- . o
cnn) \ University of Pennsylvania

Libraries ,_
O UNIVERSITY 0f PENNSYLVANIA 4 ScholarlyCOmmonS
Technical Reports (CIS) Department of Computer & Information Science
May 1987

Explaining and Refining Decision-Theoretic Choices

David A. Klein
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation
David A. Klein, "Explaining and Refining Decision-Theoretic Choices", . May 1987.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-87-57.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/670
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F670&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/670
mailto:repository@pobox.upenn.edu

Explaining and Refining Decision-Theoretic Choices

Abstract

As the need to make complex choices among competing alternative actions is ubiquitous, the reasoning
machinery of many intelligent systems will include an explicit model for making choices. Decision
analysis is particularly useful for modelling such choices, and its potential use in intelligent systems
motivates the construction of facilities for automatically explaining decision-theoretic choices and for
helping users to incrementally refine the knowledge underlying them. The proposed thesis addresses the
problem of providing such facilities. Specifically, we propose the construction of a domain-independent
facility called UTIL, for explaining and refining a restricted but widely applicable decision-theoretic model
called the additive multi-attribute value model. In this proposal we motivate the task, address the related
issues, and present preliminary solutions in the context of examples from the domain of intelligent
process control.

Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
ClIs-87-57.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/670

https://repository.upenn.edu/cis_reports/670

EXPLAINING AND REFINING
DECISION-THERORETIC CHOICES

Dave A. Klein
MS-CIS-87-57
LINC LAB 74

Department of Computer and Information Science
School of Engineering and Applied Science
University of Pennsylvania
Philadelphia, PA 19104-6389

June 1987

Acknowledgements: This work is supported, in part, by the NASA Graduate Student
Researchers Programs and by DARPA grants NOOO14-85-K-0018, NSF-CER grant MCS-8219196
and U.S. Army grants DAA29-84-K-0061, DAA23-84-9-0027.

Explaining and Refining Decision-Theoretic Choices

Doctoral Thesis Proposal

David A. Klein*
LINC Laboratory
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104

Technical Report MS-CIS-87-57 (LINC 74)

Abstract

As the need to make complex choices among competing alternative actions is ubiquitous, the rea-
soning machinery of many intelligent systems will include an explicit model for making choices.
Decision analysis is particularly useful for modelling such choices, and its potential use in intelligent
systems motivates the construction of facilities for automatically explaining decision-theoretic
choices and for helping users to incrementally refine the knowledge underlying them. The proposed
thesis addresses the problem of providing such facilities. Specifically, we propose the construction
of a domain-independent facility called UTII, for explaining and refining a restricted but widely
applicable decision-thcoretic model called the additive multiatiribute value model. In this proposal
we motivate the task, address the related issues, and present preliminary solutions in the context
of examples from the domain of intelligent process control.

Thesis Committee:

Dr. Norman 1. Badler, University of Pennsylvania
Dr. Eric K. Clemons, The Wharton School

Dr. Timothy W. Finin, University of Pennsylvania
Dr. Aravind K. Joshi, University of Pennsylvania
Dr. Edward H. Shortliffe, Stanford University

Dr. Martin O. Weber, RWTII Aachen (Germany)

* This work is supported, in part, by the NASA Graduate Student Researchers Program

CONTENTS

Chapter I: Introduction ittt ittt iintneeenannn 1
Chapter II: Motivation and Problem Statement it ieenn.. 3
1. Explicit models of choice in intelligent systems e 3
1.1 Implicit and explicit models of choice 3
1.2 Roles for implicit and explicit models 4
2. A motivating application: intelligent process control 5
21JESQ'sdomain 7
2.2 Organization of JESQ’s knowledge base 8
23 Critique of JESQ e 9
3. Desiderata for explicit models of choice in intelligent systems 11
31 Competence e e 11
3.2 TranspareniCy ot e e e 12
3.3 Ease of construction and evolution 12
4. Decision-theoretic models and the AMVM 12
5. Assessing decision-theoretic models for intelligent systems 14
5.0 COMPEENCE e e 14
S.2Transparencyottt e e e e 16
5.3 Ease of construction and evolution, 17
6. Conclusion and problem statement 18
Chapter III: Research Goals and Issuesttt iineeranenns 19
1. Ultimate research goals e e 19
2. Research goals of the thesis i 19
2.1 UTIL and the explanation and refinement of AMVM's 20
2.2 Issues in explaining choices 21
2.3 Issues in refining choice knowledge 22
2.4 Issues of integration with other decision-making paradigms 22
Chapter IV: Background and Relationship to Previous Work 24
1. Decision analysisttt e 24
2. Integrating decision theory and Al techniques 25
3. Models of choice in Al systems i 25
3.1 Hand-crafted explicit selection schemes ciiuin... 25
3.2 Hand-crafted implicit selection schemes 26
3.3 Languages for encoding choice knowledge 26
4. Automated explanation 27
4.1 Justifying ChoiCeS 27
4.2 Explaining the results of other quantitative models 28
438ummary 28
5. Automated knowledge acquisition e 29
5.1 Initial acquisition of decision-theoreticmodels 29
5.2 Refinement of decision-theoreticmodels 29
5.3 SUMMATY . . .o e 29
6. Integrating explanation and refinement i .., 30
7. Usermodelling e e e 30
Chapter V: Preliminary Work i i i i i it it ieanenns 31
1. A sample AMVM: JESQ revisited 31
1.1 Structuring objectives e 32
1.2 Assessing the impact of alternative plans L. 13

Contents ii

1.3 Encoding preferences 34

1.4 Evaluating alternatives 37

2. Some AMVM-based architectures for the sample problem 37
2.1 Component tasks in intelligent processcontrol 38
2.2 Architectural context: AMVM as top-levelmodel, 38
2.3 Architectural context: AMVM and a shallowmodel 38
2.4 Architectural context: AMVM andadeepmodel 43
2.5 Interfacing plan determination with evaluation, ... 45
2.6 Implications for approach to explanation and refinement 45
3. Acquiring new alternatives e 45
4. Justifying choices 46
4.1 Some discourse elements 47
4.2 Approach to explanation and associated commands 50
4.3 Hypothetical dialog 52
4.4 Mechanisms employed in the hypothetical dialog 53
4.5 Elements of explanation provided by other facilities 59
5. Refining models of choice 60
S.1Typesof changes e 60
5.2 Approach to refinement 61
5.3 Hypothetical dialogs 62
5.3.1 User-driven refinement: repairing an explanation 62
532 UTIL-driven refinement 63

5.4 Mechanisms employed in the hypothetical dialogs 66
5.4.1 User-driven refinement: repairing an explanation 66
542 UTIL-driven refinement 68

5.5 Elements of refinement provided by other facilities 72
Chapter VI: Research Plan i i i it i 73
Chapter VII: Research Contributions 00 it iiiiiiiiannnans 74
1. Contributions to artificial intelligence i 74
2. Contributions to decision analysis 74
References ittt ittt ittt tiennaeeennoennos 76

Contents iii

Chapter I: Introduction

It’s Saturday night. You think about going to a movie, a relatively inexpensive endeavor, but the
ones you would like to see still involve waiting on long lines. You contemplate a nice dinner out,
and that new Italian place probably wont be crowded, but you're over your credit limit. A
Broadway show would be fun, and you can get cheap tickcts at Duffy Square without waiting too
long, but you hesitate to ride the New York subways at night. What will you do?

Suppose that you are a computer operator. You are leisurcly sipping a soda when you notice that
operating system queue space is almost exhausted. Scrambling to resolve the problem, you find that
a huge dataset is waiting for a designated printer, but that the printer is currently disabled. You
could just delete the dataset, but that would anger the affected user. You could print the dataset
on a high-speed printer that only uses expensive paper, but that would waste resources. You think
about copying the dataset to tape and printing it later when things have calmed down, but that’s a
lot of work for you and greatly increases the user’s turnaround time. You contemplate sending the
dataset back to the user’s private disk storage, but that will require him' to send it back to the op-
erating system later on and will likewisc increcase his turnaround time. You must do something
because additional output is being generated on the queuc and its complete exhaustion will crash
the system. What will you do?

The need to choose among competing alternatives is ubiquitous in rcasoning. We face judgement-
intensive choices in all sorts of settings, from the mundanc and unimportant (choosing an activity
on a Saturday evening) to the highly technical and important (choosing an action to avoid a crisis
in a computer installation). The ficld of inquiry concerned with addressing such choices in a formal,
structured fashion is known as decision analysis, described by Ralph Keeney (1982) as ‘a
formalization of common sense for decision problems which are too complex for informal use of
common sense’.

Our work rests upon the view that decision analysis provides a particularly desirable model for
making complex choices among competing alternatives in intelligent systems.2 The potential for
employing decision-analytic models in intelligent system architectures motivates the construction
of facilities for automatically explaining decision-theoretic choices and for helping users to incre-
mentally refine the knowledge underlying them, as it is by now agreed that automated explanation
and acquisition are important supporting capabilitics for any intclligent system. The proposed
thesis addresses the problem of providing such facilities.

Specifically, we propose to develop a system called UTII.? which takes an additive multiattribute
value function (a restricted decision-theoretic model to be described later) and supplementary
knowledge structures as input, and uses this information to interactively help the user to understand
the justification for choices and to modify the underlying valuc function when such justifications
are deemed unconvincing. We believe that the task of developing such a system is interesting,
challenging, and tractable. :

UTIL's successful completion would provide contributions to both artificial intclligence (Al) and
decision analysis. From the perspective of Al, UTIL would extend previous work in automated
explanation and knowledge acquisition, being among the first cfforts to provide facilitics for ex-
plaining and refining decision-theoretic choices. As the cxistence of such facilities would encourage

! Masculine references such as ‘him’ are used throughout this document as a convenient alternative to references like

‘him or her’ and are not intended to connote gender.

We employ the general term intelligent system throughout this document rather than terms such as exper! system
or decision support system so as not to limit the discussion to particular architectures for computer-based decision-
making.

Utll (sometimes spelled utile) refers to a hypothesized unit of ‘utility’ or satisfaction.

2

Chapter I: Introduction 1

the use of decision-analytic models in intelligent system architectures, UTII, would also provide a
contribution to intelligent systems research. From the decision-analytic perspective, facilities for
automatically justifying choices may play an important role in influencing the behavior of decision
makers. Facilities for incrementally restructuring decision-theoretic models would address impor-
tant open problems in decision analysis such as how to capture changing preferences over time and
how to handle bias in decision-theoretic models. In addition, uscful facilities for refining decision-
theoretic models would help to reduce the demands on methods for acquiring such models from
scratch, another active research area in decision analysis. These contributions arc discussed in more
detail in chapter VII.

While the proposed work may be said to lie at the crossroads of dccision analysis and Al, this
document is written assuming that the audiencc is familiar with Al and less familiar with decision
theory. We apologize to the complement of this audience, who will find the expository sections on
decision theory uninteresting (although we have tried to flag thesc in the text) and sections which
tersely refer to Al architectures and well-known works in Al less than clear.

The document is organized as follows. Chapter 11 motivates the development of UTIL, largely
consisting of arguments which support thc employment of decision-theorctic modecls in intelligent
systems. In chapter Ill, we provide a more explicit statement of our proposed goals and the re-
search issues which arise in attempting to meet them. Next, we take a step back to review related
foundational works, relevant previous efforts, and works which contrast with our proposed ap-
proach, in chapter IV. Chapter V is intended to communicate the flavor of the solutions we are
secking in response to the problems identified in chapter 1II. Chapter VI describes our research
plans. Chapter VII reviews the potential contributions of the proposed work in detail.

Chapter I: Introduction 2

Chapter 1I: Motivation and Problem Statement

The proposed research is motivated by pragmatic concerns regarding the usage of intelligent sys-
tems. The work focuses on the goal of making such systems more useful, rather than that of
modelling cognition, exploring the nature of intelligence, or other goals commonly associated with
artificial intelligence.

Specifically, we are interested in facilitating the development, operation, and maintenance of large
intelligent systems that involve complex choices among competing alternatives. The process of
choosing among alternatives may be the sole task of an intelligent system or a component task of
some more encompassing reasoning framework.

In this chapter we argue for the use of decision theory as a mechanism for choosing among com-
peting alternatives in intelligent systems, and motivate the development of sophisticated facilities for
(i) explaining choices that are based on decision-theoretic models and for (ii) refining such models
on an ongoing basis. The discussion proceeds as follows.

In section 1 we note that every intelligent system encompasscs sorme paradigm for making choices,
and we delineate the roles of implicit and explicit models of choice in such systems. In section 2
we build upon this distinction by describing an application which employs an implicit model where
an explicit model would have been more appropriate, and expose the resulting difficulties. Having
motivated interest in explicit models of choice, we take a step back in section 3 to examine some
general characteristics which render such models suitable for (i) making competent choices, (ii)
justifying these choices, and (iii) incremental modification. Next, in scection 4, we introduce
decision-theoretic models and describe a particular model which will provide the focus for the
proposed research. In section 5 we examine these models in light of the desiderata of section 3,
concluding that they provide desirable machinery for making complex, knowledge-based choices in
intelligent systems. It follows that automated facilities for cxplaining and refining choices should
be constructed, as we explain in section 6.

1. Explicit models of choice in intelligent systems

Before addressing the relative merits of using decision-theoretic models in intclligent systems, we
take a broad look at the nature of choices in such systems and the modcls which support them.

1.1 Implicit and explicit models of choice

The reasoning machinery of any intelligent system constructed to perform any task in any domain
encompasses -- either implicitly or explicitly -- one or morce paradigms for making choices. Objects
in intelligent systems (e.g., propositions to assert, rules to fire, subgoals to prove, program state-
ments to execute, recommendations to display for users) may be chosen or ordered? according to
one or more of the following methods:

1. A priori ordering: This describes, for example, procedures in traditional programming lan-
guages (in which statements are ordered for exccution) and priority conflict resolution algo-
rithms in production systems (in which rules are ordered for exccution).

2. Ordering according to a hard-wired (black box) algorithm: Tixamples of this scheme include
hard-wired conflict resolution algorithms (e.g., those employing special case, recency,
distinctiveness rules (McDermott & Forgy 1978) or combinations thereof as in QPSS (Forgy
1981)) and most heuristic evaluation functions in Al game-playing programs (Nilsson 1980).

In this context, an ordering is simply the result of repeated choosing.

Chapter II: Motivation and Problem Statement 3

3. Arbitrary ordering® . This describes, for example, arbitrary sclection rules in production sys-
tems (McDermott & Forgy 1978) and subgoal selection schemes in some logic programming
languages.

4. Ordering according to a coherent model of choice that is parameterized by domain knowledge:
Examples of this scheme include hand-crafted sclection schemes in medical therapy planning
systems (e.g., Clancey 1984) and production systems driven by decision-theoretic models (e.g.,
White & Sykes 1986).

If objects are ordered according to any of (1) through (3), we might say that the employed model
of choice is implicit, in that the domain-specific factors underlying the choice (c.g., objectives, ex-
pressions of desirability) are not explicitly represented. In the casc of (1), the justification for the
ordering of objects remains outside the system, stored away in the programmer’s mind. In (2), the
basis for choices lies hidden in the code which implements the sclection algorithm. In (3) there is
effectively no identifiable knowledge driving choices.

If choices are made using some form of (4), we call the modc! of choice explicit. Elements of explicit
models of choice include:

¢ There exists some natural and clear correspondence between the computational objects of se-
lection (e.g., rules, procedurcs, values, logical assertions) and objects in the domain (e.g.,
therapies, dinner entrees, power plant recovery procedures).

e The factors driving choices (e.g., the need to maximize safety, the likelihood of allergic re-
action) are explicitly represented.

¢ The factors driving choices are combined according to some theory of choice (e.g., utility the-
ory, Bayes’ theorem).

Explicit models may be encoded "top-level” structures or as component structures of more complex
models. In the former case, the model of choice is the principal reasoning machinery of the system
and the sole mission of such a system is to help the user to choose between competing alternatives
in some knowledge-intensive domain. In the latter case, where the model of choice is one compo-
nent of an intelligent system which coexists with other structures, the process of choosing among
alternatives works in cooperation with other distinct knowledge-bascd tasks such as generating or
invoking those alternatives.

1.2 Roles for implicit and explicit models

We can examine the respective roles of implicit and explicit modecls of choice in terms of the general
capabilities that intelligent systems are intended to support: competent reasoning, automated ex-
planation, and automated acquisition. For models of choice, competent reasoning refers to the
process of responsibly selecting among competing alternatives. FExplanation involves generating a
convincing justification for the choice of a particular alternative. Acquisition refers to the capture
of information which supports knowledge-intensive choices. Acquisition may viewed as occurring
in two distinct phases: initial acquisition and iterative refinement. [Initial acquisition essentially
involves capturing the knowledge which underlies choices ‘from scratch’. Refinement involves in-
crementally modifying this knowledge. There are several rcasons why a model of choice may re-
quire repairs (see Zeleny 1982), including errors in initial acquisition, changes in the attitudes of
experts over time, and changes in the decision-making situation such as the introduction of new
alternatives or objectives.

s Formally speaking, of course, deterministic computers do not admit any notion of arbitrariness. As used here, the

term refers to the absence of any rationale underlying an ordering, in the samc spirit as software manuals which
warn of ‘unpredictable results’ for inputs which deviate from expectations.

Chapter II: Motivation and Problem Statement 4

Implicit models of choice suffice for intelligent system domains in which the process of choosing
is not knowledge-intensive and hence is not considered to be an important part of the reasoning
process per se. In such cases, there is no need to reason about choices, to cxplain the basis for
choices, or to acquire new information which underlies choices.

But the need to choose among competing alternatives frequently arises in reasoning. Intelligent
agents face explicit, knowledge-intensive choices in all sorts of scttings, from the mundane and un-
important (choosing an activity on a Saturday evening, choosing an entree at dinner, choosing a
shirt, choosing a seat in the living room) to the highly technical and critical (choosing a procedure
for recovering from a fault in a nuclear power plant, choosing a therapy for treating a cancer patient,
choosing the site for a new factory, choosing a route for trucking hazardous chemicals).

In domains in which choices are central, knowledge-intensive elements of the task that the program
is designed to perform, explicit models of choice are appropriate. In particular, explicit models are
employed to compute ‘intelligent’ choices, to provide a basis for automatically justifying choices,
and to provide for systematically capturing and recapturing the knowledge which underlies choices.
The purpose of the models, these supporting capabilities, and the relationship between them may
be described differently depending upon whether one employs the model of choice to support the
prescriptive or descriptive view of decision making.t

Taking the prescriptive view, we employ an explicit modcl to tel/ us how to choose in particular
situations based on the information we provide about choosing for a general class of problems. This
view requires that the model implement some rational theory of choice. The essential idea is that
instead of encoding choices directly (i.e., implicitly), we encode the factors which underlie choices
and rely on a model to combine these factors to arrive at a “correct” choice. While the prescriptive
perspective implies that the model’s choices need not always agrec with users’ intuitions, it is not
true that users should be expected to blindly accept them. Indeed, users will be inclined to believe
the model’s prescriptions only if convincing justifications for them can be generated. In cases where
these justifications fail to convince the user, he will want to iteratively modify portions of the model
(through an acquisition program) until the justifications for prescriptions secm more convincing.

In contrast, the descriptive view portrays the model of choice as a description of how we might
choose. Under this view, an explicit model of choice serves as a device for predicting choices (Green
& Srinivasan 1978) or for describing how choices are madc (through an explanation facility). An
explanation facility may also be used to verify that this description (model) is correct. The acqui-
sition facilities provide the means to repair this description so that meaningful explanations and
predictions may be generated.

In summary, many intelligent systems will need to employ explicit modcls of choice -- as either
top-level or component structures -- because choosing among alternatives is a central clement of
reasoning in many domains. Such modecls arc necessary to support the sound formulation of
choices, the generation of justifications for these choices, and the modification of domain-specific
knowledge which underlics these choices. We ground this general statement in specifics in the next
section by examining the limitations of an intelligent system which employs an implicit model of
choice where an explicit model would have been more appropriate.

2. A motivating application: intelligent process control

The proposed work was first motivated by the need for more effective intelligent process control
systems, that is, systems which aid experts in (or completely automate) the management of complex
physical systems such as nuclcar power plants and large computer complexes. These systems are
distinguished from more traditional control systems (e.g., Stephanopoulous 1984, Ray 1981) by

6 For a thorough discussion see (Keen & Scott Morton 1978).

Chapter 11: Motivation and Problem Statement 5

their employment of heuristic methods which mimic the rcasoning of plant cxperts in addition to
(c.g., Astrom 1986, DeJong 1983) or instead of (e.g., Chester 1984, Fnnis ct al. 1986) mathematical
models of plant behavior and rigid control sequences for plant operation.

Work in this area is abundant, with applications in domains such as manufacturing (Wright et al.
1982), space systems (Scarl 1985), chemical processing (Chester 1984), nuclear power generation
(Nelson 1982), computer operations management (Ennis et al. 1986), and several others. In fact,
there has been sufficient interest in such applications to motivate the construction of special-
purpose shells for intelligent control (e.g., PICON (Moore 1984), YES/LL1 (Cruisc et al. 1987)). In
addition, there has been significant activity in the development of gencral representations for qual-
itative reasoning about physical systems (e.g., de Kleer & Brown 1984, Forbus 1984) which might
prove useful in intelligent control applications.”

The need to make careful choices between competing alternatives frequently arises in the domains
of intelligent control. For example, in performing diagnostic tasks, experts must carefully select
among potential tests that might be initiated to ascertain the state of target system components so
as to balance testing costs, the value of information yielded by tests, disruption to the target system
and its environment, the safety of plant employees and of neighboring residents, and several other
factors. In repairing physical systems (usually following a diagnosis), experts must often choose
between numerous potential options ranging from temporary ‘fixes’ to the replacement of faulty
components with new ones, guided by similar objectives.

One well-known example of an intelligent control system which encompasses such choices is
YES/MVS (Ennis et al. 86), a forward-chaining rule-based system (implemented in QPSS (Forgy
1981) and LISP/VM (1984)) which is designed to assist computer operators in the management of
large industrial computer installations. YES/MVS is comprised of several ‘domain specialists’
which perform distinct tasks such as routine operations (e.g., swapping buffers, startup, shutdown),
diagnosis and recovery from hardware and software failures, and job scheduling.

JESQ is a YES/MVS specialist which continually monitors and actively manages (MVS/JES3)
operating system queue space, and exemplifies the complexity of making effective operational
choices in intelligent control domains. JESQ served as the vchicle system for the author’s master’s
thesis (Klein 1985), and its limitations with regard to effectively choosing among competing oper-
ational actions provided the initial motivation for the current enterprise. As such, we expose these
limitations -- which characterize rule-based expert systems in general (Cromarty 1985, Sauers &
Walsh 1983) -- in the remainder of this section.

