
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Technical Reports (CIS) Department of Computer & Information Science 

December 1981 

A System for a Total Matching of Sterio Pairs of Images A System for a Total Matching of Sterio Pairs of Images 

Lucio de Risi 
University of Pennsylvania 

Follow this and additional works at: https://repository.upenn.edu/cis_reports 

Recommended Citation Recommended Citation 
Lucio de Risi, "A System for a Total Matching of Sterio Pairs of Images", . December 1981. 

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-81-15. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/644 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F644&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/644
mailto:repository@pobox.upenn.edu


A System for a Total Matching of Sterio Pairs of Images A System for a Total Matching of Sterio Pairs of Images 

Abstract Abstract 
A system which provides a total matching of a stereo pair of images is described: to every point in the 
first image a corresponding point in the second image is assigned. The processing consists of 
determining a limited number of matching candidates for each point in the first image and ordering the 
possible matches of a point for decreasing value of likelihood. Geometrical constraints are applied to 
determine the consistency among matches associated with different points. The assumption that points 
close in the image correspond to points close in space (continuity assumption) has been used. In most of 
the cases the scenes are composed of objects in contrast with the background.The target image is then 
preprocessed in order to extract the objects and then to reduce the areas to be matched to the object 
areas. 

The algorithm has been successfully applied to artificial scenes and real scenes. Examples and results 
are presented. 

Comments Comments 
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-81-15. 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/644 

https://repository.upenn.edu/cis_reports/644


UNIVERSITY OF PENNSYLVANIA 
THE MOORE SCHOOL OF ELECTRICAL ENGINEERING 
SCHOOL OF ENGINEERING AND APPLIED SCIENCE 

A SYSTEM FOR A TOTAL MATCHING OF 
STEREO PAIRS OF IMAGES 

Lucio de Risi 

Philadelphia, Pennsylvania 
December 1981 

A thesis presented to the Faculty of Engineering and Applied 
Science of the University of Pennsylvania in partial ful- 
fillment of the requirements for the degree of Master of 
Science in Engineering for graduate work in Computer and In- 
formation Science. 

Prof. Aravind K. Joshi 



ABSTRACT 

A system which provides a total matching of a stereo pair of 

images is described: to every point in the first image a 

corresponding point in the second image is assigned. The 

processing consists of determining a limited number of 

matching candidates for each point in the first image and 

ordering the possible matches of a point for decreasing 

value of likelihood. Geometrical constraints are applied to 

determine the consistency among matches associated with dif- 

ferent points. The assumption that points close in the 

image correspond to points close in space (continuity as- 

sumption) has been used. In most of the cases the scenes 

are composed of objects in contrast with the background. 

The target image is then preprocessed in order to extract 

the objects and then to reduce the areas to be matched to 

the object areas. 

The algorithm has been successfully applied to ar- 

tificial scenes and real scenes. Examples and results are 

presented. 
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CHAPTER 1 

INTRODUCTION 

In the Image Understanding enviroment a stereo scene 

analyser is a system dedicated to obtaining depth measure- 

ments about the elements of a scene, from two or perhaps 

more images taken from diff.erent viewpoints. The geometri- 

cal problem which underlies almost the entire stereo ana- 

lysis is the possibility of reconstructing the three dimen- 

sional representation of a scene from two two dimensional 

images. 

Let us suppose in the simplest case that we want to 

determine the position in space of a single point P 

(fig. 1.1). If we know its projection pl on an image plane 

I1 and if we know the location of the center of projection 

Cl, we will be able to define the straight line in this 

space on which the point must lie. This straight line, 

called the projecting ray, is the one connecting C1 with the 

projection pl of the point on the image plane. Simple mono- 

cular detection yields no more information and gives to the 

problem a solution of the type many-to-one. Although a 

point in the space has a unique projection on any image 

plane, an image point is associated with a line in the space 

and it can be the projection of any point which lies on it. 





If we now suppose that we are given another projection p2 on 

12 of the same point taken from a different position C2, we 

can correctly locate the point P on a second straight line 

and therefore determine, from the intersection of the two 

projecting rays, the position of the point in the space. 

