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Probability density functions for hyperbolic and isodiachronic locations

Abstract

Animal locations are sometimes estimated with hyperbolic techniques by estimating the difference in
distances of their sounds between pairs of receivers. Each pair specifies the animal's location to a hyperboloid
because the speed of sound is assumed to be spatially homogeneous. Sufficient numbers of intersecting
hyperboloids specify the location. A nonlinear method is developed for computing probability density
functions for location. The method incorporates a priori probability density functions for the receiver
locations, the speed of sound, winds, and the errors in the differences in travel time. The traditional linear
approximation method overestimates bounds for probability density functions by one or two orders of
magnitude compared with the more accurate nonlinear method. The nonlinear method incorporates a
generalization of hyperbolic methods because the average speed of sound is allowed to vary between different
receivers and the source. The resulting "isodiachronic" surface is the locus of points on which the difference in
travel time is constant. Isodiachronic locations yield correct location errors in situations where hyperbolic
methods yield incorrect results, particularly when the speed of propagation varies significantly between a
source and different receivers.
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Animal locations are sometimes estimated with hyperbolic techniques by estimating the difference
in distances of their sounds between pairs of receivers. Each pair specifies the animal’s location to
a hyperboloid because the speed of sound is assumed to be spatially homogeneous. Sufficient
numbers of intersecting hyperboloids specify the location. A nonlinear method is developed for
computing probability density functions for location. The method incorporatesori probability

density functions for the receiver locations, the speed of sound, winds, and the errors in the
differences in travel time. The traditional linear approximation method overestimates bounds for
probability density functions by one or two orders of magnitude compared with the more accurate
nonlinear method. The nonlinear method incorporates a generalization of hyperbolic methods
because the average speed of sound is allowed to vary between different receivers and the source.
The resulting “isodiachronic” surface is the locus of points on which the difference in travel time

is constant. Isodiachronic locations yield correct location errors in situations where hyperbolic
methods yield incorrect results, particularly when the speed of propagation varies significantly
between a source and different receivers.2@2 Acoustical Society of America.

[DOI: 10.1121/1.1513648

PACS numbers: 43.80.Ev, 43.30.5f, 43.10[M#A ]

I. INTRODUCTION imperfectly known locations of the receivers and the source.
But the method described here may give an answer with
Hyperbolic locations are derived by intersecting hyper-more computational efficiency. The density functions are de-
boloids from estimates of the differences in distances berived using the nonlinear relationship between the differ-
tween pairs of receivers. There may not be a publishe@nces in travel time and the unknown quantities such as the
method in the bioacoustics literature for computing probabil-sound speed field, wind field, and the locations of the animal
ity density functions for hyperbolic locations without making and the receivers. In many practical situations, the probabil-
the linear approximation between the data and the locationgty density functions reveal that locations can be made with
Furthermore, hyperbolic location methods for locating call-one or more orders of magnitude more accuracy than those
ing animals are restricted to the case where the speed éund with the linear approximation.
sound is constant throughout space, in which case the differ- The problem with linear error analysi€ alone is that
ence in distance is estimated from the difference in arrivakource location is not a linear function of the travel time
time of the sound. A nonlinear method is developed here fotlifferences, speed of sound, and receiver locations. One ex-
estimating probability density functions for location without pects linear analysis of errors to yield reasonable estimates
requiring that the speed of sound be constant. Because thghen the source is near intersecting hyperboloids that are
average speed is different between the source and each gell approximated by planes. But this is often not the case,
ceiver, one no longer has hyperbolic geometries that are seand the curvature of the hyperboloids near a source may be
ond order polynomials in the Cartesian coordinates. Insteagignificant over the region that linear error analysis pre-
a new geometrical surface, called an “isodiachron,” is de-scribes. In these cases a complete nonlinear analysis of errors
fined that depends on the Cartesian coordinates throughig warranted. As we will see, the nonlinear analysis yields
fourth order polynomial. The word isodiachron is derived much smaller errors for location than linear analysis in many
from the Greek words “iso,” for same, “dia,” for difference, cases of interest because locations will be confined to be on
and “chron,” for time. The surface is one along which the the curved hyperbolic surfaces.
locus of points has the same difference in travel time be-  There appears to be another technical difficulty in esti-
tween two points in space. This reduces to a hyperboloignating location errors even when one accounts for the fact
only if the speed of sound is spatially homogeneous. that the linear approximation is invalid. When one has more
The approach is not as complicated nor accurate as cahan the minimum number of receivers required to locate an
be obtained by doing a joint tomographic inversion for theobject, the method for assessing errors does not appear to
sound speed and wind fields and for the locations of thénave been dealt with in the literature in a satisfying method.
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Schmidt’s interesting paptuses Monte Carlo simulations to resolved with the travel time difference between the first and
estimate errors in source location. Suppose for the momeriifth receiver'! The presentation below thus starts with a
that a mathematically unambiguous location can be achievedhinimum constellation of four receivers.

