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Community and population dynamics of spruce-fir forests on Whiteface
Mountain, New York: recent trends, 1985-2000

Abstract
We remeasured two sets of permanent plots in old-growth, spruce–fir forests on Whiteface Mountain to
quantify ongoing vegetation dynamics at sites impacted by spruce decline. One set of plots was a stratified
random sample of the vegetation in a subalpine watershed (Baldwin site). The other was selected to represent
forest conditions in a high-elevation subset of the spruce–fir forest (Esther site). Between 1987 and 1997,
there was a significant increase in aboveground tree biomass at Baldwin with the majority of the increment
due to the growth of canopy-sized trees. This growth occurred with little change in either species composition
or size structure. The annual mortality rate of 1.2%·year–1 for canopy-sized red spruce (Picea rubens Sarg.) in
Baldwin almost matched the recruitment rate of 1.4 stems/ha per year. In addition, the relative growth rate of
spruce was significantly faster than associated species. In contrast, spruce trees in Esther died at a rate of the
3.6%·year–1 (1985–1995), and survivors grew more slowly than other species. The most obvious community-
level trend at Esther (1985–2000) was an increase in overall tree density with most of this increase due to
ingrowth of small trees. The demography of the spruce population at Baldwin suggests that the decline is over
for at least this population.
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Community and population dynamics of spruce–fir
forests on Whiteface Mountain, New York: recent
trends, 1985–2000

John J. Battles, Timothy J. Fahey, Thomas G. Siccama, and Arthur H. Johnson

Abstract: We remeasured two sets of permanent plots in old-growth, spruce–fir forests on Whiteface Mountain to
quantify ongoing vegetation dynamics at sites impacted by spruce decline. One set of plots was a stratified random
sample of the vegetation in a subalpine watershed (Baldwin site). The other was selected to represent forest conditions
in a high-elevation subset of the spruce–fir forest (Esther site). Between 1987 and 1997, there was a significant in-
crease in aboveground tree biomass at Baldwin with the majority of the increment due to the growth of canopy-sized
trees. This growth occurred with little change in either species composition or size structure. The annual mortality rate
of 1.2%·year–1 for canopy-sized red spruce (Picea rubens Sarg.) in Baldwin almost matched the recruitment rate of
1.4 stems/ha per year. In addition, the relative growth rate of spruce was significantly faster than associated species. In
contrast, spruce trees in Esther died at a rate of the 3.6%·year–1 (1985–1995), and survivors grew more slowly than
other species. The most obvious community-level trend at Esther (1985–2000) was an increase in overall tree density
with most of this increase due to ingrowth of small trees. The demography of the spruce population at Baldwin sug-
gests that the decline is over for at least this population.

Résumé : Nous avons remesuré deux groupes de parcelles permanentes dans de vieilles forêts de sapin et épinette du
mont Whiteface pour quantifier la dynamique actuelle de la végétation dans des stations affectées par le dépérissement
de l’épinette. Un premier groupe de parcelles constituait un échantillonnage aléatoire stratifié de la végétation dans un
bassin versant subalpin (la station Baldwin). L’autre groupe de parcelles avait été choisi de manière à représenter les
conditions de la forêt dans un sous-ensemble à haute altitude de la forêt de sapin et épinette (la station Esther). Entre
1987 et 1997, il y a eu une augmentation significative de la biomasse épigée des arbres dans la station Baldwin où la
majeure partie de l’accroissement est due à la croissance des arbres formant le couvert. Cette croissance s’est produite
avec peu de changements dans la composition en espèces, ni dans la structure dimensionnelle. Le taux annuel de mor-
talité de 1,2 %·an–1 pour l’épinette rouge (Picea rubens Sarg.) présente dans le couvert de la station Baldwin corres-
pond à peu de chose près au taux de recrutement de 1,4 tiges/ha par an. De plus, le taux relatif de croissance de
l’épinette est significativement plus élevé que celui des autres essences auxquelles cette essence est associée. Par
contre, le taux de mortalité des épinettes de la station Esther est de 3,6 %·an–1 (1985–1995) et les tiges qui ont sur-
vécu ont crû plus lentement que les autres espèces. La tendance la plus évidente observée à l’échelle de la commu-
nauté dans la station Esther (1985–2000) est une augmentation générale de la densité des arbres où la majeure partie
de l’augmentation est due au recrutement de petits arbres. La démographie de la population d’épinette à la station
Baldwin porte à croire que le dépérissement est terminé, au moins dans cette population.

[Traduit par la Rédaction] Battles et al. 63

Introduction
The decline of red spruce (Picea rubens Sarg.) trees in the

northeastern United States is a well-documented example of
the negative impact chronic atmospheric pollution, specifi-
cally acid deposition, can have on the terrestrial biota

(Driscoll et al. 2001). Red spruce is a common tree in the
upland forests in the northeastern United States. It occurs
across a biome transition from eastern deciduous forest to
conifer forest (Bormann et al. 1970). Beginning in the mid-
1960s, many overstory red spruce trees in the region experi-
enced a progressive loss of vigor. Symptoms included both
crown dieback and reduced radial growth rates (Johnson and
Siccama 1983). By the 1980s, as many as half the standing
spruce trees were dead in some high-elevation stands
(Siccama et al. 1982; Scott et al. 1984; Battles et al. 1992).

