
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 1990

KB: A Knowledge Representation Package for Common Lisp KB: A Knowledge Representation Package for Common Lisp

Jeffrey Esakov
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Jeffrey Esakov, "KB: A Knowledge Representation Package for Common Lisp", . January 1990.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-90-03.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/537
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76362162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F537&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/537
mailto:repository@pobox.upenn.edu

KB: A Knowledge Representation Package for Common Lisp KB: A Knowledge Representation Package for Common Lisp

Abstract Abstract
KB is a frame-based knowledge representation package. It is written as a Common Lisp package, and is
comprised of a set of functions for representing semantic knowledge and relationships among data
represented.

KB encourages the use of the object-oriented programming metaphor by requiring that a set of operators
be defined for each concept (object). Inheritance is supported for both data types and for operators.

KB has a well-defined programming interface through which a user interface language can be easily
developed. The semantics of KB are straightforward and allow a programmer considerable flexibility in
developing an application.

KB borrows heavily from the Flavors system in syntax and semantics (and in documentation!).

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-90-03.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/537

https://repository.upenn.edu/cis_reports/537

KB: A KNOWLEDGE
REPRESENTATION

PACKAGE
FOR COMMON LISP

Jeffrey Esakov

MS-CIS-90-03
GRAPHICS LAB 30

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104

January 1990

A Knowledge Representation
Package

for Common Lisp

Jeffrey Esakov

Abstract

KB is a frame-based knowledge representation package. It is written as
a Common Lisp package, and is comprised of a set of functions for repre-
senting semantic knowledge and relationships among data represented. K B
encourages the use of the object-oriented programming metaphor by requir-
ing that a set of operators be defined for each concept (object). Inheritance
is supported for both data types and for operators.

K B has a well-defined programming interface through which a user in-
terface language can be easily developed. The semantics of KB are straight-
forward and allow a programmer considerable flexibility in developing an
application.

KB borrows heavily from the Flavors system in syntax and semantics
(and in documentation!).

KB
A Knowledge Representation Package

for Common Lisp

Jeffrey Esakov

October 25, 1989

Introduction to KB

KB is a frame-based knowledge representation package. It is written as a Common Lisp package,
and is comprised of a set of functions for representing semantic knowledge and relationships among
data represented. KB encourages the use of the object-oriented programming metaphor by requiring
that a set of operators be defined for each concept (object). Inheritance is supported for both data
types and for operators.

KB has a well-defined programming interface through which a user interface language can be easily
developed. The semantics of KB are straightforward and allow a programmer considerable flexibility
in developing an application.

KB borrows heavily from the Flavors system in syntax and semantics (and in documentation!).

Concepts and Instances

There are two types of objects in KB, concepts and instances. A concept represents a class or
collection. A concept may contain a set of roles which describe properties of the concept (and are
similar to members of a structure). A concept may also inherit roles from a previously defined
concept. In the object-oriented programming metaphor, a concept is called an abstract data type
and roles are called instance variables.

An instance is a specific incarnation of a concept. To request an action or access the value of a
role of an instance, a message must be sent to the instance. The action which is performed by an
instance upon receiving a particular message is defined by the instance's message handler for the
message. In the object-oriented programming metaphor, a message handler is called a method.

The following example illustrates the definition of a concept (the system prompt is "kb>").

kb> (defconcept circle () (center radius))
CIRCLE
kb> (defhandler (circle :diameter) ()

(* 2 radius))
:DIAMETER
kb> (defhandler (circle :translate) (dx dy)

"Move the center of the circle."
(let ((point (send-message self :center)))
(send-message self

:center (list (+ (car point) dx) (+ (cadr ~oint) dy)))))
:TRANSLATE
kb>

The defconcept macro creates a concept called circle. The circle concept has two roles: the
coordinates of the center of the circle, and its radius. Every instance of a circle will have its own set
of values for these roles.

The syntax of defhandler is nearly identical to that of defun. The function name is replaced by
(concep.t message). The lambda list is of the same form as, and has the full generality of, a defun
lambda list.

In this example, the messages were keywords, but that is not a requirement of the KB package. In
KB, a message can be any atom. The print name of the symbol is used in determining the specific
message name. This allows one t o avoid difficulties which may arise due t o using the package facility
of Common Lisp.

The handlers that were defined in this example compute the diameter of a circle and translate the
center point. That is, if an instance receives the message :diameter, it should return two times the
radius and if it receives the message :translate, it should translate the value of its center role
(which is a list of two numbers) by the amount of its two arguments.

