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Polarizabilities and effective parameters for collections of spherical
nanoparticles formed by pairs of concentric double-negative, single-
negative, and/or double-positive metamaterial layers

Abstract
Unusual scattering effects from tiny spherical particles may be obtained when concentric shells are designed
by pairing together "complementary" double-negative, single-negative, and/or standard double-positive
materials. By embedding these highly polarizable scatterers in a host medium one can achieve a bulk medium
with interesting effective parameters. Some physical insights and justifications for the anomalous polarizability
of these concentric spherical nanoparticles and the effective parameters of the bulk composite medium are
discussed.
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Unusual scattering effects from tiny spherical particles may be obtained when concentric shells are
designed by pairing together “complementary” double-negative, single-negative, and/or standard
double-positive materials. By embedding these highly polarizable scatterers in a host medium one
can achieve a bulk medium with interesting effective parameters. Some physical insights and
justifications for the anomalous polarizability of these concentric spherical nanoparticles and the
effective parameters of the bulk composite medium are discussed. © 2005 American Institute of
Physics. �DOI: 10.1063/1.1884757�

INTRODUCTION

Double-negative �DNG� materials,1 also known as “left-
handed” or “negative-index” media,2 are receiving increasing
attention in the scientific community in recent years, due to
the exciting properties of the wave interaction with these
materials.1,2 These features are consequences of the negative
real part of their permittivity and permeability, which may be
obtained by properly selecting and embedding some resonant
inclusions in a host medium.3

In our previous works, we have shown how ultracom-
pact waveguides and resonators,4–6 anomalous wave tunnel-
ing and transparency,7,8 or dramatic enhancement of scatter-
ing from tiny spheres and cylinders8–10 may be achieved
when these materials are paired with conventional media
�which, by analogy, can be referred to as “double-positive
�DPS�” materials�. We have also shown that similar effects
may be obtained using materials with just one of the two
parameters being negative. These include �-negative �ENG�
media �such as plasmonic media� or the �-negative �MNG�
media, which possess, respectively, permittivity and perme-
ability with a negative real part.5–10 Again, when these two
“conjugate” materials are judiciously paired together, the
wave interaction shows anomalous properties. In those
works, in particular, we have discussed how these anomalies
may be explained as the effects due to the interface reso-
nance taking place at the junction of materials with oppo-
sitely signed constitutive parameters.7

In one of our previous works,9 moreover, we have men-
tioned that when two concentric spherical nanoshells �or co-
axial cylindrical nanoshells� made of DPS-DNG or ENG-
MNG materials, or even ENG-DPS or MNG-DPS materials,

are suitably paired together, the overall scattering cross sec-
tion of this tiny structure may be dramatically enhanced, as
compared with the scattering from an object with the similar
shape and size but made of standard DPS media only. In
other words, one can obtain electrically small scatterers with
a scattering cross section comparable with that of much
larger scatterers. This implies that we can effectively have a
“compact resonator,” i.e., an electrically small object in reso-
nance. This phenomenon, again, may be explained using the
concept of interface resonance when these conjugate materi-
als are paired together.

In the present work, first, we briefly discuss the general
analysis of electromagnetic wave scattering from such
spherical nanoparticles and their unusual scattering proper-
ties, highlighting the relationship between these scattering
phenomena and the material polaritons, i.e., the natural
modes supported by these particular scatterers. Other re-
search groups have presented experimental results demon-
strating these anomalous resonances in individual particles
containing plasmonic materials, and have discussed certain
theoretical aspects �e.g., hybridization� of this
phenomenon.22–28 Here, we give some other �different� fea-
tures of the theory behind such scattering, and we then sug-
gest the idea of embedding these tiny resonant particles with
high polarizability as inclusions in a host material, in order to
conceptually build a bulk composite medium, which may
exhibit interesting characteristics with potential applications.
The compact resonant inclusions, in fact, offer very high
polarizabilities without occupying a large footprint, and con-
sequently they may be easily embedded in a matrix array to
produce an effective hybrid metamaterial �i.e., a metamate-
rial whose inclusions may themselves be made of composite
materials� with anomalous properties.
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SCATTERING PROPERTIES OF INDIVIDUAL
METAMATERIAL NANOINCLUSIONS

The geometry of the single inclusion under study here is
depicted in Fig. 1. This is a spherical scatterer composed of
two concentric layers of radii a1 and a, with a�a1, sur-
rounded by a host material �with permittivity �0 and perme-
ability �0�, which may not necessarily be free space. Let this
scatterer be illuminated by an e−i�t-monochromatic plane
wave. The concentric layers are assumed to be made of iso-
tropic homogenous materials, which at the operating fre-
quency f =� /2� have permittivities �1 and �2 and perme-
abilities �1 and �2, as indicated in the figure. In general, the
constitutive parameters of the three material regions should
be complex quantities, taking into account the possible ma-
terial losses. Moreover, their real parts may be positive or
negative, giving rise to the possibility of having DPS, DNG,
ENG, or MNG materials, as discussed in the introduction.
Since the media are supposed to be passive, their imaginary
parts are non-negative. Furthermore, in the following we as-
sume lossless or low-loss conditions, i.e., Im � j� �Re � j� and
Im � j� �Re � j�, �j=0,1 ,2�.

Strictly speaking, every material except the free space
exhibits temporal dispersion, and particularly metamaterials
in the range of frequencies in which they display negative
parameters may be strongly dispersive.1–3,29 Therefore, in the
following discussion for the sake of simplicity we consider a
monochromatic excitation, which allows the analysis to be
performed for given values of the constitutive parameters at
this specific frequency. The results for a single frequency
may be promptly, but approximately, extended to a quasimo-
nochromatic case, typical of the telecommunication applica-
tions. In the next section, moreover, we will consider certain
dispersion model for some metamaterials and plasmonic me-
dia.

