of attributes. As a result,

Ineffective search

engines on e-catalog

sites are driving away

potential customers.

Natural language

query improves

precision and parsing

capability, and with

advances in the

technology, it can also

meet these shopping

sites’ performance

demands.

catalogs do not store attributes as fields of a
table. Rather, they store attribute names and
their value settings as data items; this makes
searches more difficult.

Shopping catalogs often include many
dozens, even thousands, of tables to describe
the products being offered and to support ser-
vices and user needs. To improve runtime per-
formance, these sites often use a denormal-
ized field called a munge as the search engine
target. This munge places into its subfields
copies of each of the catalog’s searchable
fields, such as item name, item ID, category
name and ID, model or part number, descrip-
tion, price, maker, condition, and all attribute-
value pairs. In effect, the munge is like a doc-
ument on each product in the catalog.

Because most search algorithms can’t
infer the subfields to search, they search the
entire munge. For example, a keyword search
searches across all subfields of the full
munge for a strict match on terms. CQ tra-
verses the same ground but can also look for
synonyms, alphabetically similar terms, and
related conceptualizations. NLQ is the only
search strategy that infers the labels or field
names of each token in the query string.
Hence, it can then send the (conceptual)
search to the precise subfields of the catalog
in which the query’s tokens should exist, pro-
vided they are in the database.

The reason that CQ does worse than NLQ
is that it must deal with term semantics and
ambiguities without a parser. NLQ, on the
other hand, can parse the entire query string,
label its tokens, and hold an interactive con-
versation about the query to confirm its inter-
pretation. NLQ researchers argue that CQ
languages would benefit from the addition of
a parser with a grammar restricted to the data-
base’s domain. Although such parsers have
less-than-general interpretative power, they
can still improve trouble management and
help the interface conform to the user’s lan-
guage. Several systems in the lab purport to
provide these extensions,3–6 and some offer
formal slotted grammars (with semantically
typed slots) for merging the natural language
approach with CQ.

Proponents of pure CQ, in turn, argue that
natural language extensions tend to be
impractical: indeed, none of the NLQ systems
just cited has been evaluated on a large scale.
The CQ people argue that the “natural lan-
guage problem” is too difficult and remains
unsolved on any reasonable scale. As a result,
most large-scale relational database manage-
ment products (for example, Oracle, Sybase,

DB II, or AltaVista) that are widely used by
market exchanges and other large-scale e-
commerce sites include CQ features for those
who choose to deploy them, but exclude
NLQ. Some smaller, less formally defined
NLQ systems appear to work atop specific
databases or environments.7,8

Certain e-commerce Web sites have deployed
natural language self-help or chatterbots, but
these bots handle site navigation and document
retrieval issues and cannot process catalog or
database search requests. This inability adds fuel
to the arguments that only CQ can scale up to the
e-catalog task.4

In sum, no examples exist of NLQ work-
ing in large-scale e-commerce catalog shop-
ping sites, and it is tempting to believe the
proponents of CQ rather than NLQ. The
research results we report here are the first
large-scale test offering evidence to counter
pure-CQ proponents. Our results show that
NLQ is an effective complement to CQ in
shopping Web sites.

System architecture and
algorithm

Now let’s take a look at how our agent,
called EQUIsearch, performs NLQ. We

assume that a Markov decision process is
suitable to analyze the semantics and mor-
phosyntactics of the user’s query. Specifi-
cally, at any moment in time, the agent is in
one of a finite number of states (s = 1, S) and
must choose one of a finite set of actions (a
= 1, A) to transition to the next state. More
specifically, optimizing a Markov decision
process is a dynamic programming problem
that maximizes E(U), the expected dis-
counted rewards across future periods, as

, (1)

where V* is the optimum value point (in
terms of precision and recall) and U() is the
reward function or utility from selecting
action at at state st.