The computation needed to find the intersection is straight- 

forward. If U1 and U2 are the unit vectors of the rays pro- 

jecting P on 11 and I2 respectively and ClC2 is the vector 

connecting the two lenses, the problem consists of finding 

two numbers "a" and "b" such that 

Here we are merely applying the rule for the addition of two 

vectors which says that the sum of two vectors is given by 

the vector whose endpoints are the start point of the first 

one and the final point of the second one. Either aU1 or 

bU2 will finally give the correct position of the point In 

the space. In practice, because of the non-continuous reso- 

lution of the image planes and because of various other er- 

rors, the above equation will never have a solution ,and a 

reasonable approach to the problem is to find two numbers 

lrao and " b" such that they minimize the square of the 

difference 1 5 1 :  



In the real applications of a stereo system a scene 

will very rarely be formed by a single point and much more 

complex situations are analysed. The above discussion is, 

anyway, applicable to each pair of corresponding image po- 

,ints, no matter how complex the scene we are dealing with 

may be. 



CHAPTER 2 

STEREO S C E N E  ANALYSIS 

So far we have stated the geometrical basis for a 

stereo analysis, but no attention has been paid to how two 

corresponding image points are identified, what type of po- 

ints is more useful to consider in order to reconstruct the 

scene, and how the images are obtained. Answering these 

questions is equivalent to implementing the various parts of 

a stereo scene analyser. In the following we shall discuss 

these parts, that is, we shall describe the problems related 

to: 

a. Image Acquisition 

b. Camera Calibration 

c .  Feature Acquisition 

d. Matching 

We are particularly stressing on the feature acquisition 

problem and on the matching problem which are the crucial 

points in computational stereo and of major interest for the 

development of this thesis. 

For a survey of computational stereo the reader can 

refer to Barnard and Fischler 1 2 1 .  



2 . 1 . IMAGE ACQUISITION 

By image acquisition we refer to the problem of ob- 

taining a digitized image of the projection of a scene along 

a certain direction. In digitizing an image two very impor- 

tant factors, which will strongly influence the subsequent 

processes, can be identified: 

a. Resolution 

b. Level of noise 

A high resolution image has the advantage of enhanc- 

ing the details of the scene, therefore objects can be re- 

presented without losing a lot of information about them and 

algorithms can be applied more succesfully and they can also 

be more sophisticated. The disadvantage of high resolution 

images is that more computation is required and as a result 

the cost of processing the image increases. Both high reso- 

lution and low resolution images have their fields of appli- 

cation as discussed in [ 2 ] .  

The level of noise is a crucial point. The results 

of both feature acquisition and matching algorithms are most 

often affected by the presence of noise. Since this gener- 

ally appears in the form of anomalous points which introduce 

high frequency components into the spectrum of the image 

(Fourier transform), a low-pass filter is a method for re- 



moving at least part of the noise from the image. 

Naturally, if a low-pass filter is not applied cautiously, a 

blurred image will result with consequent lost of informa- 

tion especially in those areas which contain edges or other 

intensity features and which are therefore meaningful for 

understanding the picture. 

In the space domain a low-pass filter is implemented 

by averaging algorithms which are applied around each image 

point. Windows of different size and shape can be used and 

weights can also be assigned to the various points in the 

window obtaining different results. 

2.2 .  CAMERA CALIBRATION 

In this section we shall discuss, for the sake of 

completeness, the rule of camera calibration in designing a 

stereo scene analyser. We shall describe the general prob- 

lem without going into the details of the implementation 

since this has not been subject of this thesis. We shall 

conclude the section giving some references for the latter. 

As we have already discussed earlier, a stereo sys- 

tem uses the two dimensional information coming from the 

projection of a scene in two different image planes to re- 



construct the three dimensional representation of it. 

When we talked about the projection of a point in an 

image plane we were implicitly assuming that its position in 

the plane was determined with reference to a two dimensional 
- 

coordinate system with the origin somewhere in the plane. 