Let an illuminating plane wave be propagating along the
ẑ axis of the Cartesian coordinate system �x ,y ,z� with its
electric field directed along the x̂ axis. The scatterer is cen-
tered at the origin of this Cartesian and of a spherical coor-
dinate system �r ,� ,	�. As it is usually done, this plane wave
can be written in terms of electric and magnetic vector po-
tentials that are then expanded into spherical harmonics in
the spherical coordinate system:30,31

Einc = E0eik0zx̂ = −
E0
�0

� 
 Finc +
iE0

��0�0
� 
 � 
 Ainc,

�1�

Hinc =
E0
�0
eik0zŷ =

E0
�0

� 
 Ainc +
iE0

��0�0
� 
 � 
 Finc,

with

Ainc = r̂
cos �

�
�
n=1




in
2n + 1
n�n + 1�

k0rjn�k0r�Pn
1�cos �� ,

�2�

Finc = r̂
sin �

��0
�
n=1




in
2n + 1
n�n + 1�

k0rjn�k0r�Pn
1�cos �� ,

where E0 is its complex amplitude, jn�.� are the spherical
Bessel functions, Pn

1�.� are associated Legendre polynomials
of first degree and order n,32 and k0=���0�0 and �0
=��0 /�0 are the wave number and the characteristic imped-
ance of the host medium, respectively. The correct choice for
the signs of these square roots in the different types of media,
depending on the sign of the real part of permittivity and
permeability, is given in Table I. For each type of medium,
this has been obtained by adding an infinitesimally small
amount of loss into the medium constitutive parameters, and
then choosing the correct branch cut for the square roots in
order to satisfy the radiation condition, as was similarly done
for the DNG medium in Ref. 1. Obviously, due to the linear-
ity of the problem one may separately analyze the contribu-
tion of every term in the two summations. In particular, the
series for the magnetic vector potential Ainc is composed of
spherical TMr waves and analogously the electric potential
Finc is represented by a summation of TEr waves. �The su-
perscript r will be dropped heretoafter for simplicity.�

This scattering problem is analogous to the one solved
by Aden and Kerker,33 even though in their paper they have
assumed to deal with conventional materials only �which we
call DPS media�. Their solution, however, is also applicable
to the cases under study here, provided that the correct
choice for the signs of the quantities kj=��� j� j and � j
=�� j /� j �j=0,1 ,2� is made for all the three media following
Table I.

In this work we are mostly interested in the field scat-
tered by the particle �since from that we can evaluate the
polarizabilities of this inclusion, to be embedded in a host
matrix to form a bulk medium�, which is determined for each
spherical wave by the corresponding vector potential:

FIG. 1. Cross section of a spherical nanoparticle �as inclusion� composed of
two concentric layers of different isotropic materials in a suitable spherical
reference system �r ,� ,	�.

TABLE I. Choice of the sign for the square roots in the expressions of the
characteristic impedances � and of the wave numbers k in the different types
of media.

DPS �Re ��0,Re ��0� ��0 k�0
DNG �Re ��0,Re ��0� ��0 k�0
ENG �Re ��0,Re ��0� ��J, Im ��0 k�J, Im k�0
MNG �Re ��0,Re ��0� ��J, Im ��0 k�J, Im k�0
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As�n� = r̂
cos �

�
in
2n + 1
n�n + 1�

cn
TMk0rhn

�1��k0r�Pn
1�cos �� ,

�3�

Fs�n� = r̂
sin �

��0
in
2n + 1
n�n + 1�

cn
TEk0rhn

�1��k0r�Pn
1�cos �� ,

where hn
�1��.�= jn�.�+ iyn�.� is the spherical Hankel function of

the first kind. �This corresponds to zn
�3��.� in the notation of

Ref. 33, and yn�.� here is the spherical Neumann function�.
32

The scattering coefficients cn
TE and cn

TM �corresponding to an
s

and bn
s in the notation of Ref. 33�, which can be obtained

when one applies the boundary conditions, completely deter-
mine the scattered field. They are given by Eqs. �26� and �27�
in Ref. 33 and thus are not repeated here. The final expres-
sions for the total scattered field are therefore given by:

Es =�
n=1




−
E0
�0

� 
 Fs�n� +
iE0

��0�0
� 
 � 
 As�n� ,

Hs =�
n=1



E0
�0

� 
 As�n� +
iE0

��0�0
� 
 � 
 Fs�n� ,

r� a. �4�

From the knowledge of the scattering coefficients, one can
also express the total scattering cross section of this scatterer
as:34

Qs =
2�

�k0�2
�
n=1




�2n + 1���cn
TE�2 + �cn

TM�2� , �5�

and its backscattering cross section as

� = �	 1k0�n=1



�− 1�n�2n + 1��cn
TE − cn

TM�	2. �6�

It is worth noting that the vector potentials As�n� and
Fs�n� of the scattered fields given in �3� represent the poten-
tials for the radiation field of an electric and a magnetic
multipole of order n, respectively, and the expressions given
in �4�, therefore, are equivalent to a multipole expansion.35

This issue will be revisited later in the manuscript.
For the scattering coefficients cn

TE and cn
TM, an equiva-

lent, but physically more revealing expression than the one
given in Ref. 33, may be obtained by manipulating the equa-
tions written for the boundary conditions at r=a1 and r=a.
They can be written, consistent with Ref. 36, as

cn
TE = −

Un
TE

Un
TE + iVn

TE, cn
TM = −

Un
TM

Un
TM + iVn

TM , �7�

where the functions U and V are real valued for the lossless
materials and for the TM-polarized scattered field they are
given by the relations:

Un
TM = 


jn�k1a1� jn�k2a1� yn�k2a1� 0
jn��k1a1�/�1 jn��k2a1�/�2 yn��k2a1�/�2 0

0 jn�k2a� yn�k2a� jn�k0a�
0 jn��k2a�/�2 yn��k2a�/�2 jn��k0a�/�0


 ,
�8�

Vn
TM = 


jn�k1a1� jn�k2a1� yn�k2a1� 0
jn��k1a1�/�1 jn��k2a1�/�2 yn��k2a1�/�2 0

0 jn�k2a� yn�k2a� yn�k0a�
0 jn��k2a�/�2 yn��k2a�/�2 yn��k0a�/�0


 .
�9�

Analogous expressions for the TE polarization may be
obtained by substituting � with � into and �8� and �9�. Ex-
pressions �7� show that �cn��1 and their peaks, which corre-
spond to the scattering resonances for the structure, occur
when Vn=0 for the lossless materials. As in the case of a
homogeneous scatterer,3,4 these peaks are related to the pres-
ence of material polaritons �i.e., natural modes� on the sur-
face of the scatterer, which are responsible of the scattering
resonances. In fact, Vn

