
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

February 1991

TRACS Users Manual and Software Reference Guide TRACS Users Manual and Software Reference Guide

Eric Paljug
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Eric Paljug, "TRACS Users Manual and Software Reference Guide", . February 1991.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-91-10.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/395
For more information, please contact repository@pobox.upenn.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76362183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/395
mailto:repository@pobox.upenn.edu

TRACS Users Manual and Software Reference Guide TRACS Users Manual and Software Reference Guide

Abstract Abstract
The Two Robotic Arm Coordination System (TRACS) of the GRASP Lab is designed to perform
experiments in dynamic two arm control. The system is comprised of two PUMA 250 robot arms with
modified controllers, a PA-AT host computer and an AMD 29000 high speed floating point processor
board. This manual describes the system software architecture and the software interfaces between the
system elements. It is intended to aid in developing software for the system.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-91-10.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/395

https://repository.upenn.edu/cis_reports/395

TRACS Users Manual
and

Software Reference Guide

MS-CIS-91-10
GRASP LAB 254

Eric Paljug

Department of Computer and Informat ion Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

February 1991

TRACS Users Manual
and

Software Reference Guide

Eric Paljug
General Robotics and Active Sensory Perception

(GRASP) Laboratory
University of Pennsylvania

3401 Walnut Street, Room 301C
Philadelphia, PA 19104

February 6, 1991

ABSTRACT

The Two Robotic Arm Coordination System (TRACS) of the GRASP Lab is designed to
perform experiments in dynamic two arm control. The system is comprised of two PUMA 250
robot arms with modified controllers, a PC-AT host computer and an AMD 29000 high speed
floating point processor board. This manual describes the system software architecture and the
software interfaces between the system elements. It is intended to aid in developing software for
the system.

Contents

1 Introduction 1

2 Disk Organization 1
. 2.1 The YARC Subdirectory 2
. 2.2 The PKG Subdirectory 2

. 2.3 The USER directory 3

3 The Yarc System Software 4

4 The Real-time Interrupt 6

5 Communication Interfaces 7
. 5.1 PC-AT to AT-Super 7

. 5.2 PC-AT to Unimation Controller 8
. 5.3 PC-AT to Sensors 9

6 Creating Application Software 9
. 6.1 Development 9

. 6.2 Development features 10

. 6.3 Compiling and linking 11

7 Running Application Software 11
. 7.1 Debugger 13

8 Advanced Topic: Adding New Hardware 14
. 8.1 Example: Adding a New Analog Board 14

A AT-Super Manual 17

B PC interrupt notes 42
. B.l Application Notes 42

. B.2 Sample Listing 42

C TRACS Utility Programs 44
. C . 1 Encoder Calibration 44

. C.2 Limp 46
C.3 Slow . 46

. C.4 Maintenance 46

\dos \lib \ y arc
\bin \utill \pkg
\include \ util2 \usr

Figure 1: PC-AT Root Directory

1 Introduction

This document is the primary reference for writing software for the Two Robotic Arm Coordination
System (TRACS) of the University of Pennsylvania's Grasp Lab. A separate reference exists for
the hardware components of TRACS, and is usually located in a binder near the robots.

The system controls two PUMA 250 robots with an IBM PC-AT (compatible) based system.
The PC-AT is host for an AMD 29000 high speed floating point processor based board that does
the servo loop calculations. This board is called the AT-Super and is produced by YARC Systems
Corporation. The PC-AT provides the real-time environment for this system and the communi-
cations between the AMD 29000 and the PUMA robot joint boards. The software for the entire
system is written in C. The code that runs on the AT-Super uses the HiC compiler by MetaWare
and the PC-AT code uses the Microsoft C compiler.

This document provides information at many different levels of software development. At the
highest level, i t provides a basis for writing software to control the robots and incorporate existing
software libraries, such as kinematics, friction compensation, gravity compensation, etc. At the
intermediate level, it provides software guidelines for incorporating new hardware into the system.
At the lowest level, i t explains the real-time environment, communication and synchronization
between the PC-AT, the AT-Super, and the PUMA robots. The interested TRACS user should
be familiar with all the material in this document, however only the higher level topics are most
important t o those how wish to use the existing code without much modification in order t o perform
basic manipulation with the system.

This document is organized as follows: the location of software on the system is presented in
Section 2 to provide a starting point and quick reference for programmers; Section 3 details the
changes made to the software sources of the AT-Super supplied by the manufacturer for the TRACS
application; the real-time environment on the PC-AT is covered in Section 4; the communication
between the components of TRACS is developed in Section 5; Sections 6 and 7 explain how to create
and write control application code for TRACS; and the final section discusses how to incorporate
future additions. The appendices include: the original AT-Super Manual, the PC interrupt software
application notes, and documentation on TRACS utility programs (e.g., calibration).

2 Disk Organization

This section will describe the organization of software on the hard disk of the PC-AT. It is intended
to be an overview of the system and a guide to where the programs are located. The Hard disk
of the PC-AT is divided into directories as shown in Figure 1. The top six subdirectories contain
DOS, the C compiler and the standard binary files found on most of the PC's in the GRASP lab.

\ yarc

Figure 2: Yarc Directory

The remaining three subdirectories deal directly with the robot workcell. The following sections
will briefly expand upon the organization of these latter three subdirectories.

2.1 The YARC Subdirectory

This directory is the root for all the software related to the YARC AT-Super coprocessor board. The
\yarc directory and its subdirectory are depicted in Figure 2. There are other minor branches not
shown in the figure that contain demo and example programs. The first level of the tree separates
between the utility sources, the HiC compiler for the AT-Super, and the utility executable files.

Since the YARC AT-Super's executable is compiled, linked and loaded from the PC, there is
a large segment of the utility code that is written for the PC and is compiled with Microsoft C.
This is located in \yarc\src\pc,src. Note that this directory has a sub-directory containing the
original sources because the sources in \pc,src are modified. The \yarc\src\29k,src directory
contains the AMD 29000 software that is initially installed on the AT-Super and functions as its
bootstrap. These source files were obtained from Yarc Systems Corp. through a nondisclosure
agreement.

The compiler for the AMD 29000 processor of the AT-Super is located under the \yarc\hc
directory. As with many C compilers, it is divided into bin, lib, and include subdirectories.

The executable version of the utilities that pertain to the AT-Super are located in \yarc\exe.
The utility functions are used to reconfigure the AT-Super as well as to load and service the
application code.

2.2 The PKG Subdirectory

This directory is the root for all software packages that are complete self-contained modules. The
tree is shown in figure 3. As new sensors or boards are added to the system, they should be assigned
an individual branch of the \pkg tree. Below is a brief description of each of the above branches.

The \p250 directory are the programs that deal with the PUMA 250 robots at their controller
level. Programs to communicate with the controller, calibrate the robots and free (limp) the
actuators are found here.

\ aio

Figure 3: Package Directory

r The \cont ro l directory contains the skeleton of the control process. Programs that deal
with the PC-to-29000 synchronization and communication are found here. Additionally, the
foreground user interface code is also located here.

r The \rt directory has the programs that actually do the trajectory generation and servo
control a t the lowest level. These programs have robot encoder and sensor data as input and
motor current as their output. They run on the YARC AT-Super. The subdirectories contain
demonstration programs, libraries for common routines (such as kinematics), an offline control
algorithm debugger, controller logged data, and other applications.

r The \ i n t r p t directory contains the software that reconfigures the PC clock interrupt thus
creating a real-time interrupt on the PC.

a The \dio directory has all the programs that deal with the digital 1/0 boards. These boards
are used in the parallel communications to the PUMA 250 controllers.

The \ a io directory contains the programs that perform analog 1/0 from the various analog
sensors and actuators (excluding the joint motors of the robots) in the workcell.

r The \sensor directory contains software used with the LORD force-torque sensor.

r The \serial directory contains a package of software that provides the function of a serial
communications driver.

2.3 The USER directory

This directory should contain the application files specific to the workcell user. Depending on the
intended usage, this can include specific foreground user interfaces, control routines, and trajectory
generators. The user software should integrate the available system software described above.

3 The Yarc System Software

This section will describe how the AT-Super software has been changed to run in a real-time
interactive system with the PC-AT host. It is recommended to anyone who plans to further develop
any of these AT-Super programs that they first read the AT-Super manual in Appendix A.

The following is a synopsis of how the AT-Super original software functions. The user creates
a program in the C language and compiles it with MetaWare7s HiC compiler [3] by issuing the
ccomp command. It is now ready to be run on the AT-Super. The program is executed by issuing
the command 29k program-name. The 29k program itself runs on the PC-AT. This program loads
the AT-Super with both its reset boot-strap and the user program given in the command line.
The 29k program on the PC-AT then starts up the AT-Super. After start-up, the PC-AT waits
to service AT-Super (printf's, scanf's, etc.). Thus, when the AT-Super is busy computing, the
PC-AT'S processor is basically idle, waiting for the AT-Super to request a service. This situation
is undesirable, because the PC-AT can be better utilized.

Through a nondisclosure agreement with YARC, the GRASP lab has obtained the sources to
the 29k.exe program. When the 29k program has reached the idle stage, where it waits to service
the AT-Super, it is actually running the code in the file go29k. c. This file has been altered to call
a routine in \pkg\control\pc. Now the programmer can have the 29k program do any desired
function.

In the case of the TRACS workcell, the desired function is to implement a real-time control sys-
tem where the AT-Super calculates the control law and the PC-AT provides a real-time interrupt
environment (called a background process) and a user interface (called the foreground process).
Additionally, both processors must be synchronized to some extent and must be able to exchange
information. The control law calculates the voltage output to the robot motors. This can be imple-
mentation specific, or the programmer can make use of previously created routines for kinematics,
gravity compensation, etc. The background process will collect sensor data, communicate with the
AT-Super, and output data to the robot actuators. The foreground process will provide a means
for the operator to enter and receive information.

The 29k program altered for TRACS is named rt . exe. It is exactly the same as its predecessor,
29k. exe, up to the point of the PC-AT being an idle servant to the AMD 29000. The makefile
for rt.exe is also found in \pkg\control\pc. In this directory are three source files: rt-comm.c,
f oregnd . c, and handler. c. The three paragraphs to follow further describe these sources.

Rt-corn. c is the backbone of the real-time system on the PC. It does five tasks in the following
order:

1. obtains the address of the shared memory data structure,

2. synchronizes the communication through the mailbox, one of the four bytes of PC-AT 1 / 0
space that the AT-Super occupies,

3. calls the routine that installs the real-time environment,

4. calls the foreground process loop, and

5. when an exit request or error is signaled, it calls the routine to shutdown the real-time
environment and restores the PC-AT to its normal state.