The most natural reference is a orthogonal Cartesian system 

centered in the intersection of the main projecting ray with 

the plane, where the main projecting ray is the straight 

line from the center of projection perpendicular to the 

plane. Now, a stereo system has to carry out some computa- 

tions using the coordinates of corresponding image points, 

that is it has to apply the inverse perspective transforma- 

tions, to determine the location of the point in the space. 

In order to make this possible the coordinates of the image 

points and of the point in the space must refer to a common 

coordinate system. This can be one of the image plane 

reference frames extended to 3-D by considering an axis co- 

incident with the main projecting ray or it can be any other 

reference independent from the image planes. We shall call 

the latter a world coordinate system. To consider this for 

the three dimensional representation of points seems to be 

more appropriate since the independence from the image 

planes lets the reference be located wherever we think is 

preferable. 



In any case a change of coordinates is required and 

some parameters to make it possible have to be calculated. 

In other words, the translation of the origin and the three 

rotations around the axis needed for moving from a frame to 

another are to be determined. If we assume that the image 

planes never rotate around the main projecting ray, the 

problem is to determine the components Xo Yo Zo of the 

translation, the pan angle and the tilt angle. 

If we went through the tedious calculations of di- 

rect perspective transformations with two reference frames, 

we would find out that an image point given in image plane 

coordinates is related to the corresponding object point 

given in world coordinates by a function of the parameters 

which define the change of coordinates and of some other 

parameters related to the camera. Even if these parameters 

could in principle be directly computed, it is generally 

more convenient to derive them using the camera itself. 

This leads to the camera calibration problem. 

The idea is that if a set of object points and a set 

of corresponding image points are given, the parameters can 

be determined to be the ones which minimize the distance 

between the image points computed from the object points 

using the perspective transormations and the given image po- 



ints. Although this seems to be just a matter of solving a 

system of equations, the solution is not straightforward. 

First the function which relates image coordinates and world 

coordinates is sufficiently difficult not to suggest a di- 

rect solution. Secondly we cannot expect that by matching a 

set of computed points with a set of given ones in a dis- 

crete picture we will easily achieve an accurate solution 

for the parameters. 

For a better undestanding of the problem the reader 

can refer to Duda and Hart [ S ] ,  while for examples of prac- 

tical implementations we cite Gennery [ 8 ] ,  Yakimovsky and 

Cunningham [19], Pischler and Bolles [7]. 

2.3. FEATURE ACQUISITION 

Feature acquisition is the problem of finding in an 

image significant elements which can be helpful for under- 

standing the scene and for further processing it. By signi- 

ficant elements we mean any part of the image, an area or 

even a point, which holds some interesting properties that 

allow us to characterize it in the context of the scene in 

the best possible manner. These properties are related to 

particular grey values or to high variations of them. In 

the following discussion we will give a possible classifica- 



tion of the features which are used for image understanding 

and then illustrate some algorithms which have been imple- 

mented to derive them. 

On the basis of their different characteristics, 

features can be classified as: 

a. Point-like features 

b. Edges 

c .  External contours 

2.3.1 POINT-LIKE FEATURES 

Zones of high variance are, intuitively, areas in 

which a point-like feature can be localized. Given a window 

of a fixed size, if the variance inside it exceeds an as- 

signed threshold, we can assume that the center of the win- 

dow is an interesting point. However, a point with high 

variance around it is really an interesting feature if the 

variance is not unidirectional. In fact, a high variance in 

only one direction does not permit the separation of the 

point from the others which lie on a line perpendicular to 

that direction. 

MOBAVEC OPERATOR 

Moravec [ 1 5 ]  has designed an algorithm which takes 



care of this problem by computing the sum of the squares of 

the differences between adjacent pixels, in a small window 

of fixed size (4*4 in the implementation). The sum is com- 

puted in four directions: horizontal, vertical, the two di- 

agonals. A window contains an interesting feature if the 

lowest of the sums calculated over the window is a local 

maxima among the 2 5  windows overlapping or contacting it. 