A disclaimer: It is important to note that the JESQ (YES/MVS) project represented an investi-
gation of research issues in realtime, active expert systems, not of rcpresentations for making
knowledge-based choices. At the time of its development (beginning in 1982), YES/MVS was
among the first realtime expert systems which exerted dircct (closed-loop) control over its envi-
ronment, and thus, we consciously focussed on issucs concerning realtime reasoning and control.®
Our strategy for making choices (and for addressing other requirements not rclated to realtime
control, per se) was to use standard techniques (with littlc or no innovation) so as not to deviate
from our research focus. The point of this disclaimer is that (i) JEESQ is ‘typical’ in its approach to
making choices in rule-based systems, (ii) this approach gives rise to scveral important problems for
intelligent control and other knowledge-based systems, and (iii) the identification of these problems
is not meant to discredit JESQ (or YES/MVS) in that work toward their solution was intentionally
avoided in order to concentrate on other issues.

See (Klein 1986) for a detailed review and (Bobrow 1985) for a representative collection of papers.

For details regarding this investigation see (Klein & Milliken 1984, Ennis et al. 1984a,b,c, Milliken 1984, Milliken et
al. 1985, Cruise et al. 1986a,b,c, Ennis et al. 1986, Klein et al. 1986, Chou et al. 1986, Cruise et al. 1987). For a
general discussion of the requirements of active expert systems that was inspired by the project sce (Klein & Finin
1987).

Chapter I1: Motivation and Problem Statement 6

The following section provides the background knowledge necded to appreciate JESQ’s task. This
description also serves to impart the domain knowledge upon which most examples in the proposal
are based, so we ask the reader to bear with us. Ncxt, we provide a dcetailed description of JESQ's
architecture and its limitations, which serve, in part, as practical motivation for the proposed thesis.
A more detailed description appears in (Klein 1985).

2.1 JESQ’'s domain

Job Entry Subsystem (JES) queue space is a common resource (disk storage) in IBM system en-
vironments for the staging of computer jobs before, during and after execution. Jobs are normally
deleted from the queue space once output has been completed to a printer, a transmission line, or
other output medium. JES queue space is also used by JES itself as a scratch area for executing its
functions. In addition, JES maintains batch job output for online viewing (via IBM’s Time Sharing
Option (TSO) software) in the JES queue space arca.

Operations management is concerned with monitoring the amount of available qucue space because
its depletion requires restarting the system, potentially inconveniencing all system users for a sub-
stantial period of time. Of course, the problem could be climinated from time to time by employing
the ‘brute force” strategy of allocating more and more disk storage to JES as nceded (although this
allocation is fixed at system startup time). But this tradeoff of effective spacc management (labor
already paid for) for additional physical storage (capital) is naturally frowned upon by management,
representing an expensive and temporary ‘fix’ in the abscnce of identifiable increases in system
workload.

The operator may take several protective and corrective actions when queuce space begins to di-
minish, and these may be described in terms of three general goals:

* Protect remaining queue space: The operator must protect the space that remains when
dangerously low (e.g., 5%). For example, the operator may vary the main processor offline,
blocking the initiation of additional jobs which could generate output on the queue.

e [ree queue space: The operator can manipulate various devices and operating system parame-
ters to free queue space. For example, the operator may run DJ (for Dump Job) to copy large
jobs from the queue to tape, and then reinstate them for printing once the queue space situ-
ation has improved. Alternatively, the operator may change parameter scttings on printers to
allow jobs with special characteristics (e.g., special paper or security requirements) to print.
The operator may also change the maximum linc count limits on printers set to favor small
jobs in cases where large jobs are waiting and small jobs will soon all be printed. The operator

can additionally reroute large jobs destined for slow printers to faster printers with a relatively
light load.

¢ Diagnose and eliminate the cause(s) of queue space depletion: In some cascs, there exists a di-
rect cause-effect relationship between the actions of an environmental agent (c.g., user, opera-
tor, device) and a queue space problem. For example, a printer might not be operational, or
a link to another system might be down. In such cases, the operator must correct the problem
as well as restore the queue to an acceptable state in a rcasonable amount of time.

Significant judgement is required of the operator in choosing among competing actions. For ex-
ample, output stored for online (TSO) viewing can be purged from the queue by using DJ, by re-
questing action from the user himself, by printing the job, or even by deleting the job. In general,
choices between competing actions are based on a set of underlying decision criteria which includes:

e anticipated impact on queue space resulting from the successful execution of the action;

Chapter II: Motivation and Problem Statement 7

* operator convenience, including the amount of time spent by the operator in executing an op-
erational heuristic and the amount of ‘work’ involved;®

* material cost of the action in excess of originally scheduled processing;

o user satisfaction, including considerations of user turnaround time, the additional time ex-
pended by the user himself in accomplishing his processing goals,'® and the difference in the
quality of his output from that requested; and

* the speed with which actions may be executed.

As no event in the computer operations environment is ccrtain, it is the case that probabilistic
factors also come into play. For example, the ‘recent success’ of particular actions might factor into
the decision when some facility is not correctly operating, as in the casc of a device which seems
to ‘ignore’ commands issued to it. Given that some devices exhibit this behavior more than once,
we might additionally consider that the ‘track record’ of actions over the cumulative history of their
execution be included as a factor which underlies operational decisions. But practically speaking,
we should more or less ignore such probabilistic concerns in this domain, for if they become pre-
dominant considerations, the devices which give rise to them should be replaccd. In any event, it
would be very difficult (and certainly not worth the effort) to develop probability distribution
functions to describe such behavior. As any model represents an abstraction of reality, in this do-
main it is appropriate for the process of choosing to reflect the assumption that the outcomes of
actions occur with certainty.

2.2 Organization of JESQ’s knowledge base

As in most rule-based systems, the essential unit of knowledge in JEESQ is the rule. Our goal was
essentially to map each operational heuristic recorded in the installation’s run book' directly into
a rule, and to encode a standard set of rules for performing supporting tasks such as querying the
status of the target system. In this way, the benefits of modularity and mutual independence of
heuristics often associated with the rulc-based paradigm would be realized, allowing the installation
to add, modify, and delete heuristics with ease as the installation evolved. As will be described, most
of the JESQ’s limitations are due to its inability to select the best heuristics at any point in time.

Rules in JESQ are grouped along two orthogonal dimensions: by function (e.g., query submission,
information collection) and by problem severity (as a function of spacc left on the queue), as de-
scribed in the following sections.

2.2.1 Rule grouping by function

JESQ’s rules are grouped in functional classes. Fach functional class is associated with a priority
which determines which rule will be invoked when rules from more than onc class are concurrently
satisfied in a given iteration of the recognize/act cycle.”?

JESQ’s rule groups include:

o System Initialization and Control: This group contains rules that creatc the abstract internal
model of the target system environment, cnable and disable groups of rules as a function of the

Time and work are not equivalent in this context. For example, most operators would rather spend 5 minutes sub-
mitting commands through their consoles than spend the same 5 minutes moving heavy boxes of paper.
Resubmitting jobs deleted by operators and talking to operators over the phone are two examples of actions which
consume users’ time.

A run book is a list of procedures supplied to operators which describes the appropriate courses of action for dealing
with anticipated problems and routine requirements.

We augmented OPSS5 conflict resolution with a priority mechanism. The set of satisfied rules is first reduced to
contain only those of the same priority, and the resulting set is resolved on the basis of recency of information and
specificity of antecedent conditions (i.e. OPSS conflict resolution).

Chapter II: Motivation and Problem Statement 8

severity of the queue space problem at hand, and suppress certain actions when specified by
the operator.

s Periodic Query Submission and Timeout Handling: This group controls the periodic querying
of target system resource states. Query intervals are based on cstimates of the rcliability over
time of the information being captured. Rules are also included to resubmit queries that have
been lost in transmission (i.e., timed out).

¢ Information Collection and Data Reduction/Fxpansion: This group includes rules that collect
target system messages and update JESQ’s internal model accordingly. Portions of this ab-
stract model appear in the antecedents of the Knowledge-Based Action rules which take space
management actions. Some rules in this group map a single responsc working memory ele-
ment (wme) into a single internal model wme. Other rules perform data reduction, manipu-
lating multiple response wmes to produce a single summary wme that is referenced by the
Knowledge-Based Action rules. Still other rules perform data expansion, supplying attributes
with values that are only implied by target system responses.

s Miscellaneous Cleanup and Response Collision Collection: This rule group dclctes target system
responses and expert system-generated goals from working memory. Rules in this group also
delete asynchronously arriving responses to duplicate queries that have been delayed by failing
or sluggish target system resources.

* Knowledge-Based Action: The above described groups exist to support the Knowledge-Based
Action rules which encode queue space management policy. Rules are included to protect the
remaining queue space, to set up for space-freeing actions, to reset target system parameters
when space returns to acceptable levels, to frce queue space when a problem exists, and to alert
the operator to potential problems that cannot be further diagnosed without additional infor-
mation. These rules are further decomposed into thrce subgroups of varying priority: low-,
medium-, and high-priority-knowledge-based-actions.

Thus priorities are used for two purposes in JESQ: (i) to proceduralize the exccution of rule groups
and (ii) to indicate the relative desirability of plans encoded by Knowledge-based Action rules. The
limitations of interest in this section concern the latter usage.

2.2.2 Rule grouping by problem severity

Groups of rules are enabled/disabled dynamically during expert system exccution according to the
severity of the queue space problem at hand. FFor example, a drastic action such as varying the main
processor offline is appropriate when only 3% of the queue space remains, but not when 10% re-
mains. To implement this knowledge, thresholds of space left are mapped to five symbolic proc-
essing modes (NORMAL, WATCIH, POKE, SOLVE, and PANIC), each associated with range
of space left on the JES queue. Some actions arc limited to a single processing mode (e.g., varying
the main processor offline). Other actions span multiple processing modes (c.g., raising the line limit
on a printer).

2.3 Critique of JESQ

Having described JESQ’s domain and its architccture, we can now proceed to cxpose the limitations
of that architecture with respect to its domain-specific requircments.

JESQ surely takes reasonable actions; the system ran successfully at IBM’s Watson Research
Center for most of a year and received a favorable response from operations staff. But we have no
justification for believing that JESQ takes the best actions at any point in time because JESQ
contains no explicit model for making choices. The relative desirability of knowledge-based actions
is represented by the three priority levels (low, medium, high), and the assignment of these priorities
to individual heuristics takes place outside the system. Because sclecting among competing

Chapter 1I: Motivation and Problem Statement 9

heuristics is a complex and knowledge-intensive task, we have no rcason to belicve that assigning
priorities ‘by the seat of the pants” produces optimal results.*

Another problem with JESQ’s selection scheme is that it lacks robustness. The overall behavior
of JESQ is extremely sensitive to the assignment of priorities. In cffect, the complex set of consid-
erations which underlie the selection of priorities (sce section 2.1) have been bundled into a single
symbol. Given that priorities are assigned with some degree of arbitrariness, JESQ’s behavior may
be described as somewhat arbitrary.

Another limitation of JESQ concerns it transparency. While JESQ provides (canned) explanations
regarding how recommended actions achicve the goals of queue space management, it offers no
justification as to why particular actions are preferred to others. Again, this is because there is no
explicit model of choice in JESQ. Since the factors underlying priority assignment are not repres-
ented in the system, the best explanation that JESQ might generate would be to merely display the
priority of the chosen hcuristic or to compare its priority with the priority of another. Because
JESQ cannot justify its choices, operations managers have no basis for deciding if JESQ's operation
correctly reflects the goals of the installation or for identifying how its knowledge base might be
enhanced.

JESQ’s most objectionable flaws concern the difficulty involved in integrating new hcuristics with
existing ones, again due to the lack of an explicit model of choice. Since the considcrations under-
lying the selection of competing heuristics are nowhere represented in the system, changes to the
knowledge base must be addressed as a programming task. It is up to the knowledge engineer to
hack the rules such that the desirecd behavior is achieved, if in fact that behavior can be identified.
In order to intelligently manipulate the priority of a rule in JESQ, it is requircd that the knowledge
engineer understand the basis for the priorities of all existing rules in the knowledge base and that
he be able to envision all potential conflict sets of interest. Formulating priorities for new heuristics
is especially difficult, in that the considerations underlying priority selection may be forgotten by
the knowledge engineer over time so that priorities are not assigned according to any consistent
scheme. If multiple knowledge engineers maintain the system, this will almost surely be the case.
Thus, while it is certainly easy to augment or change the rules in JESQ'’s knowledge base, it is al-
most impossible to ensure that rules will be invoked at the proper points of execution.

The ability to modify the knowledge base is especially important in JESQ’s domain, where the
environment -- and hence, the knowledge concerning its control -- is subject to frequent change.
Typical changes in the real world that are reflected in the way the installation is managed include,
for example, changes in the installation’s abstract goals (e.g., the introduction of new safety stand-
ards), changes in the relationship between those goals (e.g., increased cost consciousness, perhaps
at the expense of quality of service), changes to the target system configuration which create new
operational alternatives (e.g., the introduction of a new printer to the machine room), changes to
the target system configuration which modify the charactenistics of existing opcrational alternatives
(e.g., the replacement of parts on existing printers), and othcers. Given that intclligent control sys-
tems like JESQ will contain hundreds (or in some cases thousands) of opcrational heuristics, the
integration of new or modificd heuristics cannot be pragmatically viewed as a programming-level
task.

From an operational viewpoint, then, we need to be able to view JESQ as a storehouse of trans-
parent, evolving heuristics for managing queue space which rcflects the current goals of installation
management at any given time. Our inability to do so is principally duc to JESQ's lack of an ex-
plicit model of choice. JESQ thus provides a convincing case study which supports the hypothesis

13 This is confirmed by experiments in which we presented several operators with the same description of an opera-

tional situation and a set of alternative actions. We asked the operators to rank those actions and failed to receive the
same rankings from all the operators. Given that some ranking is optimal, it must be the case that some of the op-
erators produced suboptimal rankings.

Chapter 1I: Motivation and Problem Statement 10

that at least some intelligent systems require an explicit model of choice. The inclusion of such a
model would have provided a basis for organizing JESQ’s numerous operational heuristics and for
justifying those heuristics to operations managers. But what sort of explicit model of choice might
have best served these purposes? What properties render explicit models of choice uscful for intel-
ligent systems? These questions are taken up next.

3. Desiderata for explicit models of choice in intelligent systems

Explicit models of choice are necessary to support the computation, explanation, and refinement
of complex choices in intelligent systems. In this section we enumerate some of the characteristics
of models of choice which facilitate the support of these capabilities. To summarize the discussion
that follows, these include:

e competence: The notion of best in a model of choice should be well defined. The model should
be robust, meaning that the outcome of choosing does not recly on a single or just a few sym-
bols which may not have been accurately captured. The model should be economical, in both
its storage and processing requirements. The model should be general, with application beyond
a single or only a few domains.

e transparency: The model should be comprised of objccts which are meaningful to users in
isolation and are combined in an intelligible way. The model should be composable so that
the level of detail in explanations can be varied as users desire.

* ease of construction and evolution: There should be some systematic way to build the model.
Moreover, the model should support graceful extension and modification, i.e., it should be
possible to add or modify only those portions which must be molded to reflect reality. The
model of choice itself should provide for the graceful extension of the set of objects from which
it chooses.

We elaborate on these desiderata in the following sections.

3.1 Competence

First, the notion of best in a model of choice should be well defined. The behavior of the model
must reflect some underlying theory and be based on some agrecable sct of assumptions. If it is
not, we have no basis for understanding why it produces scemingly correct results when in fact we
intuitively agree with those results. More importantly, we have no basis for understanding if or why
it fails when the results are counterintuitive. In the latter case, we are forced to ‘hack’ at the model
until the desired behavior is achieved. Under the prescriptive view, we don’t even know what this
behavior should be, and hence, what sort of hacking we should do.

Second, the model of choice should be robust, meaning that the outcome of choosing does not
solely depend on a small set of subjectively assigned values. Rather, we want such clusive quantities
as choice-related preferences to be distributed over a larger sct of symbols (cach with finer-grained
semantics) so that small errors in model inputs change the overall results accordingly, or ideally,
cancel each other out.

Third, the model should be economical, in both its storage and proccssing requirements, since
models of choice often play a central role in processing. For example, the conflict resolution algo-
rithms of production systems are invoked on cvery iteration of the recognize/act cycle. Another
example, heuristic evaluation functions are exccuted with each move in game-playing programs.

Finally, the model should be general, with application beyond a single or only a few domains. If
we employ customized models for every intelligent system we build, we require knowledge engineers

to develop an understanding of each and cvery model employed. In addition, we arc forced to build

Chapter I1: Motivation and Problem Statement 11

acquisition and explanation facilities for several models, which in turn force intelligent system users
to think in terms of several models.

3.2 Transparency

The model must provide the basis for justifying choices. As transparency is a critical determinant
of user acceptance for intelligent systems in general (Teach & Shortliffe 1981), it is especially im-
portant for justifying the choices computed by normative models, since those choices may, on the
surface, seem counterintuitive. The justifications must themselves, however, be intuitively appeal-
ing in order to be convincing. Thus, the model must explicitly represent information which will
convince users that a chosen alternative is the best one, i.e., they must contain the ‘right stuff’, and
in isolation.

We would also like our justifications to focus upon the ‘important” aspects of choice in any par-
ticular situation, while providing the user with the flexibility to probe further into any aspect of the
choice which will better confirm or deny the model’s results. Thus, we advocate modecls of choice
which are composable so that choices may be justified in logical fragments.

Finally, it is desirable for the combining operations of a model choice to be intelligible so that users
can comprehend how isolated elements of the model influcnce its overall behavior.

3.3 Ease of construction and evolution

There must be some systematic way to build the model. The structure of the model itself must
suggest the type of information to be encoded within it.

Moreover, the model should support graceful extension and modification. As the knowledge
underlying complex choices will have to be iteratively captured, it should be possible to modify only
those portions which must be molded to reflect reality. Thus, we require that pieces of the model
be composable so that subproblems of the overall choice problem may be addressed in isolation.
In particular, we require the capability to (i) add new factors which underlie the choice to the model
as they are identificd, (ii) specify existing factors in more detail as required, and (iii) change the re-
lationship between existing factors as required.

Finally, the model of choice must provide for the graceful extension of the set of objccts from which
it chooses. This is among the primary motivations for employing an cxplicit modecl of choice: The
model should allow us to describe an arbitrary number of objects from which to choose, specifying
only their characteristics in terms of the factors which underlie their sclection. The model of choice
itself thus serves as a mechanism for logically integrating new objects into the set to be chosen from.
We should be able to describe the objects in isolation and let the model of choice do the rest.

4. Decision-theoretic models and the AMVM

The framework of decision analysis is concerned with choosing among alternatives in an uncertain
environment.” The framework provides for the systematic trcatment of the wiilities of outcomes
resulting from alternative courses of action and their associated probabilities. Keeney (1982) de-
scribes decision analysis as ‘a formalization of common sense for decision problems which are too
complex for informal use of common sense’, and more technically as “a philosophy, articulated by
a set of logical axioms, and a mcthodology and collection of systematic procedures, based upon
those axioms, for responsibly analyzing the complexitics inherent in decision problems’. In this
section we briefly review decision-analytic models, concentrating on the additive multiatiribute value

14 This entire section is expository in nature. Those familiar with decision theory should skip to the next section.

Chapter II: Motivation and Problem Statement 12

model (AMVM), which will be the focal model of the proposed rescarch. The following presenta-
tion is abstract; a detailed sample AMVM is presented in chapter V.

Keeney and Raiffa (1976) classify decision problems along two dimensions. The first, attribute
multiplicity, concerns the number of attributes that underlic the choice at hand. In this context,
attributes are measurements (e.g., dollars spent) that characterize alternatives with respect to the
objectives (e.g., minimize cost) which drive their sclection. Somc choices rest upon a single attri-
bute, while others are best expressed with regard to multiple, often mutually competitive attributes
(e.g., the classic ‘quality vs. quantity’ dilemma). In the lattcr case, the collection of attribute values
for an alternative represents a sort of “profile” for that alternative. The second dimension concerns
the certainty with which the potential outcomes of a decision are known. This view of choices gives
rise to four choice types of potential interest: single-attributc choices under certainty, multiattribute
choices under certainty, single-attribute choices under uncertainty, and multiattribute choices under
uncertainty.'s

Clearly, the fourth type of choice is the most general and interesting. But we wish to start with a
simpler model that will provide a testbed for our ideas about explanation and refinement of
decision-theoretic models, with an eye toward generalization to more complex and general models.
The proposed work will be concerned only with the multiattribute casc under certainty. In the
context of this model, the problem of choosing is sometimes called the multiattribute value problem
because the choice focuses only on the values of the outcomes of actions, assuming those outcomes
are known with certainty. This restriction is, of course, suitable for modelling decisions in some
domains (e.g., managing queue space, where the certainty of outcomes of actions plays a role in
decision-making, but not a central one) and less suitable in others (c.g., some domains of therapy
planning in medicine, where the lack of certainty of trcatment outcomcs is at center stage in
choosing among alternative treatments).

The multiattribute value problem may be stated as follows.!® et a designate a feasible alternative
and denote the set of all such alternatives by 4. To each act a in 4 we will associate n indices of
value: Xj(a), ..., X,(a) . We can think of the n evaluators'” X, ..., X, as mapping any given a in 4
into a point in an n-dimensional consequence space.

" Roughly, the decision maker’s (or intelligent system’s) problem is to choose a in 4 so that he will
be happiest with the payoff X(a),..,X (a) . Thus we need a mecchanism that combines
Xy(a), ... , X(a) into a scalar index of preferability or value. Alternatively stated, it is adequate to
specify a scalar-valued function v with the property that '

X\ (a), ... , X (@) = A X\(B), ..., X,(B)) iff a is preferred or indifferent to b.

We refer to the function v as the value function.”® Given v, the decision maker’s (intclligent system’s)
problem is to choose a in 4 such that v is maximized. 'The value function v serves to compare
various levels of the different attributes indirectly. The formal correctness of the choices yielded
by such models lies in the axioms and theorems that constrain the behavior of v, which are not
reviewed here.!?

Some readers will be disturbed by the omission of purely probabilistic choices, but these have indirectly been in-
cluded: It was shown by Ramsey (1926) how one could build up the theory of probability by starting from the
principle of maximizing expected utilities. The argument is paraphrased in (Good 1983).

Part of this description is adapted from {Keeney & Raiffa 1976), pp. 67-68.