In this example, there were two additional message handlers implicitly defined by defconcept. The
macro defconcept automatically defines one message handler for each of its roles. The correspond-
ing handler is invoked whenever a message which is the name of a role is sent. Handlers of these
types optionally have a single argument. If the argument is not specified, the value of the role is
returned. If the argument is specified, the value of the role is set to the argument and the value of
the role is returned. Although these handlers are defined automatically, they are of a similar nature
to those defined explicitly using defllandler. Through the use of options described below, these
implicitly-defined "role" message handlers provide a powerful facility for operating on the data.

Sending Messages

The function send-message sends a message to an instance. The syntax of s e n d is:

send-message instance message &rest args [Function]

The KB package automatically finds the appropriate handler corresponding to the message. The
remaining arguments are passed to the handler and are bound to the variables in the lambda list of
the defhandle r .

Modifying the "Role" Message Handlers

I t is possible to modify a "role" message handler so that special actions will be taken when the role
value is set or accessed.

kb> (defconcept inc () ((number :if-needed (setf number (1+ number))
:if-set (setf number (I- new-value)))))

I NC
kb>

Whenever the value of the role number is accessed, the current value will be incremented and that
modified value will be stored and returned. Whenever the value of the role is set, the actual value
assigned to the role will be one less than that which was passed as an argument. This uses the fact
that after a role is set, a message is sent to the instance to get the value (and that is returned).

The values that a role of a particular concept can take on can be limited to a specific range.
Alternatively, it is possible to give a predicate form which when evaluated will indicate whether the
new value for the role is acceptable.

kb> (defconcept person () (name
(gender :range '(male female))
(age :range-predicate (numberp new-value))))

PERSON
kb>

The gender role of the concept person is defined such that only the values male or female are valid.
Any attempt t o use the "role" message handler t o assign a different value will fail.

The age role will only allow numeric values. The variable new-value is defined by KB to be the
value that is to be assigned to the role. The :range-predicate can be arbitrarily complex.

Creating Instances

To create an instance of a concept, use the c rea te - ins tance macro. The first argument t o c rea te -
i n s t ance is the name of a concept. There can be additional optional arguments which will cause
messages t o be sent t o the newly created instance. An instance identifier (actually, an uninterned
symbol) is returned.

For example, entering (setf a-circle (create-instance 'circle)) creates an instance of a cir-
cle. However, the instance variables are unbound, so the "role" message handlers can be invoked t o
assign values:

kb> (send-message a-circle :center '(0 0))

(0 0)
kb> (send-message a-circle :radius 5)
5
kb>

There is an alternate way to specify initial values. The messages can be included as arguments to
c r e a t e-ins t ance :

kb> (create-instance 'circle :send-message :center '(0 0)
:send-message :radius 5)

Alternatively, the concept can be defined so that whenever an instance is created, the roles are
automatically given initial values:

kb> (defconcept circle ()
((center :default-value (list 0 0))
(radius :default-value 5)))

CIRCLE
kb>

Whenever an instance is created, the default expressions will be evaluated and assigned as the initial
values of the roles.

Role and Message Handler Inheritance

A concept may inherit roles and message handlers from other concepts. Inheritance allows you to
take a general concept and build a more specialized concept on top of it. The concept man can
inherit roles and methods from the concept person, with one distinction being the value of the role
gender is male. Similarly, the concept woman would set the value of the gender role to female. For
both men and women, it should not be possible to change the value of that role.

kb> (defconcept person () (name age gender) "A person")
PERSON
kb> (defconcept man (person) ((gender :fixed-value 'male)))
MAN
kb> (defconcept woman (person) ((gender :fixed-value 'female)))
WOMAN
kb>

The concepts man and woman inherit the roles name and age from the concept person, as well as
the message handlers for those roles. The role gender is not inherited, but is set to a fixed value
appropriately. In this case, i t is not possible to change the value of gender.

As can be seen, the second argument t o defconcept specifies the parent concepts. Parent concepts
must be defined before they are referenced. This eliminates the possibility of inadvertently creating
a circular reference.

The order of role and message handler inheritance is important since the same role or handler may
be defined in different parents. The search order is based upon the order of parent concepts in the
defconcept macro call. The concept being defined can be thought of as the root of an N-ary tree
with a link pointing to each of its parents (the terminology is somewhat inverted from the normal
tree terminology). Similarly, each parent is the root of its own N-ary tree. The order of the nodes in
the N-ary tree is the same as was listed in the third argument to defconcept. This tree is searched
in pre-order (root node, left node, right node) to find roles and handlers. The searching always
starts from the root of the tree.