with three receivers for a two-dimensional geometry. The distance between thth receiver atr; and a source
Schmidt jiggles ideal travel time differences and receiver coatsis |r;—s| so we havé{r;—s|?>=c?t?=c?(7,+t,)%. The
ordinates within their expected errors to see how much average speed and travel time of sound between the source
location changes with respect to the correct location. Errorand receivei arec; andt; respectively.rj;=t;—t; andsis

are obtained by taking the largest misfit between the jiggle& column vector with Cartesian coordinates, ,Sy,sz)T

and correct estimate of location. When there are more thawhere T denotes transpose. Putting the first receiver at the
three receivers, saR receivers, he suggests using this pro-origin of the coordinate system, one subtracts the equation

cedure for each combination of three receivers giving, fori=1 fromi=2,3, and 4 to get,
(R _ R Irill?=2r{s=c?sf + 2¢t 7ty +ti(ci— cd).
3/ (R=3)13!" This simplifies to,
total combinations. Each combination is referred to as a Rs=1p-—t,f—t3g, (1)

“constellation” here. Schmidt suggests using a least squares

procedure to find a final estimate of error from the results ofvhere,

thg largest misfit from each constelle_ltion. He dpes not prove (X)) Ta(y) rx(2)
this least-squares procedure is optimal, and indeeds states

that he is not sure of any advantages in using a least-squares R=| ra(X) raly) rs(2) |;
procedure in this situation. ra(X) ray) ra(z)

Instead of least-squares, a Monte Carlo technique is used (2)
: o - ; . [r,l2—car2 cor
to estimate a probability density function of source location 2 ) % gl % 21
from each receiver constellation. For a constellation, the b= [rall®—c373, |; f=| c37a1],
sound speed, winds, and receiver locations are treated as ran- I all?—c373, cita
dom variables with some probability density function. The
- . ) ) and,

probability density function can be obtained from theory,
data, or a guess. When guessing, it may be advantageous to cg—ci
let the probability density function have the largest possible g= E 03—05 3
bounds with the most ignorance so as to not overestimate the 2 0421_ cf

accuracy of a location. For example, suppose one believes
the x location of a receiver is at 10 m with an error of two and  where the Cartesian coordinate of; s
centimeters. Then the associated probability density functiofiri(x),ri(y).ri(z)). Equation(1) simplifies to

for this parameter can be taken to be a uniformly distributed b

random variable in the intervd®.8, 10.4 m. With the a s=R™ 1> —R t,—R gt?, (4)
priori probability density function, the various values of the 2

sound speed, winds, and receiver locations yield possiblghat can be squared to yield,

source locations that occupy a cloud in three-dimensional

space. The actua] source must Iie_ within thq intersectio_n of STS=||§|2=E_a2t1+(a3—a4)t§+ 2a5ti'+ aet‘l‘, 5)
the clouds from different constellations. The final probability 4

function for the source location is estimated from the distri- 1o re

butions within the intersection. The density function has the

benefit of being able to yield many useful values such as an  a;=(R™'b)"(R™'b), a,=(R™'b)"(R™f),

average location, maximum likelihood location, and any de- a;=(R"NT(R1), a,=(R b)T(R 1g), ©)

sired confidence limit.
as=(R'T(R'g), ag=(R'gT(R'g),

andR ™! is the inverse oR. A solution fort, is obtained by

Il. LOCATING SOUNDS USING FOUR OR FIVE substituting,
RECEIVERS WITH INHOMOGENEOUS SOUND SPEED .
FIELD Is]?=c5t7, ()