Following {Keeney & Raifla 1976), we avoid distinguishing between an attribute X and an evaluator X for this attri-
bute, relying on the context of the discussion to resolve any ambiguity. It is generally clearer not to draw distinctions
between these two concepts.

There is some confusion regarding this term in the literature. The same construct is also rclerred to as a preference
Sunction, worth function and utility function. Some authors distinguish between value function and utility function as
corresponding to the cases of certainty and uncertainty (of outcomes) respectively.

See (Keeney & Raiffa 1976) for a thorough exposition.

16
17

Chapter II: Motivation and Problem Statement 13

In this work, we further limit our interest to problems where the attributes X, ..., X, are mutually
preferentially independent. Informally, this mcans that the tradeoffs between every pair of attri-
butes, keeping the levels of other attributes fixed, do not depend on the particular values of these
fixed levels.?? This restriction permits the use of the following special form for v, called the additive
form:

n
Ha)= x|, ..., Xy) = Z“’i":(xi)
=1
where:
1. Each ain 4 is represented by a vector of attribute valucs (x,, ... , x,);

2. v, is the component value function for attribute i, with v(worst x;) = 0, v, (best x) = 1, and
0<v{x)< 1 forall x;

n
3. w, is a scaling constant or weight for attribute i, 0 < w,< 1 and D w, = 1.
ol |

Informally, the weights indicate the relative importance of each attribute as it changes from its best
to its worst value. The component value functions express the relative desirability of various levels
of their respective attributes.

While the additive form rests on strong assumptions -- which must be verified with decision-makers
-- its use is standard in practice. According to Zeleny (1982), ‘the additive and multiplicative utility
functions are both simple and robust approximations, and they arc the only practical options for
cases with more than four attributes’. Dawes (1979) presents evidence that lincar models are “su-
perior to clinical intuition” in predictive scttings. Keeney (1986) maintains that “when the objective
functions are complex, meaning they involve more than additive or multiplicative components of
single-attribute objective functions, it is often the case that the original objectives were not wisely
selected’.?! Thus, while a restricted version of the general decision-analytic paradigm, the AMVM
is sufficiently general to have broad potential application, spanning decisions across several do-
mains.

5. Assessing decision-theoretic models for intelligent systems

We evaluate decision-theoretic models with respect to the general desiderata of section 3 again or-
ganizing the analysis in terms of competence, transparency, and easc of construction and evolution.
The discussion is intended as general, but we distinguish the AMVM where appropriate.

5.1 Competence

We can present a strong case regarding the competence of decision-analytic models. First, the
paradigm of decision analysis provides a formal foundation for making complex decisions. As
Keeney (1986) notes, "The relative strength of decision analysis is that it has a sound foundation
provided by axioms stated in von Neumann and Morgenstern (1947), Savage (1954), and Pratt et
al. (1964), and sound procedures to implement this logic’. The paradigm thus provides principled,
domain-independent machinery for making choices. This mcans that we can pinpoint the assump-
tions that must hold in a domain in order for a particular model to produce correct results, and that
we have a basis for understanding why the model works.

See (Keeney & Raiffa 1976) for a more formal discussion. Other functional forms following various assumptions can
be found in (Fishburn 1970), (Meyer 1970), (Bell 1979), (Tamura & Nakamura 1978), and (Farquhar & Fishburn
1981).

21 See (Keeney 1981) for typology of ill-selected objectives.

Chapter 11: Motivation and Problem Statement 14

Decision-analytic models also provide the robustness we seek in that they generate results based
on a distributed set of symbols which represent the values and probabilitics of the potential out-
comes of the alternatives undcr consideration. This is to be contrasted with choice-making schemes
which rely on a single or just a few symbols to which the behavior of the reasoning paradigms en-
compassing them may be highly sensitive.

Third, decision-analytic models are relatively economical, in both their storage and processing re-
quirements. The models are cast as relatively simple mathematical expressions which can be quickly
executed and require very little storage. The parameters of thesc expressions are likewise not par-
ticularly memory-intensive. Decision-theoretic models are to be contrasted in this sense with
formalisms such as meta-rules (Davis 1976, 1980) which rcly on processor- and memory-intensive
operations (pattern matching) for their execution.

Finally, decision-analytic modcls implement a gencral thcory of choice with potential application
in any domain where the alternatives, outcomes, and the values and likelihoods of outcomes can
be identified. Reported applications of decision analysis span a diverse set of domains and deci-
sions, including the examination of corporate policy (Keency 1975), evaluation of capital invest-
ment options (Magee 1964), budget allocation (Keefer & Kirkwood 1978), credit application
evaluation (Stillwell et al. 1980), medical decision making (Krischer 1980), hurricane seeding
(Howard et al. 1972), metropolitan airport development (de Neufville & Keeney 1972), fire pro-
tection (North et al. 1975), school busing (Edwards 1980), oil tanker standards (von Winterfeldt
1982, Ulvila & Snider 1980), nuclear waste managcment (Iathrop & Watson 1982),
commercialization of solar photvoltaic systems (Boyd et al. 1982), siting of encrgy facilities (Keeney
1980, Sarin 1980), and many others.

Let us defend some anticipated counterarguments regarding the competence of decision-theoretic
models. First, some might conjecture that since decision-theorctic modcls arc cast in mathematics,
they require ‘too much precision’ for use in practical intelligent systems. After all, one of our goals
in developing such systems is to allow fuzzy judgements with incomplete information. But this
objection is entirely without merit, because the mathematics provides only the machinery for com-
puting choices; the information encoded in the mathematical model for any particular domain-
specific choice may be as vague or as detailed as the domain warrants. In addition, recent research
in decision theory provides methods which explicitly account for incomplete information in a sys-
tematic fashion (Weber 1985, Weber 1987).

Second, a common criticism is that decision-theoretic modcls are "too restrictive’ or ‘idcalized’, that
‘too many assumptions’ are required. Certainly, classes of decision-theoretic models rest on associ-
ated classes of assumptions; in fact, all models (of choice and otherwise) rest on some (hopefully
well-specified) set of assumptions. But it is because we can identify what those assumptions are (ie.,
the axioms of decision theory and the particular assumptions underlying particular forms of the
model) that, in part, makes decision theory an attractive model of choice for intclligent systems.
As an abstraction of the complex decision making process, decision theory is surcly limited, but in
an accountable way. This is to be contrasted with implicit modecls of choice and with ad hoc explicit
models, the limitations of which remain obscure.

A related objection concerns the validity of even the most basic assumptions of decision theory (i.e.,
the axioms); the claim is made that people do, in fact, violatc them in choosing between competing
alternatives. But Keeney (1982) argues that many decision makers prefer to act in accord with the
axioms. That decision makers scriously violate those axioms in choosing alternatives without the
benefit of decision analysis is an argument in support of decision analysis. In Kceney’s words, (1982)
‘The purpose of prescriptive dccision analysis is to provide insight about which alternative should
be chosen to be consistent with the information about the problem and the values of decision
makers’.

Chapter I1: Motivation and Problem Statement 15

Finally, it is sometimes argued that a dccision-theoretic model will always lcave out some important
factor which underlies a choice. This is indeed a valid concern, but one which applics to any model
of choice. In addition, decision analysis provides for calculating the value of additional information
(LaValle 1968, Merkhofer 1977). With less formal models, we gencrally have no basis for assessing
the value of new information which may be expensive to obtain. Thus, concerns regarding in-
complete information give rise to arguments for, rather than against, the compctence of decision-
theoretic models.

In summary, decision-theorctic models fare well with regard to our competence-rclated desiderata;
they are grounded in a well-formed theory, are relatively robust representations of preferences, are
relatively economical, and are broadly applicable.

5.2 Transparency

One frequently espoused argument against the usc of decision-analytic modecls in intelligent systems
is that they are not particularly well-suited for automating explanation; They are ‘too quantitative’
or "too complex’ for exposition, as the story goes. Consider the following counterarguments.

First, decision-theoretic models explicitly represent the component valucs that underlie decisions.
Again quoting Keeney (1986), "Values are the basis for any interest in any decision problem. Why
is it worth the effort to carefully choose an alternative rather than simply let occur what will? The
answer is that some concerned party is interested in the possible consequences that might occur.
The desire to avoid unpleasant conscquences and to achicve desirable ones, especially when the
differences in the relative desirability of the conscquences is significant, is the motivation for interest
in any decision problem. The relative desirability of the possible consequences in decision problems
is based on values.” As values are explicitly represented in decision-theoretic models, they are
available to display for users in an explanation or justification. As will be discussed, the interesting
questions in automating justifications for choices involve intelligently pruning and naturally organ-
izing the set of values that are displayed for users, rather than generating enough information to
display.

In addition, decision analysis provides for decomposing choice problems into subproblems that can
be separately analyzed and integrated according to the logic of the axioms. As will be described, the
objectives that underlie decisions may be naturally cast in a hierarchical arrangement (called the
objectives hierarchy), providing a basis for varying the level of detail in explanations according to
the properties of the choice at hand, and allowing the user to interactively control the level of detail
during the course of an explanation.

In addition, simple, restricted models (such as the AMVM) provide an intuitively appealing
framework for thinking about choices. In the AMVM there exists a natural correspondence between
the operands of the model’s component products (weights and values) and ideas involved in
choosing: weights correspond to the importance of an attribute,? and valucs express how
(un)desirable particular levels of attributes for a given alternative might be.2? Second, the products
themselves may naturally be thought of as contributions to the overall evaluation of an alternative.
Quite simply, then, the greater the value (desirability) and the weight (importance) of an attribute,
the greater the attribute’s contribution. The greater the contribution of each attribute, the better
the alternative comes out in the evaluation.

Thus, we claim that decision-theoretic models arc in fact transparent in the sense of section 3.2.
Our mission is to exploit this transparency in constructing an effective explanation facility.

22

Technically, the relative importance of an attribute as it changes from its best to its worst valuc.
23

With respect to a predefined range of possible levels appropriate to the problem at hand.

Chapter 1I: Motivation and Problem Statement 16

5.3 Ease of construction and evolution

The initial construction of virtually all models of choice remains more an art than an engineering
discipline. While problem structuring is an open problem (although some work has been done, e.g.,
Jungermann 1980, von Winterfcldt 1980), decision theory at least provides a systematic set of pro-
cedures for capturing the parameters of decision-theoretic models (c.g., see (I'ishburn 1967), (I1uber
1974), (Keeney & Raiffa 1976), (Farquhar 1984)), some of which are sufficiently algorithmic for
implementation in computer programs (e.g., (Keeney & Sicherman 1976), (Nair & Sicherman
1979), (Novick et al. 1980), (Schlaifer 1971), (Seo et al. 1978), (Klein et al. 1982), (Weber 1985),
and (von Nitzsch & Weber 1986)). Such programs arc possible because decision analysis provides
a theory of choice; since the semantics of model parameters are well-defined, their capture is a
well-formed task. This is to be contrasted with computational formalisms in which such theories
might be encoded (e.g., meta-rules), but which themselves say nothing about the nature or elements
of choice knowledge.

On a less positive note, it is generally agreed that capturing the parameters of decision-theoretic
models is an extremely effort-intensive task (e.g., sce Zeleny 1982, Keeney 1986), and this, on the
surface, might lead us to frown upon the employment of the models in intelligent systems. But this
would ignore the very important operational differences between the standard paradigm of decision
analysis and that of intelligent systems. The capture of preferences is usually an expensive process
because decision analysis is most frequently employed in the context of critical one-shot decisions
(e.g., see (Keeney 1982, von Winterfeldt & Edwards 1986)). For such decisions, where lives or great
sums of money may be at stake, great effort is required in the acquisition phase because the re-
sulting model must be viewed with a high level of confidence before it is ever used (usually only
once). In the context of intelligent systems, however, we may settle for a less reliable initial model
because this model will be repetitively used over time. Provided that we can offer users adequate
facilities for incrementally modifying models as they observe system behavior, they need not ‘get it
right’ the first time around. Thus, we might be able to claim that decision-thecoretic models support
ease of construction if we can argue that they potentially support ease of evolution.

There are several reasons to believe that the models support evolution. First, decision-theoretic
models explicitly represent the component values that underlie decisions. As values are the essential
ingredients of choices and are isolated in the models, there exists the potential to modify them in
isolation.

In addition, the decomposition of choice problems into subproblems that can be separately ana-
lyzed and integrated according to framework of decision thcory provides for focussing on sub-
problems that are deemed to be suspect.

Again we mention that some models, particularly the AMVM, provide an intuitively appealing
framework for thinking about choices, thus establishing a natural correspondence between the
structures that must be captured from users (c.g., weights, valucs) and conceptual entities in the
user’s mind (importance, desirability). This natural correspondence between conception and com-
putation is precisely what makes automated refinement possible. Our job, of course, is to find the
best way to help users focus on the appropriate portions of the model and to make it convenient
to repair those portions when necessary.

Thus, we argue that decision-theoretic models, particularly the AMVM, support case of evolution,
and hence, reduce the demands of construction.

Finally, decision-theoretic models support the incremental modification of the set of alternatives for
selection. All that is required to add new alternatives is that the valucs of attributes be specified,
and that these values fall in the prespecified ranges assumed in formulating the decision-theoretic
model.

Chapter II: Motivation and Problem Statement 17

Chapter 1II: Research Goals and Issues

Having motivated the problem, we explicitly state the ultimate rescarch goals associated with the
current enterprise (section 1), and then circumscribe a modest but coherent portion of it which will
constitute the thesis (section 2).

1. Ultimate research goals

The general goal of this work is to provide the basis for employing formal modecls of choice in in-
telligent systems, and this encompasses two challenging tasks. The first is to develop a compre-
hensive, integrated system for:

1. helping users to structure decision problems,

2. acquiring initial decision-theoretic models from users,

3. justifying choices based on these models during system operation, and
4

helping users to incrementally modify these models on an ongoing basis as errors are uncovered
and as preferences change.

The ideal system would access general storehouses of knowledge to help users identify the objectives
associated with arbitrary problems. The system would select a specific form of utility function for
the problem at hand, and aid in the specification of this utility function. The system would produce
concise, convincing explanations for its choices and would make it convenient for users to focus
on precisely those portions of decision-theoretic models which necd to be repaired in order to reflect
reality and to maintain internal consistency.

The second major task involves the development of a theory which describes how decision-theoretic
models should be integrated with other knowledge structures. The theory would provide specific
guidelines regarding:

1. how decision-theoretic models should be integrated with more encompassing decision-making
frameworks (e.g., rule-based systems, theorem provers, reasoning paradigms based on ‘deep
models’),

2. how explanation facilities for decision-theoretic models should be integrated with explanation
facilities for the other representations, and

3. how acquisition facilitics for decision-theoretic modcls should be integrated with acquisition
facilities for the other representations.

Such a theory would be a component of a more encompassing thcory of knowledge representation
which provides well-defined guidclines for matching rcasoning techniques to intclligent tasks and
specifies the associated implications for integrating their supporting facilitics (c.g., explanation and
acquisition). :

The first task involves building a domain-independent module for capturing, using, and maintaining
knowledge about choices. The sccond task involves developing a domain-independent set of spec-
ifications for using this module in concert with others.

2. Research goals of the thesis

Addressing these long-term research goals represents a few lifetimes of work. We will therefore limit
our attention to the following subgoals in the thesis.

Chapter I1I: Research Goals and Issues 19

First, we propose the development of a domain-independent collection of mechanisms for ex-
plaining choices based on AMVM’s. Second, we proposc the development of a domain-
independent collection of mechanisms for helping users to refine existing AMVM’s. Together, the
explanation and refinement facilities will comprise UTII..

Third, we propose to bricfly address the integration of decision-thcoretic models into some popular
intelligent system architectures and to discuss the integration of UTTI, with their respective facilities
for explanation and refinement.

We proceed as follows in elaborating upon these objectives. Section 2.1 discusses the purpose of
and the design goals for UTTII.. Sections 2.2 and 2.3 describe research issues in explaining and re-
fining decision-theoretic choices, respectively.? Section 2.4 discusses issues of UTIL.’s integration
with analogous facilities in architectures where decision-theoretic models coexist with other know-
ledge structures.

2.1 UTIL and the explanation and refinement of AMVM's

We propose to develop a set of mechanisms, collectively referred to as UTI,, which provide a
domain-independent, integrated framework for explaining and refining AMVM-bascd choices.

In chapter II we described two distinct phases of knowledge acquisition: initial acquisition and
refinement. We have in mind the following strategy for distributing the user’s cffort over these two
phases in intelligent systems. The approach to initial acquisition should be as simple as possible,
since UTIL will presumably provide for the convenient repair of erroncous portions of the model
as the intelligent system which includes it is used. Of special interest are initial capture methods
which do not force the user to ‘think hard” about tradeoffs between objectives, but rather, require
only holistic judgements over small sets of representative alternatives from which the ‘part worths’
of levels of attributes underlying a decision are inferred (e.g., sec (Grecn & Srinivasan 1978) for a
review). Also of extreme potential value in this regard are initial acquisition methods which ac-
commodate incomplete information in a structured fashion (e.g., Weber 1985, Weber 1987). The
idea behind the proposed strategy is to capture only a rough approximation of the utility function
in initial acquisition, initiating subsequent refinements as nccessary during the life of the intelligent
system, when the user is already thinking about why a particular choice is erroneous. Thus, UTIL
represents an integrated approach to initial acquisition, cxplanation, and refinement that treats
choice models as transparent, evolving representations of users’ preferences.

UTIL should support both the prescriptive and descriptive frameworks for making choices. From
the prescriptive point of view, UTIL,s explanation component will serve as a window into how
choices are made. In cascs where users fail to find UTII.s justifications convincing, they will iter-
atively invoke UTIL’s refinement facilities to ‘repair’ portions of thec model until convincing justi-
fications are generated.

From the descriptive viewpoint, users may employ a holistic method to capturc initial preferences,
relying on UTIL's refinement facilities to repair the underlying basis for what they sce as the ‘best’
choice. In this scenario, UTIL.’s explanation facility it at center stage; the uscr already knows what
the best choices are, and the underlying model serves as a basis for arguing why these are best to
other users.

UTIL is intended as a set of modules which may be invoked in the context of any architecture
which supports complex, knowledge-based choices. We approach the construction of UTIL as-
suming that an architecture-dependent supervisor invokes UTTL modules and other modules which

2 While we address them separately for purposes of exposition, it should have by now been communicated that expla-

nation and refinement are tightly integrated tasks.

Chapter III: Research Goals and Issues 20

support the explanation and refinement of other structures with which the AMVM may coexist
(e.g., production rules, deep models of mechanism).

In summary, UTIL is intended as a general, domain-independent set of mechanisms which supports
the explanation and refinement of AMVM-based choices. We view UTIL. as a set of modules

which:
e should be compatible with existing automated methods for initial acquisition,
e should support both the prescriptive and descriptive views of decision making, and

¢ should allow for integration with other facilities that support structures commonly used in in-
telligent systems.

UTIL raises several research issues regarding the explanation and rcfinement of AMVM’s: What
makes a justification ‘convincing’? Ilow can we avoid the complcte reformulation of an AMVM
when portions of it become outdated? ITow can explanation and refinement facilitics for AMVM's
be integrated with analogous facilities which support other knowledge structures? We elaborate on
these questions in the following sections.

2.2 Issues in explaining choices

What makes for a ‘convincing’ justification of a choice? Clearly, we need to do better than simply
display the value function and its arguments. Referring again to JESQ’s domain, imagine an ex-
planation of the form:

Copying the dataset to tape is your best option because your value function is
WX;, Xz, Xy Xg) = -20i()) + .4v{0) + . 1v(x;) + .3u(x,) , where x, is additional operator time, x; is ad-
ditional turnaround time, x, is additional user time, and x, is additional material cost, and for this
option (x;, x,, x3, x,) = (10,10,0,5), which maximizes v over all available alternatives.

We can identify several problems with this justification. First, no effort is made to appeal to intui-
tion; the explanation does not associate components of the value function with concepts such as
“desirability’ and ‘importance’.

Second, the explanation refers only to the most detailed attributes upon which the decision is based.
For example, the concepts of ‘turnaround time’ and “uscr work’ are both associated with the
higher-level concept “user satisfaction’, but this sort of information is omitted from the explanation.
It might even have been possible to talk solely in terms of “uscr satisfaction’, omitting any reference
to its more detailed supporting measures.

Third, the explanation takes the “brute force’ approach of clucidating a// the attributcs that underlie
the decision, while it is most likely that only one or perhaps a few truly served to distinguish the
chosen alternative from its closest contenders. For example, deleting a datasct, like copying one to
tape, involves little additional matcrial cost. Thus, the attribute ‘additional material cost’ plays a
relatively minor role in distinguishing these two alternatives in terms of their overall relative desir-

ability.

A related objection is that the order in which attributes arc mentioned is essentially arbitrary from
the user’s viewpoint; he cares little about the order of the arguments in the value function’s pa-
rameter list. What the user wants to know is which factors in the decision most strongly recommend
the chosen alternative.

Fifth, the explanation makes no reference to the presumed conditions under which the value func-
tion is applicable. Is turnaround time alwaps the most important attribute? Or are there circum-

stances under which it would be weighted differently? It is critical to elucidate such conditions if

Chapter III: Research Goals and Issues 21

explanations are to be convincing and if users are to be able to gain cnough insight into the model’s
operation to correct it.

We might also enhance the explanation in other ways, such as reassuring the uscr that value func-
tions built by several operations managers reflcct the same preferences, or by providing a higher
level description of the basic goals of the installation, or by substituting qualitative descriptions for
quantitative values (e.g., ‘lots of time’ rather than "10 minutes’).

The essential point is that justifications for choices should be more than displays of the models and
parameters that determine them. How can we provide these capabilitics? What knowledge stores
beyond the value function are required? How should this additional knowledge be represented? A
goal of the proposed thesis is to provide a computational framework for generating justifications
which are not subject to the above-mentioned criticisms. Some preliminary ideas are presented in
chapter V.

2.3 Issues in refining choice knowledge

Suppose the user is unconvinced by the system’s justification for a choice. Should he be forced to
rebuild the underlying model from scratch? Should he call upon a programmer to change the
model? Existing work on automating initial acquisition fails, by itsclf, to provide the solution.
These facilities are intended to guide users through the systematic capture of utility functions, not
through their incremental modification.

In contrast, the purpose of a refinement facility is to make it convenient for uscrs to repair only
those portions of the model which fail to reflect reality. Toward this end, a refinement facility
should:

e provide immediate feedback regarding the effects of proposced changes;

¢ help users to distinguish probable from improbable causes for erroneous choices;
¢ promote the reliability of newly-captured information;

¢ isolate subproblems for correction;

¢ infer new model parameters based on logical relationships between existing parameters and
prompt the user for missing details; and

¢ help the user to identify modifications which will achicve the behavior he desires.