We can solve Equation 1 if we loop across
iterations (t = 1,T) and for each iteration loop
across all states (s = 1,S) to find the action or
set of actions that maximizes both current
and future rewards to avoid local optima. We
capture this expansion by finding the maxi-
mal value of the following function after test-
ing all possible actions, a = 1, A:

U s at t
t=1

T

()

∑ ,Max V E∗ =

JULY/AUGUST 2001 computer.org/intelligent 49

All query languages attempt to match a query string to database entries.
Readers interested in a survey of the many approaches should consult the refer-
ences;1–5 here, we compare two of them.

Conceptual query
Literally, this refers to an expansion of the search terms with the help of a con-

cept tree of closely related terms. However, in practice, this also includes any other
expansion, such as using a thesaurus to generate synonyms. Generally, prior to the
expansion, the conceptual query search tokenizes the search string and removes
stop words. Then, it passes the tokens to traditional Structured Query Language
for matching against the database entries.

Natural language query
In addition to all the steps of conceptual query, NLQ includes a parser that

attempts to identify and label the part of speech of each token in the search
string. Such labels can reduce the expansion set to entries using words in the same
sense as the original and help the traditional SQL narrow its search.

References

1. C.J. VanRijsbergen, Information Retrieval, Butterworth, London, 1979.

2. S.M. Dekleva, “Is Natural Language Querying Practical?” Data Base, vol. 25,
no. 2, 1994, pp. 24–36.

3. M.J. Bates, “Indexing and Access for Digital Libraries and the Internet: Human,
Database, and Domain Factors,” J. Am. Soc. Information Science, vol. 49, no.
13, 1998, pp. 1185–1205.

4. K. Sparck-Jones and P. Willett, Readings in Information Retrieval, Morgan
Kaufmann, San Francisco, 1997.

5. H. Cunningham, Information Extraction, a User Guide, tech. report
CS-99-07, Dept. Computer Science, Univ. of Sheffield, Sheffield, UK, 1999;
www.dcs.shef.ac.uk/~hamish/IE/userguide/main.html (current 26 July 2001).

Conceptual versus Natural Language Query

. (2)

Here, π(st, at, st+1) is the transition probabil-
ity of being in state st + 1 immediately after
taking action at from state st. Vt–1 * (sx) is Zt+1

(st+1, argmaxa (Zt–1 (s, a)), where argmaxa

finds the maximal action.
Thus, recursive Equation 2 summarizes

the standard computable value iteration for-
mulation. To use this, we must define the per-
missible states and actions, the reward func-
tion, the transition probabilities, and other
terms of the equation for catalog search prob-
lems. We provide an overview of these items
in what follows and in Figure 1; readers can
find the details elsewhere.9

As a language parser, the agent iteratively
labels each stripped and stemmed token of
the query. Then, it modifies these labels by
applying a sequence of transformation rules
to reduce the remaining ambiguities and
residual errors left by the previous rules. In
doing so, it labels the state of each term in the
query, where state is defined within a sub-
grammar. The subgrammar we created here
is called OAV Triplet Grammar. OAV triplets,
or object-attribute-value triplets, are metadata
that describe what catalogs contain in much
the same way as resource description formats
(RDFs) describe the Web’s content.10,11

Specifically, in product catalog domains,
users usually search for objects with attrib-

utes of a certain value. This corresponds to
searching for a noun phrase that includes
adjectives. For example, some triplets in var-
ious orderings might be “mini sized amps”
or “hammer colored red.” The agent must
discover the order of the triplets. Thus, a
common order variant occurs where the
agent initially seeks the object (the O in
OAV) and then uses the AVs for comparison
and search refinement—for example, bolt
cutter followed by size, price, and availabil-
ity. Even more common are searches for one
or more V of a given type of O where the A
is suppressed—for example, AA Eveready
batteries, 1/2� no. 8 slotted screws, or desk
chair. (In the last example, the first of the two
consecutive nouns functions as an adjective.)