Watkins and Schevillsmethod for locating sounds us- for [[sl? in Eq. (5) to yield a quartic equation ify ,
ing four receivers is imitated, but instead of letting the speed a
of sound be constant, it is allowed to have a different average ast‘l‘+ 2a5t§+ (ag—as— ci)ti— at+ Zl =0, (8
speed between the source and each receiver. Although five
receivers are required in general to locate a source in threthat can be solved analytically, as discovered by Lodovico
dimensions in a homogeneous sound speed field, there akerrari in 1540(Ref. 12, or numerically with a root finder.
spatial regions where only four are requifeld:**When am-  Valid roots from Eq.(8) are finally used to estimate the lo-
biguous solutions occur with four receivers, the ambiguity iscation of the source using E¢4). Note that if the sound
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speed is spatially homogeneous, i.s5cq, V i, then the than one location from this equation, a location is chosen to
cubic and quartic terms vanish and the resulting quadratibe that yielding the closest difference in travel time to a
equation is that found before for hyperbolic location. randomly chosen fifth receiver and receiver number one.
Ambiguous solutions occur for a spatially homogeneous A valid configuration from a receiver constellation is
sound speed field when there are two positive roots to thene in which the source location lies within some pre-
guadratic equation. For each ambiguous source location, orgetermined spatial limits. For example, one would know that
can generate a model fet; and choose the root fdy that  sounds from snapping shrimp occur below the surface of the
yields a model forrs; that is closest to that measured. In the water. If a receiver constellation yields a location above the
cases investigated in this paper, the quartic equdBbican  surface, then that particular configuration of random vari-
yield four distinct positive values fdr,. This can only hap- ables could not have occurred in reality, and that source lo-
pen because the speed of propagation is spatially inhomogeation is discarded.
neous. Because the valuesopfare similar in this paper, the Valid configurations from a receiver constellation define
four distinct roots yield two pairs of source locations, onea cloud of source locations. Accurate probability density
pair of which is relatively close to the receivers and the othefunctions of location require a sufficient number of valid
pair of which is located very far from the receivers. The configurations. A sufficient number is generated for each of
distant pair is due to the fact that locations are not exactlthe N constellations.
determined by intersecting hyperboloids for a spatially inho-  Some constellations give better locations of the source
mogeneous speed of propagation. The actual thredhan others. This happens for several reasons, and is usually
dimensional locus of points specified by a travel time differ-due to the geometrical arrangement of the receivers. For ex-
ence is thus not quite a hyperboloid. More precisely, theample, suppose the source is near the geometric center of a
hyperboloid is the locus of pointssatisfying, pyramid and one constellation consists of four receivers on
Iri—s—[ri—s|=cr ©) the vertices of the pyramid. That constellation would be able
: ! e to locate the source rather well. Then consider another con-
where the spatially homogeneous speed of propagation is stellation of four receivers located close to a line at a great
Letting the speed be different along each section yields theistance from the source. This constellation would not be
definition of the isodiachron which is the locus of points able to locate the source as well.
satisfying, The only physically possible locations for the source lie
Iri—s| ||rJ- 4 vyithin the_ inte_rsectior?s of the clouds. The other source loca-
—_— = (100  tions are invalid. In this paper, the upper and lower bounds of
the intersected regionX(X), (Y,Y), and @,Z), are esti-
which turns out to depend on the Cartesian coordinatemated along the Cartesian axes. ¥, (X.), (J..¥.), and
through a fourth order polynomial. The values®mfcan in-  (z.,z.) denote the maximum and minimum valuesxfy,
corporate spatially inhomogeneous effects such as winds adz for cloud ¢, then the region of intersection is,
well as wave speeds. The coefficients of the third and fourth
powers inx, y, andz and their combinations become very ~ X=min(Xy,%z,%3,"**Xy)
small compared to the coefficients in the second, first, and
zero powers as the variogsapproach the same valagnot
shown).