Suppose the following concepts were defined:

kb> (defconcept ci () (a b c))
C i
kb> (defconcept c2 () (d e f))
C 2

kb> (defconcept c3 () (a d g))
C 3

kb> (defconcept c4 (c l c3) 0)
C 4
kb> (defconcept c5 (c2 c4) (b))
C 5
kb> (defconcept c6 (c4 c2) (b))
C6
kb>

For concepts c5 and c6, the trees would be drawn as follows:

Thus, c5 will inherit roles d , e , and f from concept c2, roles a and c from concept c i , and role g
from concept c3. The role b is not inherited.

Concept c6 will inherit roles a and c from concept c l , roles d and g from concept c3 and roles e
and f from concept c2. The role b is not inherited.

The Root Concept

The concept kb: : root-concept is a system-provided concept that supplies a set of useful message
handlers. This concept is automatically inherited when a new concept is defined (it is placed as the
right-most parent), but will not show up on any list of ancestors. This concept defines handlers for
the following messages:

These message handlers should not be redefined for the concept kb: :root-concept. With the
exception of the message handler for :describe, it should not be necessary to define message
handlers for new concepts to handle these messages. Furthermore, should a message handler for
:descr ibe be defined, it must have the same calling sequence as the system defined message handler.

Relationship to Flavors

There are several distinctions between the K B package and Flavors:

1. K B tracks inheritance relationships and makes that information available to an application.

2. K B maintains a lists of instances making it easy to operate on them as a group.

3. The syntax and semantics of K B is such that it is easier to specify ranges of values, and those
ranges are more syntactically visible.

4. Flavors allows a finer grain of control over mixing flavors and method inheritance.

Purpose: The variable *compile-handlers* controls whether newly-defined message handler
functions are compiled.

Syntax: *compile-handlers* [Variable]

Remarks: If the variable *compile-handlers* is nil, message handler functions are not compiled.
If the variable *compile-handlers* is not nil, message handler functions are compiled.

If a message handler is to be debugged, then it must not be compiled. To do this, the
value of *compile-handlers* a t the time the handler is defined must be nil.

concept-instancep

Purpose: The function concept-instancep tests whether its argument object is an instantiation
of a concept.

Syntax: concept-instancep object [Function]

Examples: kb> (def concept example () (A B))
EXAMPLE
kb> (setf instance (create-instance 'example))
#:EXAMPLE524
kb> (concept-instancep instance)
T
kb> (concept-instancep 'foo)
NIL
kb>

concept-list

Purpose: The function concept-list returns a list of all defined concepts.

Syntax: concept-list [Function]

Examples: kb> (def concept example 0 (A B))
EXAMPLE
kb> (concept-list)
(EXAMPLE KB::ROOT-CONCEPT)

conceptp

Purpose: The function conceptp tests whether its argument object is a named concept.

Syntax: conceptp object

Examples: kb> (def concept example () (A B))
EXAMPLE
kb> (conceptp 'example)
T
kb> (conceptp 'foo)
NIL

[Function]

creat e-inst ance

Purpose: The macro c r ea t e - i a s t a ace creates an instance of a concept.

Syntax: c rea te - ins taace concept { : send-message message &rest args}* [Macro]

Remarks: The concept argument is a quoted concept name. I t is evaluated immediately upon
executing the macro.

Each message and corresponding set of message parameter arguments are evaluated
after the previous message has been sent. These arguments are evaluated with the
symbol self bound to the instance being created. This allows the newly-created instance
to send messages to itself.

After all the messages have been processed, the message : required-roles-setp is sent
to the newly-created instance to verify that all required roles have been bound.

This macro returns two values: an instance identifier (an uninterned symbol) and the
result of sending the message :required-roles-setp to the new instance.

Any number of messages may be sent to the newly created instance, but the return
value of the message handlers are not available. That is,

(create-instance 'foo :send-message msgl 'arg :send-message msg2)

is equivalent to

(let ((instance (create-instance 'foo)))
(send-message instance msgl 'arg)
(send-message msg2)
(values instance (send-message instance :required-roles-setp)))

Examples: kb> (def concept foo () (a b c))
FOO
kb> (create-instance 'foo

:send-message :a 10
: send-message :b 20
: send-message 'c 30))

#: F00429
T
kb> (send-message '#:F00429 :describe)
Instance 429 of FOO
A : 10
B: 20
C: 30
kb>

defconcept

Purpose: The macro defconcept creates a new concept.