In addition to the subgrammar’s rules, we
obviously must also derive a vocabulary for
any given instantiation or catalog. In shop-
ping domains, we can derive the vocabulary
for objects and another for attribute-value
pairs by crawling the relational catalog data-
base’s fields and extracting all unique terms:
item names are object name, attributes are
parameter names, and parameter settings are
attribute values. We show this tool for crawl-
ing the catalog and extracting the knowledge-
base values at the bottom of Figure 1. Using
such a tool, we can readily construct the sub-
grammar and its vocabulary for any given
electronic catalog. The KB lookup tables (at
the base of the agent in Figure 1) store the
result so the phrase parser’s transformation
rules can use it to infer and insert O, A, and

V labels onto the various terms of any given
search phrase. At the bottom right of the
agent box, Figure 1 shows other rules (Φr)
that the agent uses to infer OAV meanings
from queries (for example, the rule about
consecutive nouns).

It is not sufficient that the catalog’s extracted
vocabulary covers 100 percent of a given shop-
ping site’s lexicon if the site’s users are
unaware of that lexicon or prone to misusing it.
To help overcome such semantic impasses, the
agent first stems the tokens in the query string,
expands them for synonyms, and ultimately
checks them for spelling (see bottom left of the
agent in Figure 1). The dictionaries and KBs
across the base of Figure 1 support these tasks.

Comparison testing
EQUIsearch

In Figure 1, we showed EQUIsearch as
complementing commercial search engines
for online catalogs. To illustrate that point,
we empirically evaluated query performance
both with and without the EQUIsearch agent
for a major commercial search engine rele-
vant to e-commerce catalogs.

In general, there are four ways to measure
search engine performance: retrieval effec-
tiveness metrics (such as recall and preci-
sion), user satisfaction measures, transaction
log analysis, and the critical incident tech-
nique. Another article examines the last three
of these.12 In this study, we used effective-
ness metrics for our comparison.

Zt t t

t t t t t

s,a U s ,a

s ,a ,s
s

s
V s

t+1

() = () +

()+
=

+∑δ π 1
1

1–
*(

50 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t E - B u s i n e s s

Manager/parser
(Max V*)

 Catalog KBs
• Objects
• Attribute
• Values
• Measurements

 Dictionaries
 • Strip
 • Spell
 • Synset

Query
transformation

rule sets
(Φr)

Search table (Djk)

Product catalog
(R)

User interface S
Q
L

b
u
i
l
d
e
r

T
o
k
e
n
i
z
e
r

EQUIsearch agent
(Extract, refine query)

Hits Item categories

Iterations
Intermediate results

(for example,
synset results)

SQL querySearch query QT

Commercial search
engine (retrieval)

Buyer at browser

Offline knowledge base builder

Intermediate feedback
(for example,
spell check)

Figure 1. Overview of the EQUIsearch agent as a meaning translator in the interface between users and traditional search engines.

Measuring query effectiveness
The literature on information retrieval

defines effectiveness as a measure of a sys-
tem’s ability to satisfy the user in terms of
the retrieved items’ relevance or perti-
nence.10,13 Pertinence means aboutness and
appropriateness. Ultimately, the user deter-
mines whether a document is pertinent; in
this case, we do. The ubiquitous contingency
table, Table 1 in this article, delineates the
categories for retrieved and unretrieved items
in a catalog.

For our purposes, we will use ratios of
hits/retrieved and hits/pertinent. We define
the ratio of hits to items retrieved as preci-
sion. We term the ratio of hits to pertinent
items the recall. From Table 1, we see that

Precision = RP/(RP + RI)

and

Recall = RP/(RP + NP).