Tii
Ci Cj "

Y=min(§1,92.93,"-In)
lll. PROBABILITY DENSITY FUNCTIONS FOR Y=maxya.yz ¥s,Yn)
SOURCE LOCATION FROM RECEIVER 7= mMin(2y, 25,25, 23)
CONSTELLATIONS

Whenr;, 7;;, andc; are random variables, thépands Z=max2;,2p,23, " "Zy).

are random variables because of E@, (8). For later con-  For each clouct, locations outside of the bounds in Egs.
venience in comparing to linear theories, consider the situar12) are discarded. New probability density functions are
tion where €;(x),ri(y),ri(2)), 7, andc; are mutually un-  formed from the remaining locations in each cloud for xhe
correlated Gaussian random variables with given means angd andz values separately. It is not expected that the new
variances. probability density functions would asymptotically approach

A computer generates a single random configuration obne another because each constellation will be able to locate
variables for a constellation of four receivers. Each configuthe source with a different quality.

ration consists of the s¢t;(x).ri(y),ri(2),j,ci} for some The probability density functions for the source inxts
1,j€1,2,3;--,R andi>]j. Then for each constellation, of y, andz coordinates are dependent distributions. This can be
which there are a total of, accommodated by forming the joint probability density func-
R Rl tion of location for each cloud if desired. This is not done
N= 4 = m, (11 here.

P percent confidence limits are estimated by finding the
a source location is computed from Ed) if that equation P percent confidence limits for each cloud separately using
yields a unique location. If any constellation yields moreits probability density functions ir, y, andz. The Cartesian
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TABLE I. The Cartesian coordinates of arrays one and (fig. 1) and their ARRAY 1 Ra
standard deviations. Receiver one’s location is defined to be the origin of the o
Coordinate system, and so has zero error. fhweordinate of receiver two B S
is defined to be ag=0, and thus has zero error. T e
N
X (m) y (m) z(m)
Array 1 1088 T & souRce
R1 0+0 0+0 0+0 ¥ ) 05 20 400 g0 1000
R2 10002 0+0 0+1 X m)
R3 10002 1000+ 2 0+1
R4 02 1000t 2 0+1
R5 05 0+5 —100£5
SOURCE 551 451 —100
Array 2
R1 0+0 0+0 0+0
R2 1414+ 2 0+0 0+1
R3 534+ 2 400+2 0+1 Y (m) X (m)
R4 14595 —1052+5 —25+5
R5 145920 —1052+20 —95+20 FIG. 1. The receiver and source locations for arrays one and two.
R6 0+20 0+20 —100+20
R7 1414+ 20 0+20 —100+20
SOURCE 860 47 -5 The errors in the travel time differences and receiver

locations may not be mutually uncorrelated as assumed
above. For example, errors iy, may be correlated with;;

upper and lower bounds for a specified confidence limit fobecause both involvg . Also, for example, the errors in the

constellationc are denoted P (x) =) )] [P () =) ] location of receiver 3 are not necessarily uncorrelated be-
A o e e €77 tween two constellations that both contain receiver 3. Linear
and[P.(2),P.(2)]. The final bounds for the source are cho-

error analysis can accommodate correlations between ran-
sen from the smallest bound far y, andz from each con-

stellation. For example, suppose constellatipnhas the dom variableg, as can the nonlinear analysis in this paper.