Foregnd. c contains the routines that perform the real-time initialization, the foreground process
itself and restoration of the PC-AT. They are called from rt-cornm. c. Each of these routines will

C o Y P r n W Y P L m
WNTROL .. .

AMD29K ALGOR~lliY
(10 . .

GATHER SEND FORb GATHER SEND FORB

80286 DATA DATA PROCESS DATA DATA PROCESS
(Q (K-1) (K+l) (Q

Figure 4: PC-AT and AT-Super Real-Time Process

be functionally described in their order of execution. The roboinit subroutine first initializes the
digital I/O boards that are used to communicate with the PUMA Unimation controllers. Next the
Unimation controllers are initialized and the arm power switch is disabled. A menu of information
is printed out for the user. The menu explains what types of keystrokes are acceptable input into
the foreground process. Finally, the routine that installs the real-time interrupt on the PC is called,
along with an initialization of the interrupt handler (see init-rt in Section 4). Then arm power is
permitted to be applied by the remote power switch. The f oregnd routine will now be executed in
a continuous loop (from rt-comm) until an exit request or error signal are detected. The foregnd
routine simply processes the user's keyboard inputs and sets the appropriate flags. Usually, the
flag signals a section of the real-time code to perform an action, such as setting the force-exit
flag to stop the real-time environment, or setting the drive-enable flag to output control voltages
to the actuators. The roborest routine disables the robot arm power and then calls the routine
that restore the PC-AT interrupt vectors (see rest-pc in Section 4). It is called when the system
is about to exit due to a request or an error.

Handler. c contains the routines required by the real-time interrupt package (see Section 4).
These routines are the function definition of the control-break keystroke and the code that is
executed at each interrupt. This code reads the robot encoders and sensor data, loads it into
shared memory, signals the AT-Super to begin calculations, and outputs the results of the previous
AT-Super calculation from shared memory to the robot actuators.

The programs that run on the AT-Super must have a front end that is compatible with the PC's
real-time system. In other words, it must be able to synchronize and communicate with the above
PC-AT routines. This is done by having a well defined front end that will call a generic user-defined
routine. This user defined routine is the actual control calculations, and the front end takes care of
real-time issues and data transfers. The front end code is found in the \pkg\control\29k directory.
It is called rt -29k. c. This program zeroes out the shared memory structure, calls any user defined
initialization routine, sends the shared memory buffer address to the PC, synchronizes the timing
with the PC, and then loops through the upper level of the control routine. This upper level
involves waiting for the calculation signal from the PC, retrieving the input data from the shared
memory, calling the user defined routine that calculates the control law output, and placing this
value into shared memory (see Figure 4). Also in this directory are prototypes for the user defined
routines. They are called user-init, the routine to initialize any user variables, and user-calc,
the routine to calculate the control law.

4 The Real-time Interrupt

The software package in \pkg\intrpt reconfigures the PC to enable real-time interrupts1. It does
four basic system changes:

1. ignores the control-c interrupt,

2. changes the interrupt vector for control-break to call a user defined control-break routine,

3. changes the interrupt vector for the timer to call a routine within this package. This package
routine can then in turn call the user defined interrupt handler, and

4. changes the frequency of the timer to the user's desired value.

There are also provisions to restore the PC to its original configuration, thus allowing a graceful
exit of the program.

There are only a few hooks for the user's software t o link into this package, and the rest is
self-contained. The hooks are as follows:

There are three routines within the intrpt package that the user's program must call. They
are defined as follows:

- ext ern void i n i t -rt (i n t t i ck- f req) ; This initializes the PC to reroute the inter-
rupt vector and change the interrupt rate. The user-tick-handler is not called when
an interrupt (or "tick") occurs yet, because it has not been enabled. Note that tickfreq
is in hertz.

- ext e rn void t ick-handler-suit ch(i n t on-or-of f) ; This will enable the routine
user-tick-handler to be called when a tick occurs if the value of on-or-off = 1. If it
is zero, then the user-tick-handler will not be called.

- extern void res t -pc(void) ; This will restore the PC interrupt vectors t o their
original form and reset the system time, if a battery backed-up clock is available.

There are two routines that must be defined in the user's program:

- void user,ctrl,break,handler(void) ; This is executed when the user types a "CTRL-
BREAK". Usually this routine will set a flag so that the non-real-time (foregound)
process can exit gracefully by calling the rest-pc routine. Otherwise, should an error
occur, the system will need to be reset because the timer interrupts will not have been
restored correctly. The graceful exit can easily be implemented by having the main fore-
ground loop check a ctrl-break flag. If it is set by the user-ctrl-break-handler, then
the foregound exits the loop, processes the rest-pc, cleans up anything else and exits.

- void user,tick,handler(void) ; This routine is executed each time a tick occurs. This
is obviously application dependent.

Note that both of these routines and any subroutines that they call must follow these guide-
lines:

 his package is adapted from software written by F.Fuma and J. Bradley of the GRASP Lab. I t is not meant to
be unique t o TRACS and can readily be used on other IBM-PC systems running DOS 3.3.

- the routines must not contain any DOS calls (i.e., p r i n t f o , scanf 0 , etc.).

- the routines must terminate with a r e t u r n 0 statement, not an e x i t 0 statement.

- the routines must be compiled with the -Gs switch.

Additional application notes as well as a sample or prototype listing of how to use this package
is included in Appendix B.

5 Communicat ion Interfaces

This section will describe the communication software interfaces within the system. They are
divided into three groups, communications between the PC-AT and AT-Super, between the PC-
AT and the Unimation controllers, and between the PC-AT and any sensors.

5.1 PC-AT t o AT-Super

The AT-Super provides two forms of access from the PC, either through four bytes of 110 memory
or 16k of shared memory (see Appendix A for the AT-Super manual).

The four bytes in 110 space start at 0x0208 in this application. The first byte is the AT-Super
control port register. The AT-Super software modified for this workcell does not access this byte,
however the unmodified portion does. The next two bytes of the I/O space memory are used to
position the base of the 16k window looking into the AT-Super memory. This 16k of shared memory
must be continuous but can start anywhere within the AT-Super's memory. The workcell software
does make use of this feature as will be shown below. The last byte of 110 space memory is called
the mailbox register. One byte of data can be transferred between processors through this mailbox.
This feature is used extensively and requires further explanation.

The address of the mailbox for the PC-AT is Ox020B and for the AT-Super is 0x80800000. The
PC-AT can read and write to this I/O memory address just as it would any other port in the
110 address space. The outp() and i n p 0 routines are used for this function (see the Microsoft
C Runtime Library Manual [4] for further information). The AT-Super can write to this port
directly, however i t must be done as a transfer of unsigned long data to the unsigned long address
of 0x80800000, even though only the last byte of the unsigned long data is used. The AT-Super's
kernel routine will get interrupted each time the PC-AT writes to the mailbox. The kernel interrupt
routine will then immediately copy the contents of the mailbox into memory at 0x80000404. Thus,
to access data from the PC-AT, the AT-Super's software polls the location 0x80000404 for an
unsigned long value.

As previously stated, there is a 16k byte window of shared memory between the PC-AT and
AT-Super. The system is configured such that the shared memory is always located at OxDOOOO
through OxD3FFF in the PC-AT memory. However, this memory can be located anywhere within
the AT-Super half megabyte of memory. The PC has control over the location of the window by
writing the address of the bottom of the window into the second and third bytes of the four byte
I/O space memory (see Appendix A). The PC-AT'S processor is an INTEL 80286 and it accesses
memory least significant byte first, but the AT-Super's processor, an AMD 29000, accesses memory
most significant byte first. Thus, even though they have shared memory, they can not transfer data
(larger than a byte) without switching the byte position.

In this system implementation, the P C-AT first communicates to the AT-Super through the
mailbox. The two processors send commands and data back and forth during the real-time ini-

tialization. The most important data the the PC-AT retrieves is the location of the large data
buffer on the AT-Super. The PC-AT sets up the shared memory window base to access this data
buffer. During the real-time process, the interrupt signal is propagated to the AT-Super through
the mailbox (see figure 4). Upon receiving an interrupt, the PC-AT collects sensor data and loads
it into shared memory. Then it checks the mailbox for the flag that signifies the AT-Super has
completed the previous calculation and is ready for new data. If this flag checks out, the PC-AT
sends the command that it may begin to calculate the next servo loop to the AT-Super through
the mailbox. Then the PC-AT reads the shared memory for the output data from the previous
calculation and outputs them to the robot actuators. This completes the interrupt service routine,
and the PC-AT now processes any foreground work before receiving the next real-time interrupt.

The AT-Super has two structures for all data that is transferred between it and the PC-AT.
One structure has data that is readily accessible by the user's program on the AT-Super and
the other "mirror" structure is designated as the shared memory. The shared memory can be
immediately accessed by the PC-AT because the AT-Super does the required byte switching when
transferring the data to and from its usable data structure. Thus, when the AT-Super gets the flag
to calculate, it retrieves the input data from the shared memory, does the byte switching, and puts
it into the usable data structure. Then the user define control algorithm calculates the next set of
outputs. These output values are then byte switched as they are loaded into the shared memory
data structure from the usable data structure. Finally, the AT-Super writes the flag to the mailbox
signally it has completed its calculation and the PC-AT can read the output values from the shared
memory.

5.2 PC-AT to Unimation Controller

The Unimation controller consists of six joint processor boards (one for each joint), six analog signal
boards, and an interface parallel 110 board. Each joint processor board runs a program that does
the following: 1) updates the encoder reading (to 16 bits), 2) outputs power to the actuators (via
D/A converter), and 3) can implement a joint-level PID positional control algorithm. In this real-
time system, the third feature is disabled while running the AT-Super based control routines. The
analog boards provide signal conditioning of the D/A output. The parallel I /O board is designed
to communicate with a DEC DRVll parallel board, a standard LSI-11 communication board.

The PC-AT of this system is equipped with digital I/O boards with have been configured to
mimic a DRVll that would communicate to the controller interface board. The program on the joint
processor boards has a well defined set of commands that are described in Unimation's Breaking
Away from VAL [I] document. A commandidata pair can be transferred to or from a single joint,
or a command with a six member array of data can be transferred to or from the set of six processor
boards. The software on the PC-AT that provides these functions is located in \pkg\p250\comm.
The routines are called i n j 0 , o u t j 0 , i n j v () , and outjv0. The former two transfer data to
one board at a time while the latter two transfer arrays (vectors) of six elements, one to each
board. The command, data, and robot identification are specified in the calling statement of these
routines. Also included in the listing is a facility to reset the Unimation controller.

