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Abstract 

Mether is a Distributed Shared Memory (DSM) that runs on Sun1 workstations under the 
SunOS 4.0 operating system. User programs access the Mether address space in a way indistin- 
guishable from other memory. Mether was inspired by the MemNet DSM, but unlike MemNet 
Mether consists of software communicating over a conventional Ethernet. The kernel part of 
Mether actually does no data transmission over the network. Data transmission is accomplished 
by a user-level server. The kernel driver has no preference for a server, and indeed does not 
know that servers exist. The kernel driver has been made very safe, and in fact panic is not in 
its dictionary. 

The Mether system supports a distributed shared memory. It is distributed in the sense 
that the pages of memory are not all at one workstation, but rather move around the network in 
a demand-paged fashion. It is shared in the sense that processes through the network share read, 
write, and execute access. And it is memory in the sense that user programs access the data in a 
way indistinguishable from other memory. The memory is never paged to disk, but the delay of 
accessing a page over the network is approximately the same as a paging disk. 

Two examples of Mether programs are shown in Figures 1 and 2. Note that, aside from the 
call to methersetup these programs look quite ordinary. One program prints out the value of the 
first 278 bytes of Mether memory; the other clears the first page of the Mether memory and then 
increments each byte 128 times. If the first program is running the values displayed increase. You 
can run either program on any host that supports Mether. The writer takes about 8 seconds to run, 
whether the watcher is running or not. In fact the writer usually runs a little faster if the watcher 
is on another machine. 

As the examples show, programs that access this memory can pretend that it is normal mem- 
ory. If they do they may pay a substantial performance penalty. As shown in [4] programs that use 
DSM without modification rarely show the sort of performance gain found on a conventional shared- 
memory multiprocessor. Programs must be more careful; if they are then they can communicate 
across the network at apparent memory speeds. 

The memory is accessed by opening a special file. Once the file is opened the user program 
executes an tnmap system call and maps the area into its address space. From that point on the 
process may treat the memory as it would any other memory. A function library is provided to 
make the use of Mether totally transparent. 

'This work was done while the author was at University of Delaware, Newark, De. 
'Sun and SunOS are trademarks of Sun Microsystems . I- 



#include "uorld.hu 
main() 
C 
unsigned int i, j ; 
initscr() ; 
methersetup(); 
while(1) 

C 
move(0,O); 
for(i = 0; i < 0x120; i += 0x10) 

C 
printu ("%08x : " , METHERBASE+i) ; 
for(j = i; j < i +  0x10; j++) 
princw("%x ", * (unsigned char *) (METHERBASE + j)) ; 

printw ("\nW) ; 
1 

refresh() ; 
sleep(1); 

3 
3 

Figure 1: The Mether watch program. 

.c 
int i; 
unsigned char *p = (unsigned char *) HETHERBASE; 
methersetup() ; 
for(i = 0; i < 8192; i++) 
*p++ = 0; 

for(p = (unsigned char *) METHERBASE; *p < 0x80; 
p = (unsigned char *) METHERBASE) 

for(i = 0; i < 8192; i++, p++) 
*p += I; 

> 
> 

Figure 2: A program that writes to an Mether page 



If the process is the only one using an area of the memory, then it will run at full memory 
speed. If other processes on the same processor are using the same area, they will all run at full 
speed, unless one of the other processes locks an area of the shared memory. If processes on other 
processors simply read the memory infrequently there will be a small impact on writes as messages 
are sent out to the other processors invalidating their copy (or, in the current protocol, updating 
their copy). If many processors write the same location frequently then there will be a substantial 
performance degradation, probably only allowing a few thousand operations per second. Mether is 
non-blocking so the processor will not be slowed down, just the processes accessing the contended-for 
location. 

Mether is inspired by a high-speed memory-mapped network built at the University of 
Delaware by Delp and Farber. We give a cursory description of MemNet below; for more details see 

PI, [21 and PI. 
MemNet is a memory-mapped network. MemNet provides the user with (in the current 

implementation) a two Mb contiguous region of memory which is shared between a set of processors. 
The sharing is accomplished using dedicated page-managment hardware communicating via a high- 
speed token ring. When a MemNet page is needed and it is not present in the local interface a 
message is sent over the token ring requesting the page. The hardware provides consistency between 
pages. The algorithm used is similar to those used for snooping caches: when a chunk is written 
all other copies of that chunk are invalidated before the write completes. For performance reasons 
the pages are only 32 bytes long. This size was decided upon as the optimal tradeoff between 
transmission time and several other factors. For a complete performance analysis, see [I]. 