TE=Dispn
TE=0 and Vn

TM=Dispn
TM=0 are

indeed the dispersion relations for the TE and TM material
polaritons for this scatterer, which may be obtained using the
alternative technique proposed in Ref. 36, but applied here to
this two-layer problem. �For a brief discussion about this
technique for finding the resonant material polaritons for this
structure and their physical relation with the scattering peaks,
see Appendix A.�

When conventional DPS materials are considered, it is
well known that such resonances �and the corresponding
high scattering� may be obtained only when the size of the
scatterer becomes comparable to the wavelength in the
media.34 Of course, this is due to the fact that all the material
polaritons are below cutoff when the size of the scatterer is
less than a given dimension �similarly to what happens in an
electrically small cavity�, and as a result a small DPS scat-
terer leads to a large negative value of Vn �as confirmed by
Eq. �11��, and thus a very low value for cn. Moreover, since
lima→0 Un→0− �as Eq. �10� will confirm�, in small DPS scat-
terers �at least the ones with ���0� arg cn�� /2, following
�7�. When the size of the scatterer is increased, on the other
hand, the magnitude of cn increases up to the resonance,
which arises when the polariton is supported and Vn=Dispn
=0, at which one gets cn=−1 �with a � /2 phase shift typical
of any resonance phenomenon�.

If instead of the DPS materials for all the media involved
in the problem we consider a combination of DNG, single-
negative �SNG�, and/or DPS metamaterials for the two layers
in the geometry of Fig. 1, may this lead to unusual scattering
properties, e.g., huge scattering resonances for such electri-
cally small scatterers? In our previous works, we have theo-
retically verified how pairing conjugate �i.e., complemen-
tary� materials �i.e., materials with oppositely signed
constitutive parameters� may indeed lead to the possibility of
significant reduction in the lateral dimension of guided
modes in planar and cylindrical waveguides and cavities.4–9

In particular, we have shown that their dispersion relations in
several different waveguide configurations filled by two of
such conjugate materials do not depend on the sum of the
thickness of the two regions, as it is the case for the usual
waveguides, but on the ratio of thicknesses, implying the
possibility of having subwavelength structures supporting
guided modes with lateral dimension below the diffraction
limitation.4–9 These phenomena would indeed correspond to
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resonant modes in ultracompact cavities/waveguides, and we
have explained how these resonances are directly related to
pairing of such conjugate materials, and how they arise at the
interface between them. In the present problem, an analo-
gous situation is present; from the above analysis it follows
that we should simply look for the possibility of support of
resonant material polaritons by the nanospherical scatterers
formed by a pair of DNG, SNG, and/or DPS layers, even
when their dimensions are much smaller than those required
for the spheres made of standard DPS materials. It is worth
noting how in Ref. 11 a similar goal has been achieved with
a different technique, namely, increasing the effective mate-
rial parameters �i.e., having high permittivity and/or high
permeability� of the small scatterer, and thus decreasing the
effective wavelength inside the material in order to make it
comparable with its physical dimensions. �In the cavity anal-
ogy this approach would correspond to filling the cavity with
a high-permittivity material in order to make it resonant at a
lower frequency.� Of course, this process may be limited by

the possibility of such an increase in the material parameters,
i.e., a too small scatterer would require very high constitutive
parameters and a geometrical limitation may always be
present. Moreover, constructing materials with very high per-
mittivities and/or permeabilities, which are often lossy, may
involve certain technological challenges. In our approach,
however, we will show below that, at least in principle, this
physical limit may be overcome by exploiting the “resonant”
pairing of the DNG, SNG, and/or DPS metamaterials, as
already done in the other situations mentioned above, and at
the same time the values of the constitutive parameters �and
correspondingly their imaginary parts� do not need to be nec-
essarily high.

For this purpose, let us analyze what happens when the
size of the scatterer becomes very small, compared to the
wavelength in every one of the three regions, i.e., when
�k2�a�1, �k0�a�1, and �k1�a1�1. In this limit, the expres-
sions in �8� and �9� may be reduced to the following:

Un
TM �

��k0a�2n−1�k1/k0�n

4n�2n + 1�3�n − 1/2�!2k2/k0

1 1 − 1 0

�n + 1�/�1 �n + 1�/�2 n/�2 0
0 �−1 − �2n �n−1

0 �n + 1��−n/�2 n�n+1/�2 �n + 1�/�0

 , �10�

Vn
TM �

�k1/k0�n

�k0a�2�2n + 1�2k2/k0

1 1 − 1 0

�n + 1�/�1 �n + 1�/�2 n/�2 0
0 �−1 − �2n − �n−1

0 �n + 1��−n/�2 n�n+1/�2 n/�0

 , �11�

where ��a1 /a is a shorthand for the ratio of the two radii.
These closed-form expressions reveal very interesting prop-
erties for electrically small scatterers. First, as already men-
tioned before, for small scatterers the value of Un is a small
quantity and tends to zero as �k0a�2n−1. �The determinants in
�10� and �11� do depend on � but not on a or a1 separately.�
This is consistent with the fact that usually a small scatterer
has a very low intensity scattered field. On the other hand, as
already anticipated, Vn increases as �k0a�−2 when a is re-
duced, owing to the fact that small scatterers made of con-
ventional materials are far from supporting surface polari-
tons. In fact, for scatterers made of DPS materials the
denominator in �7� is dominated by Vn and the usual approxi-
mate expression for cn becomes

cn 
 i�k0a�2n+1fn��� , �12�

where fn��� is a positive function of �. This confirms the
well-known fact that for tiny scatterers made of DPS mate-
rials the wave scattering is weak and it is dominated by the
first-order term �corresponding to the radiation of an electric
or a magnetic dipole depending on the polarization we are
considering�, that the total scattering cross section decreases

with �k0a�6 and finally that the phase of the scattering coef-
ficient is around � /2, which, as shown later, provides an
equivalent electric dipole radiating in phase with the imping-
ing excitation. These of course are all consistent with the
conventional results expected in this case.34 However, we
should bear in mind that these assumptions are valid only if
the determinant in Vn is sufficiently larger than Un, which is
the case when small DPS scatterers are employed. If instead
some combinations of DNG, SNG, and/or DPS metamateri-
als are used, either �or both� of the determinants in �10� and
�11� may become zero in the small-radii formulation, where
Eqs. �10� and �11� are applicable. The conditions for which
the determinant in Vn

TM in �11� becomes zero, and therefore a
material polariton may be resonant in an electrically small
scatterer and thus its scattering cross section may become
comparable with that of a big sphere, are derived to be

TE:� �
a1
a

�
2n+1���n + 1��0 + n�2���n + 1��2 + n�1�

n�n + 1���2 − �0���2 − �1�
,

�13�
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TM:� �
a1
a

�
2n+1���n + 1��0 + n�2���n + 1��2 + n�1�

n�n + 1���2 − �0���2 − �1�
,

which again depend only on � and not on the outer dimen-
sion of the scatterer. In the lossless case, these dispersion
relations may be satisfied by some combinations of constitu-
tive parameters, leading to the possibility of the presence of
material polaritons independent of the total size of the scat-
terer, but dependent on the ratio of the two radii. Of course
we should take into account the physical limit 0��=a1 /a
�1, which implies the use of a combination of DNG, SNG,
and/or DPS metamaterials in order to fulfill one or both of
the conditions given in �13�.