The commands used by the real-time system most often are reading the encoders, initializing
the encoders, and setting the D/A converters. There are other utility programs provided on the
PC-AT that are not part of the real-time system and do not use the AT-Super. They are discussed
in Appendix C.

5.3 PC-AT to Sensors

The sensor currently being implemented on the system are the Interlink Force Sensing Resistor
contact/force sensors. These sensor's resistance varies logarithmically with the surface contact
force. The sensor is usually used in a voltage divider configuration, with the voltage being converted
to a force value in software. The software for this sensor will be dependent on the analog 1/0 board
used in the PC-AT. At present, the DACA board is used for the A/D conversion. The software for
this board is located in \pkg\daca.

The Lord Corporation Force Torque Sensor is another sensor that may be used in this system.
It is a serial device. Since the PC-AT runs with a dedicated real-time interrupt when controlling the
robots, the normal serial communication routines are not compatible. John Bradley has developed
a serial device-driver for the PC within the GRASP lab which will implement the serial commu-
nication functions. This software is located in \pkg\serial. The driver is operated by polling,
however, and additional development will have to be done to make it interrupt driven. The sensor
has commands for zeroing itself and returning the force-torque values. Test programs to do this
are located in the \pkg\sensor directory. At the time of this writing, the sensor has not yet been
used on the robots. Future plans are to use this sensor, or a similar one, to measure the forces and
torques being generated at the wrist of the robot.

6 Creating Application Software

This section will describe how to develop control software for the system, what features are available,
and how to compile and link the source.

6.1 Development

The system design is such that the PC-AT and the AT-Super both run concurrent, synchronized
processes. The PC-AT loads the AT-Super with its executable file, starts it up, and then synchro-
nizes the communication between the two processors through the AT-Super mailbox (see Section 5).
The program running on the AT-Super initializes variables and waits for the first real-time signal
from the PC-AT. When the signal comes, the AT-Super call the user-defined control routine after
doing some background bookkeeping. This section will describe how to develop the control software
to fit within this scheme.

The system calls two user defined routines, init-29k. c and user-29k. c. Prototypes of these
two programs exist in the directory \pkg\control\29k. Actual working models of these programs
can be found in most of the \pkg\rt sub-directories. The init-29k.c routine is supplied to the
user in order to initialize any variables within the user's code, before any control calculations are
made. It is called once at the beginning of execution. The user-29k.c routine is called on each
real-time interrupt. This is where the control law, trajectory, and any other real-time processes
are calculated. These can all be newly written, or the user can make use of previously developed
control routines in the rt directory. This routine also has an error code for its return argument. If
this argument is non-zero, the robots' arm power will be disabled and the real-time system will be
exited back to MS-DOS.

There are three important structures within this system defined in \pkg\control\h\tracs.h.
These structures are declared global within the main routine from which init-29k and user-29k
are called. They are listed and described below:

extern s t r u c t how pc-dataC21; This structure contains all the information from the PC-
AT for that particular interrupt period concerning one of the robots (hence its dimension of
two). Included in this structure are the encoder values, the sensor values, and the task phase
values. The task phase values are the inputs from the operator through the PC-AT foreground
process. Through this vehicle, the operator can have the control code segue between separate
task phases of the program.

ex tern s t r u c t chg yarc,data[2] ; This structure contains all the information from the
AT-Super to the PC-AT resulting from the calculations of the interrupt period for one of
the robots (again, note the dimension of two). Included in this structure are the values to
be outputted on the actuator DAC's, the status of the controller (which could also be used
as D/A outputs), and a special code that enables data logging for debugging and graphing
purposes (see Section 6.2 below).

ex tern s t r u c t l og yarc-logC21; This structure contains the data to be logged from this
interrupt period for one of the robots. It contains up to six values, which are user defined in
the controller (see Section 6.2 below).

Put quite simply, it is the software developer's responsibility to write the body of the user-29k
routine and within that body one must access the variables from the how structure, calculates the
control law and outputs the results into the chg structure.

6.2 Development features

This section will highlight the data logger and other code available within the system that a
developer may consider incorporating.

The data logger is a feature that allows the user to obtain real-time data from the system. It is
easily implemented and can be tailor to suit many needs. The logger allows up to six variables per
interrupt for each robot to be stored. The logger is begun on the AT-Super by setting the logcode
of the chg structure to the value LOG-ON (defined in t r a c s .h) and filling up the in fo array of the
log structure with the variables of interest. The PC-AT checks the logger code word and when it
is set, the PC-AT stores the values from the info array into two (one for each robot) large arrays
(1000 by 6) within the PC's program. Note that the PC's array is 1000 deep, so only 1000 sets of
variables can be logged. The user program (on the AT-Super) must keep track of how many sets of
variables have been sent to the PC-AT, it cannot exceed 1000. The AT-Super program stops the
logging by setting the logcode of the chg structure back to zero. When the program is finished,
the PC-AT writes the logged data to a file the directory \pkg\rt\log. The name of the file reflects
the time and robot of origin. This directory should be emptied of old, unwanted log files, or else
the system disk will quickly fill up. Note the flexibility of this feature, the user program decides
when to start and stop logging data. It could be triggered by any event: the start of a new task
phase, the saturation of a sensor or actuator, the reaching of a certain position, etc.

The software developer does not have to start writing code from scratch. There are many
working files in various \rt subdirectories. The most important resources are mentioned here.
The \ r t \ l i b subdirectory has robot library routines, most notably the kinematics and inverse
kinematics for each 6 DOF arm. Most applications use this library. This library also adopts a
practical convention for storing transformations (that is prevalent throughout the lab). The files
pumadata. h, pumaf orce . h, and mmcs . h located in the \pkg\control\h subdirectory may also
prove useful in developing code.

Additionally, it is common for the basic position control routines to have a joint level proportional-
derivative (PD) controller embedded in user-29k. This can be used as is, but note that the routine
reads gains from an external file named \pkg\control\data\gains. dat. (There is a variation of
this file used for force control with the flat end-effectors.) The developer may wish to adopt the
overall style from the applications, especially the way that various phases of the program task are
enabled by the operator. The phases are also generally used as trajectory generators.

When making changes to existing code, do so judiciously. Remember, that the robots are
being directly controlled by the code you are writing. Use safeguards as much as possible, such as
software torque limits, error checking, software return status, etc. Make large, sweeping changes
incrementally, verifying each step by running the program. When running new code, be very careful
and observant of the system behavior (i.e., have your finger ready on the arm power off button.)

6.3 Compiling and linking

The programs are compiled with the MetaWare HiC compiler, invoked by the ccomp command [3].
The compiler flag -f027 is commonly used to signal the compiler that the floating point copro-
cessor, the AMD 29027, is to be used. Also, the trigonometric functions are contained in a high
speed library, \yarc\hc\lib\ftrig.o that should be linked. The code written by the devel-
oper resides in user-29k .c, init-29k .c, or is located in a subroutine that is called by either
of these routines. The main0 routine, however, is standard for all programs and is located in
\pkg\control\29k\rt-29k. o. Thus, this is the first routine named in the compiling statement,
such as:

ccomp -0 filename.out -f027 \pkg\control\29k\rt,29k.o fi1ename.c
\pkg\rt\lib\kinlib.o \yarc\hc\lib\ftrig.o

where filename . c contains all the user developed routines, including user-29k. c and init -29k. c.
The applications on the system make extensive use of the MAKE utility. It processes a "makefile"

that has a record of what flags should be used and which routines and libraries should be compiled
and linked. Additionally, the MAKE utility will check to see if the object code is up-to-date and
if it is not, it will recompile the newer source files. (See the Microsoft Code View and Utilities
Manual [2] for more information.)

7 Running Application Software

This section will outline how to run programs on the system and it also contains a subsection which
describes how to use the offline control code debugger.

Before any program can physically use the robots, they must be powered up and calibrated.
(See the calibration section of Appendix C). Occasionally, the robots will lockup and not move
at all when they are enabled. This is because the controller joint boards have unknowingly reset
themselves. In this case the robots must be re-calibrated.

A program, whose name is filename .out is run by issuing the command rt filename. The
program rt is the modified version of the AT-Super loader/servicer that creates the real-time
environment and runs on the PC-AT. The program filename .out is created by the user to run on
the AT-Super and contains the system's rt-29k code as well as the user defined user-29k code, the
latter of which does the robot control. The robot arm power should be disabled before executing
this command.

When this program starts, it will print out information that may or may not have significance
to the operator, depending on how the init-29k routine is written. On many applications, this
program will read data files (such as the PD gains file) and then print them on the screen to
confirm that the correct data is being used. This type of output is only done in the initialization,
because the real-time code cannot do printf's from the AT-Super. Eventually, the program asks if
the operator wishes to change the sampling rate. Type "y" if this is desired, otherwise just hit any
other key. It is suggested that the sampling rate not be changed unless the code is so long that it
is unable to run at the default rate.

Next, the main menu is displayed. Read it carefully. The menu summarizes the acceptable
inputs t o the system (note they are all lower case) and the basic inputs are described below:

' l - This will command terminate (quit) the program and restore the system to MS-
DOS. If the robots arm power is on, it will be turned off, however it is recommended that the
arm power be turned off by the remote switch (or at the controller front panel) before issuing
this command.

b - This command will begin the passing of control loop actuator values to the
actuators themselves. In other words, before this command is issued, the actuators are
receiving zero power and the arm is actually limp. Turning the arm power on now will cause
the arms to collapse under their own weight since the brakes will be off but no current is sent
to the motors. If the arm power is turned on before this command is issued by mistake, exit
the program and start over. Do NOT try to run the code now because the the trajectory
generator may have been initialized at the robots configuration when the program started,
and now the robots position is very different. If b is issued, there may very well be a quick,
unexpected movement by the arms.

e - This command will end the passing of control loop output values to the actuators
and pass zero instead. Note that the robots will be limp, their brakes are off and no power is
going to the motors. (See above.) This is used very infrequently, when it is desirable to limp
and reposition the robots usually after a program is run.

P - This command will enter a user defined phase of the task. This command has two
additional keystrokes associated with it. The first key, immediately after the p discriminates
between which robot should move to this phase, given by:

- 0 - Robot number zero.