llest val B 5(x) for all val ; el However, incorporating these correlations leads to larger
smallest value oP(x) —P(x) for all values ofc, constella- 55 ational times in the nonlinear analysis, so they are not

tion g has the smallest value &(y) — P(y) for all values of  implemented. Error models that follow are done assuming
¢, and constellationr has the smallest value oP(z) that random variables are mutually uncorrelated for both the
—P(2) for all values ofc. Then the final confidence limits linear and nonlinear analysis. We found that the results were
for the source are ﬁ’p(x),ﬁ’p(x)], [Isq(y),ﬁ’q(y)], and identical for the linear analysisvhen the random variables
[Isr(z),lf’r(z)]. were corr_elz_ited. _ _ _

To mimic marine examples, array one has five receivers
separated by @000 m horizontally and up to 100 m verti-
cally (Fig. 1, Table ). The five receiver constellatiof&q.
(11)], one through five, ard1,2,3,4, {1,2,3,5, {1,2,4,5,

Examples below utilize 2000 valid configurations of ran-{1,3,4,3, and{2,3,4,3, respectively. The 100% confidence
dom variables to estimate probability density functions forlimits for the source are computed from E2) for increas-
each cloud. ing numbers of constellations whekkis setto 1, 2, 3, 4, and
5 respectively in this equation for Fig. 2. As more clouds are
intersected, the limits for the source decrease monotonically,

Because error bars derived from linearized hyperboliowith the biggest improvement occurring with the addition of
location techniqués’ assume the speed of sound or light is constellation two with one. Constellation one only uses the
spatially homogeneous, comparison with a linear theory iseceivers atz equal zero. Constellation two is the first one
done using a spatially homogeneous value of 1475 m/s. Thihat includes the receiver at=—100 m. This deeper re-
travel time differences are computed for this speed. In theeiver not only helps in locating the source’s vertical coordi-
error analysis, the sound speed is assumed to be a Gaussiaate, but significantly helps locate the horizontal coordinates
random variable with mean 1475 m/s and standard deviatioas well. The probability density functions for the source lo-
of 10 m/s. This standard deviation is realistic if one considersation come from constellations two and fd&ig. 3). These
paths emitted from a shallow source to receivers at perhapsd@ensity functions appear to be approximately Gaussian. The
m and 100 m depth because the surface region can be ve68% confidence limits span only a few meters in the hori-
warm compared with temperatures below. Travel time differ-zontal coordinates and are about 50 m in the vertical coordi-
ences are assumed to be mutually uncorrelated Gaussian rarate (Table 1l). The confidence limits from the nonlinear
dom variables with means given by true values and standaranalysis are about a factor of ten less than those from the
deviations of 0.0001414 s. Receiver locations are assumestandard linear analysis of errors in the horizontal coordi-
to be mutually uncorrelated Gaussian random variables witlnates. The nonlinear analysis has smaller limits because the
means given by their true values and standard deviations dg/perboloids are not well approximated by planes in the
shown in Table I. horizontal directions as required by the linear analysis. Non-

IV. EXAMPLES

A. Hyperbolic location

J. Acoust. Soc. Am., Vol. 112, No. 6, December 2002 J. L. Spiesberger and M. Wahlberg: Hyperbolic and isodiachronic locations 3049



LIMITS (m) TABLE II. 68% confidence limits for source location corresponding to ar-

80 ' ' ' rays one and two for the nonlinear and linear analyses.
[
700 A
X ) 68% Confidence limitsm)
6001 1 Cartesian
‘ . ; coordinate Nonlinear Linear
5001 2 3 4 5
00 Array 1
¢ X 550 to 552 530 to 573
v T . y 450 to 452 432 to 471
z —145 to —77 —121 to —80
3000 B
200 L L L Array 2
! 2 8 4 s X 860 to 865 236 to 1486
P 2 g g 1 y 46 to 62 —1890 to 1988
i | z —138 to 65 ~163 to 153
z -2000+ i
30008 2 s 7 5 distribution inz looks more Gaussian-like. These departures
NUMBER OF RECEIVER CONSTELLATIONS USED from Gaussian distributions are quite different than the

