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Probability density functions for hyperbolic and isodiachronic locations

Abstract
Animal locations are sometimes estimated with hyperbolic techniques by estimating the difference in
distances of their sounds between pairs of receivers. Each pair specifies the animal's location to a hyperboloid
because the speed of sound is assumed to be spatially homogeneous. Sufficient numbers of intersecting
hyperboloids specify the location. A nonlinear method is developed for computing probability density
functions for location. The method incorporates a priori probability density functions for the receiver
locations, the speed of sound, winds, and the errors in the differences in travel time. The traditional linear
approximation method overestimates bounds for probability density functions by one or two orders of
magnitude compared with the more accurate nonlinear method. The nonlinear method incorporates a
generalization of hyperbolic methods because the average speed of sound is allowed to vary between different
receivers and the source. The resulting "isodiachronic" surface is the locus of points on which the difference in
travel time is constant. Isodiachronic locations yield correct location errors in situations where hyperbolic
methods yield incorrect results, particularly when the speed of propagation varies significantly between a
source and different receivers.
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Probability density functions for hyperbolic and isodiachronic
locations
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Magnus Wahlberg
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Animal locations are sometimes estimated with hyperbolic techniques by estimating the difference
in distances of their sounds between pairs of receivers. Each pair specifies the animal’s location to
a hyperboloid because the speed of sound is assumed to be spatially homogeneous. Sufficient
numbers of intersecting hyperboloids specify the location. A nonlinear method is developed for
computing probability density functions for location. The method incorporatesa priori probability
density functions for the receiver locations, the speed of sound, winds, and the errors in the
differences in travel time. The traditional linear approximation method overestimates bounds for
probability density functions by one or two orders of magnitude compared with the more accurate
nonlinear method. The nonlinear method incorporates a generalization of hyperbolic methods
because the average speed of sound is allowed to vary between different receivers and the source.
The resulting ‘‘isodiachronic’’ surface is the locus of points on which the difference in travel time
is constant. Isodiachronic locations yield correct location errors in situations where hyperbolic
methods yield incorrect results, particularly when the speed of propagation varies significantly
between a source and different receivers. ©2002 Acoustical Society of America.
@DOI: 10.1121/1.1513648#

PACS numbers: 43.80.Ev, 43.30.Sf, 43.10.Ln@WA#

I. INTRODUCTION

Hyperbolic locations are derived by intersecting hyper-
boloids from estimates of the differences in distances be-
tween pairs of receivers. There may not be a published
method in the bioacoustics literature for computing probabil-
ity density functions for hyperbolic locations without making
the linear approximation between the data and the locations.
Furthermore, hyperbolic location methods for locating call-
ing animals are restricted to the case where the speed of
sound is constant throughout space, in which case the differ-
ence in distance is estimated from the difference in arrival
time of the sound. A nonlinear method is developed here for
estimating probability density functions for location without
requiring that the speed of sound be constant. Because the
average speed is different between the source and each re-
ceiver, one no longer has hyperbolic geometries that are sec-
ond order polynomials in the Cartesian coordinates. Instead,
a new geometrical surface, called an ‘‘isodiachron,’’ is de-
fined that depends on the Cartesian coordinates through a
fourth order polynomial. The word isodiachron is derived
from the Greek words ‘‘iso,’’ for same, ‘‘dia,’’ for difference,
and ‘‘chron,’’ for time. The surface is one along which the
locus of points has the same difference in travel time be-
tween two points in space. This reduces to a hyperboloid
only if the speed of sound is spatially homogeneous.

The approach is not as complicated nor accurate as can
be obtained by doing a joint tomographic inversion for the
sound speed and wind fields and for the locations of the

imperfectly known locations of the receivers and the source.
But the method described here may give an answer with
more computational efficiency. The density functions are de-
rived using the nonlinear relationship between the differ-
ences in travel time and the unknown quantities such as the
sound speed field, wind field, and the locations of the animal
and the receivers. In many practical situations, the probabil-
ity density functions reveal that locations can be made with
one or more orders of magnitude more accuracy than those
found with the linear approximation.