Scale-up test results
To test whether NLQ can scale up, we

deployed it at a market exchange. EqualFoot-
ing (www.equalfooting.com) is a B2B online
marketplace for the maintenance, repair, and
operations (MRO) sector.12 Basically, this
means that EqualFooting sells industrial and
construction supplies—something like a
Home Depot for small contractors, but with
an order of magnitude more products. The
company’s official launch date was February
2000, and by June 2000 it was handling one
million hits per day (by about 23,000 separate
users daily). At this writing, EqualFooting’s
catalog integrates almost 450,000 products
from more than 2,000 sellers.

The company stores its catalog internally
in an Oracle database. Users at this Web site
now use the EQUIsearch NLQ agent, which
in turn interfaces with Oracle and its CQ
search technology, Oracle interMedia.

The conceptual search features of prod-
ucts such as interMedia are not immediately
usable at a given shopping site. For example,
making the production version of the Equal-
Footing database CQ-capable required cre-
ating the three dictionaries always necessary
for conceptual search—spelling, stripping,
and synonyms—because these are domain-
specific items.

Growing the thesaurus involved many false
starts and deadends. For example, we were
tempted to use an existing general-purpose
thesaurus such as WordNet from Princeton,
which includes 95,000 words and all their
synonyms. However, this thesaurus brings

back too many synonyms, many of which are
inappropriate (racial slurs, curses, body parts,
religious terms, and so on). In addition, it
omits most of a given domain’s specialty
terms. For example, chain saw, Phillips head,
and safety gloves are among the thousands of
items found in a hardware catalog that have
no entries in WordNet. Instead, based on
search log analyses, EqualFooting assembled
its own thesaurus for almost 8,000 synonyms
critical to its domain, although still more syn-
onyms are needed.

The second dictionary task was to give the
database a spell checker. Oracle doesn’t ship
interMedia with this function, so the com-
pany purchased one and installed it sepa-
rately. Although it came with 100,000 words,
EqualFooting embellished the spell checker’s
dictionary by adding

• the top 1,000 misspelled words from the
user search logs and their corrections,

• proper names of all manufacturers and
suppliers (the spell checker initially as-
sumed that all proper names were errors)
and possible misspellings, and

• many hundreds of acronyms with proper
spellings (such as CD, DVD, HVAC, and
so on).

The third and final dictionary task was to
massage the stop word list for the MRO
domain. Some generic stop words were rel-
evant here (for example, AND, THE, ALL),
but others are unique (such as X, – , and /).

For a site that has already prepared the
three dictionaries CQ requires (spelling,
stripping, and synonyms), the extra effort to
add EQUIsearch is rather straightforward:

1. Run a catalog crawler that extracts all the
lexicon.

2. Construct the lexical knowledge bases
(objects and attribute-value pairs).

3. Author the relevant rule sets and encode
them in the Φr.

4. Complete any interface code needed in the
agent’s SQL builder to adapt it to the require-
ments of the CQ technology (interMedia in
this case).

We performed these steps manually for the
test site during the fall of 2000 and deployed
the agent on 17 November 2000. Since then,
it has been in continuous operation—24
hours, 7 days a week.

Comparison test results
For comparison testing, we ran three types

of query strings as listed in Table 2. Nouns
or objects are the item names or synonyms
of those names. Noun-adjective pairs (object-
attribute pairs) cover cases in which the user
seeks to narrow the choices returned. Lastly,
although most users are unaccustomed to
using sentence format, we thought it was an
important search category because we hope
future users will be unaware of search
engines’ previous constraints.

Statistics on current search habits indicate
that users type about 2.3 words per query,
with nouns being the most common search,
noun-adjective pairs next most common, and
multiword phrases being least common.1,2

We designed our test bank, shown in Table
2, to approximate this distribution of 2.3
words per query on average: 146 words ÷ 63
queries = 2.3 words/query.