FIG. 2. 100% confidence limits for source location as a function of theGaussian distributions usually assumed from linear analyses.
number of receiver constellations used from array (fig. 1). There are  This time, the 68% confidence limits from the nonlinear
five ways of choos.ing four receivers from five tota}l without replacement. Aana|yses are two orders of magnitude smaller than those
receiver constellation consists of one of the choices of four receivers. A . - .

more constellations are used to locate the source, the bounds for the sourci@m Stan_dard Imea_r anaIyS|_s mandy (T_ab_le ID. The Imear_
location decrease monotonically. The lines join results from different num-and nonlinear confidence limits are similar for the vertical
bers of constellations. coordinate.

linear analysis yields somewhat larger limitszithan linear ) _ _

analysis(Table 1)). Similarity of results irz indicates that the ~B- Isodiachronic location

hyperboloids are fairly well approximated as planes in the |t appears there are two extreme situations in which iso-
vertical coordinate in the vicinity of the source. diachronic locations are useful.

Array two has seven receivers with the largest horizontal  The first is one where the speed of sound is similar, but
and vertical separations being about 1400 and 100 m, respefiot exactly the same between each source and receiver. Con-
tively (Fig. 1). There are 35 receiver constellatidisy. (11)]  sider an atmospheric example for locating a sound at Carte-
of which the first four provide most of the accuracy for lo- sjan coordinat€20,100,7 m from five receivers at0,0,0,
cating the source at the 100% confidence lin{fEsg. 4). (25,0,3, (50,3,5, (30,40,9, and (1,30,8 m, respectively.
These constellations are the first of the 35 that include all therhe speed of sound is a typical 330 m/s. The speed of propa-
deeper receivers. There are modest increases in accuraggtion is made to be inhomogeneous by introducing a wind
from other constellations, most notably 29 and 33. The probof 10 m/s in the positivey direction. Next, simulated values
ability density functions in the x-y-z coordinates come fromof the travel time differences are computed using these val-
constellations 7, 4, and 26, respectivelig. 5. The distri-  yes. The source is located using hyperbolic and isodiachronic
butions inx andy do not look very Gaussian, while the |ocation. It will be seen that only isodiachronic location

yields a correct solution.

04 T T T T

0.3k Rec. Constellation 2 |

o LIMITS (m)
o 1200
[\
o
1100
X 1000
900
800
03f E 0
g
g 0.2 B
o
0.1F —
o Y
446 447 448 449 450 451 452 453 454 455
Y (m)
0.4 T T T
0
-1000
z
0
-250 -~200 -150 -100 -50 0 -2000
Z(m)
=-3000
0 5 10 15 20 25 30 35
FIG. 3. Probability density functions for source location from array one NUMBER OF RECEIVER CONSTELLATIONS USED

(Fig. 1, top, calculated from the nonlinear method in this paper. Receiver
constellation 2 is receivers 1, 2, 3, an@fg. 1, top. Receiver constellation  FIG. 4. Same as Fig. 2 except for array two in Fig. 1 and there are 35 ways
4 is receivers 1, 3, 4, and 5. of choosing 4 receivers from a total of 7 without replacement.
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. ARRAY 2 Incorrect locations are obtained using the hyperbolic
Rec. Constelation 7 ' ' ' method. For example, the source’s 100% confidence limits

for x are 19.02 to 19.05 m, but its actualocation is 20 m.