The problem with linear error analysis1–7 alone is that
source location is not a linear function of the travel time
differences, speed of sound, and receiver locations. One ex-
pects linear analysis of errors to yield reasonable estimates
when the source is near intersecting hyperboloids that are
well approximated by planes. But this is often not the case,
and the curvature of the hyperboloids near a source may be
significant over the region that linear error analysis pre-
scribes. In these cases a complete nonlinear analysis of errors
is warranted. As we will see, the nonlinear analysis yields
much smaller errors for location than linear analysis in many
cases of interest because locations will be confined to be on
the curved hyperbolic surfaces.

There appears to be another technical difficulty in esti-
mating location errors even when one accounts for the fact
that the linear approximation is invalid. When one has more
than the minimum number of receivers required to locate an
object, the method for assessing errors does not appear to
have been dealt with in the literature in a satisfying method.
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Schmidt’s interesting paper8 uses Monte Carlo simulations to
estimate errors in source location. Suppose for the moment
that a mathematically unambiguous location can be achieved
with three receivers for a two-dimensional geometry.
Schmidt jiggles ideal travel time differences and receiver co-
ordinates within their expected errors to see how much a
location changes with respect to the correct location. Errors
are obtained by taking the largest misfit between the jiggled
and correct estimate of location. When there are more than
three receivers, sayR receivers, he suggests using this pro-
cedure for each combination of three receivers giving,

S R
3 D5

R!

~R23!!3!
,

total combinations. Each combination is referred to as a
‘‘constellation’’ here. Schmidt suggests using a least squares
procedure to find a final estimate of error from the results of
the largest misfit from each constellation. He does not prove
this least-squares procedure is optimal, and indeeds states
that he is not sure of any advantages in using a least-squares
procedure in this situation.

Instead of least-squares, a Monte Carlo technique is used
to estimate a probability density function of source location
from each receiver constellation. For a constellation, the
sound speed, winds, and receiver locations are treated as ran-
dom variables with some probability density function. The
probability density function can be obtained from theory,
data, or a guess. When guessing, it may be advantageous to
let the probability density function have the largest possible
bounds with the most ignorance so as to not overestimate the
accuracy of a location. For example, suppose one believes
the x location of a receiver is at 10 m with an error of two
centimeters. Then the associated probability density function
for this parameter can be taken to be a uniformly distributed
random variable in the interval@9.8, 10.2# m. With the a
priori probability density function, the various values of the
sound speed, winds, and receiver locations yield possible
source locations that occupy a cloud in three-dimensional
space. The actual source must lie within the intersection of
the clouds from different constellations. The final probability
function for the source location is estimated from the distri-
butions within the intersection. The density function has the
benefit of being able to yield many useful values such as an
average location, maximum likelihood location, and any de-
sired confidence limit.

II. LOCATING SOUNDS USING FOUR OR FIVE
RECEIVERS WITH INHOMOGENEOUS SOUND SPEED
FIELD

Watkins and Schevill’s9 method for locating sounds us-
ing four receivers is imitated, but instead of letting the speed
of sound be constant, it is allowed to have a different average
speed between the source and each receiver. Although five
receivers are required in general to locate a source in three
dimensions in a homogeneous sound speed field, there are
spatial regions where only four are required.8,10,11When am-
biguous solutions occur with four receivers, the ambiguity is

resolved with the travel time difference between the first and
fifth receiver.11 The presentation below thus starts with a
minimum constellation of four receivers.