Syntax: defconcept concept-name [Macro]
({ concept)*)
({ role I (role [: def ault-value f o r m I : f ixed-value f o r m]

[: if -needed form] [: if-set form]
[:range value I : range-predicate f o r m]
[:required value I))*)

documentat ion

Remarks: The concept-name argument is the name of the concept being created. This argument
should not be quoted.

The second argument is a list of parents from which roles and message handlers should
be inherited. Roles and handlers are inherited from the first ancestor (in a preorder
traversal - left-to-right) defining that entity.

The third argument is a list of roles of the concept.

The last argument is ignored. It can be used as a documentation string.

For the second argument, if the list form for specifying the role is used, any of the
keywords-value pairs may be left unspecified. :default-value indicates an initial value
for the role. :fixed-value indicates a value for the role, but also indicates that the
value of the role can not be changed. The forms associated with these keywords are
evaluated whenever an instance is created. If neither of these keywords are specified,
the role is initially unbound. Only one of :default-value and :fixed-value may be
specified.

The :if-needed form is evaluated when a message is sent to an instance requesting the
value of a role. If the :if-needed keyword is not specified, the current value of the role
is returned.

The :if-set f o r m is evaluated when a message is sent to an instance setting the value
of a role. If the :if-set keyword is not supplied, the role is set to the new value and the
current value of the role is returned.

:range value is a quoted list of valid values for the role. :range-predicate is a form
which is evaluated when the value of a role is being set. If the f o r m evaluates to t , the
new value is allowed. If the f o r m evaluates to nil, the new value is not allowed and
the role value will not be changed. Only one of :range and :range-predicate may be
specified. If neither :range nor :range-predicate is specified, the role may take on
any value.

The :required value indicates whether the role must be bound to a value when an
instance of this concept is created. value is not evaluated and should be either t or nil.

defconcept

The variable self may be used in the :if-needed, :if-set, and : range-pred ica te forms.
The variable new-value may be used in the :if-set and : range-predicate forms.

To get the current value of any role from within the :if-needed, :if-set, or :range-
p r ed i ca t e forms, the role name should be used. It is suggested that, in general, only
the current role name should be used explicitly and the values of the other roles should
be obtained by sending messages.

Name shadowing is not handled correctly for role names within a defconcept . Do not
create any local variables within the forms with the same name as any role.

When a concept with roles is defined, a message handler is automatically created for
each role. The message name is the name of the role and it automatically has one
&optional argument. If the "role" message is sent to an instance with no arguments,
the value of the role is returned (as specified by the :if-needed keyword). If the "role"
message is sent to an instance with the optional argument specified, then the argument
is taken to be the new value for the role and it is set as specified by the :if-set keyword.
The return value when setting a value is determined by recursively invoking the "role"
message handler with no arguments.

Examples: kb> (def concept ex1 () (a))
EX1
kb> (setf in1 (create-instance 'exl))
#:EX1549
kb> (send-message in1 :a)
KB : :UNBOUND
kb> (defconcept ex2 () ((a :default-value 'foo)))
EX2
kb> (setf in2 (create-instance 'ex2))
: EX2550
kb> (send-message in2 :a)
FOO
kb> (defconcept ex3 () ((a :fixed-value 'bar)))
EX3
kb> (setf in3 (create-instance 'ex3))
#: EX3551
kb> (send-message in3 :a)
BAR
kb> (send-message in3 :a 'test)
Can't change fixed-value role A.
BAR
kb> (defconcept ex4 () ((a :if-needed (progn (princ "Getting a")

(if (numberp a) (+ a 10) a)))))
EX4

defconcept

kb> (setf in4 (create-instance 'ex4 :send-message :a 10))
Getting a
: EX4552
kb> (send-message in4 :a)
Getting a
2 0
kb> (send-message in4 :a 'foo)
Getting a
FOO
kb> (defconcept ex5 () ((a :if-set (progn (princ "Setting a")

(if (numberp new-value)
(setf a (+ new-value 10))

(setf a new-value)))
: required t)))

EX5
kb> (setf in5 (create-instance 'ex511
Required role A is not set.
#: EX5553
kb> (send-message in5 :a 23)
Setting a
3 3
kb> (send-message in5 :a 'foo)
Setting a
FOO
kb> (defconcept ex6 () ((a :range '(a b c))))
EX6
kb> (setf in6 (create-instance 'ex6))
#: EX6554
kb> (send-message in6 :a 'foo)
Can't set role A to FOO.
KB::UNBOUND
kb> (send-message in6 :a 'c)
C
kb> (defconcept ex7 0 ((a :range-predicate (numberp new-value))))
EX7
kb> (setf in7 (create-instance 'ex7 :send-message :a 10))
#: EX6555
kb> (send-message in7 :a 'foo)
Can't set role A to FOO.
10
kb>

defhandler

Purpose: The macro defllandler creates or modifies a message handler used by an instance.