Table 3 compares effectiveness and tim-
ing statistics for the CQ search (via Oracle
interMedia) with those for the NLQ agent.
We collected these results over EqualFoot-
ing’s intranet, so they don’t include Internet
latency, but that would be identical for both
methods. Inspecting the last row of Table 3
shows that, on average, the CQ search was
nearly twice as fast as NLQ (0.5 versus 0.9
seconds per query). However, CQ tended to
retrieve nearly three times as many hits,
although its recall was not as good as NLQ’s
(0.8 versus 1.0) and its precision was only
half as good (0.5 versus 1.0). Furthermore,
the time advantage of CQ search is relatively
inconsequential, because most users can’t
detect a half second of difference.

Consider also the first row of the Table 3,
noun search, where we see NLQ holding a
clear advantage across the board. Not only is
NLQ more precise, it’s also faster. The only
place CQ holds its own is in recall, where
both methods are perfect in bringing back all

JULY/AUGUST 2001 computer.org/intelligent 51

Table 1. Contingency table for deriving effectiveness metrics.

Pertinent Irrelevant
P = RP + NP I = RI + NI

Retrieved RP RI
R = RP + RI Hits Type I errors

Not retrieved NP NI
N = NP + NI Type II errors

Total catalog = RP + RI + NP + NI

the pertinent items.
This story changes for noun-adjective pair

search (row 2), at least in terms of speed.
Here, NLQ takes almost four times as long
as CQ, although it still wins on precision. It
should surprise no one that the NLQ is faster
than CQ in noun search and slower in noun-

adjective search. In noun or object search,
CQ must dynamically sort and index the
entire munge (many subfields denormalized),
whereas NLQ need only sort through the
item-name field, because it narrows the
search by labeling the token. Likewise, in
object-attribute search, CQ behaves the same

as before, but NLQ causes Oracle interMe-
dia to sort an additional set of fields (all those
with attributes) and then do a soft join and
eliminate items not in all parts of the join.

NLQ handles sentences (row 3) more
quickly than word pairs (row 2), further con-
firming that the parsing processes are not very
significant determinants of delay. A query’s
specific terms drive the process. In this case,
the noun-adjective pairs that the parser ex-
tracted from the sentences proved to be less
common items in the database; hence the Ora-
cle CQ engine could process them faster.

Results analysis
We intend the NLQ agent presented in this

article to complement and improve search
engines for online e-commerce shopping cat-
alogs. Our results show that the agent
improves the precision and recall of the
search with no significant overall impact on
response time. Several of the lessons we
learned in deploying and testing EQUIsearch
bear further discussion:

• Scaling up NLQ. To scale up NLQ, we did
away with some of the less practical NLQ
proposals in the literature, such as con-
versational feedback and explaining the
query translation to be used prior to exe-
cuting the query. Instead, EQUIsearch
converses with the user in the fashion that
CQ systems use: after the query, by dis-
playing either hits or canned, limited
explanations of query failures. Also, we
implemented our agent as a Markovian
decision process. The agent continues to
work at a relatively large-scale market
exchange, which previously operated with
CQ search alone.

• CQ paves the way for domain-specific
NLQ. Relational DBMSs ship with CQ
features, but each enterprise must enable
and fill in the stripping, synonym, and
spelling dictionaries before CQ can work
for its shopping catalog. The good news is
that these are the same three dictionaries

52 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Table 3. Timing and effectiveness results for CQ search versus the NLQ agent.

Search Total retrieved Precision Recall Two-run average time
(seconds)

CQ NLQ CQ NLQ CQ NLQ CQ NLQ

31 nouns 2,965 1,091 0.6 1.0 1.0 1.0 0.6 0.4
18 noun-adjective pairs 160 66 0.6 1.0 1.0 1.0 0.5 1.9
14 sentences 1 71 0.0 1.0 0.0 1.0 0.4 0.8
Average (for 63 queries) 1,580 571 0.5 1.0 0.8 1.0 0.5 0.9

Table 2. Query strings used to comparison test CQ and NLQ.

Nouns (31) Noun-adjective pairs (16) Sentences (14)

Aircompressor 16 oz hammer Show me all power cords.