On a system such as MemNet the global address space is much larger than any single inter- 
face's memory. A problem that must be addressed is what to do in the event a chunk can not find 
an interface with room for it. Some interface must always keep the space open for that particular 
chunk (address) in the MemNet address space. To address this problem MemNet supports the no- 
tion of reserved memory. Reserved memory is the set of chunks for which a particular interface is 
responsible. Space will always be available for these chunks in the interfaces' reserved area. If no 
space can be found for a chunk on any interface in a non-reserved area, the chunk will end up back 
in the reserved memory in the interface which is its home. If MemNet did not support reserved 
memory, chunks might be lost as interfaces filled up with multiple copies of chunks. In general a 
MemNet interface will have a "fair share" (i.e. on a system with 10 interfaces, 10%) of its memory 
as reserved memory, with the rest of the memory available for other chunks. 

Mether supports reserved memory too, on a page basis. In fact, a page must be in the reserved 
memory of some Mether interface for it to be created. In other words, pages are created only from 
the reserved space, and only when they are referenced. When a non-reserved page is referenced 
for the first time on a processor, a request for that page is sent out. Only if that page is in some 
processor's reserved address space will space for it be allocated. 

One difference between MemNet and Mether is that Mether blocks the process when a page 
is unavailable whereas MemNet blocks the processor. This difference is more important than might 
at first seem. On MemNet, hot spots can consume the process, the network, and all the processors 
on the network. It is essential that algorithms be well-behaved. Otherwise the processors on the 
network can, in the absolute worst case, run orders of magnitude slower than normal. On Mether 
only the processes requesting the information are affected. Other processes, processors, and the 
network operate normally. 

We wanted to gain experience with a DSM that ran on more than the three processors 
available on the existing MemNet network. Our goal is to build a DSM that matches MemNets' 
best-case and worst-case performance. In the best case, MemNet runs at memory speeds; in the 
worst case, it is several orders of magnitude slower. One reason that Mether makes no attempt to 
minimize paging latency is that we want to get as close to the MemNet environment as possible and 
explore ways in which to use that environment correctly. 

We will describe Mether in further detail below, after which we will describe factors that 
constrained the design. Mether is driven by MemNet-inspired constraints; there were a number of 



other constraints, driven by both technical and political realities. 

1 Description 

Mether provides an 4 Mb address space which is accessed via the mmap(2) system call. A typical 
application will open a special device using the Mether library. The methersetup function in the 
library opens the raw Mether device and performs an mmap for the entire Mether address space. As 
a result of this mmap the kernel does all the housekeeping necessary to support a segment comprising 
some or all of the Mether address space. Note that on SunOS 4.0 the first mmap is for housekeeping 
only, and the real mmap does not occur until the process accesses the memory. Therefore we can 
afford to do the initial mmap; it consumes no Mether resources. 

When a page is not present on the local machine the user-level server will request it from 
the machine currently owning it. Currently the user level server does not support shared read-only 
pages that span machine boundaries. This enhancement is being implemented. 

Once the page is mapped in it may be mapped out again for a number of reasons. To keep a 
page from being mapped out the process may lock it. While a page is locked no other process may 
access it. A process may choose to block while waiting for a page to be locked, or it may issue a 
non-blocking lock request. A blocking lock request will proceed only if the page is present on the 
local machine and is not locked by someone else. Otherwise the process is blocked until the page is 
available. Lock requests for a page not present on the local machine will cause a request to be sent 
out on the network for the page. 

The page may also be paged out (i.e. not available on the local machine, and assumed to be 
present on some other machine). If the page is paged out the mmap call will sleep until the page 
becomes available. 

Up to this point we have discussed Mether mostly in terms of the user's environment. The user 
calls methersetup and from then on sees ordinary memory, whether the user's processes span machine 
boundaries or not. In implementation Mether is divided into a kernel driver and a user program. 
The kernel driver manages the in-memory pages, and the user program manages the transport of 
pages over the network. There is nothing special about the user program that distinguishes it to the 
kernel driver. We describe the kernel driver and the user program below. 