The decline has been directly linked to freezing injury of
spruce foliage (Friedland et al. 1984; Johnson et al. 1988;
Peart et al. 1992b; Tobi et al. 1995). There is good evidence
from both laboratory studies (DeHayes et al. 1999) and field
trials (Vann et al. 1992) that exposure to acidic cloud water
reduces the freezing tolerance of spruce leaves. In addition,
chronic acid input has depleted calcium supplies (Likens et
al. 1996) and mobilized additional aluminum (Shortle and
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Smith 1988) in northeastern U.S. forest soils. These changes
in soil quality can adversely affect the growth of red spruce
trees (Cronan and Grigal 1995). Also spruce–fir forests at
high elevation are thought to be among the most sensitive
ecosystems to nitrogen pollution. According to one scenario,
the continuation of current levels of nitrogen deposition to
these high-elevation forests could effect wholesale shifts in
community composition with hardwood trees replacing the
now-dominant conifer trees (McNulty et al. 1996; Fenn et
al. 1998).

The regional trend in pollution shows a modest decline in
one of the two primary constituents of acidic deposition. In
the U.S. Northeast, the concentration of SO4

2– in precipita-
tion has decreased significantly since 1970, while there has
been no discernable change in the wet deposition of N
(Likens et al. 2001; Driscoll et al. 2001). For example at the
National Atmospheric Deposition Program’s site on White-
face Mountain, New York (610 m elevation), SO4

2– wet de-
position has decreased by almost 4%·year–1 between 1985
and 2000 while for the same period there was no detectable
trend in the rate of N deposition (data from National Atmo-
spheric Deposition Program Web site).2 Coincident with
these changes in acidic deposition, there is some indication
that since the mid-1980s, red spruce at some sites may be re-
covering from the decline. Silver et al. (1991) reported large
increases in dead spruce between 1982 and 1987 in their
resurvey of stands on Whiteface Mountain, but noted an im-
provement in the crown condition of surviving trees. Several
researchers have observed marked increases in spruce annual
growth rates, as measured from increment cores, since the
mid-1980s (Siccama et al. 1994a; Reams and Van Deusen
1995).

In this paper, we provide an update of the status of the
subalpine forest community and red spruce populations at
Whiteface Mountain, a sentinel site for environmental moni-
toring in northern New York. Our fundamental premise is
that species declines and the role of anthropogenic distur-
bances must be evaluated in the context of the prevailing
vegetation dynamics. Thus, a comprehensive review of the
effects of acidic deposition on trees requires recent trends in
forest composition and tree demography to complement
measures of pollutant emission and deposition rates. We de-
rived this key information from re-measurements of a subset
of the permanent sample plots established in the 1980s for
the explicit purpose of monitoring the course of spruce de-
cline. Within this framework, we examined two questions:
(i) what is the forest-wide implication of a population level
phenomenon, such as red spruce decline, and (ii) are red
spruce populations recovering from the recent episode of de-
cline? We confined this initial investigation to two old-
growth stands with a history of detailed ecological and
biogeochemical studies. By doing so, we minimized the
variability associated with differences in land-use history
and capitalized on the wealth of associated data.

Materials and methods

Study site
Whiteface Mountain (44°22′N, 73°54′W) and its four

subpeaks form an isolated massif at the northern end of
Adirondack Mountains of New York. The entire massif lies
within the boundaries of Adirondack Forest Preserve and the
land is managed by the New York State Department of En-
vironmental Conservation.3 The Adirondacks are in a region
of cool, wet summers and cold, snowy winters. Mean grow-
ing season temperatures (mid-May to mid-September) on
Whiteface Mountain range from 11.3°C at the summit
(1483 m elevation) to 17.8°C at 603 m elevation (Battles et
al. 1992). The past 15 years have been warmer than the
previous 20 years. Mean monthly winter temperatures
(November–February) at the observatory on Whiteface
Mountain (603 m elevation) averaged 0.5°C warmer in
1984–1999 than in 1964–1983 (D. Wolfe, Atmospheric Sci-
ence Research Center, State University of New York,
Albany, N.Y., personal communication). Mean annual pre-
cipitation at 1000 m elevation is 156 cm, of which 30% falls
as snow (Friedland and Miller 1999). Moderately deep to
thin till covers the bedrock (primarily anorthosite). Soil type
varies along the elevation gradient with a broad transition
around 1150 m elevation between Spodosols below and
Histosols above (Witty 1968).