- 1 - Robot number one.

- 2 - Both robots zero and one.

The next keystroke identifies which phase, from 0 to 5. Thus the command p 2 0 will cause
both robots t o enter phase zero of the task.

The above commands control the software execution, but the operator has final say because
s/he controls the arm power switch. This switch should always be in the operator's hand. The
normal sequence for running a program is:

1. Verify arm power is off.

2. Type in the rt filename command.

3. Use the default servo rate (by hitting any key but "y" when asked if a change is desired.)

4. Type the b key at the menu prompt.

5. Turn the arm power on, closely monitor the robots, and if any unexpected behavior results,
quickly turn off the arm power.

6. Run through the phases of the task using the p command above. Again, closely monitor the
robots, and if any unexpected behavior results, quickly turn off the arm power.

7. Turn arm power off when task is complete.

8. Type the q key to quit the program.

After the arm power has been turned off, in steps 5, 6, or 7, do not turn it back on while the servo
loop output values are being passed to the actuators. The program must be exited and the above
sequence re-started to run it again.

Note that if the system severely malfunctioning, no keyboard entry may be possible, in which
case, either hit CTRL-BREAK or reboot the PC. If the program displays the menu then exits imme-
diately, the real-time synchronization is usually at fault. It is very likely the AT-Super was still
calculating the previous servo period's output when that PC-AT expected i t to be done. This could
result from having an error in the user defined code or if the code is too lengthy and can not be
calculated in time. The next section describes the off-line control debugger and timing utilities
within the system that may be of use in this event.

7.1 Debugger

An off-line control debugger is located in \pkg\rt\debug. This debugger has two functions: it
can time your user-29k routine or it can step through you control calculations, one servo period
at a time. The indicated directory contains a program named t e s t . c which acts like the rt-29k
routine in TRACS, in that it contains the main routine and calls the user defined control routine.
However, the PC is not in real-time mode while debugging, so the rt program is not used to run
this software. Instead the 29k program, the original AT-Super loader/servicer is used.

The user-29k routine is linked to the t e s t routine by using the make files supplied. Note that
you can link the user-29k object file directly, it does not need to be recompiled. The debugger
is started by typing 29k filename. The program gives you the opportunity to change any of the
variables in the input structures, the normal inputs from the PC-AT such as robot encoders, sensor
values, phase of task execution, etc. It will ask if you wish to time the routine or step through it.

The timer will query you for the number of trial iterations. It will then check the clock, call
the routine the desired number of times, and then check the clock again. Thus, the time expended
on the clock divided by the number of iterations gives the approximate time of calculation of the
servo loop.

The stepper will process one servo loop and display the results from the output structure such
as the power to the actuators. Then you will be able to change the input structure before the next
step.

With these tools, you can sort through problems within the servo loop code. Note that write
statements can be added to the servo code now since it is not in real-time mode, but then the
routine will have to be re-compiled when switching between real-time and debugging modes.

8 Advanced Topic: Adding New Hardware

As the system evolves over time, the facilities to incorporate more sensors will be added to the
system. The additional sensors may lead to new analog boards (both analog-to-digital (AID) and
digital-to-analog (D/A)) and communication boards (to a vision system, etc.). This section will
describe what is involved to perform the integration from the TRACS software standpoint and give
an example. This section does not provide any information that deals directly with the operation
of a specific board. (It is the responsibility of the user to develop this type of software.)

The basic philosophy of sensor integration into TRACS is to have the PC-AT gather sensory
input and to pass it to the AT-Super through shared memory as well as take output values from the
AT-Super (via shared memory) to the sensors and actuators. The PC-AT must do all this during
the interrupt servicing routine.

In the communication board integration case, this may pose a problem since serial communica-
tions that are done through polling at reasonable speeds require a polling frequency far in excess
of the interrupt frequency. An interrupt driven communications board may be an option, but then
the PC-AT will have multiple interrupts and becomes more complex.

The structure of the shared memory is critical in the applications. Without changing this
structure, the system can have up to six sensory inputs and six outputs per robot. The structure
can be modified to accommodate more and this will be shown in the example below.

8.1 Example: Adding a New Analog Board

This example will go through the steps involved in adding a new analog board to the system.
Currently, the DACA board is used for analog inputs and outputs. It has two D/A's and 4 AID'S.
For this example, let's assume the requirements are for 10 A/D channels of input and 3 D/A
channels of output per robot.

The first step is to write the low level code that communicates with the board, which is beyond
the scope of this document and is hardware dependent. There will probably be three routines, one
that initializes the board, one to write to the D/A's and one to read the AID'S. The first routine,
initialization, can be done before the real-time interrupt is started, but the latter two must be called
from within the interrupt service routine. Therefore, these routines must follow the guidelines of
the real-time interrupt code outlined in Section 4.

The 10 AID channels per robot requirement is beyond the present system structure's capabili-
ties, therefore the structure will have to be changed. This is not a terribly difficult task, but it will
cause changes system wide. Most notably, any software running under the old structure will have
to be recompiled and relinked with the new structure. But, since the MAKE utility has been used
throughout the system, updating the old programs will not cause serious problems.

Currently, the main structures of TRACS are found in \pkg\control\h\tracs . h and is reprinted
below:

/*
/* tracs . h
/*
* /

#if ndef TRACS-STRUCTS

#define NJNTS 6

#define ADCHANS 6
#define SUBTASKS 6

/* Data logger codes */
#define LOG-ON 1

struct how { /* Information from PC t o 29K */

short enc [NJNTS] , /* Encoder values */
adcr[ADCHANS], /* A/D converter values */
phase[SUBTASKS] ; /* Phase of task (user defined) */
1;

struct chg < /* Information from 29K t o PC */

short dac [NJNTS] , /* Motor DAC value */
status [sUBTASKS] , /* Control status (user def . ed) */
log-code; /* Data logger code-word */
1;

struct log < /* Information from 29K t o PC */

f loat info C61; /* data logger info (user-def) */
1;

#endif
#define TRACS-STRUCTS

In the above file, the adcr array of the how structure passes the A/D values to the AT-Super
and the status array of the chg structure can be used to pass D/A values from the AT-Super.
Both of these arrays have dimension six, while this is adequate for the D/A requirement, the adcr
array dimension will have t o be increased to ten. This is easily realized by the change:

#define ADCHANS 10

The next step is to run MAKE in the \pkg\control\pc and the \pkg\control\29k directories
to make the new rt and rt-29k programs, respectively. The rt program is run from the DOS
prompt and the rt-29k routine is the AT-Super real-time front-end that must be linked to all AT-
Super control software that uses this new version of rt. This linking of the control software should
be easily accomplished by running their respective MAKE routines. Thus, the needed changes are
instituted.

Future changes could involve more than just widening an array, such as adding new variables to
the above structures or adding new structures themselves. In the former case, adding new variables
to the existing structures, the modification can be made to this include file and above procedure will
still work as long as the variables are of the same type. In other words, the chg structure can only
contain shorts and the log structure can only contain floats. In the latter case, adding an entirely
new structure, the modification is more involved and should be done only it if no other solution
exists. In this case, the program \pkg\control\29k\rt-29k will have t o be well understood and
editted. This is the AT-Super real-time front end. (See Section 5). In particular, this code performs
the following:

Allocate memory on the AT-Super for a mirror of the above structures because the AT-Super
and the PC-AT data is not stored the same way and the data must be byte swapped between
the two processors. The mirror structure is used by the AT-Super and the original shared
memory structure is used by the PC-AT. The size of the allocated memory depends on the
number and size of the structures.

Initially zero out all the mirror structure data.

Perform the actual byte swapping in exchanges to and from the mirror structure and the
original structure. The byte swapping is different for shorts and floats, and that is why they
are segregated between different structures. The exchanges and byte swapping is all done
with pointers, which is why each structure must be homogeneous in data type.

References

[I] Breaking Away From VAL. Unimation Inc., 1982.

[2] Code View and Utilities. Microsoft Corporation, 1987.

[3] High C Programmer's Guide. Metaware, Inc., 1989.

[4] Microsoft C Run-Time Library Reference. Microsoft Corporation, 1987.

A AT-Super Manual

YARC Systems Corporation

AT-Super User's Manual

Revision 1.3

TABLE OF CONTENTS

1 . INTRODUCTION .. 1
1 . 1 Theory of Operation ... 1
1.2 Hardware Features ... 1

... 1.3 Software Features 3

.. 2 . INSTALLATION 5
... 2.1 Caution 5

... 2.2 Software Installation 5
... 2.2.1 System Software Installation 5

.. 2.3 C Compiler Installation 6
... 2.4 FORTRAN Installation 7

2.5 Configuring 29K.EXE ... 8
2.6 Hardware Installation .. 10

2.6.1 Physical Layout ... 10
2.6.2 Physical Installation ... 1 0

3 . SOFTWARE OPERATION ... 1 2
3.1 29K.EXE Program ... 12

3.1 . 1 29K . EXE Program Options: .. 12
... 3.2 C Compiler Operation 13

... 3.3 FORTRAN Compiler Operation 14
3.4 Compiler Batch Files ... 16
3.5 Debugger .. 16

3.5.1 Running The Debugger .. 16
.. 3.5.2 Debugger Commands 17

3.5.3 Addresses ... 17

4 . INTERFACE ... 1 8
4.1 Host Interface (HIF) Specification ... 18

.. 4.2 AT-Super Memory Map 9
4.3 Control of the AT-Super ... 19

4.3.1 Control Port Register ... 20
4.3.2 Address Registers (Window Control) 20
4.3.3 Mail Box Register ... 21

4.4 Expansion Connector ... 22

APPENDIX 1 : DIPSWITCH TABLES .. 2 3

INTRODUCTION

1.1 Theory of Operation

YARC Systems Corporation develops coprocessor products, such as the AT-Super. These
computational engines provide mainframe level computing power using familiar host
platfoms/environments such as the IBM AT running MSDOS.

The coprocessor, in this case an Advanced Micro Devices Am29000, provides several
times the computing power available from the Host system. The AT-Super utilizes the
Modified Harvard Architecture inplemented by the Am29000 processor to provide separate
Instruction and Data Memory. This separation allows the greatest performance in a
coprocessing system.

To accomplish this, YARC provides coprocessors with sophistacated memory systems
using the latest in memory technology. This memory is a local resource attached to the bus
of the coprocessor and is therefore refered to as tightly coupled memory. This
configuration allows maximum compute power while running in parallel to other
processors in the system. The other processors can be either the Host processor, in this
case an 80286, or additional coprocessor boards.