£ Similarly, the 100% confidence limits fgrare 103 to 105 m,
'0 but the actual value is 100 m. So givarpriori variations of

860 865 oo 875 880 885 receiver locations, travel time differences, and environmental
08 ' ' ' ' variations, the hyperbolic method always yields incorrect an-
o6k Rec. Constellation 4 B swers

With isodiachronic location, 95% confidence limits for

i the source arg: 19.5 to 23.7 my: 92.6 to 106 mz —26 to

10 120 120 13 m. These are correct. Other confidence limits could be
- - ; given but they are not shown because the point is that isodi-
oaf  FRec. Constellation 26 1 achronic location yields a correct answer at a stringent con-

Soal ] fidence of 95%.
of E The second case where isodiachronic location would be
o et e e N e — useful is one where the speed of sound is quite different

Zm between the source and each receiver. In this case, hyper-

FIG. 5. Probability density functions for source location from array two POlIC locations WOUld be mapproprlate_ to use because the
(Fig. 1, bottom using the nonlinear method of this paper. Receiver constel-speed of sound is not nearly constant in space. For example
lations 7, 4, and 26 are composed from receir2,4,7, {1,2,3,%, and  suppose low frequency sources such as Finback whales are
{2.3,6,3, respectively. located. Suppose some receivers close to the source pick up

only the first acoustic path through the sea, while other dis-
tant receivers pick up only the acoustic path that propagates

truncated to have a maximum of two standard deviations foEeIOW the sea-flod? because the paths through the water are
locked by seamounts. The speed of propagation along the

the following two reasons. First, many experimental situa- i 4 solid-Earth path differ b th fact
tions are inaccurately represented by assuming that rando A elrsan solid-tarth patns can ditier by more than a tactor
of 2.7 In other scientific fields, sounds can propagate to re-

variations differ from an estimate by say ten standard devia=" . | ths with diff i ds of q h
tions. Instead, it is more realistic to truncate the variationsS€'VErsS along paths wi ilerent speeds of sound, such as

Second, it is important to note that a realistic truncation isfrom vehicles where paths propagate through the air and

easy to impose with the models developed here but is difﬁground.

cult to implement with analytical and linear approximations
for error. V. CONCLUSION

The standard deviation for receiver locations is 0.02 m. A method is developed for computing probability den-
The variations are zero for the y, andz coordinates of ity functions for hyperbolic locations without relying on any
receiver 1, they andz coordinates of receiver 2, and t#e  |inear approximation between travel time differences at pairs
coordinate of receiver 3. The coordinates with zero variay recejvers and the location of the source. In cases of prac-
tions merely define the origin and orientation of the coordi-tjc4) interest, the confidence limits for location can be one or
nate system. The andz components of the winds are mod- 15 orders of magnitude smaller with the nonlinear analysis
eled to have a value of 0 m/s. For hyperbolic location, thehan the linear one. The method for computing probability
speed of acoustic propagation must be spatially homogesensity functions includes priori information about the
neous. The mean and standard deviation for sound speed a§g,hapility density functions of the receiver locations, the
330 m/s and 10 m/s, respectively. For isodiachronic locationgyeeq of sound, and the errors in the differences in travel
the speed of propagation is inhomogeneous. The speed QEne.
sound is taken to be 330 m/s. Thepriori value of the wind It appears to be useful to relax the traditional assumption
in they direction has mean 0 an_d standard QeV|at|on 10 m/shat the speed of acoustic propagation be spatially homoge-
Values of the speed of acoustic propagation, between naqys for hyperbolic locations. Instead, one can allow the
receiveri and the source are unknown because the |Ocat'°5verage speed to be different between each receiver and the
of the source is initially unknown. Therefore, it is impossible g5 ;rce. This leads to a new geometrical surface, called an
to precompute the component of the wind vector along thgsagiachron, that approaches a hyperboloid when the speed
direction from the source to each receiver. Instead, the valugs propagation is spatially homogeneous.
for eachc; is computed using a direction chosen at random  The ideas in this paper need to be tried with data.
through the simulated field of sound speed and wind. The
error in travel time due to the straight path approximation iSACKNOWLEDGMENTS
typically less than a microsecond at these rafigise travel
time differences are derived with ideal values for means and Magnus Wahlberg was funded by the Danish National
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rived from Eqg. 41 in Ref. 6 using an rms bandwidth of 1000cation. We thank the reviewers, David Mellinger and Mark
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correlation function of the signals between receivers. clarity of the manuscript.
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