1.1 Kernel Driver 

The kernel driver is responsible for maintaining a set of pages and their associated state. Control 
of the kernel driver is accomplished using the ioctl system call. A table of the ioctl calls and their 
function is shown in Figure 3. 

Initially, only one type of ioctl is supported, the one which initializes the driver. Currently 
the size of the Mether address space is fixed at 8 Mbytes, and the virtual address range starts at 
0x400000. The parameters which must be set are the base and the size of the reserved address range 
for the driver. This ioctl is called METHERJNIT. The parameters passed are the start and end of 
the reserved address space. 

Once the driver is initialized, other requests are honored. Until it is initialized all other 
requests return EINPROGRESS. 

There are two ways to lock a page. One is METHER-LOCK, which is a blocking request for 
a lock. If the page is unavailable due to being locked or paged out the process sleeps. The other 
way to lock is 
METHER-LOCKNOBLOCK, which will return either the error EAGAIN or no error, but which 
will not block. For both of these if the page is paged out it is marked as wanted. The user level 
server will attempt to fetch "wanted" pages from other processors. 



Figure 3: The ioctl calls for the Mether device 

Name 
(METHER-) 

INIT 

LOCK 

LOCKNOBLOCK 

UNLOCK 

PAGEOUT 

PAGEIN 

FREEALL 

Parameter 

metherinit * 

ulong * 

uJong * 

ulong * 

u-long * 

u-long * 

ulong * 

Function 

Initialize the Mether driver. Set the Reserved 
range. 
Lock a page. The key the driver uses is not the 
PID, but the minor device number, for reasons 
explained in the text. If the page is locked or 
is paged out, the wanted bit is set in the page's 
status structure. The process sleeps until the page 
is available. All locks are removed when a process 
exits if it is that last process holding the minor 
device open. 
Lock a page. The same semantics as 
METHER-LOCK, but if the page can not be 
locked the driver returns EAGAIN (try again). 
The wanted bit will be set anyway. This can be 
used to implement pre-fetching of need pages. 

Unlock the page. All sleepers on this address are 
awakened. 
The page is marked paged out. Paged-out 
status is not cleared when the marker exits. 
METHER-LOCK requests and mmap request will 
sleep on paged out pages, and in addition the page 
will be marked wanted. 
The paged out bit is cleared. The wanted bit is 
cleared as well. The page is locked; the process do- 
ing the pagein must unlock it to make it available 
to other processes. 

All minor devices are summarily closed (including 
the user-level server!) and all pages are freed. The 
driver will once again honor only METHER-INIT 
requests. 



The driver keeps track of who locked the page. The identifier used is not the traditional 
process id but instead the minor device number. This is done so that parents and children can share 
a minor device number and hence locks. This is not a sophisticated mechanism but has the virtue 
of being simple, fast, and taking advantage of the way child processes inherit files. 

One rule guiding the use of DSM is that if you need a page when you ask for it it is already 
too late; you are probably going to suffer network latency. Some form of pre-fetching is desirable, 
and in fact was considered for MemNet hardware. Users of Mether can accomplish pre-fetching in 
two ways: 

a perform the METHER-LOCKNOBLOCK ioctl. If the page is on some other processor it will 
be marked "wanted" and the user server will fetch it. This is a polling sort of pre-fetch. The 
process repeatedly performs the LOCKNOBLOCK until it succeeds. Until it succeeds the 
process may do other work. 

Spawn a child, and have the child perform METHERLOCK. The child can signal the parent 
when the page is present. This pre-fetch may be more efficient since there is no polling and 
no chance of missing the page between polls. It does require more programming at the user 
level, however. 

To unlock a page one uses the METHERUNLOCK ioctl. All locks are cleared when the 
open count of the minor device goes to zero (i.e. all potential users of the lock release it). Note that 
multiple processes accessing a lock need to be careful in this environment because processes that 
lock a page and exit may leave it locked if child or parent processes still have the minor device open. 

A more permanent way of making a page inaccessible is to page it out. A page marked "page 
out" is not available locally but present on some other machine. Pages acquire the paged out status 
in one of two ways: 

When the driver is initialized, all non-reserved pages are marked paged out. 