Figure 2 illustrates the regions of permissible values for
��1 ,�2� with corresponding values for a1 /a, in order to sat-
isfy the condition �13� for the TM-polarized scattered wave,
in the limit of lossless materials. The regions indicated with
“brick” symbols are the “forbidden” regions for ��1 ,�2�,
which cannot satisfy condition �13�. �For example, the first
quadrant, where both �1 and �2 are positive and represent
conventional DPS materials, does not admit material polari-
tons for these spherical scatterers in the small-radii case. This
confirms that the technique proposed in Ref. 11 to synthesize
metamaterials with resonant tiny inclusions, that is to embed
spherical inclusions with materials with high permittivity and
permeability in a host medium, may indeed exhibit a physi-
cal limitation for the size of the scatterers.� In the regions
other than the brick regions, a contour plot for a1 /a has been
plotted. Lighter regions correspond to higher values of a1 /a
�white for a1 /a=1, black for a1 /a=0�. The corresponding
figure for the TE-polarized scattered wave �not shown here�
may be obtained by substituting � with �.

We note that the TM and TE conditions in �13� depend
only on the permittivities and the permeabilities of the ma-
terials, respectively. This is due to the fact that in the limit of
small radii �i.e., electrically small scatterer� we are approxi-
mately dealing with “quasielectrostatic” and “quasimagneto-
static” problems, and the electric and magnetic effects are
effectively disjoint.

It is worth reiterating the fact that this resonant phenom-

enon relies on the judicious pairing of conjugate materials
with oppositely signed constitutive parameters, at whose in-
terface a local compact resonance may arise, similar to what
we have studied in the other setups.4–9 As already presented
in Ref. 12, this “quasistatic” resonance may be viewed, at
least for the first-order dipolar term, as a compact L-C reso-
nance between the small positive capacitance represented by
a DPS core �shell� and the small negative capacitance �which
at the given operating frequency is effectively equivalent
with a large inductance� of an ENG or DNG shell �core�.
Similar resonances in the scattering from nanospheres in
terms of the ratio of radii have been predicted in Ref. 22 and
experimentally shown in Refs. 23–27.

From formula �10� we may derive another condition for
the effective transparency of the scatterer for the particular
scattered mode. In the small-radii approximation, when the
determinant in �10� vanishes, the scattering coefficient cn be-
comes zero. The conditions for this situation, which again
depend only on the ratio of the two radii, are expressed as

TE:� �
a1
a
=
2n+1���2 − �0���n + 1��2 + n�1�

��2 − �1���n + 1��2 + n�0�
,

�14�

TM:� �
a1
a
=
2n+1���2 − �0���n + 1��2 + n�1�

��2 − �1���n + 1��2 + n�0�
.

Figure 3 shows the permissible and forbidden regions for
�1 and �2 to achieve the transparency for the TM-polarized
scattered wave, and the corresponding values for a1 /a in the
permissible region, in analogy with Fig. 2.

It is interesting to note that in this case it is possible to
achieve the transparency condition also for DPS-DPS
spheres, but one of the layers should be of a metamaterial �or
plasmonic material� with ���0 or ���0, depending on the
polarization of the scattered mode to be suppressed. We have
discussed certain aspects of this property in a recent
symposium,13 and the detailed results will be reported in the
near future.

It should be mentioned here that the transparency condi-
tions �14� are valid in the small-radii approximation, and one

FIG. 2. Regions for which the dispersion relation �13� for the TM-polarized
scattered wave is satisfied, with the corresponding values for a1 /a between
zero and unity. The “forbidden” regions indicated with the “brick” symbols
present values of �1 and �2 for which the condition �13� for the TM case
cannot be fulfilled.

FIG. 3. Regions for which the transparency condition �14� for the TM-
polarized scattered wave is fulfilled, with the corresponding values for a1 /a
between zero and unity. Analogous to Fig. 2, the forbidden regions indicated
with the brick symbols correspond to values of �1 and �2 for which the
condition �14� for the TM case has no physical meaning.
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may argue that the scattering from small spheres is already
small, if not zero. However, we may drastically reduce fur-
ther the overall scattering cross section of small spheres by
putting to zero the scattering coefficient for n=1, since ac-
cording to �12� all the other higher-order scattering coeffi-
cients are usually much lower than the first one. So if the
dominant scattering coefficient can be made zero, the total
scattering cross section of this sphere can be significantly
reduced. For larger spheres an analogous cancellation of any
given multipolar scattering coefficient may be achieved by a
suitable choice of the two materials’ parameters in order to
make the determinant �8� zero. This of course reduces the
total scattering cross section, but does not necessarily imply
that the sphere becomes “completely” transparent, since for
large spheres the overall scattering cross section may have
nonzero contributions from several other multipolar scatter-
ing orders �see formulas �5� and �6��. We have analyzed this
problem in detail, and the results will be included in a future
publication.

An interesting point about conditions �13� is that they
admit solution for a1 /a=0 and a1 /a=1, which implies the
cases of a homogenous single-layer sphere. This means that
the high scattering may be achieved also with such homoge-
neous spheres composed only of a single metamaterial, when
the following conditions for the material parameters are sat-
isfied:

TE:�2 = −
n + 1
n

�0, TM:�2 = −
n + 1
n

�0. �15�

This effect is the well-known plasmonic resonance for a ho-
mogeneous sphere, which occurs for the metallic spherical
nanoparticles at the optical or infrared regimes,34,37 and it
depends on the modal order n. In particular, one can easily
derive from �15� the usual condition for the resonant polar-
iton of a homogeneous small sphere for the dipolar �c1

TM�
term, which is �=−2�0.