Data sources and background
Between 1964 and 1966, one hundred and eighty-two for-

est stands on Whiteface Mountain were quantitatively sam-
pled to examine vegetation–environment relations (Holway
et al. 1969). These stands were not permanently marked, but
their approximate locations are known from detailed field
notes and maps. This original work documented that (i) the
vegetation of the Whiteface massif is representative of the
regional montane flora and (ii) like other mountains in the
northeastern United States, the spatial distribution of vegeta-
tion is organized along the elevational complex gradient
(Cogbill and White 1991). Specifically at Whiteface Moun-
tain, red spruce, balsam fir (Abies balsamea (L.) Mill.), and
mountain paper birch (Betula papyrifera var. cordifolia (Re-
gel.) Fern.) share dominance in the spruce–fir zone (800–
1100 m in elevation). Yellow birch (Betula alleghaniensis
Britt.) can be an important component at the lower end of
the spruce–fir forest (800–900 m). Below 800 m, conifers
are gradually replaced by northern hardwood species. Above
1100 m, balsam fir becomes increasingly important and
forms almost pure stands between 1200 and 1350 m
(Holway et al. 1969; Battles et al. 1992).

In 1982, Scott et al. (1984) relocated and resurveyed 32 of
the subalpine stands at Whiteface Mountain and found a 40–
70% decrease in the basal area of spruce with the greatest
decrease occurring in the high-elevation (>900 m) stands.
Siccama et al. (1982) had earlier reported similar decreases
in spruce basal area for a comparable forest in Vermont.
These two studies provided the best evidence of a region-
wide decline in spruce populations (Peart et al. 1992a).

In 1987, we completed a network of permanent sample
plots in the subalpine forests (700–1350 m) on Whiteface
Mountain as part of the U.S. Environmental Protection
Agency (EPA) – USDA Forest Response Program (Battles et
al. 1992). We placed the centre of a 21-transect grid at a ran-
domly chosen point along the primary north–south ridge of

2 National Atmospheric Deposition Program Web site: http://nadp.sws.uiuc.edu.
3 New York Department of Environmental Conservation Web site: http://www.dec.state.ny.us/.



the Whiteface massif (Fig. 1). To track individual tree
growth and population demography, 60 permanent plots
(most 400 m2 in area) were located along the transects in a
stratified random manner. Strata were defined to ensure
sampling red spruce populations at different elevations and
aspects. All trees ≥5 cm diameter at breast height (DBH,
breast height = 1.37 m) were tagged and identified. For
tagged trees, DBH, canopy position, and vigor were re-
corded. Height and height to live crown were measured on a
random subset of trees. Understory trees (trees ≥1 m tall and
<5 cm DBH) were measured and counted along 2 m wide
transects that centered on the diagonals of the plot (109 m2).

In 1997, we measured all the permanent sample plots (11)
that were located in the watershed southwest of Baldwin Hill
(Fig. 1). At the Baldwin site, there is no historical or ecolog-
ical evidence that the spruce–fir forest has ever been logged
or burned (Battles and Fahey 2000). The plots were nor-
mally distributed across the elevation gradient with a mean
elevation of 943 m, near the midpoint of the elevation gradi-
ent that encompasses the spruce–fir forest (800–1100 m).
The slope of the plots was 14 ± 7° (mean ± SD), and the
Baldwin watershed was on the northwestern face of the
mountain. In 1987, forty-three percent of the standing red

spruce trees in the 11 remeasured plots were dead, and 15%
of the forested area was affected by fine-scale, canopy gaps
(Battles and Fahey 1996).

In 1985, an Integrated Forest Study site was established
near Esther Mountain on the northwestern slope of White-
face Mountain (Fig. 1). The primary objective was to ana-
lyze the effects of atmospheric deposition on nutrient
cycling in a variety of forest ecosystems (Johnson and
Lindberg 1992). The Esther site was located in a high-
elevation, old-growth, spruce–fir forest. Four 0.1-ha circular
plots were set up to monitor vegetation influence on nutrient
flux. In these plots we identified, measured, and tagged ev-
ery woody stem ≥2 cm DBH. Plots were selected to repre-
sent the range of structural conditions observed in the
spruce–fir forest (Friedland et al. 1991). These plots have
been remeasured at least every 5 years since 1985. However,
since 1993 only canopy-sized trees (DBH ≥9.5 cm) were
tracked individually, while the smaller trees in the plots were
subsampled in five radial transects (total sample area =
178 m2). The Esther plots are at a mean elevation of 1031 m
with a narrow range from 1000 to 1063 m. The slope was
22 ± 4°. In 1985, forty-three percent of the standing red
spruce trees in the Esther plots were dead.

© 2002 NRC Canada
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Fig. 1. Topographic map of the long-term vegetation plots and research sites on Whiteface Mountain. Contour intervals are 50 m. Grid
lines are sample transects. The map was reproduced from 1978 U.S. Geological Survey 1 : 25 000 scale metric maps of the Wilmington
and Lake Placid quadrangles.



Neither site was seriously impacted by the destructive, re-
gional ice storm of 1998 (Irland 1998). The ice storm struck
the northeastern United States and southeastern Canada in
January 1998 and caused damage to 1.86 × 106 ha in New
York. On Whiteface Mountain, icing was confined to eleva-
tions below 830 m and to forests on the east side of the mas-
sif (New York Department of Environmental Conservation
Web site; D. Wolfe personal communication).