This list is surely not exhaustive, but communicates the flavor of the capabilities we should expect

from the refinement facility. Fach of the above capabilitics is addressed in more detail in chapter
V.

In short, the goal of refinement is to maximize the reliability of modcl repairs while minimizing user
effort. But how should this be accomplished? What addition knowledge is required? How should
it be represented? The second central goal of the thesis is to answer these questions.

2.4 Issues of integration with other decision-making paradigms

Our discussion of research issues in explanation and refinement of choice knowledge has more or
less focussed on the AMVM as a ‘top-level” structure, existing in isolation for the sole purpose of
helping users to make choices. But there is the important issue of how facilities for explaining and
refining choice knowledge should be integrated with analogous facilitics that support other know-
ledge structures with which the AMVM may coexist. If we use an AMVM as a conflict resolution
algorithm in a production system, for example, how might the facilitics which support the expla-
nation and acquisition of rules be intcgrated with the facilities for explaining and refining choices
among them? What are the interfaces between such facilities? It is important to address such

Chapter III: Research Goals and Issues 22

questions if we are to take advantage of decision-theoretic models in traditional Al systems and

other intelligent system architectures.

Chapter 111: Research Goals and Issues

23

Chapter 1V: Background and Relationship to Previous Work

The proposed work is interdisciplinary, addressing goals which are relevant to the artificial intelli-
gence and decision analysis communities. In this section we describe relevant rescarch organized in
terms of the following categories:

¢ decision analysis

* integration of decision-theoretic models and architectures commonly associated with Al
¢ models of choice commonly used in Al systems

e automated explanation

¢ automated knowledge acquisition

* integrating explanation and refinement

e user modelling

Of interest are foundational works related to the proposed thesis, research efforts from which we
may borrow ideas, and efforts which contrast with the goals of our work.

1. Decision analysis

The framework of decision analysis is concerned with choosing among alternatives in an uncertain
environment. The framework provides for the systematic treatment of the wtilities of outcomes re-
sulting from alternative courses of action and their associated probabilities. Keeney (1982) describes
decision analysis as ‘a formalization of common sense for decision problems which are too complex
for informal use of common sense’, and more technically as ‘a philosophy, articulated by a set of
logical axioms, and a methodology and collection of systematic procedures, based upon those axi-
oms, for responsibly analyzing the complexities inherent in decision problems’. In this section we
cite the major references concerning the theoretical foundations of decision analysis and its meth-
odology, and better-known examples of its application. For a concise and informative overview
of the field, see (Keeney 1982).

Foundational works on utility theory include (von Neumann & Morgenstern 1947), (Savage 1954),
(Luce & Raiffa 1957), and (Pratt et al. 1964, 1965). A foundational reference on multiattribute
utility theory is (Keeney & Raiffa 1976). In particular, modecls of vale functions addressing multiple
objectives may be found in (Debreu 1960), (Luce and Tukey 1964), (Krantz 1964), (Krantz et al.
1971), (Dyer & Sarin 1979), (Kirkwood & Sarin 1980), and (Kcelin 1981). A more concise review
of multiattribute decision making may be found in (Spronk & Zionts 1984).

Works which address methodological considerations in applying decision theory to practical prob-
lems include (Raiffa 1968), (Schlaifer 1969), (Tribus 1969), (Winkler 1972), (Brown ct al. 1974),
(Keeney & Raiffa 1976), (Moore & Thomas 1976), (Kaufman & Thomas 1977), (I aValle 1978),
and (Holloway 1979). In particular, the systematic assessment of utility functions is addressed in
(Fishburn 1967), (IHuber 1974), (Keency & Raiffa 1976), and several other works. For an inform-
ative review, see (Farquhar 1984).

Reported applications of decision analysis span a diverse sct of domains and decisions, including
the examination of corporate policy (Kecney 1975), evaluation of capital investment options
(Magee 1964), budget allocation (Keefer & Kirkwood 1978), credit application evaluation (Stillwell
et al. 1980), medical decision making (Krischer 1980), hurricanc seeding (Iloward et al. 1972),
metropolitan airport development (de Neufville & Keeney 1972), fire protection (North et al. 1975),
school busing (Edwards 1980), oil tanker standards (von Winterfcldt 1982, Ulvila & Snider 1980),
nuclear waste management (I.athrop & Watson 1982), commercialization of solar photvoltaic sys-
tems (Boyd et al. 1982), siting of energy facilities (Keeney 1980, Sarin 1980), and many others.

Chapter 1V: Background and Relationship to Previous Work 24

The relationship of this work to ours should by now be clear; we arc interested in using decision-
analytic models and techniques in intelligent systems and in providing the necessary supporting fa-
cilities. References to specific results of relevance are cited in context throughout the proposal.

2. Integrating decision theory and Al techniques

We are hardly the first to advocate the use of decision theory in the context of architectures com-
monly associated with Al; in part, the proposed thesis is motivated by previous efforts which
combine the two historically distinct paradigms to achicve cffcctive performance, but lack the sup-
porting facilities that we will attempt to provide.

For example, Coles et al. (1973) used utility thcory to evaluate robot plans as a means for coping
with uncertainty. Based on the accumulated expected costs of exccuting the steps of various hy-
pothetical plans, the robot Jason can evaluate the relative merits of direct action using potentially
unreliable sensors. Jacobs et al. (1973) performed experiments based on similar ideas. Feldman &
Sproull (1975) used decision theory to direct the application of planning opcrators in an imple-
mentation of the monkey and bananas problem. White & Sykcs (1986) uscd a gencralization of
multiattribute utility theory as the basis for conflict resolution in a rule-based system. Langlotz et
al. (1986) explored the use of decision theory to justify hecuristics in the context of MYCIN
(Shortliffe 1976). Using plots and calculations gencrated by an automated dccision-making tool,
decision-theoretic insights of practical use to the knowledge engineer were obtained. Langlotz et al.
(1985) also describe a cancer therapy planning system which gencrates a small sct of plausible plans,
simulates them to predict their possible conscquences, and uses dccision theory to rank them.
Slagle & Hamburger (1985) describe an interactive planning system that uscs decision-theoretic
models to rank competing plans for allocating military resources. Ol eary (1986) discusses the use
of multiattribute decision theory in expert systems for financial accounting decisions.

This list is no doubt incomplete, but it should be clear that researchers have recognized the potential
for using decision theory as a model of choice in intelligent systems. For further discussion of the
use of decision theory in expert systems, see (Kecney 1986). Farquhar (1986) reviews some addi-
tional applications of utility theory in Al contexts.

3. Models of choice in Al systems

While the previous section indicates that decision thoery has received some attention in Al contexts,
the employment of formal modcls of choice in intclligent system architcctures represents a departure
from more common approaches to choices in Al systems, including hand-crafted explicit selection
schemes, hand-crafted implicit selection schemes, and languages for encoding knowledge about
choices.

3.1 Hand-crafted explicit selection schemes

A popular approach to modelling choice in intelligent systems is to construct ad hoc models which
are tailored to particular domains. This is the approach of, for cxample, some expert systems in
medical management (e.g., Kastner 1983, Clancey 1984) and spectral analysis (c.g., I'errante 1985).
The approach essentially involves adopting a ‘mindsct’ for choosing among altcrnatives in the do-
main at hand and reflecting this mindset in a computational modcl that serves as a basis for com-
puting and explaining choices. The factors underlying choices are explicitly represented to facilitate
acquisition and explanation.

Rennels et al.(1987) showed that some scemingly ad hoc models could actually be viewed as re-
stricted decision-theoretic models. The authors point out that these models are capable of

Chapter 1V: Background and Relationship to Previous Work 25

producing more focussed explanations because the strategies they implement alrcady entail strong
assumptions about their respective domains. Generally speaking, however, the hand-crafted ap-
proach encompasses some important limitations.

First, domain-specific models often lack justification with respect to a well-formed underlying the-
ory. As we discussed in previous sections, this means that we lack a basis for understanding their
(mis)behavior, and so we are provided with little direction in building and maintaining them.

Second, the implicit operational assumption is made that the user and the intclligent system share
a common view of decision-making. As this may not be the case for all users, cxplanations which
rely on this commonality may be opaque, or worse still, misleading.

Third, the general approach of hand-crafting explanation and acquisition facilities for particular
domain choices is a labor intensive one. In building a new expert system that employs a model of
choice, we are essentially required to either cast a domain into one of the existing restricted models
in order to use an existing framework for acquisition and explanation, or to devclop another set of
facilities that better suits the domain. Since we can’t neccssarily identify thc assumptions that
underlie a particular hand-crafted model it might be difficult to sclect an existing framework to suit
a particular domain.

Our work is distinguished from the hand-crafted approach to modelling choice in that we advocate
a general, well-formed theory of choice which is applicable across a variety of domains.

3.2 Hand-crafted implicit selection schemes

At the other end of the spectrum are implicit, ad hoc models of choice. Heuristic evaluation func-
tions in Al game-playing programs (Nilsson 1980) provide a good example. Since these models do
not explicitly represent the factors that underlie choices, they are effectively ‘black boxes’, with no
basis for automating knowledge acquisition or explanation (beyond justifications of the form, ‘this
is the best move’). Most production system conflict resolution algorithms (e.g., production order,
special case, distinctiveness, and recency rules (McDermott & Forgy 1978)) exemplify this type of
choice model, selecting instantiations using hard-coded algorithms.

Our work is distinguished from these efforts in that we are dealing with explicit models of choice,
with transparency and ease of evolution being among our principal concemns.

3.3 Languages for encoding choice knowledge

Another approach to modelling choices in Al systems involves providing computational formalisms
for encoding knowledge about sclecting among knowledge-level objects. These are essentially lan-
guages for expressing knowledge about choices which say nothing about the nature or elements of
choice knowledge. The formalisms may be catcgorized in two groups: procedural and declarative.

FCL (Friedman 1985) provides an example of the procedural varicty where the objects of choice
are productions in a production system. The language provides constructs such as functions,
function calls, and sequencing for controlling invocation. A similar example, Georgeff (1982) pro-
posed a general production system architecture that allows procedural control knowledge to be di-
rectly represented and used. While such approaches provide more flexibility in rule-writing, they
suffer from some of the same problems as the above-described hard-coded algorithms. First, the
languages do not implement any sort of theory of choice; the approach is one of 'hacking’ to
achieve the desired results. Second, maintenance is still primarily a programming task rather than
a process of modifying a well structured repository of knowledge. Third, since procedural control
leaves implicit the knowledge that underlies the sequencing of productions, this knowledge cannot
be elucidated for the user in an explanation. Qur work is distinguished from this approach in that

Chapter 1V: Background and Relationship to Previous Work 26

we advocate the implementation of a formal theory of choice which takes as input a set of param-
eters rather than arbitrary code. In part, this is to make the knowledge underlying choices accessible
for explanation and modification. Clearly, this knowledge is inaccessible under the procedural
language-oriented approach.

The declarative variety of language-oriented control is exemplified by meta-rules (Davis 1976, Davis
1980). Treating conflict resolution as a problem-solving task itself, meta-rules direct the invocation
of object-level rules which encode domain knowledge. Under this approach, the knowledge under-
lying selection of object-level knowledge is explicitly represented and may be domain-dependent.
This has considerable advantages with regard to maintainability and explainability; since choice
knowledge is explicitly represented, both of these tasks are facilitated. But mcta-rules still represent
a computational formalism for encoding choice knowledge, not a thecory of choice that assigns
precise semantics to particular models and their parameters. In addition, we can identify some
problems with the meta-rule approach. First, meta-rules are economical in the scnse that they
make use of the same machinery that supports object-level problem solving, but there is no reason
to assume that this machinery is ideal or even appropriate for making choices. Sccond, the meta-
rule approach leaves open the question of what the ‘top-level” conflict resolution algorithm should
be; That is, it is unclear as to how a system would select among the highest level of meta-rules
encoded. Third, some control knowledge still resides in the inference engine under the meta-rule
approach, and it seems somewhat misguided to arbitrarily distribute control knowledge in two
places, one of which (the inference engine) is opaque. Also, it seems misguided to house control
knowledge with object-level knowledge in the first place.

In summary, our approach deviates from that of computational formalisms for encoding choice
knowledge in that we advocate some theory of choice wherever explicit models of choice are
needed. In the case of procedural languages for making choices, we also diverge in our effort to
support transparency and knowledge acquisition.

4. Automated explanation

It is by now generally agreed that explanation is a fundamentally important supporting capability
for intelligent systems. A well-known study by Teach & Shortliffe (1981), for example, revealed that
high quality explanation capabilities were the most important requircment for an acceptable clinical
consultation system, concluding that a “system should be able to justify its advice in terms that are
understandable and persuasive ... A system that gives dogmatic advice is likely to be rejected’. Ex-
planation has become a central topic of research, with experiments in a set of domains as diverse
as the blocks world (Winograd 1972), medicine (Davis 1976, Aikens 1980, Clancey 1981, Swartout
1983), complex physical machinery (Forbus & Stevens 1981, Stevens 1981, de Kleer & Brown 1984,
Weld 1984), game playing (Berliner & Ackley 1982), and financial planning (Kosey & Wise 1984),
just to name a few. We will not give an exhaustive overvicw of cxplanation rescarch here; rather,
we focus on those efforts which contributc to or contrast with the explanation component of the
proposed thesis.

4.1 Justifying choices

Of primary relevance to the explanation component of this work arc research efforts involving the
justification of complex choices between competing alternatives. Perhaps most relevant is the work
of Langlotz et al. (1986) on generating explanations from single-attribute utility functions. Using
decision trees, information attached to nodes in the form of frames, and qualitative mathematical
reasoning, the authors generate intuitively appealing justifications for choosing particular treatments
in the medical domain. The explanation portion of our work will be similar to theirs in its use of
traditional decision-theoretic structures coupled with supplementary knowledge stores to generate
explanations. Our work will differ greatly in our focus on multiattribute value functions and the

Chapter 1V: Background and Relationship to Previous Work 27

associated use of objective hierarchies, and primarily in the interactive, integratcd nature of expla-
nation and refinement. Langlotz et al. did not address refinement in their work. As a probable re-
sult, their explanations avoid presentation of any quantitative values or underlying model structure.
This also represents a diversion for us, in that we must provide a clearer window into the model
itself in order for users to correct it.

In contrast, BLAH (Weiner 1980) generates explanations for choices based on a very limited, ad
hoc model which 1s restricted to reasoning between two alternatives. While we will borrow func-
tional aspects of explanation from BLAH, our work will necessary be different because we are
justifying choices which are based on a much more powerful underlying model. In addition, BLAH
employs certain strategics with which we patently disagrec on the basis of the data we have collected
from human beings.? For example, Weiner asscrts that “All reasons for a decision are, of course,
part of the explanation of it’. OQur data clearly refutes this.

Also relevant are the hand-crafted models of choice which Rennels ¢t al. (1987) showed to be re-
stricted forms of decision-thcoretic models (Kastner 1983, Clancey 1984). These models were de-
veloped with explanation as a primary design goal, and might provide some uscful lessons regarding
the provision of justification for choices. Again, our work differs from thesc cfforts in that we ad-
dress more general, formal models, without making restrictive assumptions that limit the use of our
facilities to one or to a few domains.

4.2 Explaining the vesults of other quantitative models

Also relevant is work on explaining quantitative models outside the realm of value-based choices.
For example, there exist systems which explain diagnostic conclusions based on probabilistic
models (e.g., (Ben-Bassat et al. 1980)). While these systems produce very quantitative explanations,
and focus on diagnostic conclusions rather than on the choice of problem-resolving actions, we can
make use of some of their abstract presentation strategies such as ordering evidence by its impor-
tance to decisions (Reggia & Perricone 1985) and separating evidence which supports conclusions
from evidence which denies them (Speigelhalter & Knill-Jones 1984). OQur approach to explanation,
which attempts to incorporate the elements of human communication, greatly differs from these
efforts which provide tabular presentations of quantitative data.

The ROME system (Kosey & Wise 1984), which answers queries about financial spreadsheets, also
provides some insights which are useful to us in the proposed work. In formulating explanations,
ROME employs strategies such as distinguishing rclevant parts of the underlying model from ir-
relevant parts, identifying significant variables in particular situations, and translating quantitative
values into qualitative ones for presentation. Qur analysis of the justifications for choices offered
by human beings®® motivates similar strategies in our work. Qur work differs not only in the
underlying model being elucidated, but in our integration of explanation with refinement, our focus
on explaining the underlying modecl to the user as well as specific results, our use of multiple models
organized by user, and other characteristics.

4.3 Summary

The explanation component of UTIL will draw upon previous results in explanation contributed
by a variety of authors. But UTIL will be unique in several respects, representing the first inte-
grated system for explaining and refining decision-thcoretic models, and the first domain-
independent effort to explain the very general and commonly employed AMVM.

25 A detailed discussion appears in chapter V.

Chapter 1V: Background and Relationship to Previous Work 28

5. Automated knowledge acquisition

Automated knowledge acquisition is another fundamental supporting capability for intelligent sys-
tems. As the acquisition of knowledge is often described as the primary bottleneck in intelligent
system development (Waterman 1986), work on its automation has becomc a popular research
area. Many different approaches to automating the construction and improvement of intelligent
systems have been proposed over the past several years, ranging from the interactive transfer of
expertise (Davis 1976) to machine learning (Michalski et al. 1983, 1986). Our approach to the
interactive refinement of value functions is clearly an instance of the former. As in the case of ex-
planation, it is not our purpose to review the field of knowledge acquisition here; rather, we cite
approaches which are specifically related to or counter to the proposed work.

5.1 Initial acquisition of decision-theoretic models

In chapter III we distinguished two distinct phases of development for decision-theoretic models:
initial acquisition (building the model from scratch, including problem structuring, model selection,
and parameter assessment) and iterative refinement (incremental problem restructuring and param-
eter tuning). As previously mentioned, the systematic assessment of utility functions is a relatively
mature topic of research (e.g., sce (Farquhar 1984) for a review). Many mcthods have been imple-
mented in interactive computer programs, for example, (Keeney & Sicherman 1976), (Nair &
Sicherman 1979), (Novick et al. 1980), (Schlaifer 1971), (Sco et al. 1978), (Klein et al. 1982),
(Weber 1985), and (von Nitzsch & Weber 1986). The existence of such programs renders it rea-
sonable for us to focus our efforts on refinement, without worrying about initial acquisition as well.
However, existing methods for initial acquisition should provide a number of ideas which we can
adapt for refinement.

5.2 Refinement of decision-theoretic models

Refinement involves the incremental modification of the utility function over time to correct un-
covered errors and to reflect new preferences as the system evolves. One approach, analogous to the
role of machine learning in expert systems, involves learning the parameters of a utility function.
For example, Madni et al. (1985) describe a system for learning the weights in an additive utility
function. A related approach, adaptive utility theory (Cyert 1975, Cohen 1984), involves methods
for converging on a precise utility function by updating parameters based on experience. Our work
is essentially unrelated to these efforts.

We are more interested in approaches involving the interactive refinecment of preferences, and there
has been relatively little work in this area. I.chner (1985) developed a rule-based system for as-
sessing utility function parameters which supports a limited version of refincment in that the user
may choose to reassess only certain parameters over time, but it docs not (as far as we can tell)
address the issues of chapter 11l. Wellman (1984) describes a very interesting approach to initial
acquisition that might be extended for refinement. The system selects a form for the utility function
by proving the theorems which justify using such forms. But this system too docs not aid the user
in refinement per se, and assumes that the user is knowledgeable about utility thecory. Our work
will build upon these efforts by providing a framework for modifying (restricted) utility functions
which avoids resorting to initial acquisition methods (i.c., rebuilding models from scratch).

5.3 Summary

There exist several automated facilities which support the initial acquisition of decision-theoretic
models, and we shall assume that these may be employed to devclop the value functions which
UTIL explains and helps to refine. We will also draw upon the applicable elements of these meth-
ods in developing UTIL'’s refinement facilitics. Qur inventory of systems for interactively refining

Chapter 1V: Background and Relationship to Previous Work 29

decision-theoretic models reveals that much work remains to be done, and UTIL. will help to fill
this gap.

6. Integrating explanation and refinement

This work is greatly influenced by Teiresias (Davis 1976), a vehicle system constructed to explore
applications of meta-level knowledge (Davis & Buchanan 1977). Our basic approach to designing
UTIL’s explanation and refinement facilities, particularly their interrelationship, is inspired by
Teiresias’ analogous facilities for rule-based systems. Teiresias encompasses a view of knowledge
acquisition as the interactive transfer of expertise (involving a human expert and a program).
Loosely speaking, UTIL may be viewed as a “Teiresias for decision-analytic models’.

UTIL will share several themes with Davis’s work. In particular, we will build upon Davis’s notion
of capturing and verifying new information in the context of specific situations and upon the use
of explanation facilities as a window into system behavior which facilitates modification.

7. User modelling

The proposed work is related to the field of user modelling (e.g., see (Kass & Finin 1987) for a re-
view), in two ways. The first, briefly discussed by Langlotz ct al. (1986), involves the employment
of an explicit model of the user which is used to tailor justifications for choices to his tastes. We
do not plan to do any work in this area.

The second link to user modelling concerns the use of utility functions as user models. Since a
utility function is a representation of a particular user’s preferences in a specific decision-making
situation, we may regard a collection of such functions as a model of the expert. Chapter V de-
scribes such a structure (called a wuser profile) which is used by UTII, to make analogies with other
decision problems and to reference the opinions of other decision makers in an explanation. Some
work in user modelling encompasses the encoding of user preferences (e.g., Rich 1979, 1983), but
the approach is one of maintaining sets of attributes which describe the user in general terms, rather
than sets of objectives (and their interrelationships) which pertain to particular decisions. We will
continue to examine the user modelling literature to identify other idcas and themes which may be
potentially useful in UTIL.

Chapter 1V: Background and Relationship to Previous Work 30

Chapter V: Preliminary Work

We have done preliminary work toward UTIL’s development in essentially four related areas, using
JESQ’s domain (chapter II) as a vehicle throughout:

1. We have formulated a simplified but realistic AMVM for choosing among competing space-
freeing actions;

2. We have sketched some alternative architectures for reimplementing JESQ, each of which in-
cludes this AMVM, in order to illustrate its potential use in various architectural contexts;

3. Toward the design of the explanation component, we have collected justification-oriented di-
alogs from computer opcrators and used these as the basis for the prcliminary design of ex-
planation commands and responses. We have also done some preliminary work on the design
of mechanisms to support these responses.