The distance between thei th receiver atr i and a source
at s is ir i2si so we haveir i2si25ci

2t i
25ci

2(t i11t1)2. The
average speed and travel time of sound between the source
and receiveri areci and t i respectively.t i1[t i2t1 ands is
a column vector with Cartesian coordinates (sx ,sy ,sz)

T

where T denotes transpose. Putting the first receiver at the
origin of the coordinate system, one subtracts the equation
for i 51 from i 52,3, and 4 to get,

ir i i222r i
Ts5ci

2t i1
2 12ci

2t i1t11t1
2~ci

22c1
2!.

This simplifies to,

Rs5 1
2 b2t1f2t1

2g, ~1!

where,

R[S r 2~x! r 2~y! r 2~z!

r 3~x! r 3~y! r 3~z!

r 4~x! r 4~y! r 4~z!
D ;

~2!

b[S ir2i22c2
2t21

2

ir3i22c3
2t31

2

ir4i22c4
2t41

2
D ; f[S c2

2t21

c3
2t31

c4
2t41

D ,

and,

g[
1

2 S c2
22c1

2

c3
22c1

2

c4
22c1

2
D , ~3!

and where the Cartesian coordinate ofr i is
(r i(x),r i(y),r i(z)). Equation~1! simplifies to

s5R21
b

2
2R21ft12R21gt1

2 , ~4!

that can be squared to yield,

sTs5isi25
a1

4
2a2t11~a32a4!t1

212a5t1
31a6t1

4 , ~5!

where

a1[~R21b!T~R21b!, a2[~R21b!T~R21f!,

a3[~R21f!T~R21f!, a4[~R21b!T~R21g!, ~6!

a5[~R21f!T~R21g!, a6[~R21g!T~R21g!,

andR21 is the inverse ofR. A solution for t1 is obtained by
substituting,

isi25c1
2t1

2 , ~7!

for isi2 in Eq. ~5! to yield a quartic equation int1 ,

a6t1
412a5t1

31~a32a42c1
2!t1

22a2t11
a1

4
50, ~8!

that can be solved analytically, as discovered by Lodovico
Ferrari in 1540~Ref. 12!, or numerically with a root finder.
Valid roots from Eq.~8! are finally used to estimate the lo-
cation of the source using Eq.~4!. Note that if the sound
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speed is spatially homogeneous, i.e.,ci5c1 ; i , then the
cubic and quartic terms vanish and the resulting quadratic
equation is that found before for hyperbolic location.9

Ambiguous solutions occur for a spatially homogeneous
sound speed field when there are two positive roots to the
quadratic equation. For each ambiguous source location, one
can generate a model fort51 and choose the root fort1 that
yields a model fort51 that is closest to that measured. In the
cases investigated in this paper, the quartic equation~8! can
yield four distinct positive values fort1 . This can only hap-
pen because the speed of propagation is spatially inhomoge-
neous. Because the values ofci are similar in this paper, the
four distinct roots yield two pairs of source locations, one
pair of which is relatively close to the receivers and the other
pair of which is located very far from the receivers. The
distant pair is due to the fact that locations are not exactly
determined by intersecting hyperboloids for a spatially inho-
mogeneous speed of propagation. The actual three-
dimensional locus of points specified by a travel time differ-
ence is thus not quite a hyperboloid. More precisely, the
hyperboloid is the locus of pointss satisfying,

ir i2si2ir j2si5ct i j , ~9!

where the spatially homogeneous speed of propagation isc.
Letting the speed be different along each section yields the
definition of the isodiachron which is the locus of points
satisfying,

ir i2si
ci

2
ir j2si

cj
5t i j , ~10!

which turns out to depend on the Cartesian coordinates
through a fourth order polynomial. The values ofci can in-
corporate spatially inhomogeneous effects such as winds as
well as wave speeds. The coefficients of the third and fourth
powers inx, y, andz and their combinations become very
small compared to the coefficients in the second, first, and
zero powers as the variousci approach the same valuec ~not
shown!.