Syntax: defllandler (concept message) lambda-list
{declaration I documentation)* {form)*

[Macro]

Remarks: The forms of the handler are evaluated whenever message is sent to an instance of
concept. Message handlers can be defined a t any time and are immediately available
to instances.

The variable self is bound to the instance to which the message has been sent.

Role values may be accessed directly by a message handler by using the role name. It
is suggested, however, that role values be set and obtained by sending the appropriate
messages.

Name shadowing is not handled correctly for role names within a defllandler. Do not
create any local variables within the forms with the same name as any role.

When a handler is defined, the KB package either defines or compiles (depending upon
the value of the variable *compile-handlers*) a function whose name is a composite
of concept and message of the form concept-message.

Examples: kb> (defconcept circle () ((center :default-value '(0 0))
radius))

CIRCLE
kb> (defhandler (circle :diameter) (&optional (value nil))

"Set or get the diameter of the circle."
(if value

(send-message self :radius (/ value 2)))
(* 2 (send-message self :radius)))

: DIAMETER
kb> (setf instance (create-instance 'circle))
#: CIRCLE421
kb> (send-message instance :diameter 10)
10
kb> (send-message instance :radius)
5
kb> (defhandler (circle :translate) (dx dy)

"Move the center of the circle."
(let ((point (send-message self :center)))
(send-message self

:center (list (+ (car point) dx) (+ (cadr point) dy)))))
:TRANSLATE

dekandler

kb> (send-message instance :center)

(0 0)
kb> (send-message instance :translate 5 -1)
5 -1
kb> (send-message instance :translate I 2)
6 1
kb>

delete-instance

Purpose: The function delete- instance deletes an instance of a concept.

Syntax: delete- instance instance [Function]

Remarks: When an instance is deleted, knowledge of that instance is removed from ow ow ever,
references to that instance may remain.

Only use this function when you are experimenting with the KB package.

Examples: kb> (def concept f oo () (a))
FOO
kb> (create-instance 'foo)
: F00439
kb> (send-message '#:foo439 :a 10)
10 kb> (delete-instance '#:foo439) T kb> (send-message '#:foo439 :a 10)
Can't send a message to #:F00439. Not an instance.
kb>

Purpose: The message handler :describe displays a description of an instance.

Syntax: (send-message instance :describe &optional indent) [Message Handler]

Remarks: This message handler is defined by the concept kb::root-concept. Since kb::root-
concept is automatically inherited by all other concepts, this message handler will be
inherited as well.

The description of an instance is displayed on * s t anda rd -ou tpu t* consists of the roles
and their values. The description is indented indent spaces.

This message handler does not return any values.

Examples: kb> (def concept example () (A B))
EXAMPLE
kb> (setf instance (create-instance 'example :send-message :a 10))
#:EXAMPLE435
kb> (send-message instance :describe)
Instance 435 of EXAMPLE
A: 10
B: KB::UNBOUND
kb> (send-message instance

:b (create-instance 'example :send-message :a 'foo))
#:EXAMPLE439
kb> (send-message instance :describe)
Instance 439 of EXAMPLE
A: 10
B: Instance 437 of EXAMPLE

A: FOO
B: KB::UNBOUND

kb>

describe-concept

Purpose: The function describe-concept returns a form which when executed will create the
concept passed as an argument.

Syntax: describe-concept concept-name [Function]

Remarks: Currently, the form that is returned may be a somewhat more verbose version of what
was actually specified to define the concept.

The form that is returned can be printed to a file and saved for posterity.

Examples: kb> (def concept example () (a))
A
kb> (describe-concept 'example)
(DEFCONCEPT EXAMPLE ((A :DEFAULT-VALUE (QUOTE KB::UNBOUND)
:IF-SET (SETF A NEW-VALUE) :IF-NEEDED A :RANGE-PREDICATE TI)
"Children: NIL")
kb>

get-ancest ors

Purpose: The macro get-ancestors returns a list of the names of the ancestor concepts of a
concept.