4. Toward the design of the refinement component, we have outlined some capabilities and
mechanisms to support them,

The chapter is organized as follows. Section 1 describes an AMVM and supporting analysis for the
queue space management problem. Three distinct architectures which might employ this model
are described in section 2, and their implications for the required level of modularity in UTIL are
discussed. Section 3 demonstrates the usual ease with which new alternatives in JESQ’s domain
might be introduced. UTIL's proposed explanation facilitics and the rationale underlying their de-
sign are described in section 4. Section 5 contains an analogous prescntation of UTIL’s refinement
facilities.

1. A sample AMVM: JESQ revisited

In this section we formulate a simplified version of JESQ’s choice problem in terms of the AMVM.
This serves three purposes: (i) It provides an example with which to illustrate the issues and pre-
liminary techniques introduced in this chapter; (ii) It elucidates some of the analysis involved in
casting decisions in terms of the AMVM;2 and (iii) It allows us to become more specific about the
sort of model of choice that we claimed would have enhanced JESQ.

We will not recast the complete domain here, for that will make hand-simulated examples in later
sections difficult to understand. Rather, we’ll address only the following decision-making situation:
Suppose that a user generates a large dataset that is to be printed on a printer which is not currently
working, and that a choice between the following alternative plans for manipulating that dataset
must be made in order to free some space on the operating system queue:

1. copy: copy the dataset to tape and print it later when the requested printer has been repaired.
2. expensive-printing: print the dataset on a faster printer which uses expensive forms.

3. cheap-printing: print the dataset on a slower printer which uscs lower quality forms than those
requested by the user.

4. delete: delete the dataset from the queue.

5. install: temporarily install a duplicate of the requested printer for use until the existing printer
has been repaired.

6. fiche: deliver the dataset to the user on microfiche.

26 Note, however, that this formulation lacks the rigor of an ‘industrial strength’ analysis. For example, we developed

the component value functions from intuition rather than using standard assessment techniques. See Keeney (1982)
for an informative overview of the methodology of decision analysis. Keeney and Raiffa (1976) provide more de-
tailed illustrations.

Chapter V: Preliminary Work 31

7. cards: deliver the dataset to the user on punched cards.

8. dasd: transfer the dataset to the user’s private disk storage so that he can later transfer it back
to the queue for printing after the printer has been repaired.

Note that some of these may not be feasible in certain implementations of JES/MVS, some of them
are configuration dependent, and some (e.g., install) are just plain silly.?

1.1 Structuring objectives

First, we structure the objectives of installation management which underlic choices between op-
erational heuristics, using an objectives hierarchy (Kecney & Raiffa 1976). The idea is essentially
to capture the hierarchical nature of objectives in a corresponding hierarchical structure where the
satisfaction of a given objective is measured in terms of the satisfaction of its component objectives
(i.e., children in the hierarchy). Primitive objectives (at the bottom of the hicrarchy) are measured
by their associated attributes. An attribute should be both comprehensive (i.e., indicative of the
level to which the associated objective is achicved) and measurable (i.e., the decision maker can
specify preferences for different possible levels of the attribute). Of course, this initial problem
structuring would be accomplished by decision analysts and knowledge engincers in the initial stages
of development of an intelligent system, with no help from UTIL.. Initial parameter assessment
might also be performed with the help of humans, or by an automated facility outside UTIL.®

Recall that the perceived effectiveness of space management actions is judged in terms of several
objectives (see chapter II), including maximizing the impact on the JES queuc space, maximizing
the convenience of the operator, maximizing the satisfaction of the user community, minimizing
wasted material costs, and maximizing the speed of actions. These, in turn, were defined in terms
of more detailed objectives. We want to slightly simplify this set of objectives here for ease of
presentation.

Let us assume that a single dataset is to be manipulated, so that the objective ‘'maximize impact’
becomes irrelevant. This will limit the number of alternative actions to the mentioned eight. We
will thus choose among competing space-frecing alternatives based on four objectives: ‘maximize
operator convenience’, ‘maximize user satisfaction’, ‘minimize material costs’, and ‘'minimize space
clearing time’. In our simplified formulation, ‘'maximize opcrator convenience” may be considered
to directly correspond to ‘minimize the amount of additional time the operator spends performing
an action beyond that originally required’ (i.c., before the printer broke down and created the
problem), measured in terms of the attribute minutes. "Maximize uscr satisfaction’, on the other
hand, might be decomposed into more detailed, lower-lcvel objectives such as ‘minimize tum-
around time in excess of that originally required” (mecasured in terms of the attribute minutes) and
‘minimize difference between the output medium originally requested and the output medium as-
sociated with the chosen action’, measured in terms of a subjective index which assigns 0 to forms
most different from those requested and 1 to preciscly those requested and forms which are better
than those requested. Note that we could have instead measured user satisfaction’ directly in terms
of some subjective index (c.g., very-, marginally-, dis-satisfying), but in this casc morc detailed (less
opaque) objectives are indeed available. "Minimize material costs” (in excess of those initially re-
quested) can be directly measured in terms of the attribute dollars. "Minimize qucue space clearing
time’, the time that it takes for the datasct to actually exit the qucue (excluding other processing)
can be directly measured in minutes. Pictorially, we have the objectives hicrarchy of Figure 1 for
our sample problem.

27 These have been included for purposes of exposition. In an actual decision analysis, such alternatives would be

omitted from the start.

28 See chapter 1V for references.

Chapter V: Preliminary Work 32

effectively manage queue space

I I I
I I I
| I I I
I I I
I I

min op time min turn time min form diff min cost min Q clear time
(x1) (x2) (x3) (x4) (x5)

Figure 1: Objectives hierarchy for simplified queue space problem

Our attributes are x, = additional operator time in minutes, x, = additional turnaround time in
minutes, x, = difference in form (subjective index), x, = additional cost in dollars, and x; = (ab-
solute) queue space clearing time in minutes.

1.2 Assessing the impact of alternative plans

Next, we assess the impact of each alternative and represent it in a vector of values for our attni-
butes, forming a sort of ‘profile’ for the alternative. Copy, for example, is represented
(10,34.2,1,1,15.1) according to the following analysis. It takes the operator approximately 10 min-
utes to make sure a tape is mounted, start the copy process, walk the tape to/from the tape library,
etc., so x1=10.2 Fixing the printer, and copying and restoring the users job will take around say,
34.2 minutes on average, thereby increasing his turnaround time by that amount (so x2=34.2).30
Since the copy plan encompasses bringing the dataset back onto the queue and printing it (after the
printer has been repaired), the user receives his data on the output medium rcquested (thus x3=1).
While tapes and tape drives are reusable, we amortize the cost of copying a job at about $1 per job,
so x4=1. We assign x5=15.1 because the dataset stays on the qucue until thc copy operation has
been completed (approximately 15.1 minutes). By similar analyscs, we obtain the vectors shown
in Table 1.

Alternative (Plan) x1 x2 x3 x4 x5

copy 10.0 34.2 1.0 1.00 15.1
expensive-printing 0.1 0.0 1.0 100.00 25.0
cheap-printing 0.1 10.0 0.8 0.00 40.0
delete 0.0 infinity 0.0 0.00 0.1
install 180.0 180.0 1.0 5000.00 210.0
fiche 0.1 20.0 0.2 70.00 50.0
cards 0.1 15.0 0.1 20.00 45.0
dasd 0.1 32.1 1.0 0.50 1.0

Table 1: Attribute vectors for alternatives

In an actual analysis we might collect historical data to compute these averages.

Lest there be confusion because x2 > x1, the operator does not have to stand at the tape drive while file transfer
proceeds. Thus, it is reasonable that only 10 minutes of the operator’s time is spent in the exccution of this alterna-
tive even though the copy process takes longer. The same explanation describes why it is reasonable that x5 > x1.

30

Chapter V: Preliminary Work 33

Several assumptions were made in formulating Table 1, including:

1. Our constant dataset size is 1 million lines. In an actual implementation, various attribute
values (e.g., the cost of expensive paper) would be computed as a function of the number of
lines in the dataset. Here, they are constants.

2. Attribute values which might be recorded as negative (i.c., in cases where the alternative actions
are better with respect to the associated objectives) are recorded as zero to reflect the wording
‘in excess of” in our formulation of objectives. Equivalently, we might have recorded them as
negative and treated them as zero in the component value functions described later. This is
done because the opcrators would have precisely honored the user’s request for resources had
the printer not been down, rather than attempted to optimize output processing. They (and
hence we) assume that the user will not be made any happier, for example, by expensive paper
if that paper was not requested. Thus, setting these attribute values to zero negates the poten-
tial positive utility derived from ‘negative excesses’. We would not want these ncgative excesses
to offset true (positive) excesses in choosing the best alternative.

3. Alternatives which involve reestablishment of the datasct on the qucue for requested printing
(e.g., dasd, copy) assume approximately 30 minutes waiting time for printer repairs. In an ac-
tual implementation, this value would be input on a situation by situation basis and the af-
fected attribute values computed accordingly.

1.3 Encoding preferences

Next, we determine the operational policy (preferences) of installation management regarding se-
lection among alternatives and encode this policy in the value function. Conversations with oper-
ators suggest that the attributes satisfy the independence assumptions which justify employing the
additive model. But what is the relative importance of thesc attributes with respect to choices be-
tween competing alternatives?

To some extent, the relative importance of each attribute secms to depend on factors outside the
model, primarily the severity of the current queue space situation. If, say, 25% of queue space re-
mains free, then the installation is willing to sacrificc somc more of an operator’s time in order to
provide better service (i.e., more user satisfaction). On the other hand, if only 5% of queue space
remains free, there is significant danger that the target system may ‘crash’, and so, an individual’s
satisfaction is traded off for more judicious use of the operator’s time. Does this imply that ‘amount
of queue space left’ should itself be represented as an attribute, with all others conditionally de-
pendent on it? We think not; in fact this would be very unnatural, for the amount of space left at
the time the decision is made fails, in itself, to reflect any coherent objective. Rather, the amount
of space left suggests the tradcoffs between the identificd attributes, and thus scrves as an index into
a particular value function; different value functions may be appropriate under different levels of
space left. For the time being, let us assume that the situation is still under control (i.e., there is
sufficient space left to avoid panic) ; we will develop a value function which reflects this assumption.

Using standard acquisition methods, we might determine that the weights for attributes are dis-
tributed as in Figure 2. This distribution is consistent with our assumptions about tradeoffs when
the situation is not critical.

Chapter V: Preliminary Work 34

effectively manage queue space

(1.0) |

(.1) | .5 | (.2) | (.2) |
| max user sat | |
I I I I
| (.5) ------- (.5) ! l
| I I I I

min op time min turn time min form diff min cost min Q clear time

(x1) (x2) (x3) (x4) (x5)
.1 .25 .25 .2 .2

Figure 2: Initial distribution of weights

We thus have the following value function for assessing qucue spacc management actions:
v(x1,x2,x3,x4,x5)

L1Fv1(x1) + .5(.5%v2(x2) + .5%v3(x3)) + .2%v4(x4) + .2%v5(x5)
L1Rv1(xl) + . 25%v2(x2) + .25%y3(x3) + .2%v4(x4) + .2%v5(x5)

where v, is the component value function for the ith attribute. Note that the hicrarchy allows for
the isolated assessment of decision problems at different levcls of abstraction, with weights summing
to 1 at any given level.3! At the highest level, user satisfaction accounts for 50% of the decision,
with the remaining objectives accounting for the remaining 50%. As for uscr satisfaction itself, the
only decomposed objective, turnaround time accounts for 50% of the user satisfaction assessment,
with difference in form accounting for the remaining 50%. Multiplying the weights as implied by
the hierarchy, we arrive at values of 25% and 25% for these detailed attributes of user satisfaction,
without requiring the user to directly specify these.

Again using existing automated facilities, we might capture the component valuc functions listed in
Table 2 for our attributes. Note that for objectives which are to be maximized (minimized), the
value functions assign 0 to the lowest (highest) attribute values and 1 to the highest (lowest) values,
with all others lying in betwecn.

3 As will be shown, this property is exploited in both explanation and refincment.

Chapter V: Preliminary Work 35

v2:

x2

]

10
20
40

excess operator time (minutes)

<=5
< x <=
< x <=
> 60

VvV A A A A
E T
A
il

=)
o

10
20
40

= 60

v3: difference in

form (subjective index: 0 -> 1)

v3(x3) = x3 for all x3

vh:

x4
X

10
40
80

excess material cost (§)

<= 10

< x <=
< x <=
< x <=

100< x <=

X

v5:

x5
X

10
20
30
40
b4

> 150

space

100
150

20
30
40
60

Table 2: Component value functions

Chapter V: Preliminary Work

36

1.4 Evaluating alternatives

Finally, we evaluate and compare our alternatives as depicted in Table 3. The value function re-
flects the information in Figure 2. The consequences of alternatives reflect the contents of Table
1. Component value function evaluation reflects Table 2.

v(dasd) = v(.1,32.1,1,.5,1)
J1%v1(.1) 4 .5(.5%v2(32.1) + .5%v3(1)) + .2%v4(.5) + .2%y5(1)
= .85

v(expensive-printing) = v(.1,0,1,100,25)
L1%v1(.1) + .5(.5%v2(0) + .5%v3(1)) + .2%v4(100) + .2%vy5(25)
.8

v(cheap-printing) = v(.1,10,.8,0,40)
= .1%v1(.1) + .5(.5%v2(10) + .5%v3(.8)) + .2%v4(0) + .2%v5(40)
= .78

v(copy) = v(10.0,34.2,1.0,1.00,15.1)
= .1%v1(10) + .5(.5%v2(34.2) + .5%v3(1)) + .2%v4(1) + .2*v5(15.1)
= .76

v(delete) = v(.1,infinity,0,0,.1)
L1%v1(.1) + .5(.5%v2(infinity) + .5%v3(0)) + .2%v4(0) + .2%v5(.1)
.5

v(cards) = v(.1,15,.1,20,45)
L1Fv1(.1) + .5(.5%v2(15) + .5%v3(.1)) + .2%v4(20) + .2%v5(45)
= .475

v(fiche) = v(.1,20,.2,70,50)
= . 1%v1(.1) + .5(.5%v2(20) + .5%v3(.2)) + .2%v4(70) + .2%v5(50)
= .46

v(install) = v(180,180,1,5000,210)
= .1*v1(180) + .5(.5%v2(180) + .5%v3(1)) + .2%v4(5000) + .2%v5(210)
= .25

Table 3: Evaluation of alternatives for the sample problem

This formulation of the problem imposes the following ordering on alternatives: dasd > expensive
printing > cheap printing > copy > dclete > cards > fiche > install.

2. Some AMVM-based architectures for the sample problem

In this section we discuss some of the potential architectural contexts in which the sample decision
model of the previous section might be usefully implemented. Qur purpose here is (i) to make more
explicit our somewhat vague references to the use of decision-theoretic models as “top-level’ and
‘component machinery’ in intelligent systems in prior chapters, (ii) to show how JESQ might be
enhanced by incorporating the AMVM in a similar architecture, and (iii) to provide a basis for

Chapter V: Preliminary Work 37

defining a common interface between some popular intelligent system architectures and decision-
theoretic models, so that we may refer to these interfaces in our discussion of explanation and re-
finement.

We proceed as follows. First, we discuss the component abstract tasks of intelligent process control.
These may be performed by the opcrator, the intelligent systecm, or by some cooperative arrange-
ment involving both.3? The next few sections sketch various ways in which these tasks might be
implemented by integrating the AMVM with some standard architectures, and cxamine the impli-
cations for constructing transportable explanation and refinement facilities for the AMVM,

2.1 Component tasks in intelligent process control
Intelligent process control may be viewed as encompassing the following subtasks:

* monitoring: An intelligent agent (operator or system) must obtain the values of target system
state variables in order to (i) detect problem conditions and to (it) ascertain the status of target
system components which may be employed in managing those conditions.

e plan determination: An intelligent agent must determine one or more (possibly several alter-
native) plan(s) for managing the current situation.

® plan evaluation: An intelligent agent must evaluate thesc alternatives to sclect the ‘best’ one. In
some domains, this may involve simulating the alternatives in order to ascertain their out-
comes.

e plan execution: An intelligent agent must execute the chosen plan.

While monitoring and execution are relatively straightforward operations, plan determination and
plan evaluation may be accomplished in a number of ways that vary in their relative depth of rea-
soning (Klein & Finin 1987b). In the following sections, we examine a few architectures which
distribute these tasks among the human operator and the intelligent system in different ways. The
AMVM plays the role of the plan evaluation component in each of these architectures.

2.2 Architectural context: AMVM as top-level model

We may employ the AMVM of section 1 as a “top-level’ model for plan evaluation. Under this
scenario, monitoring, plan determination, and plan execution are performed by a human, outside
the system. The operator would monitor the target system, identify a sct of alternative plans that
are applicable in the current situation, and look to the intelligent system to help him choose the
best one. The operator would then execute the chosen plan.

The architecture of such a system would incorporate the AMVM as machinery for choosing among
competing alternatives. The alternatives themsclves would be represented much as in section 1.

2.3 Architectural context: AMVM and a shallow model

Another option is to employ the AMVM as a model for plan evaluation in concert with imple-
mented methods for monitoring, plan determination, and plan execution. We consider two versions
of this option, broadly characterized as shallow and deep.®

32 For a discussion of the operational and representational implications of the various options see (Klein & Finin

1987a).
See, e.g., (Hart 1982), (Chandrasekaran 1983), and {Fink 1985) for a discussion of the relative merits of deep and
shallow models. See (Klein & Finin 1987b) for an analysis of ‘knowledge depth’ in the domains of intelligent process
control.

3

Chapter V: Preliminary Work 38

By shallow models we usually mean that conclusions are drawn directly from observed facts that
characterize a situation. An advantage of shallow models is that they dircctly encode the heuristics
that experts use in performing their reasoning tasks, and arc thus relatively casy to build. In addi-
tion, shallow models tend to be relatively efficient becausc they select rather than construct their
solutions. One disadvantage of shallow models, however, is that explicitly stating all the precon-
ditions under which a solution should be selected is an error prone process (Koton 1985). Another
weakness of shallow models is that they are inflexible, unable to deal with circumstances even
slightly different from those explicitly anticipated (de Kleer & Brown 1984). In addition, shallow
models may be difficult to maintain, since what is conceptually a single picce of knowledge may
be unsystematically distributed across several objects in a knowledge base. Finally, explanations
generated from shallow models tend to be limited to traces of the chains of inference that lead to
conclusions.

In this section, we consider the integration of the AMVM with a shallow model of plan determi-
nation much like that of JESQ. The proposed architecturc implements event/response pairs which
are chosen by the AMVM according to the attribute values associated with the response portions.
The event portions of the pairs, consisting of descriptions of relationships between target system
state variable values, describe the eligibility of the plans recorded in the response portions. Each
pair represents an operational heuristic, as in JESQ. For example, consider the pairs of Figures 3a
and 3b.

ALTERNATIVE copy:
EVENT:
queue space is low
dataset
name = dsl
size = 1,000,000 lines
destination = printerl
printer status
name = printerl
status = broken
tape drive status
name = tapel
status = free
RESPONSE:
copy dsl to tapel
move tape on tapel to tape library
move tape from tape library to tapel
copy dsl from tapel to queue
print dsl on printerl
move dsl from printerl to user bins
RESPONSE ATTRIBUTES:
excess operator time = 10.0
excess turnaround time = 34.2

difference in form = 1.0
excess cost =1.0
queue clearing time = 15.1

END ALTERNATIVE

Figure 3a: Alternative 'copy'

Chapter V: Preliminary Work 39

ALTERNATIVE expensive printing:
EVENT:
queue space is low
dataset
name = dsl
size 1,000,000 lines
destination = printerl
printer status
name = printerl
status = broken
printer status
name = printer2
status = free
RESPONSE:
route dsl from printerl to printer2
print dsl on printer2
move dsl from printer2 to user bins
RESPONSE ATTRIBUTES:

excess operator time = 0.1
excess turnaround time = 0.0
difference in form = 1.0
excess cost = 100.00
queue clearing time = 25.0

END ALTERNATIVE

Figure 3b: Alternative 'expensive printing'

Either heuristic may be appropriate, depending on the status of the target system at the time of
instantiation. If say, printer2 is not free but tapel is, copy would be exccuted. Alternatively, if
printer2 is free but tapel is not, expensive printing would be employed. If ncither device is free we
are out of options.* But what if both tapel and printer2 are free? Which plan is better? This is
where our sample AMVM comes into play; we essentially nced to choose between the two
heuristics according to the installation’s operational policy. Recall from section 1 that expensive-
printing was preferred to copy.

In order to implement these ideas and supporting mechanisms, it would be most convenient to use
a language which provides for the encoding of both declarative and procedural constructs (e.g.,
YES/L1 (Cruise et al. 1987), OPS83 (Forgy 1984), YEES/OPS (Schor et al. 1986)). A pscudocode
sketch of such an implementation appears in Figures 4a-e. In this implementation, procedural code
provides a convenient representation for algorithmic knowledge such as coordinating supporting
tasks with knowledge-based action.® Forward-chaining production systems provide a convenient
programming paradigm for expressing data-driven events, including knowledge-based action (plan
determination and evaluation) and supporting actions (monitoring). Plan detcrmination is accom-
plished by the pattern matcher, which invokes operational heuristics whenever they are eligible.
The AMVM, an explicit model of choice, serves as the conflict resolution algorithm for resolving
across them. Recall from chapter IT that JESQ employed an implicit model of choice for conflict
resolution, and that this gave risc to several difficultics. Monitoring is also coordinated by the
pattern matcher, but conflict resolution is arbitrary, since the choice of, for example, which query

34

Although in an actual implementation, we would also encode heuristics which involve deliberate action to free them.
35

Recall from chapter I1 that this was accomplished using priorities in JESQ. Clearly, representing procedural know-
ledge with procedural code is more natural than hacking at declarative code to make it behave procedurally.

Chapter V: Preliminary Work 40

to submit first or which response to acknowledge first is more or less irrelevant. Recall that we la-
belled arbitrary choosing as an implicit model of choice.

Procedure JESQ;
begin;
call initialize;
Do forever
begin;
call monitor;
call act
end;
end JESQ;

Figure 4a: Shallow model supervisor

Procedure monitor;
begin;
call submit-queries;
call collect-responses
end monitor;

Figure 4b: Monitor

Production system act;
conflict resolution = AMVM

{event/response operational heuristics}
end act;

Figure 4c: Act

Production system submit-queries;
conflict resolution = arbitrary

{rules of the form:

IF token for query of type x is present
THEN submit query of type x
destroy token
create a new token of type x in m minutes }

end submit-queries;

Figure 4d: Submit queries

Chapter V: Preliminary Work 41

Production system collect-responses;
conflict resolution = arbitrary

frules of the form:

IF token for response of type x is present
THEN update target system status model
destroy response }

end collect-responses;

Figure 4e: Collect responses

This pseudoprogram exemplifics:

1. how the AMVM may be incorporated into the production systems architecture to implement
knowledge-based conflict resolution,

2. how implicit and explicit models of choice can coexist according to the requirements of the task
at hand,

3. how declarative and procedural representations may be integrated to promotc naturalness of
expression, and

4. how a JESQ-like system might be enhanced.