Data analysis
We used these three data sources (Scott stands, Baldwin

plots, and Esther plots) to assess change in the old-growth
spruce–fir forests at two sites on Whiteface Mountain. Re-
sults from the Scott stands serve as a baseline description of
the predecline forest. We took care to summarize the compo-
sition in 1964–1966 for stands in the same general area as
the Baldwin and Esther sites. Following the ecological sam-
pling standards of the time, Holway and Scott (1969) mea-
sured only stands without recent major disturbances. Thus,
the 1964–1966 results represent only the mature phase of
forest development.

From the repeated measures in the Esther and Baldwin
plots, we calculated annual mortality, recruitment, and
growth rates. We followed the methods in Sheil and May
(1996) for evaluating mortality and recruitment and took
care to avoid census-period dependence by making compari-
sons only over census intervals of the same length. Spe-
cifically annual mortality (λ, %·year–1) and recruitment (k,
individuals/ha per year) were computed as follows:

[1] λ = −ln( ) ln( )N N
t

t0

[2] k
N
At

N t
N

= − −
⎡

⎣
⎢

⎤

⎦
⎥

*
ln

( )
*

1 r

where Nt is the number of live individuals at the end of the
census interval, N0 is the number of live individuals at the
beginning of the census, t is the length of the census inter-
val, A is the area sampled, and Nr(t) is the total number of
new stems (recruits) present at the end of the census. To ac-
count for those individuals that are newly recruited but die
before they can be recorded at the end of the census interval,
we assumed that the 1964–1966 estimates of tree density
were the asymptotic steady-state values to which the peri-
odic recruitment rates tend (N* in eq. 2). While any assump-
tion of near steady-state dynamics is suspect for a forest
recovering from a decline–disturbance (Battles and Fahey
1996), in practice our calculated recruitment rates were not
sensitive to large changes in N*. For example, a 50% de-
crease in N* for subcanopy spruce trees in Baldwin only
raised the estimated recruitment rate by 12%; doubling N*
only decreased the recruitment estimate by 4%.

We expressed individual tree growth as stem volume in-
crement. To compare the growth rate among species and
populations with different size structures, we needed a met-
ric that accounted for the allometric scaling between plant
growth and plant size (Enquist et al. 1999; Niklas and
Enquist 2001). Based on inspection of the data, we chose to
measure growth as the slope of the regression line describing
stem volume increment as a linear function of initial stem

volume. All regression were forced through zero to preserve
biological reality (i.e., trees with no volume do not grow).
Specifically, for each species at each site we fit the follow-
ing equation using a least-squares procedure:

[3] V V Vt − =0 0RGIv( )

where RGIv is the relative growth increment (m3·m–3), Vt is
the stem volume at the end of the census interval, and V0 is
the stem volume at the beginning of the census interval. In
all cases, the census interval was 10 years. For all regres-
sions, there was a significant linear relationship between
stem volume increment and initial stem volume (p < 0.01).
The fits ranged from a high of R2 = 0.65 for balsam fir at Es-
ther to a low of R2 = 0.29 for red spruce at Esther. Stem vol-
ume was computed using a parabolic approximation: one-
half the stem cross-sectional area at breast height times the
tree height (Whittaker et al. 1974). Tree heights were esti-
mated using site-specific allometric equations that predict
height as a function of species, DBH, and elevation (Battles
et al. 1995).

Changes in aboveground tree biomass were assessed using
the standard methodology described in Whittaker et al.
(1974). For canopy-sized trees (trees ≥9.5 cm DBH), we es-
timated parabolic volume as described above and then used
volume as the independent variable to predict tree biomass
from the allometric equations in Whittaker et al. (1974) as
updated by Siccama et al. (1994b). This approach is the
same as that applied by Friedland et al. (1991) and Friedland
and Miller (1999) for biogeochemical analyses at the Esther
site. However, we used separate species-specific equations
for trees smaller than 9.5 cm DBH to account for onto-
genetic change in tree allometry. A suite of equations for the
dominant species at Whiteface Mountain were available
from work done in the White Mountains of New Hampshire
(Fahey et al. 1998; Reiners 1992; T. Siccama, unpublished
data).

Statistical analysis
To assess changes in forest composition and tree biomass,

we used the appropriate repeated-measures design where the
subjects (in this case, the plots) serve as their own controls
(Neter et al. 1990). Specifically for Baldwin, we used paired
t tests to detect significant changes between 1987 and 1997.
For Esther, we used general linear models with plots as a
random factor to detect significant trends between 1985,
1990, 1995, and 2000. Changes in diameter distributions
were tested with Kolmogorov–Smirnov tests; changes in
median height of canopy-sized trees with Mann–Whitney
U tests. Significant differences in RGI were defined by the
nonoverlap of 95% confidence intervals based on the t distri-
bution. While we applied similar statistical analyses to the
Baldwin and Esther data, it is important to note that the
Baldwin plots represent a stratified random sample of the
spruce–fir forest in the Baldwin watershed. Thus, the results
from the Baldwin plots are representative of the entire wa-
tershed. In contrast, the Esther plots were selected to capture
the range of conditions observed, and thus, inferences cannot
be extrapolated beyond what is happening to the trees in
these plots.