III. PROBABILITY DENSITY FUNCTIONS FOR
SOURCE LOCATION FROM RECEIVER
CONSTELLATIONS

Whenr i , t i j , andci are random variables, thent1 ands
are random variables because of Eqs.~4!, ~8!. For later con-
venience in comparing to linear theories, consider the situa-
tion where (r i(x),r i(y),r i(z)), t i j , andci are mutually un-
correlated Gaussian random variables with given means and
variances.

A computer generates a single random configuration of
variables for a constellation of four receivers. Each configu-
ration consists of the set$r i(x),r i(y),r i(z),t i j ,ci% for some
i , j P1,2,3,̄ ,R and i . j . Then for each constellation, of
which there are a total of,

N[S R
4 D5

R!

~R24!!4!
, ~11!

a source location is computed from Eq.~4! if that equation
yields a unique location. If any constellation yields more

than one location from this equation, a location is chosen to
be that yielding the closest difference in travel time to a
randomly chosen fifth receiver and receiver number one.

A valid configuration from a receiver constellation is
one in which the source location lies within some pre-
determined spatial limits. For example, one would know that
sounds from snapping shrimp occur below the surface of the
water. If a receiver constellation yields a location above the
surface, then that particular configuration of random vari-
ables could not have occurred in reality, and that source lo-
cation is discarded.

Valid configurations from a receiver constellation define
a cloud of source locations. Accurate probability density
functions of location require a sufficient number of valid
configurations. A sufficient number is generated for each of
the N constellations.

Some constellations give better locations of the source
than others. This happens for several reasons, and is usually
due to the geometrical arrangement of the receivers. For ex-
ample, suppose the source is near the geometric center of a
pyramid and one constellation consists of four receivers on
the vertices of the pyramid. That constellation would be able
to locate the source rather well. Then consider another con-
stellation of four receivers located close to a line at a great
distance from the source. This constellation would not be
able to locate the source as well.

The only physically possible locations for the source lie
within the intersections of the clouds. The other source loca-
tions are invalid. In this paper, the upper and lower bounds of
the intersected region, (X̂,X̌), (Ŷ,Y̌), and (Ẑ,Ž), are esti-
mated along the Cartesian axes. If (x̂c ,x̌c), (ŷc ,y̌c), and
( ẑc ,žc) denote the maximum and minimum values ofx, y,
andz for cloud c, then the region of intersection is,

X̂5min~ x̂1 ,x̂2 ,x̂3 ,¯ x̂N!

X̌5max~ x̌1 ,x̌2 ,x̌3 ,¯ x̌N!

Ŷ5min~ ŷ1 ,ŷ2 ,ŷ3 ,¯ ŷN!

~12!
Y̌5max~ y̌1 ,y̌2 ,y̌3 ,¯ y̌N!

Ẑ5min~ ẑ1 ,ẑ2 ,ẑ3 ,¯ ẑN!

Ž5max~ ž1 ,ž2 ,ž3 ,¯ žN!.

For each cloudc, locations outside of the bounds in Eqs.
~12! are discarded. New probability density functions are
formed from the remaining locations in each cloud for thex,
y, and z values separately. It is not expected that the new
probability density functions would asymptotically approach
one another because each constellation will be able to locate
the source with a different quality.

The probability density functions for the source in itsx,
y, andz coordinates are dependent distributions. This can be
accommodated by forming the joint probability density func-
tion of location for each cloud if desired. This is not done
here.

P percent confidence limits are estimated by finding the
P percent confidence limits for each cloud separately using
its probability density functions inx, y, andz. The Cartesian
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upper and lower bounds for a specified confidence limit for
constellationc are denoted@ P̂c(x),P̌c(x)#, @ P̂c(y),P̌c(y)#,
and@ P̂c(z),P̌c(z)#. The final bounds for the source are cho-
sen from the smallest bound forx, y, andz from each con-
stellation. For example, suppose constellationp has the
smallest value ofP̂(x)2 P̌(x) for all values ofc, constella-
tion q has the smallest value ofP̂(y)2 P̌(y) for all values of
c, and constellationr has the smallest value ofP̂(z)
2 P̌(z) for all values ofc. Then the final confidence limits
for the source are@ P̂p(x),P̌p(x)#, @ P̂q(y),P̌q(y)#, and

@ P̂r(z),P̌r(z)#.