Elaborating on (4), note that this skeletal architccture might be sufficiently general to accommodate
other intelligent process control domains as well. It might even be the case that this architecture
could serve as a generally useful extension to the production systems architecture, with applications
beyond intelligent process control.

The standard production systems architecture may be depicted as in TFigure 5.

Figure 5: Standard production systems architecture

The extension may be depicted as in Figure 6. The choice model database may contain any number
of AMVM'’s, code for arbitrary conflict resolution, and implicit hard-wired conflict resolution al-
gorithms.* Rules are organized in blocks according to their logical function, and programmers ex-
plicitly name the model of conflict resolution to be used for each particular block.

3 This is to be distinguished from previous efforts that employ utility functions for conflict resolution in rule-based

systems (e.g., White & Sykes 1986), which assume a single explicit model of choice.

Chapter V: Preliminary Work 42

Figure 6: Augmented production systems architecture

The augmented production systems architecture may in turn be naturally integrated with procedural
code in the spirit of YES/L1-like languages (Cruise et al. 1987) as in Figure 7. In this architecture,
production rules coexist with procedural code as in our pscudocode formulation of JESQ. The su-
pervisory interpreter directs the execution of procedures and production systems as specified, em-
ploying the choice model database for conflict resolution as in Figure 6.

Figure 7: Integrated augmented production systems and procedural architecture

In summary, we can envision use of the AMVM in shallow intelligent systems where explicit,
knowledge-intensive choices are necessary. An arbitrary number of AMVM’s may be encoded (each
pertaining to a given production system module), and these may coexist with implicit models of
choice.

2.4 Architectural context: AMVM and a deep madel

The plans encoded in the shallow model of the previous section, which specify the movement of
data from the queue to other components (e.g., tape drives, printers), are based on the structure
of the underlying computer system being modelled. But since this structure is only implicitly re-
presented, the system would be limited by some of the disadvantages which typify shallow models.
For example, the configuration of the computer systcm may bc changed, requiring additional
preconditions to be encoded in the antecedents of rules, but there is no systematic way of identifying
the rules that should be changed. Depending on the naturc of a particular configuration change,
we may also need to add or delete rules. Another potential limitation of the system is that expla-
nations are limited to the presentation of the conditions under which plans are applicable. Finally,
the system would only be able to handle those state conditions that have been encoded in the
antecedents of rules, with no provisions for dealing with unanticipated situations.

Chapter V: Preliminary Work 43

In contrast, deep models of expertise correspond more closely to the notion of recasoning from first
principles. They tend to be more robust than shallow models, handling problems not explicitly
anticipated and exhibiting higher performance at the periphery of their knowledge. In addition, it
can be easier to verify the completeness of deep models. For example, in device-centered models
of physical systems (e.g., de Kleer & Brown 1984, Davis 1984) each physical device maps directly
into a structured object in the representation. Decp models of expertise are also more useful for
generating explanations in that reasoning steps which are usually implicit in shallow models can
be elucidated. Deep reasoning is, however, bound to be slower and more complex than shallow
reasoning in that a more sophisticated control structure is required (Koton 1985).

In this section, we describe a deeper model for managing queue space. Monitoring, plan determi-
nation, plan evaluation, and plan execution are performed automatically as in the shallow model.
But plan determination is a process of generation rather than invocation, which employs an explicit
structural representation of JESQ’s domain as depicted in Figure 8.

> FICHE PRINT

/ CHEAP PRINTER-—"/x

deddedededek £ T m**********

QUEUE TAPE DRIVE TAPE LIBRARY *USER BINS*
******* N~ > Fededeededededodedk

_/ A
EXPENSIVE PRINTER
CARD PUNCH
USER DASD

Figure 8: Structural model of computer installation

Using this model, plan determination adopts the form of searching a graph in which nodes represent
components and edges represent their interconnections. The search always begins at node QUEUE
and terminates at node USER BINS, and each such path through the graph (allowing one iteration
of any given cycle) represents a candidate path through which datasets may flow in order to clear
the QUEUE. This representation has the advantage that a change in the configuration may be di-
rectly mapped into a change in the representation, and the knowledge about computing plans for
moving datasets (searching the graph) remains unchanged. It is also more portable than the other
representations, requiring only a configuration description for any particular installation.

As for the other component tasks, monitoring encompasses supplying valucs for status variables
associated with each node in the graph (e.g., the availability of a tape drive). Plan evaluation in-
volves using the AMVM to compare alternative generated paths. Tor each component of Figure
8, we encode a description (e.g., processing time per linc of data) which supports the computation
of the attributes of the AMVM. A plan (path of devices) can be evaluated with respect to the at-
tributes (e.g., turnaround time) by summing the values associated with the processors that lie along
the generated path. One advantage of this method is that we nced only supply local device-
dependent data for each represented device in order to compute the attributes associated with gen-
erated plans, rather than assigning them at the level of composite plans as in the two architectures

Chapter V: Preliminary Work 44

previously discussed. Execution encompasses executing commands associated with each intercon-
nection to move the dataset from one device (node) to another.

2.5 Interfacing plan determination with evaluation

We have outlined three architectures in which the AMVM served as the machinery for plan evalu-
ation. Let us make explicit the common interface with plan determination shared by each of these.
In the first architecture discussed, the operator specified the alternatives and the attributes. In the
second, these alternatives were hard-coded in the consequents of rules, as were the associated attri-
bute values. In the third, the plans were generated rather than invoked, and the corresponding at-
tribute values were computed from the same explicit modcl used for plan dctermination. It is
important to note that in all three architectures, we can interface plan determination with evaluation
in the same way: by supplying the values for attributes associated with alternative plans (be they
directly captured from users, encoded ahead of time, or computed in realtime).

2.6 Implications for approach to explanation and refinement

Given this common interface, it scems reasonable to first focus on the development of explanation
and refinement facilities in isolation. This is not to say that either the explanation or refinement
of choice models is totally isolated from the explanation or refinement of other structures (e.g., rules
in the second architecture or device descriptions in the third). Indeed, intcgrating the explanation
and capture of choice knowledge with that of other knowledge is an interesting and formidable task.
The point is that the existence of a uniform interface to thc AMVM provides reason to believe that
machinery for the explanation and refinement of choice knowledge can be intcgrated with analo-
gous machinery for supporting other structures at some future time. Thus, we focus on the expla-
nation and refinement of choice-related information first, with an cye toward facilities which
support more complex architectures encompassing other structures (e.g., for plan invocation or
generation).

3. Acquiring new alternatives

Of the three architectures discussed, only the third provides for the automated generation of alter-
natives. The first two require that the alternatives be specificd. Before addressing explanation and
refinement in general terms, we wish to demonstrate the easc with which new alternatives may be
integrated with existing ones through the use of the AMVM. Recall from chapter 11 that the lack
of such a model in JESQ rendered the rational intcgration of ncw alternatives nearly impossible.

Suppose that an installation acquires a new low-end printer. This creates a new alternative for
output processing at the site.’” We envision the following sort of dialog between an intelligent sys-
tem and an operations manager for capturing the information needed to integrate this alternative
into the knowledge base. The user initiates the dialog; his participation is shown in CAPITALS.
Intelligent system-generated text is shown in normal casc. The mechanisms underlying this text are
discussed in section 6.

> NEW ALTERNATIVE
Please type the name of the alternative.

> CHEAP PRINTING

3 For this example, assume that cheap printing is not yet included in the set of alternatives.

Chapter V: Preliminary Work 45

How many minutes of additional operator time for cheap printing? As a reference point, additional
operator time for dasd is .1 minutes, and is 180 minutes for install.

> .1

How much additional turnaround time (in minutes) for cheap printing? As a reference point, addi-
tional turnaround time for dasd is 32.1 minutes, and is 180 minutes for install.

> 10

How much difference in form (on a scale from 0 to 10, with 0 the most different) for cheap printing?
As a reference point, difference in form for dasd is 10, and is 10 for install.

> 8

How much additional matcrial cost (in dollars) for cheap printing? As a reference point, additional
material cost for dasd is .50 dollars, and is 5000 dollars for install.

>0

How much queue clearing time (in minutes) for cheap printing? As a reference point, quene clearing
time for dasd is 1 minutes, and is 210 minutes for install.

> 40

Assuming queue space is, say, just a little low, thc ncw ordering on alternatives is:
dasd, expensive-printing, cheap-printing, copy, delete, cards, fiche, install

Does that seem reasonable?

> YES

Good.

We expect that in general, the addition of alternatives will remain this simple. Contrast this with
attempting to guess the correct priority for the newly-added alternative.

Had the ranking been incorrect, the user would invoke the explanation and refinement facilities
described in the following sections,® for the model of choice itsclf would have to be modified.

4. Justifying choices

The purpose of explaining the rationale behind choices is twofold. First, we nced to convince the
user that the chosen alternative is indeed the preferred one. Second, we need to provide insight into
how the current choice model behaves so that erroncous or dated portions of it can be identified
for modification.

We communicate the flavor of UTII.’s proposed explanation facility as follows. Section 1 describes
the elements of justifications collected from computer operators. Section 2 describes a potential
approach to explanation and associated commands. Section 3 depicts a hypothetical dialog between

3% Section 6 contains an example of refinement following the incorrect integration of a new alternative.

Chapter V: Preliminary Work 46

UTIL and the user. Some potential mechanisms for supporting this dialog arc presented in section
4. Section S reflects upon the integration of these mechanisms with other explanation facilities.

4.1 Some discourse elements

Our goal is to generate convincing justifications for choices. But what makes a justification con-
vincing? How do people explain choices to one another? In an effort to answer these questions,
we conducted a series of interviews with twelve computer operators at IBM’s Thomas J. Watson
Research Center in Yorktown Heights, N.Y. Each operator was presented with the following de-
scription of a choice situation concerning the management of JES queue space:

Queue space is low. We have a large dataset destined for a 3800 printer, to be printed on tpart forms,
but the 3800 is down and awaiting repairs. The following alternatives are available:

e DJ to tape (DJ)*

e print on a 3211 (3211)*

¢ call the user and ncgotiate the fatc of the dataset (CALL)

¢ do nothing; wait until the 3800 has been fixed (WAIT)

¢ install a new printer just to print the waiting dataset (INSTALL)

The operator was then asked to rank the actions. Next, the operator was asked to compare various
alternatives according to the ranking. Two sorts of comparisons were requested. First, we asked
why the chosen alternative was the best one. For example, if the operator produced the ranking
DJ > CALL > 3211 > WAIT > INSTALL, we asked, "Why is DJ the best? Next, we asked the
operators to compare particular pairs of alternatives, as in “"Why is DJ better than CALL? and
‘Why is CALL better than 32117 Qbservations regarding both the substance and form of their
justifications are discussed in the following sections. Where portions of a justification have been
reproduced, we have omitted rambling, ‘thinking out loud’, and pause words such as ‘ugh’ and
‘hmm’. The essential structure and content, however, have becn preserved.

Focus on values and objectives

Our interviews provide another data point to support Keency’s assertion that ‘values are the basis
for any interest in any decision problem” (Kecney 1986). When asked to compare alternatives,
operators refer to the objectives, their associated attributcs, levels of attainment for particular al-

ternatives, and other value-oriented objects in justifying their choices.

We observe that the operators mention both high- and low-level objectives in justifying their
choices. Justifications sometimes include a statement of general mission, as in:

‘As operations, our responsibility is to have the system up and as much as possible operational at
all times.” '

“That’s what we’re here for, to service the users’

‘We need the best and quickest solution we can find to rccover the crror. That's what operations is
all about.’

‘We're serving the people, you know.’

39
40

This is operator jargon for alternative copy.
This is alternative cheap printing.

Chapter V: Preliminary Work 47

The operators are sometimes more specific about which objectives arc best satisfied by alternatives,
as in:

’... by the time it prints out or whatever, that’s a slower process.’

‘It saves the operator a lot of work’

‘well, its the quickest way and the easiest way’

These utterances, for example, refer to objectives such as minimize additional operator work and
minimize queue clearing time.

Pruning and ordering objectives

In justifying a choice, the operators focus on those objectives which particularly distinguish the al-
ternatives under consideration. If one objective value greatly dominates the decision, for instance,
other objectives may be omitted from the justification. For example, when asked why WAIT was
preferred to INSTALL, one operator just laughed and proclaimed, ‘cost!. Yect that same operator,
in justifying why DJ was better than WAIT, replied, “... going out to tape is quick’. While both
cost and speed clearly influenced his decisions, he focussed on the objective which truly distin-
guished the pair of alternatives under consideration in each explanation. A corollary to this ob-
servation is that objectives that are not pruned from the explanation should be ordered in terms
of their impact in distinguishing the two alternatives.

Granularity of attribute values

In general, the operators mention qualitative values for attributes, as in:

"That’s an enormous expense’

‘I'm assuming that the queue space is real full here’

‘It saves the operator a lot of work’

However, we also note occurrences of quantitative valucs in the context of more detailed explana-
tions, particularly in discussing particular plans as in:

"You can contact the user in say /0 seconds. You say he’s got this datasct and he’s got to look at
it. You can solve your problem or make your decision in like a minute’

Thus, it seems that high-level justifications cncompass qualitative valucs while more detailed justi-
fications for particular plans refer to quantitative estimates of those values.
Stating the importance of objectives

We observe that operators make explicit statements regarding not only the objectives that underlie
choices, but also the importance of those objcctives. Consider, for example:

’An operator’s time is important’

“Time in operations is very important’

Chapter V: Preliminary Work 48

These operators felt compelled to mention not only that minimizing an opcrator’s time was an
objective, but that it was gencrally important, outside consideration of any particular alternatives.
Explicitly identifying the decision making context

We observe that operators not only identify the elements of decision making (the objectives, their
relative importance, etc.), but also the eontext in which the relationships between those elements
are assumed to hold. For example:

“If the spstem’s going down or something, you go with the quickest’

“If queue space is at an intermediate point where there’s not going to be much problem, I'd just let
it sit there.’

‘I’'m not too crazy about destroying the person’s datasct, but it all depends on how critical the situ-
ation is’.

'I'm assuming that the queue space is real full here’

These utterances imply that different alternatives would be chosen under different circumstances.
In the queue space domain, these ‘circumstances’ correspond to the severity of the current situation
as measured by the amount of space left on the JES qucue.

Referring to significant components of plans

Values for attributes which describe a plan may represent sums of more detailed attribute values
contributed by individual plan steps. For example, the increase in turnaround time due to DJ re-
presents the sum of component increases in turnaround time yiclded by the individual actions of
the DJ plan, including mounting tapes, labelling them, submitting the ‘copy command’, and other

detailed actions.

We observe that the operators do not merely present the values of (summary) plan attributes, but
additionally identify the most significant component plan steps, as in:

“They’d have to get the tapes out, label them, you know’

“You can contact the user in say 10 seconds. You say he’s got this dataset and he’s got to look at
it. You can solve your problem or make your decision in like a minute’

Thus, operators mention the values for significant attributes which characterize plans, and expose
which components of those plans most significantly account for those values.

Defending alternatives by identifying others” weaknesses

We observe that the operators often extoll the virtues of an alternative by pointing out the com-
parative weaknesses of others. For example, consider:

“Take one of the other ones. By the time you get the tape or whatever, by the time it prints out
or whatever, that’s a slower process.’

"Maybe the guy can’t use it when it comes out on a 3211”

Chapter V: Preliminary Work 49

These utterances focus on the negative consecquences of alternatives with regard to ‘maximize queue
clearing time’ and ‘minimize difference in form the user reccives’.

Reference to other decisions and decision makers

We observe that the operators make references to the decisions of other agents and decision makers.
For example, consider:

‘Some people here might think that their waiting time is a lot more valuable than the cost of the
new printer, but that’s their opinion’

“That’s fine as long as we have authorization from high above. Then we handle it differently’.
’ ... We can do it without asking about the decision we have to make.’
‘Based on our own experience or the title you have, you may make your own dccision.’

‘On my own, chances are that 1 would not delete the datasct’

Summary and continuing work

We have identified some of the essential clements of the operators’ justifications for their choices,
and we will continue to examine the dialogs for additional elcments.

In addition, it seems logical to collect dialogs from decision analysts as well. While we believe that
the actual domain experts’ (i.c., operators’) justifications arc probably the better model for designing
UTIL's explanation facility, observing trained decision analysts as they justify choices to their cli-
ents should yield additional useful elements of explanation.

4.2 Approach to explanation and associated commands

While there may be many possible approaches to clucidating the factors underlying a choice (e.g.,
graphical or tabular presentation of the underlying attributes), our goal is to produce natural ex-
planations akin to those which people seem to offer in justifying choices. However, the reader
should note that the current enterprise is not a study in discourse analysis or in natural language
generation; we are here concerned with incorporating elements of both the form and content of
justifications for choices as pcople present them, but are not focussed on preciscly reproducing
human-like justifications. Therc are three reasons for this:

1. Explanation, in part, serves as the user’s ‘'window’ into the structure of the AMVM. Thus, we
are faced with the challenge of providing adequate insight into the modcl’s parameters and
operation, while providing intuitively appealing justifications for choices.

2. People use pause words, are needlessly verbose, and commit other linguistic acts which po-
tentially obscure justifications. We want to avoid replicating thesc characteristics of human
explanations. :

3. Natural language generation is a challenging research arca in its own right. It would be im-
practical to attack problems in that field in the context of this research, the goals of which are
quite different. Following rescarchers such as Davis (1976) and 1 anglotz et al. (1986), we will
use simple methods for text generation so as not to deviate from our research focus. Our hope
is that our efforts may be adapted to employ more sophisticated methods for text generation
at a later time.

Chapter V: Preliminary Work 50

These considerations give rise to the following design strategy for UTIL’s explanation component:
borrow the seemingly desirable characteristics of both the form and substance of human justifica-
tions for choices (not being distracted by grammatical concerns such as tense agreement and proper
pluralization), and embellish these with additional information which seem to allow for effective
model repair. In short, we need to strike a balance between naturalness, model exposition, and re-
search focus in generating explanations.

In this section we describe some of the explanation-oriented commands which we would like to
offer users in UTIL. Naturally, all of thesc involve the comparison of alternatives in one form or
another. We assume that AMVM-based evaluation of alternatives is initiated via a command of
the form (CHOOSE gq,, ..., a,) where {a,, ..., a,} is a set of alternatives from which CHOOSE re-
turns the best. In the top-level architecture of section 2.2, the uscr issucs CITOOSE directly. In
the shallow model of 2.3, q,, ... , @, would be instantiated by the patiern matcher, and the interpreter
would invoke CHOOSE as the conflict resolution step of the recognize/act cycle. In the deep model
of section 2.4, a controlling module would invoke CHHOOSE as the plan evaluation phase of the
monitor/plan determination/plan evaluation/execution cycle.

First, we describe the commands which the user would usc immediately after invoking CHOOSE.
(WHY) allows the user to ask why the preferred alternative is the best, without specific reference

to another. Looking to human interaction for clues, consider the following operator’s response to
'WHY is CALL the best?":

Well, its the quickest way and easiest way. You can contact the user in, say, 10 seconds. You say he’s
got this dataset and he's got to look at it. You can solve the problem or make your decision in like
a minute. Take one of the other ones, by the time you get the tape or whatever, by the time it prints
out or whatever, that's a slower process. You know, you look at the casiest way and go from there,
or quickest way. If the system’s going down or something, you go with the quickest.

This operator compared his choice, CALL, with his next two choices, DJ and 3211. In addition,
he described the significant steps in plan CALL which made it desirable with respect to objective
‘maximize speed’. He also explicitly indicated that ‘maximize speed’ was a generally important ob-
jective in the decision making context ‘system going down’.

A more focussed version of WHY is (WHY NOT b), which allows the uscr to compare the chosen
alternative with a particular alternative b that he might think more appropriate. WHY NOT should
provide more specific responses than WHY, focussing only on the two mentioned alternatives, and
narrowing in on precisely thosc objectives which serve to distinguish their relative desirability. We
speculate that WHY NOT would probably be repetitively used after invoking WITY;; that is, WHY
will provide a general justification for the chosen alternative which the uscr will challenge via use
of WHY NOT.

The operation of WIIY and WITY NOT reflects the assumption that CITOQOSI has just been ex-
ecuted. We should also supply some commands which provide additional information by calling
CHOOSE and using its data structures or intermediate results. TFor example, the user may gain
additional insight into the AMVM'’s behavior by comparing two alternatives, ncither of which was
returned by CHOOSE. (COMPARE a b) provides a WIIY NOT analysis for altcrnatives a and b
(after EVALing (CHOOSE a b)). We envision that many such simple variations will obviously
present themselves as we implement UTIL.

It is also important to allow the user to focus on details of a justification that interest him and to
ask for the more general context of a particular part of the justification. These operations naturally
correspond to the descending and ascending of the objectives hierarchy, respectively. In order to
obtain more detail regarding an objective, we might provide a (DETAIL o) command, where o is
an objective (perhaps mentioned in an explanation generated by WITY or WITY NOT). DETAIL

Chapter V: Preliminary Work 51

may be used many times in succession to elicit progressively more detailed explanations. DETAIL
may also be used outside the scope of a particular choice (i.e., when CHOOSE has not been exe-
cuted), to elucidate portions of the model.

So that users may ascertain the context of a detailed objective, we might provide a (RELEVANCE
0) command, which elucidates the parent and sibling objectives for objective 0. We can also en-

vision the potential usefulness of an (EXPLAIN o) command which provides the information of
both DETAIL and RELLEVANCE for an objective o.

We might also provide an alternative interface whereby commands such as EXPLAIN, RELE-
VANCE, and DETAIL are entered by highlighting a portion of a previously gencrated explanation
on the screen and clicking a mouse or hitting a PF key.

4.3 Hypothetical dialog

Having provided a brief description of potential UTII. commands for explanation, we present a
hypothetical dialog and hint at potential implementation mcthods. A disclaimer: we are not ready
to advocate these methods; we will need to implement them and to test them on several examples.
They are presented here only to communicate the flavor of the approach we plan to pursue at the
outset of the research.

So as not to obscure its naturalness, we present the dialog in its entircty in this section, and defer
description of the hypothesized underlying mechanisms to the next section. The syntax of the di-
alog is as follows. User responscs follow the prompt symbol (>) and arc CAPITALIZED. Text
generated by UTIL appears in ordinary case. Annotations are {enclosed in braces}. Assume that
UTIL has access to all the information in the sample AMVM of section 1.