Syntax: get-ancestors object [l l lacro]

Remarks: All concepts have at least one ancestor, the concept kb::root-concept. If the argument
to this function object is not a concept name, n i l is returned.

The ancestors are returned in the same order in which they are searched for role and
method inheritance.

Examples: kb> (def concept grandparent () (gl))
GRANDPARENT
kb> (defconcept parent (grandparent) (pi))
PARENT
kb> (defconcept child (parent) (cl))
CHILD
kb> (get-parents 'child)
(PARENT)
kb> (get-ancestors 'child)
(PARENT GRANDPARENT KB::ROOT-CONCEPT)
kb>

get -children

Purpose: The function get-childre11 returns a list of the names of the child concepts of a concept.

Syntax: get-childre~l object [Fui~ci ion]

Remarks: If the argument to this function object is not a concept name, nil is returned. Thus, it
is not possible to distinguish between a concept with no children and a symbol which
is not a concept name.

The children are not returned in any particular order.

Examples: kb> (def concept parent () (p i))
PARENT
kb> (defconcept chi ld (parent) (c l))
C H I L D
kb> (get-children 'parent)
(CHILD)
kb> (get-children child)
NIL
kb>

get -descendents

Purpose: The macro ge t -descer~dents returns a list of the names of the descendent concepts of
a concept.

Syntax: get-descendents objec t [Adacro]

Remarks: If the argument to this function objec t is not a concept name, ni l is returned. Thus,
it is not possible to distinguish between a concept with no descendents and a symbol
which is not a concept name.

The descendents are not returned in any particular order.

Examples: kb> (def concept grandparent () (gi))
GRANDPARENT
kb> (def concept parent (grandparent) (p i))
PARENT
kb> (defconcept ch i ld (parent) (c l))
CHILD
kb> (get-children 'grandparent)
(PARENT)
kb> (get-descendents 'grandparent)
(PARENT CHILD)
kb>

get-instances

Purpose: The function get-instances returns a list of the instances of a concept.

Syntax: get-instances object [Function]

Remarks: If the argument to this function object is not a concept name, nil is returned. Thus, it
is not possible to distinguish between a concept with no instances and a symbol which
is not a concept name.

The instances are not returned in any particular order.

Examples: kb> (defconcept example () (a))
EXAMPLE
kb> (create-instance 'example)
#:EXAMPLE524
kb> (create-instance 'example)
: EXAMPLE525
kb> (get-instances 'example)
(#:EXAMPLE529 #:EXAMPLE525)
kb>

get-parent s

Purpose: The function get-parents returns a list of the names of the parent concepts of a
concept.

Syntax: get-parents object [Function]

Remarks: If the argument to this function object is not a concept name, nil is returned. Thus, it
is not possible to distinguish between a concept with no parents and a symbol which
is not a concept name.

The parents are returned in the same order in which they are searched for role and
method inheritance.

Examples: kb> (def concept parent (1 (pi))
PARENT
kb> (defconcept child (parent) (cl))
CHILD
kb> (get-parents 'parent)
NIL
kb> (get-parents 'child)
(PARENT)
kb>

get-roles

Purpose: The function get-roles returns a list of the names of the roles of a concept.

Syntax: get-roles object [Funct ion]

Remarks: If the argument to this function object is not a concept name, nil is returned. Thus,
it is not possible to distinguish between a concept wit11 no roles and a symbol which is
not a concept name.

The roles are not returned in any particular order.

Examples: kb> (def concept parent () (pi))
PARENT
kb> (defconcept child (parent) (cl))
CHILD
kb> (get-roles 'parent)

(Pi)
kb> (get-roles 'child)
(Ci Pi)
kb>

Purpose: The concept kb::root-concept is the top level concept which is automatically inherited
by all other concepts.

Remarks: There are no roles associated with the concept kb::root-concept. The concept is used
strictly for the message handlers i t defines. Since this concept is inherited by all other
concepts, the message handlers are automatically available to every concept (but can
be redefined as desired).

The following concepts are defined:

:unclaimed Invoked when an message is sent to an instance for which there is no
message handler defined.

:which-messages Returns a list of messages supported by an instance.

:message-handledp A message of one argument which returns t if the argument is a
message for which a handler is defined.

:send-if-handled Sends a message to itself only if there is a handler defined for the
message.

:descr ibe Displays to *s tandard-output* a description of the instance. The descrip-
tion is a list of the roles and their values.

:message- handledp

Purpose: The message handler :message-handled tells you if a message is handled by the
instance.