Ballast 10 inch nail List me cotton gloves.

Blower Bolt cutter Show me gloves made of leather.

Brad Copier paper I want to buy leather gloves.

Brush Cotton glove List me nails for roofing.

Cabinet Crimped brush List me all wheel cutters.

Calculator Cutter wheel Show me bolt cutter.

Chipper Leather glove List wire connectors.

Chisel Nail hammer List brush made of steel.

Cleaner Pipe clamp I want to buy a crimped brush.

Compressor Power cord Let me see leather gloves if you have any.

Connector Protective apron

Cupboard Roofing nail

Cutter Safety tape

Drill Steel brush

Fans Tape measure

Gloves White paper

Grinder Wire connector

Hammer

Ladder

Mallet

Mitten

Nail

Paper

Pipe

Processor

Saw

Screw

Snapper

Soap

Tube

that NLQ needs. If a site has already devel-
oped them and deployed CQ, it takes only
minimal extra effort to deploy NLQ.

• Data-cleansing obstacles remain for any
search method. Numerous typos, missing
item names and other data, and poor-
quality attribute information constitute
possibly the most serious obstacle to scale
up a search in any unified shopping cata-
log. This obstacle is not unique to NLQ,
but equally plagues CQ and keyword
search methods.

• Speed differences are irrelevant in most
cases. It seems that NLQ is faster for noun
search, but slower than CQ for noun-attribute
pair searching. But in either case, the time
differences are not statistically significant.

• NLQ agent provides precision and recall
improvement. Our results to date reflect
about a 50 percent improvement in preci-
sion when NLQ is added to CQ. This means
that users experience shortened retrieval sets
and that the items retrieved include far fewer
false positives. Additionally, there are fewer
false negatives or relevant items omitted.

• NLQ agents offer parsing services CQ
can’t provide. Many shopping sites have
begun to add chatterbots, such as Dell’s
AskDudley (http://support.dell.com/us/
en/askdudley), that provide navigation
help and answer site or content questions
in natural-like language. The results to
date indicate that users like this type of
self-service help. When it is present, they
build up a higher expectation that the cat-
alog search will behave in a similarly nat-
uralistic way, and they no longer limit their
queries to the short keyword format (the
2.3-word average mentioned earlier).2

They pose English-like sentences and
questions to the catalog search engine, and
it seems they are frustrated by the CQ
search engines’ inability to parse their
questions. NLQ agents such as EQUI-
search appear to be the answer for shop-
ping sites facing this dilemma.

T he difficulty of searching online shop-
ping catalogs is the difficulty of the

Web in general: content created for human
consumption poses a challenge for machine
interpretation and for use by other agents. To
address this larger challenge, DARPA and
the W3C have significant efforts under way
to create the Semantic Web—tagging the
semantics of the Web so that content created
by laypersons for use by other people is auto-

matically and transparently marked up for
machine and agent interpretation and use.
The process draws on tools such as the
W3C’s RDF, the DARPA agent markup lan-
guage (DAML), and the ontology interface
language (OIL).10,11 Although we did not use
this tool set in the work we report here, hav-
ing it available and scaled up for industrial
use could integrate catalogs into the Seman-
tic Web. Potentially, this could ease the con-
tent interpretation of market catalogs.

The Semantic Web efforts do not include
research on NLQ, so it would also be interest-
ing and challenging to explore how to extend
natural language agents such as those we
describe in this article to work in the broader
domain of the Semantic Web. In general, such
agents operate in narrow domains only, so the
challenge would be to populate the Web with
many such special-purpose agents.

References

1. “Winning the Online Consumer: Insights Into
Consumer Behavior,” Boston Consulting
Group, Cambridge, Mass., 2000, www.bcg.
com (current 3 July 2001).

2. P.R. Hagen, H. Manning, and Y. Paul, “Must
Search Stink?” Forrester Research, Cam-
bridge, Mass., 2000, www.forrester.com (cur-
rent 3 July 2001).