Any user-level program may mark a page as paged-out. Typically only the user-level server 
does this. 

In a sense paged-out is a misnomer; the process marking the page can continue to access it. 
Indeed, it must if it is to copy it out and send it over the network. The name is an indication of 
the proper use of the ioctl, however: it should only be used by processes intending to send the page 
over the network. Mmap calls will block on a paged-out page, as will METHER-LOCK; these calls 
will also mark the page as wanted. 

To page in a page the process uses the METHERPAGEIN ioctl. Paging in a page will cause 
it to be locked; the data may be copied in and the page unlocked for use by other processes. 

1.1.1 Using Mmap 

To access the Mether address space under SunOS 4.0 a segment must be built. The SunOS 4.0 
memory management scheme differs radically from other Unix2 systems in that it is composed of 
paged segments. Each segment has an address range and fault handlers. For the Mether device 
the fault handler3 will invoke the Mether mmap function to get a kernel page frame number. The 
upshot of all this is that the Mether mmap function gets called at least two times for each page: 
once when the segment is being built, to see when an address is valid; and once for each time the 
page is referenced and is not valid. The first "probe" mmap is distinguished by all the protection 
bits being turned on. Data for a page is never allocated until the first non-probe mmap for that 
page. If the page is locked by another process or paged out, the rnmap will block. Once the page is 
available the driver makes sure that a physical page has been allocated for use and returns. 

*Unix is a trademark of AT&T Bell Labs 
3 ~ o r  those of you familiar with 4.0 Mether works as a segdev 



Figure 4: The request packet format 

enet 
header 

The page may be mapped out of a process's address space at any time, unless the process has 
locked it. Most often a page will be mapped out when the user level server needs to send it out on 
the network. Less often some process on the same processor must lock it, usually to prevent it from 
being paged out. Too much locking is anti-social and may indicate a badly designed algorithm. 

When a process locks a page the kernel driver must unmap the page from all other processes 
that have it mapped in. The Mether device finds the Mether segment in a processes address space 
and unloads the hardware translation entry for that page. 

REQUEST 

1.1.2 Using Select 

mether 
address 

The Mether kernel driver supports the select(2) system call. The interpretation is somewhat non- 
standard. A select which returns "write" status means that a page has just been unlocked by 
someone, so that the user-level server can take it if it is needed somewhere else. A select which 
returns "read" status means that someone wants a page. The determination of which page is wanted 
or has been freed is made by looking through the kernel data structures defining the pages. There 
are several pages of dynamically allocated kernel data structures which are accessible via the mmap 
system call. Because of the way the structures change state, it is safe for the user level process to 
examine and trust the state information found therein. Any change to the state is accomplished via 
ioctl system calls as described above. 

We next discuss the user level server and the protocol it uses. 

1.2 User Level Server 

The user-level server runs as an event-driven loop. Events are IP-level User Datagram Protocol 
(UDP) messages and mether page-wanted/page-freed events detected via a select(2) system call, or 
a 100-millisecond timeout on the call. Every 100 ms. the server scans its internal lists of page state 
and examines the kernel driver Mether page descriptors. 

While communications between the current set of user-level servers is via UDP there is no 
fundamental reason that UDP be the only protocol used. 

There are currently three Mether packet types. 

The first packet type is a request. If the user-level server sees that a page is wanted, it issues 
the packet shown in Figure 4. The packet's data consists of nothing more than an address in the 
Mether address space. There will be one or more packets containing the page returned in response 
to this packet. On the Sun, for example, eight packets must be returned. Since the UDP available 
on most BSD Unix systems will not accept an 8 Kbyte UDP message, the user-level servers must do 
fragmentation and re-assembly. 

'The function used is hatanload. 



Figure 5: The response packet 

There are two versions of the request packet. The first uses the return address of the requester. 
In this way only the requester need process the packet. 

enet 
header 

The second packet type, show in Figure 5, is a response. It is about 1 Kb long. It has a 
return address and a copy of a portion of the page. On a Sun system there are eight return packets 
for each request. We are currently evaluating the effectiveness of having responses always go to the 
broadcast address and having a 'watcher' keep track of the state of all the pages. 

mether 
address 

offset 
in 

page 

If the reliability of a TCP connection is desired then a different user-level server can be used, 
such as the one described in [5]. 

data 

Note that none of the messages are acknowledged. There is a reason for the lack of ac- 
knowledgment which characterizes all Mether operations. On the original MemNet there is no 
acknowledgement either. There is a significant performance gain to be realized by taking advantage 
of the low error rate of Ethernet networks. Rather than using traditional error checking mechanisms 
as are found in TCP/IP, MemNet and Mether depend on the forward error correcting mechanisms 
supported by the hardware. 