Each coprocessor communicates to the Host system through both 110 Ports and Memory
Pages located in the dedicated page frame for the board. In this sense, the board iooks
much like an Expanded Memory Board to a PC. The Host (AT) loads a program to be run
into the memory of the coprocessor board and issues a command to begin execution.
Software executing on the coprocessor board will then .notify the Host of any services it
wishes to have provided by the Host. The Host system provides 110 support for the
coprocessor, including file, console and printer YO.

The AT-Super coprocessor board is capable of using Direct Memory Access (DMA) to
operate as the master of the system. In this mode it can share slot memory and devices with
the host and other coprocessors in the system.

1.2 Hardware Features

The AT-Super features an Advanced Micro Devices Am29000 processor with a socket for
an optional Am29027 Arithmetic Accelerator. In addition, there are 2 Megabytes of
Instruction Memory and 2 - 4 Megabytes of Data Memory.

The basic hardware diagram for the 29K boards is shown below. The card has three
internal buses (Address, Data, and Instruction) in a configuration known as a Modified

AT-Super User Manual Rev 1.3 1 Copyright 1989 YARC Systems Corp

Harvard Architecture. For a detailed description of this architecture, please refer to Trevor
Marshall's article in Byte magazine (May, 1988).

HOST SYSTEM BUS .-

f -
A f

AMD 29000 ,, I) instruction'
CPU RAM 0

I 4 1
L / 1

4 b

4 b
f \ f \

AMD 29027
I I Instruction

FPU RAM 1
L J

\

Memory

This architecture allows the CPU to perform simultaneous instruction and data fetches.
The CPU first puts out the address of the instruction that it needs to fetch. This address is
latched by the address control logic. During the time needed for the instruction to become
valid on the instruction bus, the CPU can be performing a data fetch.

An additional design feature of the board which allows it to operate at high execution
speeds is the interleaving of the instruction RAM. The instruction RAM occupies two
different RAM banks which are interleaved s o that one address points to one bank and the
next sequential address points at the other bank. When the CPU fetches an instruction, the
next instruction is also fetched. Instructions can therefore be fed into the CPU at a 40ns
/cycle while using 80ns dynamic RAM. The memory architecture of the AT-Super allows
it to acheive sustained execution rates of 17 MIPS, with 25 MIPS during burst mode.

The AT-Super may be expanded with daughter cards, which are plugged into the AMD
29027 socket, and then the 29027 is plugged into the daughter card. Daughter cards can be
used for specialized operations such as driving printer engines or for data acquisition.
YARC provides information for the design of daughter cards by the user. Additionally,
YARC can be contracted to design daughter cards for custom applications.

AT-Super User Manual Rev 1.3 Copyright 1989 YARC Systems Corp

1.3 Software Features

.-

The design goal for the AT-Super product line is to provide the highest performance while
minimizing the additional programming effort involved. Programs running on the
coprocessor board have full access to standard host VO functions. This is accomplished
through an executor/loader program which translates requests for UO operations from the
board into the host-specific calls. A program running on the board does not "know" that it
is running on a coprocessor board. The program can make all of the standard C or Fortran
file or character 110 calls and these will be executed by the host. A diagram of the
hostboard software interaction is given below.

HOST SYSTEM COPROCESSOR SYSTEM

AT-Super User Manual Rev 1.3 Copyright 1989 YARC Systems Corp

The user interacts with the AT-Super through a number of simple batch commands. For
example, typing

29K my-program.out . -
in response to the DOS prompt will cause the executable file "mygrogram.out" to be
loaded onto the AT-Super and begin execution. From that point on, the program appears
exactly as a DOS program, only executing many times faster. With multi-tasking operating
systems, such as Microsoft Windows or DESQView, the user can operate the board as a
background task.

Multiple coprocessor boards can be used for increased performance. While the boards are
not specifically designed for parallel processing, they can be very useful for concurrent
processing. For example, different stages of an image processing operation could be
running on different boards, with the boards communicating through their bus-mastering
capabilities. Likewise, multiple versions of a program can be run for increased throughput
(e.g. different frames of a ray-traced animation could be performed on different boards).

AT-Super User Manual Rev 1.3 Copyright 1989 YARC Systems Corp

INSTALLATION

The installation procedure for the AT-Super is described in this section. You should first
install the software onto your development system. Next you should run the configuration
program, which will configure your execution environment and inform you of the proper
switch settings fbr the board. Finally, you should physically install the board into your PC
system and run the test programs.

2.1 Caution

The AT-Super is a high-performance system and contains a number of static-sensitive
devices. Ensure that you have discharged the static from yourself prior to handling the
board. The proper way to do this is to touch the metal frame of your PC to ground
yourself, and then touch the bag the board is shipped in (prior to opening it). This will
discharge any static build-up on your person or on the board. Whenever you are going to
handle the board, always ground yourself on your PC frame first.

2.2 Software Installation

Prior to installing the software that came with your system, i t is suggested that you make
working copies of all diskettes. Use these copies for the installlation of your software, and
keep the originals in a secure piace as backups. You should first install the system
software contained on the diskette labeled "Executor/Debugger". Next you should install
the appropriate compiler software (if purchased).

2.2.1 System Software Installation

The "Executor/Debugger" diskette contains the following files and directories:

File Function

YARCBOOT
29K.EXE
CONFIG29. EXE
DEBUG29. EXE
DEBUG29.DOC
README .
BROWSE.COM
README. BAT
DEMO\OSTEST.BIN
DEMO\DHRY.BIN
DEMO\PI.BIN

29000 file which boots the AT-Super
Executor program
program to configure the system software
debugger program
notes on the debugger
a file with notes not in this manual
a program to look at text files
displays "readme" file
test of operating system
Dhrystones benchmark
program to calculate PI

AT-Super User Manual Rev 1.3 5 Copyright 1989 YARC Systems Corp

DFMO\OPTl WHET.OUT optimized Whetstone benchmark (single prec.)
DEMO\OPnWHET. OUT optimized Whetstone benchmark (double prec)
DEMO\WHET.OUT standard Whetstone benchmark
DEMO\WHET.DOC Whetsr one documentation

Several directories are required to hold the various compiler and executor tools which you
will be using with the AT-Super. The simplest installation method is to use the directories
"C:\YARC\binN ,"C:\Y ARC\libW, and "C:\YARC\includel'. Create these directories
using the following commands :

MKDIR C:\YARC\bin
MKDIR C:\YARC\~F~
MKDIR C:\YARC\include

All of the *.EXE files and the YARCBOOT file off of your system diskette should be
placed in the "C:\YARC\binM directory. The additional files on the diskette may be placed
in any directory.

You should then modify you AUTOEXEC.BAT file so that the DOS system knows where
to search for the various files that you have installed. First your PATH variable should
include a reference to the "C:\YARC\binM directory so that the .EXE files can be executed.
As an example, the line should read:

SET PATH = C:\YARC\bin

You should also add a new system variable to your AUTOEXEC.BAT file which reads

SET YARC29K = C:\YARC

Which will direct YARC's system software to the correct .location of the YARCBOOT file.

2.3 C Compiler Installation

All of the files needed for MetaWare High C on the AT-Super are contained on three
diskettes. The installation procedure for the various files is given below.

Place the C Compiler Disk 1 in your "A:" drive. Copy "A:ccomp.exe" into a directory that
is in your MS-DOS search path. Now copy the binary tools and libraries by typing:

COPY A:\bin*.* C:\YARC\bin
COPY A:\include*. * C:\Y ARC\include

Now place the C Compiler Disk 2 in your "A:" drive and type:

COPY A:\bin*.* C:\YARC\bin

Now place the C Compiler Disk 3 in your "A:" drive and type:

AT-Super User Manual Rev 1.3 6 Copyright 1989 YARC Systems Corp

COPY A:\lib*.* C:\YARC\lib

This should have copied the following files to your destination disk:

C: \YARC\bin\HCl COM
C: \YARC\bin\HC2COM
C:\YARC\bin\LD29K
C: \YARC\Lib\LIBS*.A
C: \YARC\lib\CRTO. 0
C: \YARC\inclu&\ *. H

If you do not want to use the "\binu and "\libH directory names, set 29KBIN =(your
binary directory) and set 29KLIB=(your library directory) and the compiler will search
these directories if it cannot find files in the "YARC29KW sub-directories.

2.4 FORTRAN Installation

All of the files needed for Topexpress Fortran on the AT-Super are contained on a single
diskette. The installation procedure for the various files is given below. Place the files in the
directories shown below;

Binary files: (in "C:\YARC\bin")

FCOMP. EXE
F77PASSl .OUT
F77PASS2. OUT
LD29K
YARCBOOT

Librarv files: (in " C:\YARC\libN)

CIO. 0
CRTO. 0
F77LIB. 0

If you do not want to use the "\binH and "\libN directory naming convention, you can place
the binaries and libraries anywhere on your hard disk that you like. You must, however, set
up several environmental variables so that the compiler can find them. These environmental
variables used are 29KBIN and 29KLIB. The compiler will not append "\bin" or "\lib"
onto a path used in this way; you must describe the exact path to your private directory. If
the compiler cannot find files in the "YARC29KW directories:

AT-Super User Manual Rev 1.3 7 Copyright 1989 YARC Systems Corp

- F77PASSl.OUT, F77PASSt.OUT, LD29K, and Y A R C B O O T are all
searched for in the directory pointed to by "29KBINt'.

. -
- CIO.0, CRTO.0, and F77LIB.0 are all searched for in the directory pointed to

by "29KLIB".

2.5 Configuring 29K.EXE

The boards are shipped in a standard configuration, and there is often no need to change the
settings. Special operations, however, may require modifications. The most common
setting that is of interest is the one that sets the board's location in the 110 space of the PC.
The board is shipped with its 16K window set at hex D0000. It may be necessary to move
this window so as not to conflict with other boards, particularly if you will be using more
than one AT-Super. Some of the settings can cause severe problems for the board, so do
not modify any of the settings that you are not familar with.

The configurator is invoked by typing

The configurator reads in the "29k.exe" file and determines it's operating parameters.
These may then be changed.