In some cases, mortality rates were based on very small
sample sizes. We assessed the reliability of these estimates
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with randomization tests based on binomial probabilities
(sensu Condit et al. 1995). For 99 random samples, we de-
veloped the distribution of expected mortalities using the ob-
served sample size and the observed ratio of surviving trees.
We then took the 2.5 and 97.5% quantiles as the bounds for
the 95% confidence interval for the observed mortality rate.
Since the trees from the Esther plots are not intended to be
population-level estimates, we did not calculate empirical
confidence intervals for Esther mortality rates.

Results

Community dynamics
In the Baldwin watershed, there was no change in canopy

tree (DBH ≥9.5 cm) density between 1987 and 1997. How-
ever, canopy tree basal area increased by 13% during the
same period (Table 1; paired t test, p < 0.01). Paper birch ex-
perienced the largest relative increase (24%) but the basal
area of all three dominant species increased by at least 15%
(Table 1). Yellow birch was the only canopy tree that de-
clined in relative basal area during the decade. Despite this
basal area increase, there were only minor changes in can-
opy composition. Balsam fir was the dominant species in
1987; its basal area was more than double that of spruce and
paper birch. The same allocation of species dominance was
true in 1997 (Table 1). The composition of the subcanopy
trees was remarkably stable between 1987 and 1997 (Ta-
ble 2). Also, neither the total density nor the composition of
the smallest trees (trees <5 cm DBH and ≥1 m tall) changed
at Baldwin. Both in 1987 and 1997, there were approxi-
mately 6000 stems/ha present in this size class with fir ac-
counting for 83% of the stems; spruce, 11%; and paper
birch, 2%.

In the Esther permanent sample plots, there were no sta-
tistically significant temporal trends in canopy tree density
and basal area (repeated-measures ANOVA, p = 0.34 for
density and p = 0.71 for basal area). However, between 1985
and 2000, there were consistent increases in the density and
basal area of balsam fir coupled with consistent decreases in
red spruce density and basal area (Table 3). Understory tree
density and basal area (2 cm ≤ DBH < 9.5 cm) more than
doubled in the Esther plots between 1985 and 2000. Mean
understory density increased from 2131 ± 714 (mean ± SE)
to 4418 ± 908 stems/ha; basal area went from 3.5 ± 1.0 to
8.8 ± 2.6 m2·ha–1. Although more than 95% of the under-
story trees were fir, spruce and paper birch either maintained

(spruce) or increased (birch) their relative abundance in the
understory size class between 1985 and 2000. This general
rise in understory trees contributed to net increases in basal
area, density, and aboveground tree biomass in the Esther
plots (Table 4). However, only the 81% increase in density
was statistically detectable.

From 1987 to 1997, tree basal area and aboveground tree
biomass in the Baldwin plots increased significantly with
only a minor concomitant change in tree density (Table 4,
Fig. 2). Also, the size distribution of trees in the Baldwin
plots (based on DBH) were nearly identical between 1987
and 1997 (Fig. 2; Kolmogorov–Smirnov, p = 1.0). The same
was true for the diameter distributions at Esther between
1985 and 2000 (Fig. 2; Kolmogorov–Smirnov, p = 0.96), al-
though the numerical gain in total tree density at Esther was
apparent.

Population dynamics
For canopy red spruce trees in Baldwin during the 10-year

census interval (1987–1997), the annual mortality rate was
1.2%·year–1, and annual recruitment rate was 1.4 stems/ha
per year (Table 5). The rates nearly offset each other with
the net result being a small (4%) reduction in spruce canopy
tree density (Table 1). Based on the RGI, spruce grew signif-
icantly faster than associated species (Table 5). This rapid
growth accounted for most of the 15% increase in spruce
basal area (Table 1). For both balsam fir and paper birch,
canopy recruitment exceeded mortality. Thus, a combination
of recruitment and growth led to the observed increases in
fir and birch basal area (Tables 1 and 5). With the exception

© 2002 NRC Canada
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Density (stems/ha) Basal area (m2·ha–1)

Tree species 1964–1966 1987 1997 1964–1966 1987 1997

Red spruce 253 154 148 17.9 5.3 6.1
Balsam fir 521 612 657 11.9 12.2 14.2
Paper birch 158 193 199 7.5 5.1 6.3
Yellow birch 10 64 54 1.9 3.4 3.0
Total 976 1068 (126) 1095 (114) 40.3 26.7 (2.0) 30.3 (2.2)

Note: Canopy trees defined as stems ≥ 9.5 cm DBH. The 1964–1966 data were from seven Scott stands in
or near the Baldwin site. Values in parentheses are SEs (N = 11 plots between 800 and 1100 m elevation).
Other tree species present and included in the total but not listed separately were Acer saccharum Marsh., Acer
pensylvanicum L., Acer spicatum Lam., Sorbus americana Marsh., and Prunus pennsylvanica L.

Table 1. Changes in canopy tree composition at the Baldwin site, an old-growth, spruce–fir for-
est on Whiteface Mountain, New York.