2 Design Issues 

The design of Mether was driven by both the technical realities of implementing DSM in a system 
that was never designed for it (Unix), and the political realities of adding an experimental system 
to workstations being used by researchers for day-to-day computing activities such as mail, text 
editing, and program development. We needed to use a large number of machines, and such a large 
number is available to us only on production networks. We discuss both the technical and political 
considerations below. 

2.1 Technical Issues 

The first issue to be dealt with was the one which most impacted the design. The question of 
which operating system to use had been pre-determined: we knew that we would be using some 
variant of BSD Unix, either the SunOS, Ultrix5, or Mt. Xinu6 flavor. The question that drove all 
other design decisions was how much to modify the kernel. Were we willing to completely redo the 
paging functions, thus providing a completely transparent paging system? Could we get away with 
not changing the kernel at all, and allow the user program to trap faults and drive the paging via 
mmap (3)? 

The trade-offs were explored, and in the end we decided not to modify the kernel fault 
handling code. The reasons were both technical and political. There are many and varied subtleties 
in the fault handling code in the kernel. 

5Ultrix is B trademark of Digital Equipment Corporation 
6Mt. Xinu is a trademark of Mt. Xinu hc. 



It was at that point that we discovered the SunOS 4.0 memory model. The SunOS 4.0 memory 
model is one of paged segments. Each'segment has its own fault handlers. For mmap devices, the 
fault handler calls the device's mmap function when the user accesses a page for the first time. 
The implication was that fault handling was done for us. We got all the benefits of modifying, e.g. 
4.3BSD, with none of the disadvantages. At this point we restricted our scope to SunOS 4.0 based 
machines, which was an acceptable decision as they far outnumber any other machine at our site. 

The single hardest problem in using SunOS 4.0 is that very little information is available 
on how to use the new memory model. The new model in our opinion represents a fundamental 
improvement, comparable to the addition of paging to the Unix kernel. The only way we were able 
to determine how to use it was to buy sources and hunt through them. We hope to see this situation 
change. 

2.2 Political Realities 

It may seem strange to have a discussion on politics in a technical paper, but the fact is that in 
today's workstation environment politics have an unavoidable impact on a technical design. The 
reason is simple: in most people's minds, the network is not the computer. The computer is the 
workstation on their desk, and most people think of it as a stand-alone VAX7 with a thin link to 
some nebulous collection of other computers. Never mind that their disk blocks and many other 
resources are provided by the network; if you are contemplating doing anything that impacts their 
machine they are likely to be quite unhappy. A resource such as Mether may improve the global 
environment for all users, but typically people only consider the machine on their desk. 

As a result the Mether design conforms to several political necessities. 

The kernel driver must be very small and simple. There is no possible justification for increasing 
someone's kernel size by, say, 100 Kbytes. 

Any kernel structures must also be small and if possible dynamically allocated so that they do 
not consume space unless the driver is allocated. We use an array of page-descriptor structures 
each of which has a pointer to a page. 

The driver must never, ever take the kernel down. We have seen device drivers that panic on 
encountering the most basic inconsistencies. Panicing is unacceptable. 

Any user must be able to shut the driver down at any time. All resources allocated to the 
driver must be freed. 

Having to allow politics to affect a technical design is distasteful. Unfortunately it is a 
necessary part of any system which wishes to use many workstations. 

3 Summary 

Mether is an implementation of DSM over Ethernet. The system runs on Sun workstations. The 
overhead for access to a page not on the local processor is about equivalent to a page fault. The 
system has recently come into general use, and performance results are very favorable. 

Many of the interconnection networks being built for large numbers of processors exhibit the 
variable latency exhibited by Mether. Learning how to structure algorithms on such a network is 
an interesting research area and one which we expect to use Mether to explore. 

VAX is a trademark of Digital Equipment Corporation 
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