> CHOOSE COPY, EXPENSIVE PRINTING, CHEAP PRINTING, DELETE, INSTALL,
FICHE, CARDS, DASD

My recommendation is to perform plan dasd.
> WHY

My objective is to effectively manage queuc space. In order to achicve that objective 1 must maximize
user satisfaction, minimizc material costs, minimize queue clearing time, and minimize time spent
by the operator. This is similar to the way in which I choose among actions to recover from hard-
ware problems.

Assuming that queuc space is a little low, dasd is better than expensive printing, for example, pri-
marily because it is of lower material cost and lower clearing time. expensive printing is of higher

extra material cost because it involves using $100 worth of paper.

dasd is better than cheap printing primarily because it is of lower clearing time. cheap printing is
of higher clearing time because it involves using a slow printer.

By the way, dasd would also be the choice of most Ist shift managers and 2nd shift managers.
> WHY NOT CARDS

Although cards is slightly better than dasd with regard to additional turnaround time (a component
of user satisfaction), dasd is much better with regard to the difference in the form the user reccives
(a component of uscr satisfaction).

Chapter V: Preliminary Work 52

{The user enters DETAIL USER SATISFACTION or highlights the phrase ‘uscr satisfaction” and
clicks the DETAIL mouse button)

My ability to maximize usecr satisfaction depends upon the degree to which I minimize additional
turnaround time and minimize the difference of the form the user receives. additional turnaround
time and differcnce in form arc cqually important in my evaluation of user satisfaction.

While cards is characterized by additional turnaround timc of 15 minutes, less than 32.1 minutes
for dasd, dasd is characterized by no diffcrence in the form the user receives, much more similar to
the user’s request than cards. Since additional turnaround time and difference in form are equally
important in my evaluation of user satisfaction, dasd is clcarly better with regard to user satisfaction.

{The user enters DETAIL ADDITIONAL TURNAROUND TIME or highlights this phrase and
clicks the DETAIL mousc button)

additional turnaround time is the amount of additional time the plan delays the user’s acquisition
of his output, measured in minutcs. The less additional turnaround time, the better.

> RELEVANCE ADDITIONAL TURNAROUND TIME

additional turnaround time is a component of user satisfaction, along with difference in form. user
satisfaction is a component of cffectively manage queue space.

> DETAIL CHOICE

My objective is to effectively manage qucue space. In order to achieve that objcctive I must maximize
user satisfaction, minimize material costs, minimize qucue clearing time, and minimize time spent
by the operator. Although cards is slightly better than dasd with regard to additional turnaround
time (a component of uscr satisfaction), dasd is much better with regard to the difference in the form
the user receives (a componcnt of user satisfaction), somewhat better with regard to clearing time,
and slightly better with regard to additional material cost.

> EXPLAIN CLEARING TIME

clearing time is the amount of time the plan takes to clear a dataset off the qucue, measured in
minutes. The less clearing time, the better. clearing time is a component of effectively manage queue
space.

> WHY NOT INSTALL

dasd is as good or better than install with regard to cvery objective which underlies my choice.

{And the user continues to explore the rationale behind the decision as desired)

4.4 Mechanisms employed in the hypothetical dialog

In this section we provide a description of some of the mcchanisms which might be implemented
to produce the dialog of the previous section.

All responses are generated by instantiating values in response templates. The templates themselves

would be selected on the basis of the context of the dialog and of the nature of the explanation
appropriate to the situation.

Chapter V: Preliminary Work 53

The syntax of the dialog is as follows. As before, uscr responses follow the prompt symbol (>) and
are CAPITALIZED, and text generated by UTIL appears in ordinary case. Variables in response
templates are <enclosed in angle brackets >. All elements of dialog arc in bold, and descriptions
of methods used to generate UTIL's responses appear in normal font. Assume that UTIL has ac-
cess to all the information in the sample AMVM of section 1.

> CHOOSE COPY, EXPENSIVE PRINTING, CHEAP PRINTING, DELETE, INSTALL,
FICHE, CARDS, DASD

My recommendation is to perform plan <dasd>.
AMVM-based evaluations (Table 3) indicate that dasd is the highest valucd option.
> WHY

My objective is to < effectively manage queuc space>. In order to achicve that objective I must
< maximize user satisfaction >, <minimize material costs>, <minimizc queue clearing time >,
and <minimize time spent by the operator > .

UTIL examines the objectives hierarchy and lists the top-level objectives in order of absolute im-
portance as recorded in the value function. Recall that our value function is:

v(x1,x2,x3,x4,x5)= 1*vI(x]) + .5(.5*v2(x2) + .5*v3(x3)) + .2*v4(x4) + .2*v5(x5)
Note that detailed objectives (turnaround time and difference in form) are suppressed.
This is similar to the way in which I choose among actions to <rccover from hardware problems > .

A user profile (UP) is maintained for each UTIL user, consisting of a set of value functions and
associated objectives hierarchies which the user has constructed, each indecxed by the name of the
choice to which it pertains and the context description under which it is applicable.

To make analogies with other choices the user has faced, we scarch the user’s UP for a model that
includes the same objective hierarchy under the same context, in this case prcsumably matching
on a choice called ‘recover from hardware problems’. The objcctive weights in the value function
need not be the same for a successful match.

Assuming that queue spacc is < a little low >,

Context identification is performed simply by enumecrating context variables. For choice “effectively
manage queue space’, there is a single context variable “amount of spacc left’. The description ‘“a
little low” might correspond to the range 20-40% left. Another context, ‘extremely low” might cor-
respond to 10-19% left. Each context is associated with a value function which differs from others
in its weights on objectives.

<dasd> is better than < expensive printing > for example, primarily because it is of <lower>
< material cost > and <lower> < clearing time>.

Our value function induces the ordering: dasd > expensive printing > cheap printing > copy >
delete > cards > fiche > install. Looking to the human operators’ explanations for queues, UTIL
explains why dasd is better than its two closest contenders, in this casc expensive printing and cheap
printing. In response to WIIY, we focus only on positive evidence, since WI1Y is interpreted as
requesting a general argument in support of the chosen alternative. Detailed analysis of the actual
tradeoffs involved in choosing one alternative over another is handled by WITY NOT.

Chapter V: Preliminary Work 54

We employ the following method for enumerating the ‘key” objectives underlying the choice over
close contenders in response to WHY. Note that a different method is used for WHY NOT, which
produces more focussed explanations and addresscs tradcofTs.

1. Determine if the chosen alternative dominates*' the contender by direct comparison of attri-
butes values. If so, simply explain that the chosen alternative is as good or better with regard
to all the objectives which underlie the decision. If not (the usual case), continue.

2. Calculate the differences in contribution (wy(x,)) of each attribute i with respect to the two al-
ternatives. The contribution for an attribute yields a measurc of the effects of that attribute
on the overall evaluation. This measure takes into account both the value and the importance
of the attribute with respect to a particular alternative.*?

3. Prune attributes which produce negative or zero differences. This leaves only those attributes
which support the chosen alternative.

4. Starting with the attributes which have the largest contribution differences, collect enough ev-
idence in support of the alternative to counterbalance the total of the negative evidence. This,
in a sense, yields the sct of ‘important” attributes which support the chosen altemative, for this
set has the following properties: (i) It includes those attributes which provide the largest posi-
tive contribution differences and (i) It includes enough of these to counterbalance the attri-
butes which argue against the chosen alternative. [.ooscly speaking, attributes providing
positive contribution differences which are omitted arc merely the ‘icing on the cake’.

5. Present the resulting set of attributes in defense of the alternative, along with the higher-level
objectives influenced (if any exist).

Following is a detailed exposition of the method for this example.

Stepl: We compare the raw attribute levels of the two contenders (+ is better, - is worse, = is
equal):
dasd: .1 32,1 1 .5 1
expensive-printing: .1 0 1 100 25
= - = + o+

We observe that dasd does better on cost and clearing time, but worse on turnaround time. So dasd

does not dominate expensive printing. Rather, it was chosen because the value function specifies a
tradeoff of turnaround time for better cost and clearing time.

Step2: To identify the most important objectives which distinguished the alternatives, we calculate
the differcnces in the contributions made by the individual attributcs:

dasd: .1 .1 .25 .2 .2
expensive-printing: .1 .25 . 25 .08 .12
differences: 0 -.15 0 +.12 +.08

4 Definition: Suppose, without loss of generalily, that preferences increase in each x; (i.e., the more x;, the better) for

a set of attributes x,... ,x, . We say that an alternative (x,, ... , x,) dominates another aliernative (y,, ... , ¥,) when-
ever x; > y,; for all { and x; > y; for some £. Less formally, il one alternative dominates another, then the dominated
alternative is a ‘noncontender’ for best, since the dominating alternative is at least as good for every attribute and
strictly better for at least one. In the usual case, where neither altcrnative dominates, the decision-maker’s tradeofTs
between attributes come into play.

To compare the numbers returned by different component value functions (corresponding to different attributes) for
a given alternative as well as the values returned by the (composite) value function across alternatives, we need to
assume that v is a measurable value function. Sce (Dyer & Sarin 1979) for details.

42

Chapter V: Preliminary Work 55

Step3: Pruning negative and zero differences to remove negative and non-distinguishing attributes
leaves x4 (contribution difference = .12) and x5 (.08).

Step4: We prune the least important positive difference attributes as follows. Starting with the
highest valued positive contribution, we observe whether it is sufficient 1o cancel the sum of the
negative evidence:
|12 > |-.15]?
The answer is ‘'no’ in this case, so we include the next highest valucd positive attribute contribution:
.12 +.08] > |-.15] 7
The answer is yes, so we are finished.

Step5: x4 and x5 are presented; neither are components of higher level attributes.

< expensive printing> is of <higher> <extra material cost > because it involves <using $100
worth of paper > .

For each plan, we maintain a canned description of the steps which most influence its attribute
values. To instantiate “using $100 worth of paper’, we rcferenced the description for plan ‘expensive
printing” for attribute ‘material cost’. Attribute ‘material cost” was selected rather than ‘clearing
time’ because it was associated with the larger contribution difference.

Next, we repeat the process with the second closest contender, <chcap printing > .

<dasd > is better than < cheap printing > primarily because it is of <lower> <clearing time> .

Stepl:
dasd: .1 32.1 1 .5 1
cheap-printing .1 10 .8 0 40

In this case, the existing model specifics a tradeoff of better difference in form and clearing time for
worse turnaround time and material cost.

Step2:
dasd: .1 .1 .25 .2 .2
cheap-printing: .1 .2 .2 .2 .08
differences: 0 -.1 +.05 0 +.12

Step3: Pruning negative and zero differcnces, we have x3 and x5 as candidates to mention as pos-
itive evidence for selecting dasd.

Step 4: We compare the largest positive difference with the sum of the ncgative differences.
[.12] > [-.1)?
The answer is yes, so we needn’t include x3 in the explanation.

Chapter V: Preliminary Work - 56

Step5: We present x5 in the justification. Ilad x3 not been excluded, we would have included
something like * <lower > <difference in form > helps to <maximize user satisfaction >’ in the
justification.

< cheap printing > is of <higher> <clearing time> because it involves <using a slow printer > .

To instantiate <using a slow printer >, we reference the description for plan <cheap printing >
for attribute < clearing time > .

By the way, <dasd> would also be the choice of most < Ist shift managers> and < 2nd shift
managers > .

In a prior exposition, the user profile was used to organized different choice models (intraprofile
comparison) for a given user so that analogies with other problems could be madc; here, we use the
profiles to compare the preferences of different users (interprofile comparison) for a given problem.
Specifically, we examine the user profiles of 1st and 2nd shift managers, cach of which includes the
‘effectively manage queue space’ choice model. UTII, exccutes these, noting that they produce the
same choice as the current user’s model for the same context description.

We might also explore the organization of UPs in a user profile hierarchy which logically groups
decision makers to reflect the hicrarchical structure of their organizations. For example, we might
group lIst and 2nd shift managers under the category ‘managers’, and usc this structure to make

statements about managers in general. This is somewhat reminiscent of the stereotype DAG of Rich
(1979).

> WHY NOT CARDS

Although <cards> is <slightly> better than <dasd > with regard to < additional turnaround
time > (a component of < uscr satisfaction>), <dasd> is <much> better with regard to <the
difference in the form the user reccives> (a component of < user satisfaction >).

The following variation on the WIIY procedure might be used. Whercas WITY presents only the
most influential evidence which supports the alternative, WIIY NOT indicates tradeoffs, exposing
both positive and negative evidence underlying the choice of an alternative.

1. Determine if the chosen alternative dominates the contender by direct examination of the at-
tributes. If so, simply explain that the chosen alternative is as good or better with regard to all
the objectives which underlie the decision. If not (the usual case), continue; we must expose
the tradeoffs that were taken into account.

Calculate the differences in contribution for each attributc.

3. Prune least important positive and negative attributes (by an extension of the mcthod for
WITY which is illustrated below). This leaves those attributes which most influenced the de-
cision.

4. Present these attributes, along with the higher-level objectives influenced (if any exist).

Following is a detailed exposition of the method for this example.

Stepl: We check to see whether dasd dominates cards:

dasd: .1 32.1 1 .5 1
cards: .1 15 .1 20 45

Chapter V: Preliminary Work 57

dasd does not dominate cards. Rather, selecting dasd implies a tradcoff of worse turnaround time
for better difference in form, matenal cost, and queue clearing time.

Step2: We compute the contribution differences:

dasd: .1 .1 .25 2 .2
cards: .1 .15 .025 .16 .04
differences: 0 -.05 +.225 +.04 +.16

Step 3: As in WHY, we do horizontal pruning of the objectives hicrarchy, but this time accounting
for negative influences as well. Should the uscr desire morce information, he can usc the DETAIL
command.

We proceed as follows. First, we compare the negative and positive differences with the largest ab-
solute values. If the positive differences fail to outweigh the negative differences, we continue to
add positive differences until they do. For this example, the largest ncgative difference is contributed
by x2 (-.05). The largest positive difference is due to x3 (+.225). Since [.225] > |-.05], we are done.

Step 4: We present x2 and x3 to the user. Qualitative differences in utility (e.g., ‘'much’) are assigned
according to range of differences in the utilities of the chosen attributes (e.g., .7 to 1). In this ex-
ample we have:

x2 x3
dasd: b 1
cards: .6
differences: -.2 +.9

So dasd is ‘'much’ better with respect to x3, and ’slightly” worse with respect to x2.
> DETAIL USER SATISFACTION

My ability to <maximize user satisfaction > dcpends upon the degree to which I < minimize addi-
tional turnaround time> and <minimize the differcnce of the form the user reccives > . < additional
turnaround time> and <difference in the form the user reccives> are < equally > important in
my evaluation of < user satisfaction> .

This 1s accomplished by instantiating objective names and wcights from the objectives hierarchy.

While <cards> is characterized by < additional turparound time> of <15> <minutes>,
<less> than <32.1> <minutes> for <dasd >, <dasd > is characterized by <no> <difference
in the form the user reccives>, <much> <more similar to the user’s request > than <cards>.
Since < additional turnaround time> and <difference in form> are equally important in my

evaluation of < user satisfaction >, <dasd > is clearly better with regard to < user satisfaction > .

The method is essentially the same as previously described, but focussing on user satisfaction and
unconditionally mentioning all attributes. -

In addition, the weights on objectives are displayed by simple inspection of the objectives hierarchy.

> DETAIL ADDITIONAL TURNAROUND TIME

Chapter V: Preliminary Work 58

< additional turnaround time> is <the amount of additional time the plan delays the user’s ac-
quisition of his output >, measured in <minutes>. The <less> < additional turnaround time >,
the better.

Associated with each attribute is a textual description of the attribute, its scale of measurement,
whether more or less is better, and other information. Simple lookup and instantiation is used to
generate the explanation.

> RELEVANCE ADDITIONAL TURNAROUND TIME

< additional turnaround time > is a component of < uscr satisfaction >, along with <diffcrence in
the form the user receives>. <user satisfaction > is a component of < cffectively manage queue
space > .

This is simple traversal of the objectives hierarchy.

> DETAIL CHOICE

My objective is to < effectively manage qucue space>. In order to achicve that objective T must
< maximize user satisfaction>, <minimize matcrial costs>, <minimize qucuc clcaring time>,
and <minimize time spent by the operator>. Although <cards> is <slightly> better than
< dasd > with regard to < additional turnaround time> (a componcnt of <user satisfaction >),
<dasd> is <much> better with regard to < the difference in the form the user receives> (a
component of <user satisfaction>), <somewhat> better with regard to < clearing time>, and
<slightly > better with regard to < additional material cost> .

This is essentially a rehash of the previous response to WIHY NOT, except that all attributes are
mentioned. The magnitude of the contribution is used to determine the order in which objectives
are mentioned.

> EXPLAIN CLEARING TIME

< clearing time > is <the amount of time the plan takes to clear a datasct off the quene >, meas-
ured in <minutes>. The <less> <clcaring time >, the better. < clearing time> is a component
of <effectively manage queue space> .

EXPLAIN combines the information provided by DETAIl. and RELLEVANCE.

> WHY NOT INSTALL
<dasd > is as good or better than install with regard to cvery objective which underlies my choice.

This is the case where the chosen altemative is found to dominate another in Stepl:

dasd: .1 32.1 1 .5 1
install: 180 180 1 5000 210

+ + 0 + +

Since dasd dominates install, this is simply stated to the uscr.

4.5 Elements of explanation provided by other facilities

In the previous sections, we have bricfly addressed the structure of justifications for choices and
mechanisms for generating them. Again, we note that in using the AMVM in the context of ar-

Chapter V: Preliminary Work 59

chitectures encompassing other knowledge structures, thesc justifications must be integrated with
the explanation facilities which support these other structurcs. In explaining actions based on the
shallow model of section 2.3, for example, we would want not only to justify the choice of a plan,
but additionally to describe the conditions under which the plan is applicable, the steps involved
in executing the plan, and perhaps how the plan serves to resolve or circumvent a queue space crisis.
But as we discussed in section 2.6, we speculate that these additional clements of explanation could
be integrated with UTIL with little or no modification to UTIL itself. For example, to respond to
"WHY NOT da’, where a is currently in the conflict set, an ‘explanation supervisor’ could simply
invoke UTIL’s WHY NOT routine. If a is not currently in the conflict sct, the supervisor might
instead invoke a rule explanation routine which describes the conditions under which a is applicable
and indicates its failed (i.e., unmatched) conditions. In the latter case, it is a’s ineligibility which
prevents its invocation rather than its desirability.

5. Refining models of choice

The purpose of refinement is threefold. First, refinement may be uscd to correct erroneous portions
of the approximate model captured in the initial acquisition phase. Frrors in model the might be
due to biased assessments (Tversky & Kahneman (1974, 1981), Hershey et al. (1982)), or to incor-
rect or carelessly formulated user responses. Sccond, refinement provides the basis for capturing
insights gained from the exercise of initial acquisition, but not reflected in the initial model. Third,
and perhaps most important, refinement provides the means to modify the model to reflect chang-
ing preferences over time. In short, refinement is a tool for incremental model restructuring.

As previously mentioned, refinement is strongly coupled with explanation. T'rom the prescriptive
point of view, UTIL’s explanation component scrves as a window into how choices are made. In
cases where users fail to find UTIL’s justifications convincing, they iterativcly invoke UTIL’s re-
finement facilities to repair portions of the model until convincing justifications are generated.
From the descriptive viewpoint, users may employ UTIL’s refincment facilities to capture the
underlying basis for what thep sec as the "best’ choice, so that this information may be displayed in
explanations for users who did not participate in the formulation of the model. The challenge in
building a system for refinement is to provide an environment which makes it convenient for the
user to identify and repair precisely those portions of the model that fail to reflect reality.

Our preliminary work in refinement is described as follows. Section 5.1 lists the isolated elements
of the AMVM which may need to be changed. Section 5.2 discusses how these changes might be
organized by a refinement facility to promote effective model repair. In section 5.3 we present some
hypothetical dialogs which encompass the strategies of 5.2, and the mechanisms underlying (UTIL’s
portion of) their generation are presented in section 5.4. Section 5.5 briefly reflects upon the inte-
gration of the described facilities with refinement facilitics for other knowledge structures.

5.1 Types of changes

The design of UTIL’s refinement facilitics is driven by a sct of expectations regarding its operation.
Specifically, we envision two broadly-defined scenarios in which refinement would be employed.
First, we have offline changes which occur outside the context of intelligent system operation. For
example, a user may add an objective to the model to reflect newly defined standards in the envi-
ronment (e.g., the EPA issucs new standards regarding the disposal of wastes). Uscrs may also
change the relationship betwcen objectives in an existing model; for example, as 1BM is currently
attempting to cut costs across the board, computer installation managers may want to increase the
relative importance of objective ‘minimize material costs’. Another example, installation manage-
ment will continually add and delete alternative actions to reflect configuration changes, and these
modifications might give rise to new or more detailed objectives that were previously implicit in the
model’s operation.

Chapter V: Preliminary Work 60

Second, we have online changes which are motivated by choices gencrated by the model during
actual intelligent system operation. As the user will not cxamine the explanation for every possible
choice after making an offline change, some modifications will undoubtedly be made online.

Both ofiline and online changes may necessitate one or more modifications to the AMVM:
e changing weights on objectives and subobjectives,

* changing component (attribute) value functions, including modification of returned values for
ranges of attribute values and making these ranges more detailed.

¢ adding objectives or subobjectives,

¢ adding or modifying context descriptions.

Changes outside, but related to the AMVM include:
e adding alternatives,
e changing the levels of attributes, and

® capturing levels for newly-added attributes.

The challenge of building a refinement facility is to organize these modifications in a way which is
most convenient for the user.

5.2 Approach to refinement

In chapter III we briefly described some of the capabilities which we would cxpect from a refine-
ment facility. In this section, we elaborate on these as an introduction to the samplc dialogs of the
following sections. In all cases, the goal is to maximize the reliability of modecl repairs while mini-
mizing the user’s effort (itself a problem of tradeoffs among compcting objectives). Capabilities of
interest include:

1. Showing the user how proposed changes will affect the ranking of alternatives. This feedback
allows the user to determine if additional refinement is necessary.

2. Allowing the uscr to directly correct a suspicious component of an explanation. The proposed
strategy is to allow the user to highlight a portion of an explanation on thc screen and to click
a FIX button on the mouse (or a PF key or some other input device). UTIL would then in-
voke the appropriate routine for handling the modification.

3. Guiding the user through probable errors in the model based on contextual information. For
example, when a newly added alternative is misranked by the model, it is more probable that
a new attribute (which (i) distinguishes the new alternative from cxisting ones, and (ii) is valued
approximately equally for existing alternatives) should be added to the model than that existing
attribute weights are in error. Another example: When weights on objectives are dramatically
changed, it is probable that the user has another decision-making context in mind.