IV. EXAMPLES

Examples below utilize 2000 valid configurations of ran-
dom variables to estimate probability density functions for
each cloud.

A. Hyperbolic location

Because error bars derived from linearized hyperbolic
location techniques1–7 assume the speed of sound or light is
spatially homogeneous, comparison with a linear theory is
done using a spatially homogeneous value of 1475 m/s. The
travel time differences are computed for this speed. In the
error analysis, the sound speed is assumed to be a Gaussian
random variable with mean 1475 m/s and standard deviation
of 10 m/s. This standard deviation is realistic if one considers
paths emitted from a shallow source to receivers at perhaps 3
m and 100 m depth because the surface region can be very
warm compared with temperatures below. Travel time differ-
ences are assumed to be mutually uncorrelated Gaussian ran-
dom variables with means given by true values and standard
deviations of 0.000 141 4 s. Receiver locations are assumed
to be mutually uncorrelated Gaussian random variables with
means given by their true values and standard deviations as
shown in Table I.

The errors in the travel time differences and receiver
locations may not be mutually uncorrelated as assumed
above. For example, errors int i1 may be correlated witht j 1

because both involvet1 . Also, for example, the errors in the
location of receiver 3 are not necessarily uncorrelated be-
tween two constellations that both contain receiver 3. Linear
error analysis can accommodate correlations between ran-
dom variables,7 as can the nonlinear analysis in this paper.
However, incorporating these correlations leads to larger
computational times in the nonlinear analysis, so they are not
implemented. Error models that follow are done assuming
that random variables are mutually uncorrelated for both the
linear and nonlinear analysis. We found that the results were
identical for the linear analysis7 when the random variables
were correlated.

To mimic marine examples, array one has five receivers
separated by O~1000! m horizontally and up to 100 m verti-
cally ~Fig. 1, Table I!. The five receiver constellations@Eq.
~11!#, one through five, are$1,2,3,4%, $1,2,3,5%, $1,2,4,5%,
$1,3,4,5%, and $2,3,4,5%, respectively. The 100% confidence
limits for the source are computed from Eq.~12! for increas-
ing numbers of constellations whereN is set to 1, 2, 3, 4, and
5 respectively in this equation for Fig. 2. As more clouds are
intersected, the limits for the source decrease monotonically,
with the biggest improvement occurring with the addition of
constellation two with one. Constellation one only uses the
receivers atz equal zero. Constellation two is the first one
that includes the receiver atz52100 m. This deeper re-
ceiver not only helps in locating the source’s vertical coordi-
nate, but significantly helps locate the horizontal coordinates
as well. The probability density functions for the source lo-
cation come from constellations two and four~Fig. 3!. These
density functions appear to be approximately Gaussian. The
68% confidence limits span only a few meters in the hori-
zontal coordinates and are about 50 m in the vertical coordi-
nate ~Table II!. The confidence limits from the nonlinear
analysis are about a factor of ten less than those from the
standard linear analysis of errors in the horizontal coordi-
nates. The nonlinear analysis has smaller limits because the
hyperboloids are not well approximated by planes in the
horizontal directions as required by the linear analysis. Non-

TABLE I. The Cartesian coordinates of arrays one and two~Fig. 1! and their
standard deviations. Receiver one’s location is defined to be the origin of the
Coordinate system, and so has zero error. They coordinate of receiver two
is defined to be aty50, and thus has zero error.

x ~m! y ~m! z ~m!