When the configurator is invoked the following begins scrolling onto the screen. The
configurator first displays all of the current settings for the "29k.exe1' file, and then one-by-
one asks if you want to change these settings. For each option the one displayed in square
brackets [] is the one currently selected. Pressing the enter key without typing an option
will leave the currently selectec choice intact. After you have modified the settings in the
"29k.exeV program, the configurator will display a diagram of the switch blocks on the
board with the appropriate settings. Please verify on your board that the switch settings
match the displayed settings on your screen.

The output from the "config29" program is shown below:

YARC 29000 Configurator V0.50. (C) 1989 Yarc Systems Corporation
Changes will be made to file 29k.exe
The executor will look for the YARC 29000 board at hex D0000.
1/0 port base is set to hex.208.
DMA channel is set to 0.
Not using interrupts.
Debug off .
May become Bus Master.
Ignore HIF Notify calls.
Not using host interrupts.
Reset 29000 after each program ends.
Won't show each HIF call.
Memory not zeroed before loading each program.

AT-Super User Manual Rev 1.3 8 Copyright 1989 YARC Systems Corp

Will use 29027 FPU if available.
29027 Mode = OFC00000, Counters = 00000364.
Will use Branch Target Cache if 29000 Revision CA or greater.
Will show sign on message.
DW bit in 29000 configuration register OFF.--

Search for 29000 memory at hex? [DO0001
Set 1/0 port base to hex? ([208],228,240)
Use Direct Memory Access? [N] Use Interrupts? [N]
Show sign on message? [Y]
Change debug options? [N]
Allow 29000 to become Bus Master? [Y]
"Break" on HIF Notify calls? [N]
Allow use of PC interrupts? [N]
Reset 29000 after each program ends? [Y]
Show each HIF call? [N]
Zero memory before loading each program? [N]
Use 29027 FPU if available? [Y]
Set 29027 Mode (high word) to hex? [OFCOOOOO]
Set 29027 Counter (low word) to hex? [00000364]
Branch Target Cache (A) on, (B) off, (C) on for rev
rc1
Turn DW bit on in processor configuration register
greater? [N]

CA or greater?

for rev D and

OFF ON Switch Block 1
1- - Control Port Address
2- - Control Port Address
3- - 16 Bit Transfers if On
4- -
5- - Interrupt 10, Enabled if On
6- - Interrupt 11
7- - Interrupt 12
a- - Interrupt 15

OFF ON Switch Block 2
1 - DMA Request 7, Enabled if On
2- - DMA Request 6
3 - DMA Request 5
4- - DMA Request 0
5- - DMA Acknowledge 7, Enabled if On
6- - DMA Acknowledge 6
7 - DMA Acknowledge 5
a- - DMA Acknowledge 0

2.6 Hardware Installation

2.6.1 Physical Layout

The upper left section of the board is dedicated to the Instruction Memory. The upper
center contains the Am29000 and optional Am29027. The upper right contains the Data

AT-Super User Manual Rev 1.3 Copyright 1989 YARC Systems Corp

Memory. The lower sections of the board contain the interface to the Host system. The
physical layout is shown below:

AMD 29000 [-I AMD 29027

(optlonal)

.....................
: Instruction ;
: Sequencing

, # Logic , ,
, ,

Control Logic
, . , , Bus Interface Logic , *

n

2.6.2 Physical Installation

1. Turn OFF the power to your computer. Make sure no power goes to your system.

2. Remove the sheet metal screws on the back of your unit that hold the cover in
place. Slide the cover forward being careful not to disturb any of the cables or
wires in the system. Set the cover aside. Ground yourself on the frame of the PC.

. Choose an open 16-bit expansion slot on the motherboard. A 16-bit expansion slot
has two sets of edge connector slots. Make sure that adjacent boards d o not
interfere with the board or air flow to the board.

4. Remove the metal plate at the back of the computer that corresponds to that slot. To
do this you will have to remove the retaining screw and pull up.

5. Carefully slide the AT-Super card down the card guides all the way into the
expansion slot. Be sure the board is seated well into the slot. The board should
not appear uneven, unbalanced, cocked or bent in any way.

6. Replace the retaining screw into the AT-Super plate.

7. Carefully replace the system cover, making sure that-no cables or wires are
disturbed.

8. Reinstall the retaining screws at the back of the cover.

AT-Super User Manual Rev 1.3 10 Copyright 1989 YARC Systems Corp

9. Reconnect power and boot your computer with DOS.

AT-Super User Manual Rev 1.3 Copyright 1989 YARC Systems Corp

3. SOFTWARE OPERATION

3.1 29K.EXE Program

The Loader/Executor program is the host-resident software that places software to be
executed into the memory of the AT-Super and provides VO support for programs running
on the AT-Super.

The 29K.EXE Loader/Executor reads Am29000 binary executable files, loads them into the
memory of the AT-Super and signals the AT-Super to begin execution. The AT-Super may
require services to be performed by the Host processor, the AT. These services are
provided by the Executor portion of 29K.EXE.

Most of the options for the Loader/Executor are correctly set by the file 29K.EXE. This
allows the user to have the remainder of the command line to specify the program to
execute and the options that should be passed to the AT-Super program.

The general form of the command line is as follows:

29K {-loader-option) execution-file {-execution-file-options)

Only the 29000 program name (execution file) and the options to be passed to it are
required. All other options are either taken from the 29K.EXE file or simply default. As
an example, to load an executable file "mygrog.out" down to the board and to initiate its
operation, enter

in response to the DOS prompt.

3.1.1 29K.EXE Program Options:

d Turn on debug mode. Debug mode prints messages as to how far the program and
loader are progressing. It is normally not used.

-v Turn on Verbose mode which prints messages regarding the size and location of
what is loaded.

-11027 Suppress the board from using its Am 29027 FPU.

AT-Super User Manual Rev 1.3 12 Copyright 1989 YARC Systems Corp

3.2 C Compiler Operation .-

The MetaWare High C compiler is invoked with the command
ccomp myqr0g.c

This will invoke both passes of the C compiler, then link the file and produce the
executable file "myqrog.out". There are a number of options available to the user for
compilation. Some of the most common of these are shown with examples below. User
input is shown in bold. File names should follow the standard C language convention of
being less than 32 characters long. There should be no spaces or colons in the file name.

File extensions should be:
.c C program source listing
.s Assembly code source listing
.o Object file
.out Executablefile

For a complete listing of compiler/linker options, please consult the MetaWare C Compiler
manual.

Multiple Compilation

ccomp file-1.c file-2.c file-3.c

Result - compiles all three filc~, links them and creates executable file file - l.out

Suppressed Linking

ccomp file-name.c -c

Result - compiles the program file-name.c, and generates the object file file-name.0

Multiple Linking

ccomp file-1.0 file - 2.0 file-3.0

Result - links the three object files and creates an executable file called file-l.out

Compilation and Linking

ccomp file - 1.c file - 2.0 file - 3.0

Result - compiles file - l.c, and then links all three object files and creates an executable

file called file-l.out

Output Direction

AT-Super User Manual Rev 1.3 13 Copyright 1989 YARC Systems Corp

ccomp file-o1d.c -0 file-new.out
Result - compiles file - o1d.c and names the executable file file-new.out

.-

YARC Floating Point Routines

ccomp file-name.c -f027 ftrig.0
Result - compiles file-name.c and replaces the standard single precision C routines with

YARC's optimized routines

ccomp file-name.c -f027 dtrig.0
Result - compiles file-name.c and replaces the standard double precision C routines

with YARC's optimized routines (both single and double object files can be specified

Link Information

ccomp file-name.c -m
Result - produces a section map of the program using Am29000 addressing

ccomp file-name.c -i
Result - produces an expanded section map of the program using Am29000 addressing

ccomp file-name.c -t

Result - produces a symbol map for each symbol in the program

ccomp file-name.c -a

Result - produces all section and symbol data (same as using both - i and -t options)

3.3 FORTRAN Compiler Operation

The FORTRAN Compiler is operated directly from the DOS command line. As an
example, to compile the Fortran program "mygrog.£", the user would type:

fcomp mygr0g.f
in response to the DOS prompt. If there is only a single source file, this command will
compile the program " m y g r o g . f l , and then link it creating an executable file named
"my-prog.outM. T o load an executable program onto an AT-Super and begin execution,
use the command 29K. For example, to run the program "mygrog.out", the user would
type:

29k mygrog.out
in response to the DOS prompt.

I£ there are multiple source files, compile each of them separately with the -c compiler
option. This causes the linking to be suppressed and for an object module to be produced.
The command

fcomp -c mygr0g.f

AT-Super User Manual Rev 1.3 14 Copyright 1989 YARC Systems Corp

would result in the object module "mygrog.oU to be created. The fcomp command will
also link multiple object files together. If the files "small.f', "medium.f', and "1arge.f' had
all been compiled with the -c option, the command line to link them into an executable file
would be .-

fcomp s m a l l . ~ medium.~ l a rge .~
The name of the executable file would default to the name of the first file in the list (in this
case, "small.out"). For complete documentation on the FORTRAN Compiler operation,
please consult the FORTRAN User's Manual.

3.4 Compiler Batch Files

If you are working on a project that has a large number of source or object files, you may
wish to take advantage of the compiler batch file option. A batch file is simply a text file
with compiler commands typed in it. Suppose that you have two files that you compile and
then link with 4 object files and then direct the output to another file name. The compiler
command for this operation can be written to a text file which we will call "proj". The
contents of "proj" would be

fi1el.c fiIe2.c file3.0 file4.0 file5.o file6.0 -0 new - file.out <ret>

To execute this batch file, after the compiler command type an @ followed by the name of
the batch file. There should not be any spaces between the @ and the file name. For the
example above, to execute the batch file, you would type

ccomp @proj <ret>

in response to the DOS prompt. Batch files also work with the FORTRAi Compiler.

3.5 Debugger

The debugger is a low level AMD 29000 debugger developed by YARC for the AT-Super
product. It supports loading and executing a 29000 Common Object Format file (AMD
HIFF standard), setting and removing- breakpoints, software single step mode,
disassembly of code in memory, and display of 29000 and 29027 floating point registers.