Another issue to note about the resonant conditions �13�
is that the high scattering effect may be achievable for any
scattered mode with n�1. This implies that one can, in prin-
ciple, select the material parameters of the two layers of
small sphere such that the dominant term with resonant scat-
tering would be for the quadrupolar term �i.e., n=2�, the
octopolar term �i.e., n=3�, or any higher-order terms, instead
of having it for the dipolar one �i.e., n=1�. In other words,
for such a case, a very small two-layer metamaterial nano-
sphere may strongly scatter as a quadrupole or an octopole,
while its dipolar scattering may be much weaker. We have
studied this issue in more detail, and have presented our
preliminary results in a recent symposium.10 The details of
our analysis and findings will be reported elsewhere. Some
experimental results and possible applications exploiting
these second-order or higher-order TM scattering resonances
have been reported by other groups in Refs. 37–39.

As shown by the analysis reviewed above, when the ra-
tio of radii is chosen to satisfy the resonant conditions �13�,
which implies that Vn=Dispn=0, the scattering coefficient cn
attains its maximum magnitude. However, as we deviate
from this resonant ratio, the value of Vn for small radii be-
comes much higher than Un, and hence the magnitude of

coefficient cn drastically decreases. This suggests a certain
“ratio bandwidth,” which is reduced as the outer radius a
gets smaller and/or when higher scattering mode n is consid-
ered �as follows from the expressions �10� and �11��.

Figure 4 shows the behavior of the resonant peaks of the
scattering coefficient c1

TM for the small spherical scatterer
with two concentric layers of ENG-DPS metamaterials. In
particular, Fig. 4�a� shows the variation of c1

TM as one con-
siders different outer radii a. As can be seen, when consid-
ering smaller a the resonant peak of this scattering coeffi-
cient moves towards the value predicted by the approximate
formula �13�, and the ratio bandwidth becomes narrower. At
the resonant peak, however, the scattering coefficient has the
same value �of unity�, independent of the total dimension of
this nanosphere, and it resembles the scattering coefficient
from an electrically large resonant sphere. This is seen in
Fig. 4�b�, where the resonant peaks of the c1

TM coefficient are
compared, in a logarithmic scale, for DPS-ENG and DPS-
DPS scatterers. In other words, this nanosphere with two
layers of metamaterials acts as a “compact resonator,” occu-
pying a very small volume but exhibiting large resonant scat-
tering cross section. The total and the backscattering cross
sections in this case are dominated by the resonant coeffi-
cient cn, and they can be written as

Qs �
2��2n + 1�

�k0�2
, � =

��2n + 1�2

�k0�2
. �16�

FIG. 4. Magnitude of the scattering coefficient c1
TM vs the ratio of radii a1 /a:

in �a�, for the ENG-DPS spherical scatterer with �1=−3�0, �2=10�0, and
�1=�2=�0 with the outer radius a as a parameter; in �b�, for a1=0.01�0,
�1=10�0, �2= ±1.2�0, and �1=�2=�0, as a comparison with a DPS-DPS
case �logarithmic scale�.
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It is important to point out that for the small-radii ap-
proximation �i.e., as long as the other scattering terms in �5�
and �6� are negligible� these cross sections are effectively
independent of the outer radius at the polariton resonance.
This implies that under condition �13� the far-zone scattered
fields of these small scatterers are effectively independent of
the outer radius of these spheres, and the far fields resemble
those of the large spheres.

However, the near field distributions are different for
different outer radii. When the scatterer dimensions are re-
duced, the field intensity around the scatterer indeed be-
comes extremely large, as expected �since the field is de-
scribed by yn�.� functions�. This is consistent with the strong
field observed around metallic nanoparticles at the plasmonic
resonance,23–28 which may lead to certain applications.
Again, this effect is also analogous with what happens in a
resonant cavity. As it may be seen from Fig. 4, reducing the
overall dimension of the scatterer �i.e., the outer radius� ef-
fectively leads to a higher quality �Q� factor of the equiva-
lent resonant cavity, and increases the reactive fields stored
in the resonant mode.

Figure 5 illustrates the near-zone distribution of the total
electric field �Fig. 5�a�� and total magnetic fields �Fig. 5�b��
for the scatterer of Fig. 4�a� with a=�0 /100 and a1 /a satis-
fying the resonant condition �13� for n=1, under a plane-
wave excitation �as in formula �1��, normalized to the inci-
dent electric-field amplitude and under the assumption of
lossless materials. The normalized field strength shows large

peak values around the scatterer �over 1000 times the ampli-
tude of the impinging electric field�, and it is dominated by
the presence of the TM material resonant polariton �for n
=1�, which is characterized by an electromagnetic field 90°
out of phase with respect to the excitation, typical of any
resonant phenomenon. As viewed in the far zone, the scat-
terer resembles a strong radiating electric dipole at the origin,
somewhat similar to what would happen with a much larger
resonant sphere with a conventional dielectric sphere. How-
ever, the large resonant sphere with DPS materials would
also possibly exhibit contributions from higher-order terms,
whereas for the small scatterer under study here, at the reso-
nant condition �13�, the scattering pattern is much more
dominated by the dipolar pattern.

Clearly the material loss may sensibly affect the scatter-
ing properties of this scatterer, particularly for the smaller
scatterers whose field distribution is highly concentrated in
the materials. Figure 6 shows the behavior of the resonant
peaks when certain material loss is included in the analysis.
The loss expectedly degrades and lowers the resonant peak,
particularly for sharper resonances �for smaller a, as was just
mentioned, and/or higher n�.