Array 1
R1 060 060 060
R2 100062 060 061
R3 100062 100062 061
R4 062 100062 061
R5 065 065 210065

SOURCE 551 451 2100

Array 2
R1 060 060 060
R2 141462 060 061
R3 53462 40062 061
R4 145965 2105265 22565
R5 1459620 21052620 295720
R6 0620 0620 2100620
R7 1414620 0620 2100620

SOURCE 860 47 25

FIG. 1. The receiver and source locations for arrays one and two.
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linear analysis yields somewhat larger limits inz than linear
analysis~Table II!. Similarity of results inz indicates that the
hyperboloids are fairly well approximated as planes in the
vertical coordinate in the vicinity of the source.

Array two has seven receivers with the largest horizontal
and vertical separations being about 1400 and 100 m, respec-
tively ~Fig. 1!. There are 35 receiver constellations@Eq. ~11!#
of which the first four provide most of the accuracy for lo-
cating the source at the 100% confidence limits~Fig. 4!.
These constellations are the first of the 35 that include all the
deeper receivers. There are modest increases in accuracy
from other constellations, most notably 29 and 33. The prob-
ability density functions in the x-y-z coordinates come from
constellations 7, 4, and 26, respectively~Fig. 5!. The distri-
butions in x and y do not look very Gaussian, while the

distribution inz looks more Gaussian-like. These departures
from Gaussian distributions are quite different than the
Gaussian distributions usually assumed from linear analyses.
This time, the 68% confidence limits from the nonlinear
analyses are two orders of magnitude smaller than those
from standard linear analysis inx andy ~Table II!. The linear
and nonlinear confidence limits are similar for the vertical
coordinate.

B. Isodiachronic location

It appears there are two extreme situations in which iso-
diachronic locations are useful.

The first is one where the speed of sound is similar, but
not exactly the same between each source and receiver. Con-
sider an atmospheric example for locating a sound at Carte-
sian coordinate~20,100,7! m from five receivers at~0,0,0!,
~25,0,3!, ~50,3,5!, ~30,40,9!, and ~1,30,6! m, respectively.
The speed of sound is a typical 330 m/s. The speed of propa-
gation is made to be inhomogeneous by introducing a wind
of 10 m/s in the positivey direction. Next, simulated values
of the travel time differences are computed using these val-
ues. The source is located using hyperbolic and isodiachronic
location. It will be seen that only isodiachronic location
yields a correct solution.

FIG. 2. 100% confidence limits for source location as a function of the
number of receiver constellations used from array one~Fig. 1!. There are
five ways of choosing four receivers from five total without replacement. A
receiver constellation consists of one of the choices of four receivers. As
more constellations are used to locate the source, the bounds for the source’s
location decrease monotonically. The lines join results from different num-
bers of constellations.

FIG. 3. Probability density functions for source location from array one
~Fig. 1, top!, calculated from the nonlinear method in this paper. Receiver
constellation 2 is receivers 1, 2, 3, and 5~Fig. 1, top!. Receiver constellation
4 is receivers 1, 3, 4, and 5.

TABLE II. 68% confidence limits for source location corresponding to ar-
rays one and two for the nonlinear and linear analyses.

Cartesian
coordinate

68% Confidence limits~m!

Nonlinear Linear

Array 1
x 550 to 552 530 to 573
y 450 to 452 432 to 471
z 2145 to 277 2121 to 280

Array 2
x 860 to 865 236 to 1486
y 46 to 62 21890 to 1988
z 2138 to 65 2163 to 153

FIG. 4. Same as Fig. 2 except for array two in Fig. 1 and there are 35 ways
of choosing 4 receivers from a total of 7 without replacement.
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All Gaussian random variables in this simulation are
truncated to have a maximum of two standard deviations for
the following two reasons. First, many experimental situa-
tions are inaccurately represented by assuming that random
variations differ from an estimate by say ten standard devia-
tions. Instead, it is more realistic to truncate the variations.
Second, it is important to note that a realistic truncation is
easy to impose with the models developed here but is diffi-
cult to implement with analytical and linear approximations
for error.