The 2 5  windows are obtained by shifting along the horizontal 

by 2 or 4 pixels and/or along the vertical by 4 pixels. In 

order to reduce the infuence of the noise and the computa- 

tion time, the features are determined in an image reduced 

by a factor of 2. This algorithm plays an important role. in 

obtaining the information for driving a robot rov-er who rea- 

sons visually. 

I 

2.3.2 EDGE DETECTION 

The easiest way to have an indication of the pres- 

ence of an edge through a point (x,y) in a picture is to 

compute in that point the one dimensional derivative of the 

function g(x,y) describing the image, i.e.: 

where (x',y') is in the 8-connected neighborhood of (x,y). 



F o r  e x a m p l e ,  i f  x 8 = x + l  a n d  y 8 = y  w e  c a n  r a t h e r  e a s i l y  d e t e c t  

t h e  p r e s e n c e  of  a v e r t i c a l  e d g e :  a  h i g h  a b s o l u t e  v a l u e  o f  

t h e  d e r i v a t i v e  w i l l  b e  c o n n e c t e d  t o  t h e  p r e s e n c e  o f  a n  e d g e .  

The n a t u r a l  e x t e n s i o n  o f  t h e  a b o v e  o p e r a t o r  t o  t h e  

two d i m e n s i o n a l  c a s e  i s  t h e  g r a d i e n t :  

a b s  [ g ( x , y ) - g ( x + l  , y + l )  ] + a b s [ g ( x , y + l ) - g ( x + l  S Y ) ~  

known a s  R o b e r t s '  o p e r a t o r .  I m p r o v e m e n t s  f o r  b o t h  t h e  o n e  

d i m e n s i o n a l  d e r i v a t i v e  a n d  t h e  g r a d i e n t  c a n  r e s u l t  f r o m  com- 

p u t i n g  a v e r a g e s  o v e r  o n e  o r  two d i m e n s i o n a l  windows a r o u n d  

t h e  p o i n t  r e s p e c t i v e l y  a n d  t h e r e f o r e  u s i n g  t h e  a v e r a g e s  t o  

f e e d  t h e  o p e r a t o r s .  T h i s  e x p a n s i o n  h a s  t h e  a d v a n t a g e  o f  

g r e a t l y  r e d u c i n g  t h e  i n f l u e n c e  o f  t h e  n o i s e .  

However ,  e v e n  i f  t h e  i n f l u e n c e  of  t h e  n o i s e  c a n  b e  

r e d u c e d  b y  a v e r a g i n g  o v e r  n e i g h b o r h o o d s  o f  t h e  p o i n t ,  f o r  a 

h i g h e r  l e v e l  o f  n o i s e  a n d  b l u r r i n g  a n d  f o r  t e x t u r e d  i m a g e s ,  

g o o d  p e r f o r m a n c e s  o f  a n  e d g e  d e t e c t o r  r e q u i r e  more  s o p h i s t i -  

c a t e d  a l g o r i t h m s .  T h e s e  a l g o r i t h m s  u s e  windows o f  d i f f e r e n t  

s i z e .  S m a l l  windows a r e  more  s e n s i t i v e  t o  v a r i a t i o n s ,  l o -  

c a t e  t h e  e d g e s  b e t t e r  b u t  a r e  a l s o  v e r y  s e n s i t i v e  t o  t h e  

n o i s e .  On t h e  o t h e r  h a n d ,  l a r g e  windows a v e r a g e  t h e  n o i s e  

b u t  a r e  l e s s  s e n s i t i v e  t o  v a r i a t i o n s  a n d  p r o d u c e  t h i c k e r  

e d g e s  b e c a u s e  t h e y  r e s p o n d  t o  v a r i a t i o n s  i n  w i d e r  a reas .  



ROSENFELD ALGORITHMS 

Rosenfeld has proposed some algorithms based on win- 

dows of different size [16,17]. He computes the differences 

between average grey values of pairs of windows around the 

point. Windows of different size are used in different 

iterations and then the results are multiplied to obtain the 

edge information. In doing so, if all the differences are 

large, i.e. if major edges are present, the final product 

will be large and the edges will appear very sharp. 