3.5.1 Running The Debugger

The debugger is started by typing

DEBUG29 program name <ret>

in response to the DOS prompt. The following should appear on the screen:

YARC AT-Super 29000 Debugger (V0.16) (c) YARC Systems, Westlake Village,
C A
Breakpoint at ADDR; (29000 address) 'B 810c'
Copy from ADDR, till ADDR, to ADDR; 'C 0 100 1000'

AT-Super User Manual Rev 1.3 15 Copyright 1989 YARC Systems Corp

DIsasm from ADDR, [to ADDR]; 'DI 810c 81f0'
Dump from ADDR, [to ADDR], [cycles to repeat]; 'DU 80002000 800020
Fill from ADDR, to ADDR, 32-bit VALUE; 'F 0 100 70400101'
Go to ADDR [ADDR ADDR . . . I (Trace OFF) 'G 810c 8118'
Kill breakpoint NUMBER; .- 'K 0'
Procedure skip NUMBER; (Trace ON) 'P 0'
quit 'Q'
Register display [FPU, General, Local, Special] 'R','RF','RG', etc.
Substitute from ADDR; 'S 0'
Search Word from ADDR to ADDR for WORD 'SW 40400 42000 1234abcdt
Trace NUMBER; (Trace ON) 'T 10'
<return> go to next instruction (Trace Mode) or break point;
? shows thie help message.

This help screen will appear if you type a ? at the prompt. When you are ready to run your
code type a G and a breakpoint address or type a T to select Trace Mode. Your program
will get control after the startup code (file crt0.o) is executed. Control will revert to the
YARC 29000 Debug window before each instruction is executed (in Trace Mode) or before
each break point. Then you may use any of the debugger commands on the help screen
above. It is useful to have a link map of your program. Use the -a switch on the command
line when compiling or linking your program to generate a link map.

3.5.2 Debugger Commands

A few of the debugger commands may need further explanation. The B command sets a
break point at the address given but if no address is given a list of all currently set break
points is shown. The K command needs the break point number, not the address, to
removeabreakpoint. -

The P command skips past any procedure calls, while the T command shows each
instruction executed. Since this is a software debugger it is not possible to trace
instructions when the DA (Disable All) bit of the processor status register is set, so most
traps cannot be traced. If a P or T command is given without a number, the number last
used with a P or T command is used.

Pressing the return key will either execute one more instruction, or a whole procedure if
the instruction was a CALL and the P command was used last.

3.5.3 Addresses

29000 data memory starts at 29000 address 80000000 (hex). Currently, system data runs
from 29000 address 0x80000000 to Ox80001fff, and user data starts at 0x80002000.
User instruction memory starts at 29000 address 0x00008000 which is usually where the
startup file crt0.o is loaded. Your program code usually starts at or after 29000 address
Ox0000810c. Please see the Memory Map in the next section for more information.

AT-Super User Manual Rev 1.3 16 Copyright 1989 YARC Systems Corp

4. INTERFACE

The AT-Super is usually operated as an engine for advanced scientific processing. The
average user only needs to know how to compile, load, and execute programs, all of which
have been explained in earlier chapters. Developers who are integrating the AT-Super into
a package, however, will probably want additional information on how to directly control
the AT-Super from within their own application. This section provides information on the
interface between the host system and the AT-Super.

4.1 Host Interface (HIF) Specification

Advanced Micro Devices has developed a software specification for Am29000 products to
provide better portability between execution environments. This specification, known as
HIF, is currently in release 1.5 and is available from Advanced Micro Devices. This
document is used as reference material for software developed for the AT-Super. Every
attempt has been made to adhere to this standard and to provide binary portability from one
MF environment to another.'However, as HIF is apparently an evolving standard, no
warranty is provided as to HIF compliahce or portability.

HIF, the Host Interface, defines a standard set of kernal senices available to programs
running on HIF compatible systems. The AT-Super provides these kernel services to
provide the interface with the high-level language library functions, such as disk and screen
YO.

AT-Super User Manual Rev 1.3 17 Copyright 1989 YARC Systems Corp

4.2 AT-Super Memory Map

The memory map of the AT-Super is shown in the diagram-below. Not all adress lines are
decoded for all memory locations, and so there are a number of places where "shadow"
memory exists. For example, while the Mail Box is officially located in the low-order byte
of location 8080000 Hex, it may appear at every memory location between 8080000 Hex
and 808FFFFF Hex. The user should not attempt to utilize these "shadow" areas, since
future versions of software or hardware may modify them.

1 Mail Box 1 83FFFFFF

8003FFFF
Data RAM Bank 0

82000000

(2 MBytes) 8 1FFFFFF

81000000
00 lFFFFF

(2 MBytes)

00000000

AT I10 Space

AT Memory Space

Expansion Connector

4.3 Control of the AT-Super

The AT-Super is controlled by the host through four byte-wide 110 ports plus a 16K byte
page of memory. The 110 ports are used in the control of the board, while the 16K byte
block of memory is a "window" into the memory on the AT-Super. By modifying values
in the I10 ports, this "window" can be made to address any memory location on the board.

The 1 /0 ports are sequential and start at the base address specified when the board is
congfigured (208 Hex, 228 Hex, or 240 Hex). The first 110 port is a control location. A
read from this location gives information from the Serial EEPROM on the AT-Super. This
EEPROM is not a user-accessible device. It is solely for the use of YARC Systems and its
liscensed VAR's. Writing to this first 1 /0 port allows resetting of the board and the
handling of interrupts. The second and third 110 ports contain the high order bits of the
address for the sliding window. The fourth 110 port is the Mail Box Register, which is
used for communications between a program running on the AT-Super and the controlling
executorfloader program running on the host.

AT-Super User Manual Rev 1.3 18 Copyright 1989 YARC Systems Corp

4.3.1 Control Port Register

. -

RST: (RESET) A 1 in this postion will cause the AT-Super to be reset.
DRQEN (DMA Request Enable) - A 1 will allow the AT-Super to perform

DMA operations to the Host (if Bus Mastering is enabled).
IRQEN: (Interrrupt Request Enable) - A 1 will enable interrupts from the AT-

Super to the Host.
B4-BO: Reserved for use by YARC Systems

4.3.2 Address Registers (Window Control)

Low-Order Address Bits Register

3

B3

4

B 4

OFFSET

+ 1

High-Order Address Bits Register

2

B2

ACCESS

Write

Only

OFFSET

+ 2

Note that in the High-Order Address Bits Register, the address lines A30 and A29 do not
appear. By looking at the AT-Super memory map, it can be seen that these lines are "Don't
Cares". Address line 31 controls whether the access is for the Instruction RAM (A31 = 0)
or for the Data RAM (A31 = 1). As an example, suppose that we wish our memory
"window" to point at the 16K block of memory between 8002C000 Hex and 8002FFFF
Hex. We would set our address registers to point to location 8002C000 Hex. This is

1000 - 0000 - 0000 - 0010 - 1100 0000 0000 0000 - - -
in binary. Therefore we would write the value

1000 - 0000 (80 Hex)
to the High-Order Address Bits Register and the value

1

B 1

7

ACCESS

Write
Only

AT-Super User Manual Rev 1.3 19 Copyright 1989 YARC Systems Corp

0

B 0

7

A 2 1

6

4

A 1 8

OFFSET

+ 3

5

6

A 2 0

1

7

A31

4

A26

ACCESS

Write

Only

IRQEN RST

5

A 1 9

3

A 1 7

3

A25

DRQEN

1

6

A28

0

A 2 2

2

A 2 4

A15 I A14 / 2

A 1 6

5

A27

1

A23

1 0

0000-1011 (OB Hex)
to the Low-Order Address Bits Register.

.-

After these values have been written to the Address Registers, the 16K window will be
located over the desired area. If the board was configured with the memory window base
at DOOOO Hex (the default), then any reads or writes from DOOOO Hex to D3FFF Hex will
actually be accessing the AT-Super memory from 8002C000 Hex to 8002FFFF Hex.

4.3.3 Mail Box Register

Communication between the AT and the AT-Super can occur via memory or a Mail Box
port. This Mail Box is a byte wide register which, when written to, can cause an interrupt
to the other side. In other words, if the AT-Super writes to the Mail Box, an interrupt will
occur, if enabled, on the Host (AT). The interrupt is cleared when the Mail Box is read by
the AT. If the AT writes a byte to the Mail Box register, an interrupt is sent to the
Am29000. This interrupt is cleared by the Am29000 by reading the Mail Box register.

The Mail Box is used for communications between the board and the program on the Host
which handles the HIF interface.

OFFSET

+ 4

AT-Super User Manual Rev 1.3

ACCESS

Read
Write

7

D7

Copyright 1989 YARC Systems Corp

6

D 6

5

D5

4

D4

3

D 3

2

D 2

1

D 1

0

DO

4.4 Expansion Connector

The AT-Super has an expansion connector that is an integral part of the socket for the
Am29027. This connector provides a mechanism for custom hardware to be added to the
AT-Super in a closely coupled manner like the memory system. The expansion connector is
addressed in the Am29000 address space between 81000000 and 81FFFFFF.

The Am 29027 has almost all of the necessary signals from the system bus already present.
YARC Systems has added an additional inner row of pins to the socket which carry the few
additional signals necessary for a daughter card. The diagram below shows the signals
available from this inner row of pins. If you intend to design a daughter card, please
contact YARC Systems directly so we can provide you with an up-to-date set of PAL
equations for the few PALS on the mother board which must be modified. In addition,
YARC Systems services are available for the design of custom daughter cards for
specialized applications.

TOP OF 29027 SOCKET

I-' Ground (OV) -1

0 0-
s 0 0 EXPTRP
2.0 0 EXPlNlTl

P 0 0 EXPINIT2

0 0 EXPIN*

1- Ground (OV) -1

* Note: EXPIN must be grounded if daughter card is present.

AT-Super User Manual Rev 1.3 Copyright 1989 YARC Systems Corp

APPENDIX 1 : DIPSWITCH TABLES

The dipswitch tables for the AT-Super are provided below. Note that the user should run
the configuration program and then use the switch settings illustrated by that program.
These tables are provided for completeness.

Switch Block 1:

* Enable only one Interrupt Request

110 Port Address Settings:

Switch #

1
2
3
4
5
6
7
8

AT-Super User Manual Rev 1.3

Function

I/O Address Select 1
I/O Address Select 0
Sixteen Bit Transfers
Motherboard Memory
Interrupt Request 10
Interrupt Request 11
Interrupt Request 12
Interrupt Request 15

I/O Port Address
disabled

240 Hex - 243 Hex
228 Hex - 22B Hex
208 Hex - 20B Hex

Copyright 1989 YARC Systems Corp

Open (Off)
see table
see table
Disabled

5 12K
Disabled
Disabled
Disabled
Disabled

Switch 1

On
On
Off
Off

Closed (On)

Enable'd
640K

Enabled *
Enabled *
Enabled *
Enabled *

Switch 2
On
Off
On
Off

Switch Block 2:

* Only one DMA Request and its associated Acknowledge should be enabled.