Syntax: (send-message instance :message-handledp message) [Message Handler]

Remarks: This message handler is defined by the concept kb::root-concept. Since kb::root-
coilcept is automatically inherited by all other concepts, this message handler will be
inherited as well.

If message is handled by instance, t is returned. Otherwise, ni l is returned

Examples: kb> (def concept example () (A))
EXAMPLE
kb> (defhandler (example :exercise) ()

. . .
$ 8 , . - .

1
: EXERCISE
kb> (setf instance (create-instance 'example))
#:EXAMPLE435
kb> (send-message instance :which-messages)
(:EXERCISE A :SEND-IF-HANDLED :DESCRIBE :MESSAGE-HANDLEDP :WHICH-MESSAGES
:UNCLAIMED)
kb> (send-message instance :message-handledp :A)
T
kb> (send-message instance :message-handledp 'A)
T
kb> (send-message instance :message-handledp :FOO)
NIL
kb>

new-value

Purpose: The variable new-value is used by the role message handlers. It is bound to the value
being assigned to a role.

Syntax: new-value [Variable]

Remarks: The variable new-value can be used in the :if-set and :range-predicate fields of
defconcept.

The variable new-value is not a special variable.

Examples: kb> (def concept c i r c l e ()
((rad ius

:default-value 15
; ; rad ius may not change by more than 5 u n i t s .
: i f - s e t (l e t ((d i f f (- new-value r a d i u s)))

(s e t f rad ius
(i f (> (abs d i f f) 5)

(+ rad ius (* 5 (signum d i f f)))
new-value))))

cen te r))
CIRCLE
kb>

Purpose: The message handler :required-roles-setp tells you if the required roles are bound.

Syntax: (send-message instance :required-roles-setp) [Message Handler]

Remarks: This message handler is defined by the concept kb::root-concept. Since kb::root-
concept is automatically inherited by all other concepts, this message handler will be
inherited as well.

If all roles which have been marked as required when the concept was defined are bound
in instance, t is returned. Otherwise, nil is returned and an error message is displayed.

This message handler is automatically called by create- instance.

select-instances

Purpose: The function select-instances is used to obtain a list of instances which meet arbitrary
selection criteria.

Syntax: select-instances selectf &optional n a m e [Funct ion]

Remarks: The function selectf argument is a lambda-form or named function which is called to
select the instances. It is called with a single instance as an argument. If the instance
is to be selected, the selection function should return T. If the instance is not to be
selected, the selection function should return nil.

The optional argument n a m e is a concept name. If specified, only instances of that
concept and its descendents are considered for selection. If the optional argument n a m e
is not specified, then all instances are considered for selection.

Examples: kb> (def concept example (1 (a))
EXAMPLE
kb> (create-instance 'example :send-message :a 'foo)
#:EXAMPLE524
kb> (create-instance 'example :send-message :a '(foo bar))
#:EXAMPLE525
kb> (defconcept dunsil () (a))
DUNSIL
kb> (create-instance 'dunsil :send-message :a 'dunsil-foo)
#:DUNSIL528
kb> (defun atoma (instance)

(atom (send-message instance :a)))
ATOMA
kb> (select-instances #'atoms)
(#:EXAMPLE524 #:DUNSIL528)
kb> (select-instances #'atoms 'example)
(# : EXAMPLE5241

self

Purpose: The variable self is used by message handlers to send themselves messages. It is bound
to the instance receiving the message that caused the execution of the defhandler .

Syntax: self [Variable]

Remarks: The variable self is used when a message handler wishes to make use of another message
handler of the same instance.

This variable can also be used within the :if-needed, :if-set, and : range-predicate
keywords of defconcept .

The variable self is not a special variable.

Examples: kb> (def concept circle ()

((radius
:range-predicate (ckradius self radius new-value))

center))

CIRCLE
kb> (defhandler (circle :circumference) ()

(* 2 pi (send-message self :radius)))
: CIRCUMFERENCE
kb>

:send-if- handled

Purpose: The message handler :send-if-handled sends message to instance only if there is a
handler for that message.

Syntax: (send-message instance :send-if-handled message &res t args) [Message Handler]

Remarks: This messages handler is defined for the concept kb::root-concept . Since kb::root-
concept is automatically inherited by all other concepts, this message handler will be
inherited as well.

The message handler :send-if-handled returns whatever values that the called message
handler returns. If there is no message handler defined, this message handler returns
nil.

send-message

Purpose: The function send-message sends a message to an instance.