Density (stems/ha) Basal area (m2·ha–1)

Tree species 1987 1997 1987 1997

Red spruce 100 109 0.4 0.4
Balsam fir 736 742 2.9 2.8
Paper birch 171 126 0.7 0.5
Yellow birch 44 29 0.1 0.1
Total 1092 (246) 1028 (172) 4.3 (0.95) 3.9 (0.70)

Note: Subcanopy trees are 5 cm ≤ DBH < 9.5 cm. Values in
parentheses are SEs (N = 11 plots between 800 and 1100 m elevation).
Other tree species present and included in the total but not listed
separately were A. saccharum, A. pensylvanicum, A. spicatum, and
S. americana.

Table 2. Changes in subcanopy tree composition at the Baldwin
site, an old-growth, spruce–fir forest on Whiteface Mountain,
New York.



of yellow birch, mortality and recruitment rates of the sub-
canopy trees in Baldwin were higher than canopy trees (Ta-
ble 6). However, there was little change in the composition
of this stratum of the tree community between 1987 and
1997 (Table 2).

In contrast to Baldwin, annual mortality of red spruce
canopy trees in the Esther plots consistently outpaced can-
opy recruitment (Table 7). For a comparable period (1985–
1995), spruce mortality in Esther was more than double and
recruitment less than 20% of the rates observed in Baldwin
(Tables 5 and 7). On the other hand, while balsam fir experi-
enced relatively high annual mortality (2.0%·year–1 between
1985 and 1995), it had even higher rates of recruitment
(24 stems/ha per year between 1985 and 1995). Balsam fir
also had a significantly higher per volume growth rate than
its associates (Table 7). Red spruce exhibited drastically
lower relative growth rates in the Esther plots compared with
Baldwin (Tables 5 and 7).

One consequence of these community and population
transitions was that canopy trees at Esther have become sig-
nificantly shorter. Median tree height decreased from 10.6 m
in 1985 to 10.1 m in 2000 (Mann–Whitney U test, p < 0.02).
There was no significant change in the height of the Baldwin
canopy (Mann–Whitney U test, p > 0.1), although median
canopy height did increase from 9.9 m in 1987 to 10.2 m in
1997.

Discussion

Forestwide implications of spruce decline
The recent community-level changes in these two spruce–

fir forests suggest that spruce decline did not initiate whole-

sale transformations of tree composition and structure. We
also did not find any evidence of collateral damage to bal-
sam fir or paper birch in the wake of widespread spruce
mortality (Perkins et al. 1992; McLaughlin and Percy 1999).
However, there were important changes in the rate and na-
ture of biomass accumulation since the mid-1980s. Between
1987 and 1997, the spruce–fir forest in the Baldwin water-
shed was an aggrading ecosystem in terms of aboveground
tree biomass with the majority of the increment due to the
growth of canopy-sized trees. This growth occurred with
only minor shifts in composition or structure (Tables 1 and
4, Fig. 2).

Trends in the Esther plots between 1985 and 2000 in-
cluded an increase in overall tree density (Fig. 2, Table 4)
with most of this increase occurring in the understory size
class (9.5 cm > DBH ≥ 2 cm). There was also an increase in
the importance of fir relative to spruce in the canopy (Ta-
ble 3). Friedland and Miller (1999) noted the importance of
fir component in terms of nitrogen biogeochemistry. Nitro-
gen concentration in balsam fir foliage was 40% higher than
red spruce. Although there was only a small increase in tree
biomass between 1985 and 1995 (3%), there was a 27% in-
crease in N stored in vegetation (Friedland and Miller 1999).
Since 1995, the trees in the Esther plots have continued to
accumulate biomass by the same means, namely an ingrowth
of small fir trees.

The 0.5-m reduction in the stature of the Esther canopy
could influence population, community, and ecosystem pro-
cesses at the site. For example, shorter canopy trees experi-
ence a reduced risk of mortality from both chronic and
catastrophic winds (Peltola et al. 1999; Canham et al. 2001).
Miller and Friedland (1999) documented the downward shift
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Density (stems/ha) Basal area (m2·ha–1)

Tree species 1964–1966 1985 1990 1995 2000 1964–1966 1985 1990 1995 2000

Red spruce 356 81 65 59 57 15.9 8.1 6.0 5.0 4.8
Balsam fir 886 593 601 695 773 19.1 14.2 14.4 16.3 17.2
Paper birch 200 57 59 54 56 6.7 4.3 4.6 4.1 4.3
Total 1475 746 (99) 744 (119) 826 (96) 904 (57) 42.1 26.9 (1.3) 25.4 (1.8) 25.7 (2.2) 26.7 (2.3)

Note: Canopy trees defined as stems ≥ 9.5 cm DBH. The 1964–1966 data are from seven Scott stands in or near the Esther site. Values in parentheses
are SEs (N = 4 plots between 1000 and 1063 m elevation). Sorbus americana was a tree species present and included in the total but not listed separately
in the table.

Table 3. Trends in canopy tree composition at the Esther site, a high-elevation, spruce–fir forest on Whiteface Mountain, New York.