However, since the product includes all the differences, 

minor edges will also be detected. In another algorithm he 

defines the size of the window to apply as a function of the 

point under consideration; for each point the largest pos- 

sible window is used. The size is determined when, at a 

certain level of expansion of the window, the differences 

decrease sensibly with respect to the previous size. In 

practice, for major edges or for minor edges near major 

edges the expansion will stop at high values since the 

differences will be constantly high; for isolated minor 

edges the expansion will stop soon saving the information 

about minor edges; for micro-edges due to the texture the 

differences will be constantly low. This way the noise near 

major edges will not be detected. Eventually, in order to 

detect edges in between areas with similar texture but of 



different coarseness, the image can be preprocessed with a 

small window obtaining in output grey levels depending on 

the coarseness of the texture, and then the above algorithm 

can be applied again. 

ZERO-CROSS INGS 

In accordance with the Marr and Poggio theory [ I 3 1  

of human stereo vision, Grimson [ 9 ]  uses zero-crossings as 

features to be matched. A Gaussian low-pass filter is first 

applied to the image using circular neighborhoods; this 

means that the image is averaged and that the average value 

of each point is given by the points around it weighted over 

a Gaussian surface. To the resulting image the Laplacian, 

which is a non directional linear second derivative opera- 

tor, is applied. Four circular neighborhoods of different 

size are used for the above process. Sharp changes in the 

intensity picture will correspond to peaks of the first der- 

ivative and therefore to zero-crossings of the Laplacian. 

The advantage of using windows of different size is that 

variations of different levels can be detected. Windows of 

smaller size allow the detection of smaller changes but are 

also more influenced by the noise;. larger windows average 

the noise much better but can also average small variations 

which would not be picked up by the operator. After the op- 

erator has been applied over the whole image, zero-crossings 



are determined by horizontally scanning the image. When a 

change in the sign is encountered a zero-crossing is identi- 

f ied. 

THE USE OF HOUGH TRANSFORMATION 

An interesting way for detecting lines and curves of 

a known equation is to apply the Hough transformation [6]. 

In particular, if we want to detect straight lines, a very 

simple algorithm can be implemented. Since a straight line 

is unequivocally determined by two parameters, a correspon- 

dence between a line and a point in a parametric plane can 

be established. For istance the distance R, computed per- 

pendicularly to the line, between the line and the origin of 

a Cartesian plane and the angle A that R forms with the 

x-axis can be used as parameters. A is in the range 

[0,180]. Now, if a point (x8,y') is represented in the par- 

ametric plane R,A by the sinusoid of equation: 

it is clear that any point of the sinusoid represents a 

straight line through the point (x8,y'). In fact, given a 

point (R',A') of the sinusoid this has associated with it, 

in the Cartesian plane, the straight line of equation: 



which is certainly satisfied by ( x ' , y 8 ) .  Now, if for each 

point possibly on an edge we consider all the straight lines 

(R,A) through it and we record them, we will end up with 

knowing how many possible edge points are on each line: the 

number of points will equal the. number of times that line 

has been recorded. Finally only the lines which have a 

number of points exceeding a fixed threshold will be consi- 

dered as edges. 

Many other algorithms for edge detection have been 

proposed; we here cite Herskowits and Binford [ll], Heuckel 

1121, and, for sequential edge detection Martelli [14] who 

takes the edge detection problem into a graph search. 

2 3 3 EXTERNAL CONTOURS 

An algorithm for finding the external contours is a 

particular edge detector algorithm which restricts the edges 

to being the external contours of an object. We discuss 

this aspect of edge detection separately from the general 

case because of two factors that we think characterize 

external contours in the image understanding context. First 

an algorithm for finding external contours can be applied 

only on a scene constituted of few well defined objects in 

contrast with the background (block's world-like 



enviroment); secondly the only purpose of such an algorithm 

is to separate the interesting part of the scene (objects) 

from the background, in order to allow future processes to 

polarize their attention only on part of the image. 