4. Discouraging the correction of improbable causes for an erroncous choice. I'or example, when
two alternatives fare equally with regard to a particular attribute, the weight associated with
that attribute cannot be held accountable for their incorrect rclative ranking. A refinement fa-
cility should therefore discourage its correction.

5. Promoting the reliability of ncwly-captured parameters. TFor example, in capturing a subjective
index (e.g., value from 1 to 10), the refincment system should display the extreme values for
existing alternatives to give the user a ‘feel” for how previous judgements were made.

6. Isolating subproblems for correction. The refinement facility should promote the repair of
isolated subproblems which may be in error, as organized in the objcctives hierarchy.

7. Inferring or estimating new paramcter values where possible. For example, when a new weight
for an objective is captured from the uscr, one heuristic for inferring new weights for the re-
maining objectives is to redistribute the remaining weight among them according to their ex-

Chapter V: Preliminary Work 61 -

isting ratios. Such a strategy does not, of course, guarantee correctness, but is a more
reasonable alternative than recapturing all weights.

8. Describing to the user a sct of modifications which will result in a particular ranking which he
desires. We would like the proposed system to map users” preferences among alternatives (if
these are known) into possible sets of modifications from which the user can select.

9. Initiating the capture of new information as necessary. For example, when a new attribute is
added to the model, we would expect the refinement facility to initiate the capture of values
for this attribute with respect to each existing alternative.

Some of these capabilities (e.g., 8) reflect the descriptive perspective: The user know what the
ranking should be and attempts to encode the underlying basis for this ranking for purposes of ex-
planation or prediction. Others (e.g., 2) more reflect the prescriptive view: The user does not know
what the ranking should be, and attempts to incrementally provide the information needed to
produce a choice which can be satisfactorily justified.

Aspects of these capabilities are illustrated in the following sections in the context of some specific
examples.

5.3 Hypothetical dialogs

In this and the following section we present some hypothetical dialogs and hint at implementation
methods. A disclaimer: We are not ready to advocate these methods; we will need to implement
them and to test them on several examples. They are presented here only to communicate the
flavor of the approach we plan to pursue at the outset of the research.

Two dialogs are presented. The first, in which the user controls most of the interaction, illustrates
the notion of ’repairing an explanation’. The second, in which UTIIL, controls most of the inter-
action, demonstrates the notion of ‘guiding the user through refinement’.

As in the section on explanation, we first present the examples in their entircty so as not to obscure
the dialog. Following, we reproduce the examples annotated with descriptions of some of the
methods we might employ to generate UTIL’s end of the interaction.

The syntax of the examples is as follows. User responses follow the prompt symbol (>) and are
CAPITALIZED. Text generated by UTIL appears in ordinary case. Annotations are {enclosed in
braces}. Assume that UTIL has access to all the information in the sample AMVM of section 1.

5.3.1 User-driven refincment: repairing an explanation

In this section we present an example of what we have described as repairing an explanation. The
example also demonstrates the following capabilities:

e Values for the remaining weights are inferred rather than recaptured when one (‘minimize
material costs’) is changed.

e The effects of proposed changes are displayed for the user.

¢ The isolation of subproblems in the objectives hicrarchy is used to infer weights on detailed
objectives instead of asking the user to respecify them. Specifically, the component attributes
of ‘'maximize user satisfaction’ are automatically recalculated from the newly inferred weight
for this attribute. There is no trace of this calculation in the dialog; its absence is the note-
worthy point. The calculation is described in the following section, with other mechanisms.

Consider the following (very timely) refinement scenario. IBM is currently making a concerted
effort to cut internal costs. In this dialog, an operations manager employs UTIL, to increase the

Chapter V: Preliminary Work 62

importance of this objective in the AMVM which drives queue space management decisions. The
approach is that of displaying the appropriate part of the model using the explanation facility and
directly modifying it using the I'IX command.

> DETAIL EFFECTIVELY MANAGE QUEUE SPACE

My objective is to effectively manage qucue space. In order to achicve that objective I must maximize
user satisfaction, minimize material costs, minimize queue clearing time, and minimize time spent
by the operator. Assuming that queuc space is a little low, maximize usecr satisfaction is my most
important objective, accounting for 50% of the choice. minimize material costs accounts for 20%
of the choice, minimize queuc clearing time accounts for 20%, and minimize time spent by the op-
erator accounts for the remaining 10%.

{The user highlights the weight for minimize material costs and clicks the FIX key on the mouse)

How much more (e.g., 2 times) or less (e.g., 1/2 times) important is minimize material costs than it
used to be?

>2
O.K. From now on, the choice will be formulated as follows:

minimize material costs is my most important objcctive, accounting for 40% of the choice. maximize
uscr satisfaction accounts for 37.5% of the choice , minimize qucue clearing time accounts for 15%,
and minimize time spent by the operator accounts for the remaining 7.5%.

Assuming all known alternatives are eligible for execution, the old model produced the ranking:
dasd, expensive-printing, cheap-printing, copy, delete, cards, fiche, install

The new model, taking the increased importance of additional material cost into account, produces
the ranking: dasd, cheap-printing, copy, expensive-printing, delete, cards, fiche, install

The difference is that cheap printing and copy are now preferred to expensive printing. Other pref-
erences are as before.

The user might at this point use COMPARE to elicit an explanation as to why, say, cheap printing
is preferred to expensive printing in order to verify that material cost is the determining factor.

5.3.2 UTIL-driven refinement

In this section we exemplify UTIL’s guidance of the refinement process. As a specific case, we
discuss refinement in the context of adding an alternative. In section 3 we presented a similar dialog
in which the user was immediately satisfied with the integration. Ilere, we describe UTIL’s re-
sponse in the case where the user is not satisfied.

When an alternative is added, we will ordinarily nced only to capture its underlying attributes; the
AMVM should ensure that new alternatives are properly intcgrated with existing ones. However,
if seemingly incorrect results are produced, then the user might attempt to ‘modify an explanation’
as exemplified in the previous section. This strategy is in accordance with the prescriptive approach
to choosing.

Alternatively, if the user is sure that onc alternative is better than another and this choice is not in
accordance with the AMVM, we want UTII, to guide him in modifying the model in order to

Chapter V: Preliminary Work 63

produce the desired result. This strategy is more in accordance with the descriptive approach to
choosing. The following dialog illustrates this strategy. Also illustrated are:

* how UTIL might help the user to integrate a new objective into the modcl;

e how UTIL promotes the reliability of newly captured parameters by displaying relevant exist-
ing information. In this example, UTIL displays the attribute values of the best and worst ex-
isting alternatives to help the user specify analogous values for the new alternative;

¢ how UTIL initiates the capture of new information as needed. In this example, UTIL initiates
the capture of values for the newly-added objective with respect to existing altemnatives;

* how UTIL makes heuristic inferences regarding the probable values of paramcters. In this ex-
ample, UTIL captures the new objective value for only one existing alternative and generalizes
it to all alternatives. In addition, weights on objcctives are inferred as in the previous section.

In the dialog that follows, let us assume that copy is a new alternative to be added to the existing

set. Further assume that ‘minimize operator time’ is not yct included as an objective. Assume, re-

taining the same attribute indices (i.e., x2 through x5 exist and we will add x1) as in previous ex-
amples for convenience, that our existing value function is:

v(x2,x3,x4,X5)= 5/9(.5*v2(x2) + .5*v3(x3)) + 2/9*v4(x4) + 2/9*v5(x5)

This value function produces the same ranking on our alternatives (cxcluding copy): dasd,
expensive-printing, cheap-printing, delete, cards, fiche, install. We now proceed with the dialog.

> NEW ALTERNATIVE
Please type the name of the alternative.

> COPY

How much additional turnaround time (in minutes) for copy? As a reference point, additional
turnaround time for dasd is 32.1 minutes, and is 180 minutcs for install.

> 34.2

{Assume that UTIL now captures the values for other attributes in exactly the same fashion, as in
section 3.}

Assuming queue space is, say, just a little low, the new ordering on alternatives is:
dasd, copy, expensive-printing, cheap-printing, dclcte, cards, fiche, install.

Is that correct?

> NO

{If the user did not know if this was correct, he might at this point invoke COMPARE and take
control (attempt to rcpair an explanation). Since his response is NO, UTIL takes over and guides
the refinement process}

Sorry. Let’s correct the error.

My objective is to effectively manage queuc space. In order to achicve that objective I must maximize

user satisfaction, minimize material costs, and minimize qucue clearing time.

Chapter V: Preliminary Work 64

Can you think of some aspect of copy other than user satisfaction, material cost, and qucue clearing
time which particularly distinguishes it from the remaining alternatives?

> YES
What is it?
> ADDITIONAL OPERATOR TIME

Would we want to
1. maximize or
2. minimize

additional operator time in our attempt to effectively manage quecuc space ?
>2

{UTIL would now capture other pieces of information about the objcctive (c.g., a canned-text defi-
nition) which are omitted here for brevity)

Does minimize additional operator time have something to do with
1. maximize user satisfaction,

2. minimize material costs,

3. minimize queuc clearing time, or

4

none of the above?
> 4

O.K. Then I will consider minimize additional operator time to be an objective in its own right, to
be considered with those mentioned above in order to effectively manage qucuc space.

Assuming queue space is a little low, how important is additional operator time relative to queue
clearing time? For example, user satisfaction is 5 times as important as qucue clearing time and
material cost is equally as important as queue clearing time.

> 1/2
O.K. As things stand now, 1 will make choices to effectively manage queuc space as follows:

My objective is to effectively manage qucue space. In order to achicve that objective I must maximize
user satisfaction, minimize matcrial costs, minimize queue clearing time, and minimize additional
operator time. Assuming that qucue space is a little low, maximize user satisfaction is my most
important objective, accounting for 50% of the choice. minimize material costs accounts for 20%
of the choice, minimize qucue clcaring time accounts for 20%, and additional operator time accounts
for the remaining 10%.

Does that seem reasonable, for now?
> YES
O.K. Let’s talk some more about additional operator time. Is there a quantitative measure (e.g.,

dollars, minutes) with which we can measure additional operator time ?

Chapter V: Preliminary Work 65

> MINUTES

{UTIL would next capture the component valuc function for the new objective. This is omitted here,
for there are several automated methods available}

0.K. How many minutes of additional operator time for the new alternative copy?

> 10

How many minutes of additional opcrator time for our best alternative, dasd?

> .1

O .K. additional operator time never made much difference before you added copy, so I might as well
assume that the other alternatives fare about the same as dasd with regard to additional operator
time. Docs that sound reasonable?

> YES

The new ranking on alternatives is: dasd, expensive-printing, cheap-printing, copy, dclete, cards,
fiche, install.

Does that seem reasonable?
> YES

Good.

Had the user still been dissatisfied with the result, UTIL would continue to probe the model with
the user (as described in the following section). We would implement such UTIL-guided dialogs
such that the user could assume control at any point using the explanation and FIX commands.

5.4 Mechanisms employed in the hypothetical dialogs

In this section we provide a description of some of the mechanisms which might be implemented
to produce the dialogs of the previous section.

All responses are generated by instantiating values in response templates. The templates themselves
would be selected on the basis of the context of the dialog and of the nature of the explanation
appropriate to the situation.

The syntax of the dialog is as follows. As before, user responses follow the prompt symbol (>) and
are CAPITALIZED, and text generated by UTIL appears in ordinary case. Variables in response
templates are <enclosed in angle brackets>. All elements of the dialog arc in bold, and de-
scriptions of methods used to generate UTIL’s responses appear in normal font. Assume that
UTIL has access to all the information in the sample AMVM of section 1.

5.4.1 User-driven refinement: repairing an explanation
> DETAIL EFFECTIVELY MANAGE QUEUE SPACE

My objective is to <effectively manage qucue space>. In order to achicve that objective T must
< maximize user satisfaction >, <minimize matcrial costs>, <minimize qucue clcaring time>,

Chapter V: Preliminary Work 66

and < minimize time spent by the operator >. Assuming that qucue space is <a little low >,
< maximize user satisfaction > is my most important objcctive, accounting for <50> % of the
choice. < minimize material costs > accounts for <20> % of the choice, <minimize qucue clearing
time > accounts for <20> %, and <minimizc time spent by the opcrator > accounts for the re-
maining < 10> %.

This is accomplished by traversing the top level of the objectives hicrarchy and displaying objective
names and weights. The user can use DETAIL to explore subobjectives, if desired. Next, the user
highlights the weight for ‘minimize material costs” and clicks the FIX key on the mouse.

How much more (e.g., 2 times) or less (e.g., 1/2 times) important is <minimize material costs >
than it used to be?

>2
This question is in accordance with the ‘ratio method’ (sec T:dwards 1977) of weight determination.
O.K. From now on, the choice will be formulated as follows:

< minimize material costs > is my most important objcctive, accounting for < 40> % of the choice.
< maximize user satisfaction > accounts for <37.5> % of the choice , <minimize qucue clearing
time > accounts for < 15> %, and <minimize time spent by the operator > accounts for the re-
maining <7.5> %.

We employ the following method for determining the remaining weights, also inspired by the ratio
method. Our objective is to distribute the ‘total remaining weight’ (in this casc 1 - 2*.2 = .6)
among the remaining objectives such that the relationships between these objectives are preserved.

The relationships (ratios) of the remaining existing weights are:

® <maximize user satisfaction > is S times as important as < minimize time spent by the oper-
ator>.

* < minimize queue clearing time > is 2 times as important as < minimize time spent by the
operator >,
The redistribution of the remaining weight is:

* <minimize time spent by the operator > thus gets 1/(1 + 2 + 5) = .125 of the remaining
weight (.6).
¢ < minimize queue clearing time > gets 2/(1 + 2 + 5) = .25 of the remaining weight (.6).

e <maximize user satisfaction > gets 5/(1 + 2 + 5) = .625 of thc remaining weight (.6).

Thus, the new weights are:

e <minimize time spent by the operator> = 125 * .6 = .075
* <maximize user satisfaction> = .625 * 6 = .375
® < minimize queue clearing time> = .25* 6 = .15

Note that the ratios have been preserved:

e < maximize user satisfaction> = 375 = 5* 075 = 5 * <minimize time spent by the op-
erator >,

® <minimize queue clearing time> = .15 = 2 * 075 = 2 * <minimize time spent by the
operator > .

Chapter V: Preliminary Work 67

The new weights for top-level objectives are propagated down the objectives hicrarchy to calculate
the new weights for detailcd attributes:

e <additional turnaround time > = .5 (objective weight) * .375 (new uscr satisfaction weight)
= 1875
e <difference in form > = .5 (objective weight) * .375 (new user satisfaction weight) = 1875

This yields the new value function:

v(x1,x2,x3,x4,x5)

= .075*v1(x1) + .375(.5*v2(x2) + .5*v3(x3)) + .4*vd4(x4) + .15*v5(x5)
= 075*vI(xl) + .1875*v2(x2) + .1875*v3(x3) + .4*v4(x4) + .15*v5(x5)

Note that the relationship between new weights for detailed attributes remains as before (i.e., equal).
Also note that their new values have been excluded from the display of new weights, since refine-
ment occurred at the top-level in the objectives hierarchy.

Assuming all known alternatives are eligible for execution, the old model produced the ranking:
< dasd, expensive-printing, cheap-printing, copy, dclcte, cards, fiche, install >

The new model, taking the <increased > importance of < additional material cost > into account,
produccs the ranking: < dasd, cheap-printing, copy, expensive-printing, delete, cards, fiche, install >

The diffcrence is that < cheap printing > and < copy > arc now preferred to < expensive printing > .
Other preferences are as before.

This can be implemented by computing the rankings with the old and newly modified value func-
tions, and determining their differences.

5.4.2 UTIL-driven refinement

The first issue in UTIL-driven refinement concerns the ordering of model components to explore
with the user. One approach is to employ scripts which express heuristic strategics for refinement.
A script is simply an ordered set of refinement actions (e.g., attempt to capture a new objective,
attempt to revise weights) appropriate to a particular refinement situation (e.g., a new alternative
was just added). UTIL would follow these scripts in order to guide refinement. Note that no par-
ticular script is guaranteed to minimize the user’s effort; rather, scripts organizc potential refinement
actions in terms of the most likely causes for error as justificd by heunistic arguments.

For example, in the case of a newly-added alternative which is incorrectly ranked, it is probable that
an objective is missing from the hierarchy, one which has the following characteristics: (i) the ob-
jective serves to distinguish the new alternative’s (dis)value with respect to existing alternatives, and
(1) existing alternatives fare approximately equally with regard to the missing objective, since it’s
consideration was never before required to produce correct rankings: ‘Minimize operator time’, for
instance, is an important objective in all operator’s minds, but it is not cxplicitly considered unless
one or more alternatives differ from the rest in terms of it. Continuing with the script, if a new
objective is added but the alternatives are still incorrectly ranked, we might next focus on the utility
function(s) associated with the new objective, since these have never before been tested and refined,
and so on. Relationships between existing objective weights are probably Ieast likely to be incor-
rect, since these have presumably been used in prior choice situations with existing alternatives.
We would employ a very different script in the situation where an erroneous choice is identified in
the context of an existing model. In this case, crroneous tradeoffs (weights) are among the more
likely candidates for correction. We will, of course, nced to experiment with various scripts for
various situations.

Chapter V: Preliminary Work 68

An alternative to scripts (which we have not yet thought much about) involves inferring the most
likely causes of error rather than encoding them. Heuristics for directing refinement under various
conditions might be specified in rules such as: 1F a new parameter has recently been specified AND
the choice is incorrect THEN reassess that parameter.

Finally, we might formulate the choice of which portion of the model to verify/repair first as a
multiattribute value problem. The model would encompass objectives such as ‘'minimize user effort’
and ‘minimize age of model portion’ (i.e., repair newer portions first).

We now proceed to describe mechanisms which might support the other capabilitics mentioned in
section 5.3.2, assuming the use of scripts.

> NEW ALTERNATIVE
Please type the name of the alternative.
> COPY

UTIL prompts the user for the values of the attributes in the AMVM. This is trivially accom-
plished by referencing the names of attributes in the hicrarchy. UTH. would also capture other
pieces of information such as a description of the component plan step which most influences its
value, but these are omitted here for brevity.

How much < additional turnaround time > (in <minutes>) for <copy>? As a reference point,
< additional turnaround time> for <dasd> is <32.1> <minutes>, and is < 180> <minutes>
for <install>.

> 34.2

Reference points are provided by simple lookup for the best and worst alternatives according to the
current value function. This is done so that the user can see how liberal or conservative the esti-

mates are for existing quantitative attributes and to give the uscr a feel for relative values in the case
of subjective indices.

Having collected attribute values, UTIL shows the user how the new alternative has been integrated
into the existing set; that is, UTIL displays the new ranking of alternatives, assuming all are si-
multaneously eligible for execution. A context (amount of space left) is selected for display. Alter-
natively, we might display multiple rankings, each corresponding to a known context.}

Assuming queue space is, say, <just a littlc low >, the new ordering on alternatives is:

< dasd, copy, expensive-printing, cheap-printing, delete, cards, fiche, install > .

This is trivially accomplished by presenting the alternatives as ordered by value function evaluation.
Is that correct?

> NO

Sorry. Let’s correct the error.

UTIL now begins to follow the script for ‘add an alternative’. The first step is to identify a missing
objective and to capture its related characteristics. Note that there is nothing in the system which

guarantees that new attributes and objectives satisfy the independence assumptions upon which the

Chapter V: Preliminary Work 69

additive form is based. At this point we might therefore ask the user some standard questions to
verify that the independence assumptions hold (Keeney & Raiffa 1976), but thesc are omitted here
for brevity.

My objective is to < effectively manage queuc space > . In order to achicve that objective I must
< maximize user satisfaction>, <minimize material costs>, and <minimize qucuc clearing
time>.

Can you think of some aspect of <copy > other than < user satisfaction >, <material cost >, and
< queue clearing time> which particularly distinguishes it from the remaining alternatives?

> YES
What is it?
> ADDITIONAL OPERATOR TIME

Would we want to
1. maximize or
2. minimize

< additional operator time> in our attempt to < effectively manage queue space> ?
> 2

UTIL would now capture other pieces of information about the objective (such as a canned de-
scription) which are omitted here for brevity.

UTIL now establishes the position of the new objective in the objcctives hicrarchy.

Does <minimize additional operator time > have something to do with
1. <maximize user satisfaction >,

2. < minimize material costs >,

3. < minimize queue clearing time>, or

4

none of the above?
> 4

O.K. Then I will consider <minimize additional opecrator time> to be an objective in its own right,
to be considered with those mentioned above in order to < cffectively manage quecuc space > .

UTIL now knows that <additional operator time > is a top-level objective, so it attempts to cap-
ture its weight. Had the new objective been a component objective of onc of the three mentioned,
UTIL would probe further to find its appropriate place in the objectives hicrarchy.

Assuming queue space is < a little low >, how important is < additional opcrator time > rclative to
<queue clearing time>? For example, <uscr satisfaction> is <5 times> as important as

< queue clearing time> and <material cost> is <ecqually > as important as < queue clearing
time> .

> 12
O.K. As things stand now, I will make choices to < cffectively manage queue spacc > as follows:

Chapter V: Preliminary Work 70

My objcctive is to < effectively manage qucue space > . In order to achicve that objective T must
< maximize user satisfaction>, <minimize material costs>, <minimize qucue clearing time>,
and <minimize additional operator time>. Assuming that qucue spacc is <a little low >,
<maximize user satisfaction> is my most important objcctive, accounting for <50> % of the
choice. < minimize material costs > accounts for <20> % of the choice, <minimize queuc clearing

time> accounts for <20> %, and and < additional operator time> accounts for the remaining
<10> %.

Does that seem reasonable, for now?
> YES

Using the method of section 5.4.1, UTII, computes the new weights for existing objectives, main-
taining their existing ratios. UTIL now captures the subhierarchy associated with the new objective.

O K. Let’s talk some more about < additional operator time > . Is there a quantitative measure (e.g.,
<dollars >, <minutes>) with which we can mcasure < additional opcrator time> ?

> MINUTES

UTIL now knows that <minimize additional operator time > has no lower level objectives. Had
the user answered NO, UTIL would prompt for additional objcctives until the user cither identified
a quantitative measure for each or could not think of any more lower-level objectives, at which
point a subjective index would be suggested.

UTIL would next capture the component value function for the new objective. This is omitted
here, for there are several automated methods available.

UTIL must now capture the attribute values for existing alternatives which pertain to the new ob-
jective,

O.K. How many < minutes> of <a