(A) Baldwin site (trees ≥5 cm DBH).

Parameter 1987 1997 Change (%) p

Basal area (m2·ha–1) 31.0 34.2 10 0.02
Density (stems/ha) 2160 2123 –2 0.85
Aboveground tree biomass (Mg·ha–1) 124 138 11 0.02

(B) Esther site (trees ≥2 cm DBH).

Parameter 1985 2000 Change (%) p

Basal area (m2·ha–1) 30.3 35.6 17 0.08
Density (stems/ha) 2877 5328 81 0.03
Aboveground tree biomass (Mg·ha–1) 107 115 8 0.28

Note: Statistical significance was evaluated using paired t tests for each structural parameter.

Table 4. Changes in forest community structure in old-growth spruce–fir sites on
Whiteface Mountain, New York: (A) Baldwin and (B) Esther Mountain sites.



in the vertical distribution of leaf area associated with the
changes in canopy structure in the Esther plots. In terms of
the forest community, the amount of foliage in the layers
available to vertebrate browsers (0–2 m in height) doubled
from 0.6 to 1.2 m2·m–2 between 1985 and 1995. At the eco-
system level, any alterations in the composition and distribu-
tion of leaf area has the potential to modify the atmospheric
deposition regime (Miller and Friedland 1999).

Assessing recovery from decline
Standards of proof sufficient to document the existence of

a forest decline were much debated with reference to red
spruce trees (e.g., Loehle 1988). Eventually a consensus was
reached that relied on results from repeated censuses of relo-
cated vegetation plots (Peart et al. 1992a). There also needs
to be criteria to determine the end of a decline event and to
assess the potential for recovery. Thus, we suggest that an
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Fig. 2. Changes in diameter-class distributions for trees in permanent sample plots located in old-growth, spruce–fir forests on White-
face Mountain, New York. Baldwin refers to 11 plots located in the watershed southwest of Baldwin Hill; Esther refers to the four
plots located near the subpeak of Esther Mountain.

Species N0

Mortality
(%·year–1) Nr

Recruitment
(stems/ha
per year) RGI (m3·m–3)

Red spruce 69 1.2 (0.4–2.2) 6 1.4 0.113 (0.074–0.152)
Balsam fir 320 1.6 (1.1–2.0) 68 16.5 0.032 (0.028–0.036)
Paper birch 93 1.0 (0.5–1.6) 14 3.3 0.014 (0.012–0.016)
Yellow birch 28 1.5 (0.4–3.4) 2 0.5 0.008 (0.005–0.011)

Note: Elevation range was 800–1100 m. Canopy recruitment includes correction for recruits
that could have entered canopy class after 1987 but died before remeasurement in 1997 (after
Sheil and May 1996). Values in parentheses are the 95% confidence intervals. N0, number of
individuals in the 1987 census; Nr, number of new recruits since 1987 that were still alive in
1997; RGI, per-volume growth increment during the interval.

Table 5. Demography of canopy trees (≥9.5 cm DBH) at the Baldwin site, an old-
growth, spruce–fir forest, on Whiteface Mountain, New York, based on measure-
ments of 11 permanent sample plots in 1987 and 1997.



end to the decline would require both a cessation of high
mortality and a return to vigorous growth. A recovering pop-
ulation would need to exhibit canopy recruitment that
exceeds or at least matches canopy mortality, and a regener-
ation rate sufficient to maintain its future presence in the
community. Previously, mortality had been approximated by
changes in basal area (Siccama et al. 1982; Scott et al. 1984)
or percent standing dead trees (Silver et al. 1991; Battles et
al. 1992). However, to get the threefold increase in standing
dead spruce observed by Silver et al. (1991) from 1982 to
1987 at their Whiteface site, spruce mortality would have
had to be a least 5%·year–1. The current mortality rate at
Baldwin is comparable with the mortality rates reported for
a stable red spruce population (i.e., nondeclining) in an old-
growth forest in the southern Appalachians (Busing and
Pauley 1994). Growth rates in the Baldwin population have
also rallied to the point where red spruce was the fastest
growing species in the canopy during the decade 1987–1997
(Table 5).

The case for recovery of the Baldwin spruce population is
less certain. Canopy recruitment matched spruce mortality
(Table 5). Overall spruce basal area increased because of the
robust growth of surviving trees (Table 1). For subcanopy
spruce (5 cm ≤ DBH < 9.5 cm), a relatively high mortality
rate (3.6%·year–1) was offset by equally high recruitment
(9.6 stems/ha per year; Table 6) with the result being a small
net change in subcanopy density (Table 2). The smallest size
class of spruce trees (trees ≥1 m tall and <5 cm DBH) re-
mained at approximately 700 stems/ha during the sampling
interval. The demographics suggest that recruitment and re-
generation rates are sufficient to replace the current genera-
tion of canopy trees, but there is as yet no indication that red
spruce is regaining its former status in the community.
Cause for concern includes the relatively high mortality of
spruce in the subcanopy size class. Given the differences in
the autecology of the two conifers, spruce is expected to
have lower mortality than fir in the smaller size classes
(White and Cogbill 1992), yet the opposite was true for the
subcanopy trees at Baldwin (Table 6).