However, with a proper choice of metamaterial layers,
the scattering strength may still be sensibly higher than that
of the sphere of the same size but with conventional DPS
materials, even when the losses are considered here. In the
results shown in Fig. 6, the inner core is assumed to be
lossless dielectric with �1=1.2�0 and the outer shell is silver

FIG. 5. Normalized near-zone total electric-field �a� and magnetic-field �b� distributions for a two-layer spherical scatterer with �1=−3�0, �2=10�0, �1
=�2=�0, a=0.01�0, and a1 chosen to satisfy condition �13� for the TM case n=1, i.e., when Disp1

TM=0. They are shown both on the cut �=� /2, �=� /2,
where only the E� and H� component are present, showing real and imaginary parts, and on the plane x-y with their absolute value. Owing to the resonant
condition, the electric- and magnetic-field distributions are � /2 out of phase with respect to the incident electric and magnetic fields, respectively.
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with �Ag= �−3.472+ i0.1864��0 at �0=0.38 �m.40 To see the
effect of material loss, the plots are shown for the different
values of the imaginary part of permittivity of the outer shell,
starting from the lossless case ��i=0� up to the realistic value
of this imaginary part for silver at �0=0.38 �m ��i
=0.1864�0�. For comparison, the cases in which the outer
shell is empty space �i.e., �2=�0�, in which it is made of the
same lossless dielectric, and in which the entire particle is
composed of silver are also shown. We can see that even
with the realistic material loss included, the scattering is
much stronger for the sphere with a pair of DPS-ENG layers,
when compared with the DPS-DPS or ENG-ENG cases, due
to the resonance phenomenon.

Finally, Fig. 7 shows the behavior of the resonant peaks
for different scattering modes n for the ENG-DPS sphere of
Fig. 4�a� and the DPS-ENG sphere of Fig. 4�b�. As expected,
the “ratio bandwidth” drastically decreases as one considers
higher scattering mode n.

Analogous scattering effects may be expected for thin
scatterers of other shapes formed by pairs of DNG, SNG,
and/or DPS coaxial layers, as we have shown also in the

cylindrical geometry.9 A brief discussion of similar results
for cylindrical nanoscatterers is given in Appendix B.

POLARIZABILITIES AND EFFECTIVE PARAMETERS

Owing to their interesting scattering properties, a par-
ticulate composite medium formed by embedding many of
these two-layered spherical nanoparticles as inclusions may
exhibit unusual electromagnetic properties. If we limit our-
selves to the resonances related to the dipolar scattering
mode n=1 for these small particles, the properties of the bulk
medium can be described by its effective permittivity and
permeability, which are related to the polarizability charac-
teristics of the single particle and to the interaction constant
of the whole lattice of particles �see, e.g., Ref. 41�. In par-
ticular, we are interested in exploring the effects of the ratio
of radii �and the excitation of the material polaritons� in such
particles on the effective properties of the bulk medium.

We first need to express the polarizability tensors of the
single spherical particle with two-layered metamaterials. As
is well known, such tensors relate the local electromagnetic
fields �Eloc ,Hloc� to the induced dipole moments in a particle
�p ,m�,14 i.e.,

� pm � = ��� ee �� eh
�� he �� hh

��ElocHloc
� = �� �ElocHloc

� . �17�

Clearly the elements of the polarizability tensor �� for the
nanoparticles of interest in the present study are related to the
scattering coefficients c1

TM and c1
TE. After some mathematical

steps, comparing the scattered fields in �4� for n=1 with the
fields radiated by equivalent electric and magnetic dipoles
placed at the origin, these relations can be expressed as

�� ee = −
6�i�0c1

TM

k0
3 I�, �� he = 0� , �18�

�� eh = 0� , �� hh = −
6�ic1

TM

k0
3 I� , �19�

where the tensors 0� and I� are the null and the identity ten-
sors, respectively.

These expressions expectedly demonstrate that the TM
scattering coefficient for n=1 is proportional to the electric
dipole polarizability of the sphere and analogously the TE
one is proportional to its magnetic dipole polarizability. They
also satisfy the physical constraint42,43 for particles with no
material loss, i.e.,

Im
1

�ee
= −

k0
3

6��0
, �20�

which from �18� implies that

Re
1
c1
TM = − 1, �21�

an expression consistent with �7�.
In order to derive the effective constitutive parameters of

a bulk medium composed of many of these identical particles
as inclusions embedded in a host medium, we may utilize
certain well-known mixing formulas.41 If we assume that in

FIG. 6. Magnitude of the scattering coefficient c1
TM, when material loss for

the outer shell is included. In this case �1=1.2�0, �2=−3.472�0, �1=�2
=�0, and a=�0 /20. The imaginary part of �2 is selected for each curve, and
for the dot-line �2 corresponds to the real value of silver at the free space
wavelength �0=0.38 �m. In the DPS-DPS case �1=�2=1.2�0, in the DPS-
air case the outer shell is not present and in the “all Ag” case the sphere has
�1=�2= �−3.472+ i0.1864��0.

FIG. 7. Magnitude of the scattering coefficient cn
TM for different scattering

modes n for a sphere with �1=10�0, �2=−1.2�0, �1=�2=�0, and a1
=0.05�0.
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the bulk medium the averaged distance between neighboring
particles in any direction is small compared with the wave-
length �0, and that the size of each scatterer is much smaller
than this average distance, one can then apply the classical
Clausius–Mosotti formula to estimate the effective param-
eters of the bulk the medium,

�eff
r =�0+ 1� 1 �N�ee − 1 � 3�0 ,

�eff
p = �0 +

1
1
N� 1�ee + ik0

3

6��0
� − 1

3�0

, �22�

where �eff
r is the effective permittivity for a random distribu-

tion of inclusions with number density N �in which case the
classical Maxwell–Garnett approach is applied4 to obtain the
first of �22�� and �eff

p is the one for a periodic distribution
with the same number density �in which case such an ap-
proach should be modified to cancel the radiation loss, as
derived by Tretyakov and Viitanen,43 in order to obtain the
valid second expression in �22��. Dual expressions for the
effective permeability can be analogously derived �not
shown here�.

Let us examine the case where the inclusions are being
operated as compact resonators, i.e., when the TM condition
�13� is satisfied for n=1 �with no material loss�. In this case,
c1
TM=−1, and thus �ee=6�i�0k0

−3, which leads to the interest-
ing relations:

�eff
r = �0

k0
3 + 4i�N
k0
3 − 2i�N

, �eff
p = − 2�0. �23�

As an aside, we note that at the resonance, the polarizability
�ee=6�i�0k0

−3, and consequently the expressions in �23�,
have no apparent information about the material parameters
of the two metamaterial layers forming the particle. This is
not surprising since for a given set of material parameters the
ratio of radii is chosen to achieve condition �13�, leading to
c1
TM=−1—an expression that does not depend on the distinct
individual elements contributing to the resonance. This is
analogous to what happens in any other resonant phenom-
enon �i.e., a resonant circuit�, where, exactly at the reso-
nance, the “outer” environment cannot infer the information
about each of the individual single elements that are contrib-
uting to the resonance itself.