AT-Super User Manual Rev 1.3

Switch #

1
2
3
4
5
6
7
8

Copyright 1989 YARC Systems Corp

Function
DMA Request 7
DMA Request 6
DMA Request 5
DMA Request 0

DMA Acknowledge 7
DMA Acknowledge 6
DMA Acknowledge 5
DMA Acknowledge 0

Open (Off)
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled

Closed (On)
Enabled *
Enabled *
Enabled *
Enabled *
Enabled *
Enabled *
Enabled *
Enabled *

B PC interrupt notes

This section contains additional notes to accompany Section 4 on the real-time interrupt.

B.l Application Notes

1. Check the compiler flags in the makefile for i n t rp t .~ and be sure they are compatible with
the compiler flags of the current application. In particular, check the model size and four
byte alignment flags. If they are incompatible, then either change the application's flags or
re-compile intrpt .c with the application's flags.

2. Make sure that the user-tickhandler's maximum execution time is known and that the
tickfreq is slow enough to allow for this maximum time.

3. There is a define in the include file pctimer.h that may or may not be machine dependent. In
other words, if the timing of the interrupt is not at the frequency requested, check this value
with the machine. So far, this value does work for IBM PC-XT, IBM PC-AT, and Jameco
JE2019 (286 with turbo clock).

#define CLOCK-FREQ 1193180
/* verify! may be Machine Dependent */

B.2 Sample Listing

/ * prototype l i s t i n g */
...
#include <s td io .h>
#include <conio.h>

/* declare rout ines defined i n t h i s l i s t i n g */
void main(void) ;
void user-ctrl-break-handler(void) ;
void user - t ick-handler(void) ;

/* declare rout ines defined i n t h e i n t r p t software */
extern void i n i t - r t (i n t t i ck - f r eq) ;

extern void tick-handler-switch(i n t on-or-off 1;
extern void res t -pc(void) ;

#define TRUE 1
#define FALSE 0
#define ON 1
#define OFF 0

/* c r e a t e a global var iab le t h a t t he foregound * /
I* process w i l l check t o s ee i f it should * /

/ * continue t o loop o r e x i t
i n t force-exi t = FALSE;

void main(void1

{
i n t t ick-f req ;
i n t ch;

force-exi t = FALSE;

p r i n t f ("Enter t h e des i red f r e q . i n hz : "1 ;
scanf (I'%dtt, &t ick- f req) ;

/* s t a r t up r e a l time in t e r rup t * /
i n i t -rt (t ick-f r eq) ;

/* foregound checks force-exi t before each loop */
while(! force-exi t)

/* Check f o r a user keyboard input . */
/* Allowable inputs a r e : */
/* b - (BEGIN) t o enable t h e c a l l i n g of the user */
/ * defined t i c k handler when t i c k occurs. * /
/ * NOTE: it i s i n i t i a l l y disabled. */
/ * e - (END) t o d isab le t h e user defined t i c k */
/ * handler from being ca l l ed when t i c k occurs */
/ * q - (QUIT) t o q u i t t h e foregound, r e s t o r e t he * /
/* and e x i t . */

i f (k b h i t o)
{

ch = g e t c h o ;
i f (ch == ' b J)

{
/* enable user-tick-handler */
tick-handler-switch(ON) ;

J
i f (ch == ' e ')

/ * d i sab le user-tick-handler */
tick-handler-switch(OFF) ;

t
I* q u i t t he foreground */
force-exi t = TRUE;

/ * r e s t o r e pc t o o r i g i n a l condition */
r e s t - p c 0 ;

void user-ctrl-break-handler(void)
C

/* it the program malfunctions, * /
/* t h i s may be an easy out * /
force-exi t = TRUE;
r e tu rn ;

3

void user - t ick-handledvoid)
<

/* Do the user defined in t e r rup t rout ine . */
/* This i s where you can i n s e r t */
/* a t r a j e c t o r y generator , */
/* a servo cont ro l law, e t c . */

/* When f in i shed , j u s t r e tu rn . */
r e t u r n ;

>
...
/ * end of prototype l i s t i n g */
...

C TRACS Utility Programs

This section will describe various utilities offered in TRACS. These utilities are often critical to
correct performance of the robots and the system as a whole. It is important that the user be
familiar with them.

C . l Encoder Calibration

The encoder calibration routine is located in \pkg\p250\calib and is named c a l i b . c. This routine
uses the joint processor boards to calibrate the robot's encoders. The encoders are relative, not

absolute, and thus with each powerup or reset of the controller, the exact location of the joint
motor is not known. The calibration routine will initialize the encoders to their correct value. The
calibration routine uses the PC-AT in real-time mode and the robot joint controllers only, thus the
AT-Super is not involved. The calibration routine takes the following steps:

1. The controller boxes should be on but arm power should be off.

2. Enter the command ca l ib a t the PC prompt.

3. It will query which robot to calibrate. Answer as follows:

r 0 - calibrate robot zero

r 1 - calibrate robot one

0 2 - calibrate both robot zero and one successively.

4. The screen will inform you that the robot of interest is limped and that you may place it in
the nest. This is done as follows:

(a) With one hand, securely hold the robot of interest a t its wrist joint.

(b) With the other hand, turn on arm power by pushing the flat black button on the controller
front panel. Do not use the remote switch to turn on the arm power because both robot
arm will be powered and only one is being calibrated. The robot brakes are released and
no power is being supplied to the actuators, thus it is in the limp state. If this is not
the case, immediately hit the red arm power off button on the controller front panel.

(c) With the robot limped, position i t vertically straight in the right shouldered mode.
Rotate joint 4 clockwise about its axis (given the axis is pointing up) until it meets a
mechanical stop. Now rotate it back (counter-clockwise) approximately 90 degrees until
the axis of joint five is parallel to the axis of joint two.

(d) Rotate joint one clockwise until the axis of joint two is perpendicular to the nest plate
located at the back of the robot base. Now bend joint three 90 degrees such that the
end-effector approaches the nest. Continue approaching the nest by coordinating the
bending of joints two and three.

(e) Flip joint five so the end-effector is facing the nest. Before inserting the calibration
end-effector into the nest, rotate joint six clockwise (about the axis from the wrist) until
it meets a mechanical stop, then rotate it back (counter-clockwise) slightly such that
the end-effector completely matches the nest fixture. Now it can be inserted into the
nest. If the process is done correctly, the robot can move out from the nest with only a
rotation on joint two.

5. Now that the robot is nested, hit the enter key of the PC to continue the calibration process.
The program will move the end-effector out of the nest by rotating joint two. Then it will
search each joint successively for the index pulse on the encoder. The principle behind the
calibration is that the nest position forces the encoders to a known position, plus or minus
half a motor revolution (usually a few degrees a t the joint). Finding the index removes this
uncertainty, and the robot location is known completely.

6. To verify the calibration is correct, the robot then will be parked in the vertically straight
position. The operator can visually determine the routine's success because if it has errored,
the misalignment will be by a complete motor revolution (usually a few degrees at the joint).
Occasionally, the program will not continue from here as it should because the final park
position has not been met and is in fact short by a few encoder counts. This results because
the joint friction is high enough and the error is small enough that the control law running
on the controller joint boards does not request a large enough current to move the joint. This
situation can be resolved by gently touching the robot so the joints move slightly.

7. The calibration for the robot of interest is finished, the program will either exit or proceed if
calibration is desired for both robots.

The calibration routine's repeatability is very stable, however the calibration values for the
encoders were obtained by external measurements and verifications within the workspace. Often,
repair work done to the robots involves disconnecting the joint shaft from the motor shaft. When
this happens, a new initial calibration value for that joint (and any related joints, in the case of the
wrist coupling) must be found. There is software within the system that can assist in this endeavor
by placing the endeffector at known points within the workcell and measuring the error between
the actual and expected encoder values. This method is not exact but quite error prone due to
positioning errors, backlash, etc. But, it is none the less a starting point. The slow utility may
also be employed to produce small changes in the encoders and to visually determine the effects
(see section C.3 below).

C.2 Limp

The program \pkg\p250\limp is used to reposition the arms. Functionally, the program outputs
zero current to the actuators and releases the brakes when the operator turns the arm power on.
The program will ask which robot to limp, and the arm power should not be on until this question
is answered. The limp program does not use the AT-Super nor the rea.1-time environment, it simply
communicates directly to the Unimation joint controllers.

C.3 Slow

The program \pkg\p250\slow provides to the operator direct access t o the Unimation joint boards
from the keyboard. Since this program operates a t the lowest level, the user must be very familiar
with the joint board operation. This information is documented in the Breaking Away form VAL
manual [I]. To summarize, the joint boards send and receive information in two forms: either a
command word and then a data word, or a command word and then a vector of six data words.
The slow program allows the user to directly type in the command and data. (The commands
are documented in the aforemention manual.) The program also enables the user to choose either
robot and to do both types of communication (word or vector).

C.4 Maintenance

The main software maintenance involves periodically backing up the hard disk. Secondary mainte-
nance includes purging files from the \pkg\rt\log directory and having users keep their personal
subdirectories as compact as possible.

The backup of the hard disk is accomplished with the FASTBACK package and is done as
follows:

1. Go to the root directory (type: cd \).

2. Start the package by typing fb.

3. At the menu, use option F9 to load the set-up file: t r a c s .fb.

4. Use the arrow keys at the menu to choose the Start Backup field and press re turn .

5. At the top of the new menu, select Estimate Backup and press re turn . Check the total
number of kilobytes of memory needed. Approximately 2 megabytes will fit on a single floppy
due to compression techniques. Verify that you have enough formatted floppies on hand
before beginning.

6. At the top of this menu, select Run Backzsp and press return. Insert the first floppy and the
backup shall begin. When the first floppy is full, it will chime and ask you to remove it and
to insert the next floppy. The floppy disk drive light will not go out during the entire process,
so do not wait for it, just simply follow the instructions on the screen and change floppies
when directed to do so.

7. When the backup is complete, choose Quit at each menu until the package exits back to the
DOS prompt.

Store the backup floppies in a safe area, perhaps one copy should be maintained outside of the
lab. This process should be done once every two weeks, and even more often if a lot of development
has occurred on the system within a short period of time.

	TRACS Users Manual and Software Reference Guide
	Recommended Citation

	TRACS Users Manual and Software Reference Guide
	Abstract
	Comments

	tmp.1186672812.pdf.d3ZW9