Compared with the Baldwin population, spruce at Esther
are dying faster, growing less, and recruiting more slowly

(Tables 1, 3, 5, and 7). In their analysis of element cycling
at the Esther site, Friedland and Miller (1999) reported a sig-
nificant decrease in red spruce basal area between 1985 and
1995. Indeed, annual spruce mortality during the interval
was 3.6%·year–1, and spruce basal area decreased by 38%
(Tables 3 and 7). The most recent 5-year estimate of mortal-
ity (0.9%·year–1, 1995–2000) implies a return to a more sus-
tainable level of mortality, but this apparent reduction may
be an artefact of the census-period dependence in vital rates
noted by Sheil and May (1996). The evidence from the Es-
ther plots indicates that spruce decline is not yet over.

It is important to note that the trees in the Esther plots
represent a high-elevation subset of the population. In the
montane forest of the U.S. Northeast, the more demanding
environment encountered at higher elevations is associated
with lower growth and higher mortality of the dominant tree
species (Siccama 1974; Foster and Reiners 1983; Battles et
al. 1992). In addition, there was a well-documented eleva-
tion gradient in the severity of spruce decline (Craig and
Friedland 1991). Specifically at Whiteface Mountain, there
was a significantly higher fraction of standing dead spruce
above 1000 m in elevation (Battles et al. 1992). Also, Miller
and Friedland (1999) could not detect any significant de-
crease in either S or N deposition rates between 1986 and
1996 at the Esther site, a result in contrast to the regionwide
trend and the trend from the NADP site at a lower elevation
on Whiteface Mountain. The comparison suggests that given
the documented importance of the elevational complex gra-
dient in structuring the vegetation of these mountain ecosys-
tems (Bormann et al. 1970; White and Cogbill 1992), there
most likely will be differences in the nature and timing of
the forest recovery from spruce decline.

Future implications
Compared with the composition of the predecline forest

(1964–1966), the contemporary forest at Baldwin and Esther
had fewer spruce and a greater relative dominance of balsam
fir (Tables 1 and 3). We recognize that values based on the
Scott stands are biased toward larger basal area, lower tree
density, and greater spruce dominance given the explicit ex-
clusion of disturbed patches from their sample (Holway et
al. 1969). Yet, these historical estimates do set an upper
bound for the trajectory of any recovering stands. As of yet,
none of the 15 contemporary plots were approaching the
“mean” composition of the spruce–fir forest in 1964–1966.

For canopy red spruce trees at Whiteface Mountain, visual
assessment of crown condition (Johnson and Siccama 1983;
Silver et al. 1991; Peart et al. 1992a) has proven to be a reli-
able indicator of tree vigor. For the Baldwin plots, less than
5% of the spruce trees in 1987 and 1997 were in the severe
crown damage class (>50% of crown foliage missing or dis-
colored); for the Esther plots, more than 25% of the trees
had crowns with severe damage in 1985 and 1995. The dif-
ference between sites in the proportion of trees with un-
healthy crowns was reflected in the corresponding difference
in spruce growth rates (Tables 5 and 7).

Looking toward the future, the return of these red spruce
populations to their predecline dominance is uncertain.
Weather plays a fundamental role in spruce decline. It mod-
ulates the input of the predisposing stressor (i.e., acidic de-
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Species N0

Mortality
(%·year–1) Nr

Recruitment
(stems/ha
per year)

Red spruce 43 3.6 (2.1–5.8) 39 9.6
Balsam fir 310 2.8 (2.2–3.4) 157 42.4
Paper birch 74 2.3 (1.2–3.7) 4 0.9
Yellow birch 15 0.7 (0–2.2) 2 0.5

Note: Elevation range was 800–1100 m. Canopy recruitment includes
correction for recruits that could have entered canopy class after 1987 but
died before remeasurement in 1997 (after Sheil and May 1996). The range
of values in parentheses are the 95% confidence intervals based on 99
random samples of the binomial distribution. N0, number of individuals in
the 1987 census; Nr, number of new recruits since 1987 that were still
alive in 1997.

Table 6. Demography of subcanopy trees (9.5 cm > DBH ≥
5 cm) at the Baldwin site, an old-growth, spruce–fir forest on
Whiteface Mountain, New York, based on measurements of 11
permanent sample plots in 1987 and 1997.



position) and determines the severity of a key inciting factor
(i.e., midwinter temperatures cold enough to induce freezing
injury to foliage). Because of the unpredictability of the
weather component of this decline, current trends that sug-
gest an incipient recovery could be reversed by a series of
cold winters.

Red spruce decline is a regional phenomenon with a com-
plex etiology (Johnson et al. 1992). To measure and to un-
derstand any recovery will require a regionwide evaluation.
Here, we present the first estimates of mortality and recruit-
ment for the subalpine forest in the U.S. Northeast. How-
ever, many more communities and populations need to be
sampled to test the spatial and temporal consistency of the
trends observed for two sites on Whiteface Mountain.
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