From �20�, Eq. �22� may be rewritten for lossless par-
ticles as

�eff
r = �0 +

1
1
N
Re

1
�ee

−
1
3�0

�1 + i k032�N�
,

�24�

�eff
p = �0 +

1
1
N
Re

1
�ee

−
1
3�0

.

This shows that �eff
r for the case of random distribution ap-

proaches the value of �eff
p for the case of periodic distribution

when N�k0
3 �an upper limit for N, however, exists due to the

range of validity of Eq. �22��. Consistent with the no-loss

assumption, �eff
p is a real quantity, whereas �eff

r is indeed
complex due to the scattering losses.41

Concentrating on �eff
p , one notes that this medium may

have a resonant permittivity when

Re
1

�ee
=
N
3�0
, i.e., Im

1
c1
TM = −

V1
TM

U1
TM = −

2�N
k0
3 . �25�

This resonance happens for a ratio �a1 /a�� slightly different
from the ratio �a1 /a� that satisfies the particle resonant TM
condition �13� for n=1, but it gets closer to this number as N
becomes smaller and smaller. �Mathematically speaking, if
we let N→0, we will have only a few particles, and thus the
“medium” resonance will become similar to the “particle”
resonance. Of course, as we make N very small, we no
longer have a medium.� It should be noted that relations �24�
are valid for not extremely dense concentrations of the inclu-
sions in the host medium,41 which implies from �25� that the
ratio V1

TM/U1
TM of the single particle should not be very large

at the resonance of the bulk medium. This of course implies
that no bulk resonance can be expected in a medium com-
posed of electrically small DPS inclusions, and that the reso-
nance of the medium happens sufficiently close to the single-
inclusion resonance, even though not exactly for the same
ratio of radii. Needless to say, in order to satisfy the
Kramers–Kronig conditions,29 the imaginary part of �eff

p has
a delta peak at this resonant value. Plots of �eff

p and �eff
r vs

a1 /a for the bulk medium formed by embedding particles
with �1=10�0 and �2=−1.5�0 are shown in Fig. 8. In both
cases, a=�0 /100 and N= ��0 /10�−3.

The behavior of the two plots is similar, except in the
region near the resonance. The smaller N gets, the less simi-

FIG. 8. Plot of �a� �eff
p and �b� �eff

r for a bulk medium constructed by em-
bedding many identical spherical particles with �1=10�0, �2=−1.5�0, a
=�0 /100, and N= ��0 /10�−3.
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lar the two plots become. One notes that when the particle
itself is at the resonance with the proper value for a1 /a, �eff

p

becomes −2�0, as mentioned before, and for this particular
case this ratio is less than the value of �a1 /a�� for which the
bulk medium is at resonance. The effective permittivities
shown in the figure tend to value close to �0 when a1 /a is far
away from the specific a1 /a chosen for the particle reso-
nance. This is expected because these inclusions are much
smaller than the wavelength, and unless they are being oper-
ated at its resonance, i.e., act as compact resonators �or at the
bulk medium resonance�, their polarizabilities are very weak.
In particular, we expect that �eff

p �a1 /a=0�
�eff
r �a1 /a=0�

=�0+��, where �� is a small positive number if �2��0 or
�2�−2�0, and a small negative number in other cases. This
is due to the fact that the polarizability of a small homog-
enous sphere is given by

� � 4��0a3
� − �0

� + 2�0
, �26�

where � is the effective permittivity of the homogeneous
sphere.41 Therefore, when � is positive this should slightly
increase the value of �eff and when it is negative this should
decrease it. Similar statements can be made about the limit-
ing case of a1 /a=1, but replacing �2 with �1 in the discus-
sion.

We mentioned earlier that at the particle resonant ratio
a1 /a satisfying �13�, the curve for �eff

p passes through the
point �eff

p =−2�0. Furthermore, if the material parameters of
the two layers in the inclusion particle are in the permissible
region of the plot in Fig. 3 for the transparency condition and
if a1 /a satisfies the TM portion of condition �14�, the effec-
tive permittivity �eff

p should clearly become equal to �0. This
is expected since for this ratio of radii the electric polariz-
ability of each particle is zero �i.e., the particles are effec-
tively transparent�, and thus the bulk medium will be trans-
parent as well.

From Eqs. �13� and �14�, one can also conclude that
�a1 /a�resonance

TM � �a1 /a�transparency
TM when �2�0, and

�a1 /a�resonance
TM � �a1 /a�transparency

TM when �2�0 �of course in the
regions where the two ratios have physical meaning�. Start-
ing from these inequalities and the previous considerations, it
is straightforward to predict heuristically the behavior of the
monotonic curve in Fig. 8�a�, in terms of the various ranges
of �1 and �2, as summarized in Table II.

We may also examine the behavior of these plots in
terms of the frequency of operation. For instance, if we take
the outer layer of the spherical particle to be a standard di-
electric material with �2=10�0 and the inner core to be a
lossless plasmonic medium �i.e., an ENG medium� with the
Drude model for its permittivity �neglecting losses�, i.e., �1
=�0�1− ��p

2 /�2��, we can describe the effective permittivity
in terms of frequency. Figure 9 demonstrates such results for
a given a1 /a=0.9.

Obviously a similar analysis may be performed for the
effective permeability of the bulk medium, which depends
only on the permeabilities of the two metamaterials compos-
ing each nanospherical inclusion �due to the quasistatic be-

TABLE II. Behavior of the curve �eff
p in terms of the various possible combinations of material permittivities for

which the bulk medium shows a resonant behavior.