3. V. Owei, “Natural Language Querying of
Databases: An Information Extraction
Approach in the Conceptual Query Lan-
guage,” Int’l J. Human-Computer Studies,
vol. 53, 2000, pp. 439–492.

4. S.M. Dekleva, “Is Natural Language Query-
ing Practical?” Data Base, vol. 25, no. 2,
1994, pp. 24–36.

5. M.T. Pazienza, ed., Information Extraction:
Toward Scalable, Adaptable Systems,
Springer-Verlag, Berlin, 1998, pp. 95–119.

6. T. Strzalkowski, Natural Language Informa-
tion Retrieval, Kluwer Publishing, Dordrecht,
Netherlands, 1999.

7. A. Blum, “Add Natural Language Search
Capabilities to Your Site with English Query,”
Microsoft Interactive Developer, Apr. 1998,
www.microsoft.com/Mind/0498/equery.htm
(current 28 June 2001).

8. “Revolutionizing the Search for Products at
E-Commerce Sites,” Easy Ask Inc., Little-
ton, Mass., Mar. 2000, www.easyask.com/
technology/pdf/revolutionizing_search.pdf
(current 3 July 2001).

9. B.G. Silverman et al., “A Markov Decision
Processing Solution to Natural Language
Querying of Online e-Commerce Catalogs,”

submitted to J. OR in Computing, available
from http://www.seas.upenn.edu/~barryg/
mdp.pdf.

10. J. Hendler, “Agents and the Semantic Web,”
IEEE Intelligent Systems, vol. 16, no. 2,
Mar./Apr. 2001, pp. 30–37.

11. M. Klein, “XML, RDF, and Relatives,” IEEE
Intelligent Systems, vol. 16, no. 2, Mar./Apr.
2001, pp. 26–28.

12. B.G. Silverman et al., “Buyer Decision Sup-
port Systems and Search Agents for eCom-
merce Websites,” to be published in Int’l J.
Human-Computer Studies, vol. 54.

13. C.J. VanRijsbergen, Information Retriveral,
Butterworth, London, 1979.

JULY/AUGUST 2001 computer.org/intelligent 53

T h e A u t h o r s
Barry G. Silverman
is a professor in the
schools of engineering
and medicine and in
the Wharton School at
the University of
Pennsylvania. He is
also Director of the
Ackoff Center for

Advancement of Systems Approaches. He is a
fellow of the IEEE and AAAS. Contact him at
Towne Bldg, Rm 229c, University of Pennsyl-
vania, Philadelphia, PA 19104-6315; bar-
ryg@seas.upenn.edu, http://www.seas.upenn.
edu/~barryg.

Mintu Bachann is
both CIO and COO of
Equidity, which offers
full-service business
financing technology,
from loan origination
to fulfillment. Prior to
Equidity, Bachann
worked on technology

infrastructure and architecture for organizations
such as NationsBank, Oracle, Bank of America,
Barnett Bank, and Sun Microsystems. Bachann
holds a doctorate of science in artificial intelli-
gence and computer science from George Wash-
ington University.

Khaled Al-Akhras is Vice President of Engi-
neering for Equidity. Previously, he worked in
the software design and development industry,
where he designed real-time decision support
systems and simulators for nuclear power util-
ities all over the world. He holds a master’s
degree in computer science from George Wash-
ington University.

	University of Pennsylvania
	ScholarlyCommons
	July 2001

	Do What I Mean: Online Shopping with a Natural Language Search Agent
	Barry G. Silverman
	Mintu Bachann
	Khaled Al-Akharas
	Recommended Citation

	Do What I Mean: Online Shopping with a Natural Language Search Agent
	Abstract
	Comments

	Do what I mean: online shopping with a natural language search agent - Intelligent Systems, IEEE [see also IEEE Expert]