The standard deviation for receiver locations is 0.02 m.
The variations are zero for thex, y, and z coordinates of
receiver 1, they and z coordinates of receiver 2, and thez
coordinate of receiver 3. The coordinates with zero varia-
tions merely define the origin and orientation of the coordi-
nate system. Thex andz components of the winds are mod-
eled to have a value of 0 m/s. For hyperbolic location, the
speed of acoustic propagation must be spatially homoge-
neous. The mean and standard deviation for sound speed are
330 m/s and 10 m/s, respectively. For isodiachronic location,
the speed of propagation is inhomogeneous. The speed of
sound is taken to be 330 m/s. Thea priori value of the wind
in they direction has mean 0 and standard deviation 10 m/s.
Values of the speed of acoustic propagation,ci , between
receiveri and the source are unknown because the location
of the source is initially unknown. Therefore, it is impossible
to precompute the component of the wind vector along the
direction from the source to each receiver. Instead, the value
for eachci is computed using a direction chosen at random
through the simulated field of sound speed and wind. The
error in travel time due to the straight path approximation is
typically less than a microsecond at these ranges.6 The travel
time differences are derived with ideal values for means and
from a standard deviation of 16ms. The 16ms value is de-
rived from Eq. 41 in Ref. 6 using an rms bandwidth of 1000
Hz and a peak signal-to-noise ratio of 20 dB in the cross-
correlation function of the signals between receivers.

Incorrect locations are obtained using the hyperbolic
method. For example, the source’s 100% confidence limits
for x are 19.02 to 19.05 m, but its actualx location is 20 m.
Similarly, the 100% confidence limits fory are 103 to 105 m,
but the actual value is 100 m. So givena priori variations of
receiver locations, travel time differences, and environmental
variations, the hyperbolic method always yields incorrect an-
swers.

With isodiachronic location, 95% confidence limits for
the source arex: 19.5 to 23.7 m,y: 92.6 to 106 m,z: 226 to
13 m. These are correct. Other confidence limits could be
given but they are not shown because the point is that isodi-
achronic location yields a correct answer at a stringent con-
fidence of 95%.

The second case where isodiachronic location would be
useful is one where the speed of sound is quite different
between the source and each receiver. In this case, hyper-
bolic locations would be inappropriate to use because the
speed of sound is not nearly constant in space. For example
suppose low frequency sources such as Finback whales are
located. Suppose some receivers close to the source pick up
only the first acoustic path through the sea, while other dis-
tant receivers pick up only the acoustic path that propagates
below the sea-floor13 because the paths through the water are
blocked by seamounts. The speed of propagation along the
water and solid-Earth paths can differ by more than a factor
of 2.13 In other scientific fields, sounds can propagate to re-
ceivers along paths with different speeds of sound, such as
from vehicles where paths propagate through the air and
ground.

V. CONCLUSION

A method is developed for computing probability den-
sity functions for hyperbolic locations without relying on any
linear approximation between travel time differences at pairs
of receivers and the location of the source. In cases of prac-
tical interest, the confidence limits for location can be one or
two orders of magnitude smaller with the nonlinear analysis
than the linear one. The method for computing probability
density functions includesa priori information about the
probability density functions of the receiver locations, the
speed of sound, and the errors in the differences in travel
time.

It appears to be useful to relax the traditional assumption
that the speed of acoustic propagation be spatially homoge-
neous for hyperbolic locations. Instead, one can allow the
average speed to be different between each receiver and the
source. This leads to a new geometrical surface, called an
isodiachron, that approaches a hyperboloid when the speed
of propagation is spatially homogeneous.

The ideas in this paper need to be tried with data.
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FIG. 5. Probability density functions for source location from array two
~Fig. 1, bottom! using the nonlinear method of this paper. Receiver constel-
lations 7, 4, and 26 are composed from receivers$1,2,4,7%, $1,2,3,7%, and
$2,3,6,7%, respectively.
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