THE USE OF RELAXATION 

Danker and Rosenfeld [4] have presented an algorithm 

which uses relaxation for blob detection. A blob is a re- 

gion which is in contrast with the background, ieee a com- 

pact region lighter or darker than the background. They use 

two different pieces of information to determine the blob 

area: the probability that there is an edge through a point 

and the probability for a point of being on the interior of 

the blob or on the exterior of the blob. The initial esti- 

mate of edge probability is given by p=e/E where E is the 

largest value resulting from the application, at each point, 

of Prewitt operator in 8 directions at 45f degrees; and "e" 

is the largest value at the point under consideration, say 

P. Moreover, the estimate of the probability that there is 

an edge in direction "it' is given by (ei/s)*p where "ei" is 

the value of the operator for direction "in at point P and 

rt tr is the sum of all "ei" in the 8 directions. The initial 

interiorlexterior probabilities are computed considering the 

lightest and the darkest point in the picture. If "gM is 

the grey value at P, "1" and "d" the largest and smallest 



grey values in the picture, the probability for P being 

light is given by p=(g-d)/(l-d) and the probabilty for P 

being dark is 1-p. These probabilities are then updated in 

different iterations using criteria of compatibility between 

labels of neighbouring points. A label is in the first case 

"to have an edge in a certain direction" or "to have no 

edge", in the second case "to be an interior point" or "to 

be an exterior point". The authors have implemented the al- 

gorithm using only the information about edges, only the in- 

terior/exterior information and finally both types of infor- 

mation together. They have shown that, when the entire in- 

formation is used, the number of iterations needed by the 

algorithm to perform the bulb-background separation decre- 

ases. 

An algorithm for separating objects from the back- 

ground has been implemented for the purpose of this work and 

it will be illustrated later in detail. 

2.4. MATCHING 

Given two image planes 11 and I2 and the projection 

of a point P in one of them, say 11, the problem of finding 

the projection of P in the other plane is called the "cor- 

respondence problem" or matching problem. 



L e t  p l  b e  t h e  p r o j e c t i o n  o f  P i n  11, p2 b e  t h e  p r o -  

j e c t i o n  o f  P i n  1 2 ,  C 1  a n d  C2 b e  t h e  c e n t e r s  o f  p r o j e c t i o n  

( f i g .  1 . 1 ) .  B e c a u s e  o f  t h e  g e o m e t r y  o f  a s t e r e o  s y s t e m ,  t h e  

s e a r c h  f o r  t h e  m a t c h  ( p 2 )  i s  c o n s t r a i n e d  t o  t h e  l i n e  i n t e r -  

s e c t i o n  o f  t h e  i m a g e  p l a n e  I 2  w i t h  t h e  p l a n e  d e f i n e d  by  C 1 ,  

C2 a n d  t h e  p r o j e c t i o n  p l  of  P. T h i s  p l a n e  i s  c a l l e d  t h e  e p -  

i p o l a r  p l a n e  a n d  t h e  i n t e r s e c t i o n  w i t h  I1 o r  I 2  i s  a n  e p i p o -  

l a r  l i n e .  Image 11 i s  a l s o  c a l l e d  t h e  t a r g e t  i m a g e  a n d  

i m a g e  I 2  t h e  c a n d i d a t e  i m a g e .  

The m o s t  w i d e l y  u s e d  method  t o  g i v e  a n  e s t i m a t e  o f  

t h e  l o c a t i o n  o f  t h e  m a t c h  i n  12 i s  t o  c o m p u t e  t h e  d i s c r e t e  

n o r m a l i z e d  c o r r e l a t i o n  b e t w e e n  a n  a rea  i n  i m a g e  1 c e n t e r e d  

i n  p l  a n d  a n  a r e a  i n  i m a g e  2  c e n t e r e d  i n  e a c h  p o i n t  w h i c h  i s  

a m a t c h  c a n d i d a t e  [ l o ] :  

I n  t h e  a b o v e  f o r m u l a  G i l  a n d  G i 2  a r e  t h e  g r e y  v a l u e s ,  s a y  

g i l  a n d  g i 2 ,  a r o u n d  p l  a n d  p2 computed  n o r m a l i z e d  t o  t h e  

means  M 1  a n d  M2: 