Admissible regions for the
resonant inclusions

�as in Fig.2� a1 /a=0 a1 /a=1 �a1 /a�transp.
TM �a1 /a�resonance-medium ��eff

p /��a1 /a�

�1�−2�0 and �2�−�1 /2 �eff
p ��0 �eff

p ��0 ��a1 /a�resonance
TM ��a1 /a�resonance

TM �0
−2�0��1�0 and 0��2�−�1 /2 �eff

p ��0 �eff
p ��0 ��a1 /a�resonance

TM ��a1 /a�resonance
TM �0

−2�0��2�0 and
��1�−2�0�∨ ��1�max��0 ,−2�2��

�eff
p ��0 �eff

p ��0 NO ��a1 /a�resonance
TM �0

−�0 /2��2�0 and
−2�2��1��0

�eff
p ��0 �eff

p ��0 ��a1 /a�resonance
TM ��a1 /a�resonance

TM �0

�2�−2�0 and −2�0��1��0 �eff
p ��0 �eff

p ��0 NO ��a1 /a�resonance
TM �0

�2�−2�0 and �0��1�−2�2 �eff
p ��0 �eff

p ��0 ��a1 /a�resonance
TM ��a1 /a�resonance

TM �0

FIG. 9. Plot of �a� �eff
p and �b� �eff

r for a bulk medium constructed by em-
bedding many identical spherical particles with �1=�0�1−�p

2 /�2�, �2
=10�0, a=�0 /100, a1 /a=0.9, and N= ��0 /10�−3.
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havior of the field inside the nanosphere�. The TE material
polariton may be resonantly excited in these tiny particles
and analogous relationships similar to the ones derived
above may be obtained here, with the usual replacement of �
with � in the discussion. Overall, this might represent, at
least conceptually, an interesting new venue for manufactur-
ing isotropic metamaterials with negative permittivities
and/or permeabilities. It is worth noting that by the same
means we may synthesize bulk materials having low or zero
� and/or � �with a low amount of losses�, thus having near-
zero refractive index. This may open up several possibilities
for different applications, as shown, for instance, in Refs.
15–21.

SUMMARY

Unusual scattering effects from tiny spherical particles
may be obtained when concentric shells are designed by
pairing together “complementary” double-negative �DNG�,
single-negative �SNG�, and/or standard double-positive
�DPS� materials. By embedding these highly polarizable
scatterers in a host medium one can achieve a bulk medium
with interesting effective parameters. In this work, we first
reviewed and discussed various scattering characteristics of
small spherical particles made of pairs of DNG, SNG, and/or
DPS metamaterials, and provided certain physical insights
into the mathematical descriptions of these scattering phe-
nomena. Since these particles may indeed act as “compact
resonators,” i.e., scatterers with strong resonant scattering
cross section but a very small physical volume, they can be
good candidates for inclusions in constructing particulate
composite media. The effective permittivity and permeability
of such bulk media have been discussed here and it has been
shown how they depend on various parameters of the two-
layered particle inclusions. The effective parameters of these
bulk media can thus be adjusted and tailored using several
degrees of freedom, thus providing possibilities for con-
structing more complex metamaterials. Since in the optical
and IR domains, in particular, some noble metals, e.g., silver,
aluminum, and gold, exhibit negative values for the real part
of their permittivities, such metals can be used as the
dielectric-coated metallic �or metal-coated dielectric� spheri-
cal nanoparticles for use in constructing the bulk media dis-
cussed here, which may lead to metamaterials with negative
bulk permittivity or permeability.

APPENDIX A: MATERIAL POLARITON

Following the technique described in Ref. 36, one can
find the material polariton for the spherical scatterer shown
in Fig. 1. First we conceptually surround this scatterer with a
spherical metal wall of very large radius, i.e., r=R�a, and
then we look for those resonant modes of this “big cavity”
with a field distribution mainly concentrated around the scat-
terer, which are described by the yn�k0r� functions for their
radial dependence since the scatterer is small and placed at
the origin. Since the determinant in �9� is exactly the one
obtained when the eigensolutions for these modes are de-

rived, Vn=Dispn=0 corresponds to the dispersion relation
�for the TE or TM modes� of the material polaritons sup-
ported by this scatterer.

It is interesting to note that in the scattering problem,
when the object is illuminated by an external wave, for the
combination of parameters for which Dispn vanishes, the to-
tal field in the host medium resembles exactly the material
polariton distribution we have just described in the big cav-
ity, with a 90° phase shift with respect to the excitation.
Specifically, if the nth spherical harmonic component of the
impinging field is written as �jn�k0r�, with � a generic com-
plex quantity, the scattered field becomes �cnhn

�1��k0r�
=−�hn

�1��k0r�=−�jn�k0r�− i�yn�k0r� �since cn=−1 when Vn
=Dispn=0, following �7��. Summing the two expressions in
order to derive the total field in the host medium, the field in
the outer region shows only the material polariton distribu-
tion −i�yn�k0r�, with the 90° phase difference with respect to
the incident field. This has been shown clearly in the field
distributions of Fig. 5 and it is analogous to what happens in
an L-C circuit when it is driven at the resonant frequency or
when a surface wave mode is excited by an impinging eva-
nescent wave.

By analogy, we may relate the expression for Un in �8� to
those resonant modes of the big spherical cavity that are
described only by jn�k0r� functions. In this case, Un=0 rep-
resent the dispersion relations for such modes �note how the
expressions of Un and Vn differ just for the terms jn�k0a� and
yn�k0a� in �8� and �9��, which by analogy may be called
vacuum polaritons.36 It is not a coincidence, of course, that
in the big cavity these modes are less affected by the pres-
ence of the scatterer, since their field goes to zero at the
origin, and in the scattering problem the scattered field dis-
appears when Un=0 �since the corresponding cn is also zero�.
This might be an interesting physical insight into the anoma-
lous transparency effect we have discussed in a recent
symposium,13 and will be reported in more detail in a future
publication.

APPENDIX B: CYLINDRICAL CASE

Similar to what we have shown here for the spherical
geometry, also ellipsoidal or cylindrical inclusions may be
treated in the same analytical way, and may conceptually
yield similar results. In the cylindrical reference system, for
instance, a two-dimensional �2D� problem �for normal inci-
dence� similar to the one presented here may be solved,
yielding to the excitation of resonant cylindrical polariton in
nanorods. The analytical treatment is not shown here, but it
clearly involves cylindrical Bessel functions instead of the
spherical Bessel functions used here. The formulas analo-
gous to �13� in this case are given as9

TE:� �
a1
a

�
2n��2 + �1

�2 − �1

�2 + �0
�2 − �0

,

�27�

TM:� �
a1
a

�
2n��2 + �1

�2 − �1

�2 + �0

�2 − �0
.

Also in this case we may predict anomalous effects for a
bulk medium consisting of collections of these resonant na-
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norods and the results would predictably be analogous to the
ones presented here.
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