Syntax: send-message instance message &rest args [Function]

Remarks: The KB package determines which handler to invoke to handle the message. The name
of the message is determined by evaluating message and considering the print name of
the result. This allows one to avoid difficulties which may arise due to using the package
facility of Common Lisp.

If no handler has been defined (or inherited) for the message, instance is sent the
message :unclaimed. A default handler for this message is defined for kb::root-
concept .

The value returned by the message handler is returned by send-message.

Examples: kb> (def concept a () 0)
A
kb> (defhandler (a :message) 0 (princ "In message") nil)
:MESSAGE
kb> (defhandler (a :echo) (&key arg)

(princ "In echo, arg is ")
(princ arg)
(terpri)
arg)

: ECHO
kb> (setf instance (create-instance 'a))
#: A326
kb> (send-message instance :message)
In message
NIL
kb> (send-message instance :echo :arg 'foo)
In echo, arg is FOO
FOO
kb> (send-message instance :echo :arg t)
In echo, arg is T
T
kb>

unboundp

Purpose: The function unboundp tests whether its argument value is an unbound value.

Syntax: uilbouildp value [Function]

Examples: kb> (def concept example () (A B))
EXAMPLE
kb> (setf instance (create-instance 'example :send-message :a 10))
: EXAMPLE435
kb> (send-message instance :describe)
Instance 4 3 5 of EXAMPLE
A: 10
B: KB::UNBOUND
kb> (unboundp (send-message instance :a))
NIL
kb> (unboundp (send-message instance :b))
T
kb>

Purpose: The message handler :unclaimed is invoked when a message is sent to an instance for
which there is no message handler defined.

Syntax: (send-message instance :unclaimed message &rest args) [Message Handler]

Remarks: This message handler is defined for the concept kb::root-concept. Since kb::root-
concept is automatically inherited by all other concepts, this message handler will be
inherited as well.

It prints the message, Unclaimed message: messagename. It returns the value
kb::unclaimed.

There is no reason why this message should be sent directly to an instance.

Examples: kb> (defconcept example () (A))
EXAMPLE
kb> (setf instance (create-instance 'example))
: EXAMPLE435
kb> (send-message instance :message-with-no-handler)
Unclaimed message: MESSAGE-WITH-NO-HANDLER
KB::UNCLAIMED
kb>

undefconcept

Purpose: The function undefcolicept deletes a concept.

Syntax: undefconcept concept-name [Function]

Remarks: The function undefcolicept will "undefine" the concept concept-name. The children
of concept-name will lose that concept as a parent. Instances of the children will still
keep the roles inherited from the deleted parent, however, the message handlers that
are inherited from the parent will be deleted.

Only use this function when you are experimenting with the KB package.

I t is not possible to delete the concept kb::root-concept.

Examples: kb> (def concept a 0 0)
A
kb> (conceptp 'a)
T
kb> (undef concept 'a)
T
kb> (conceptp 'a)
NIL
kb>

"verbose*

Purpose: The variable *verbose* controls the printing of error messages.

Syntax: *verbose* [Variable]

Remarks: If *verbose* is nil, no error messages are printed.

The default value of *verbose* is t.

what-concep t

Purpose: The function what-concept returns the name of the concept of which its argument
object is an instance.

Syntax: what-concept object [Funct ion]

Remarks: If object is not a concept instance, what-concept returns nil.

Examples: kb> (def concept example () (A B))
EXAMPLE
kb> (setf instance (create-instance 'example))
#:EXAMPLE524
kb> (what-concept instance)
EXAMPLE
kb>

Purpose: The message handler :which-messages returns a list of messages for which handlers
are defined for the instance.

Syntax: (send-message instance : which-messages) [Message Handler]

Remarks: This messages handler is defined for the concept kb::root-concept. Since kb::root-
concept is automatically inherited by all other concepts, this message handler will be
inherited as well.

Examples: kb> (def concept example () (A))
EXAMPLE
kb> (defhandler (example :exercise) ()

. . . ,,, ' a .

)
kb> (setf instance (create-instance 'example))
: EXAMPLE435
kb> (send-message instance :which-messages)
(:EXERCISE A :SEND-IF-HANDLED :DESCRIBE :MESSAGE-HANDLEDP :WHICH-MESSAGES
: UNCLAIMED)
kb>

	KB: A Knowledge Representation Package for Common Lisp
	Recommended Citation

	KB: A Knowledge Representation Package for Common Lisp
	Abstract
	Comments

	tmp.1187796471.pdf.dRfoR