When t h e  c o r r e l a t i o n  r e a c h e s  t h e  maximum v a l u e ,  t h e  c o r r e s -  

p o n d i n g  p o i n t  i n  12 w i l l  b e  a s s u m e d  a s  t h e  m o s t  p r o b a b l e  

m a t c h .  T h i s  f o r m  o f  t h e  c o r r e l a t i o n  h a s  b e e n  u s e d  s i n c e  i t  



takes care of two problems that may arise when searching a 

match in 12. First an area in I2 can equal the correspond- 

ing area in I1 except for an offset in the grey value, that 

is gi2=gil+OFFSET; secondly image I2 can have a gain Q with 

respect to image I1 which would determine, with the above 

offset, a relation of the type 

gi2=Q*gil+OFFSET. 

Subtracting the means eliminates the problem of the offset, 

dividing by the variances balances a possible gain. 

A problem in computing correlation is the size of 

the window. A small window speeds up the computation and ' 

gives high values of the correlation since in small areas 

there are less inequalities; a large window is computation- 

ally expensive and gives lower values of the correlation but 

it has the advantage that a large window around a point 

which is not a match will have less likelihood of resembling 

the window around the target point, so reducing the proba- 

bility that a wrong match will correspond to the highest 

value of the correlation. 

In any case the correlation measure or another simi- 

lar measure of the location of a match are not alone enough 

to solve the correspondence problem with confidence and some 

more sophisticated strategies have to be devised. A first 



solution to the problem is to use more local information, 

that is one can compute different measures in the neighbour- 

hood of the target point and of its potential matches and 

then compose them together to determine a degree of similar- 

ity between the target and its potential matches. A high 

similarity will support the choice of a match. 

An alternative solution or an improvement to the 

latter can be obtained by considering the possible matches 

of the point in question and of its neighbours and using 

some criteria for checking the consistency among them and 

biasing the choice of a match, on the basis of the matches 

assigned to the neighbours. Checking means that, given two 

neighbouring points and two possible matches of them, we 

want to ensure that these matches can co-exist with respect 

to some geometrical or logical constraints. Biasing the 

choice of a match means accepting that a point is assigned a 

certain match depending on how well this choice is supported 

by the potential matches assigned to points neighbouring the 

one under consideration. 

This last technique is called "Relaxation Label- 

ling". Both checking and biasing are based on the assump- 

tion that points close in an image are projections of points 

which are close in the space too. This assumption is known 



as the "continuity assumption". Sharp changes in the depth 

of adjacent points would make the above strategies fail. 

In the last few years many algorithms for solving 

the correspondence problem have been proposed. In the fol- 

lowing, with no attempt at being exaustive, we will illus- 

trate two of them (Grimson [9], Barnard and Thompson 1 3 1 )  

which can give a good flavor of different approaches to the 

problem. The reader can refer to Baker [ l ]  for a character- 

ization of edges to be matched. The edges are obtained as 

zero crossings of the one-dimensional second derivative op- 

erator. 

GRIMSON ALGORITHM 

As we have already said while discussing edge detec- 

tions, Grimson uses zero-crossings as features to be 

matched. A zero-crossing is characterized by 3 attributes 

which are important for determining a match: the channel 

which has computed the zero-crossing, the sign and the ori- 

entation. These attributes can be explained as follows: 

- each image is processed using 4 windows of different size 
(see discussion for feature acquisition) simulating the 

behaviour of the optical channels in a human stereo sys- 

tem and therefore a zero-crossing has to match with a 

zero-crossing in the other image computed with the same 



window; 

- the sign is related to the fact that a zero-crossing can 

result from passing from a positive value to a negative 

value or viceversa; 

- the orientation is the direction, computed with incre- 

ments of 30 degrees, of the gradient of the Gaussian fil- 

tered image at that zero-crossing. 

A necessary condition to accept a zero-crossing in the sec- 

ond image as a match of a zero-crossing in the first image 

is that the above attributes are equal. 

For each zero-crossing an area around the same posi- 

tion in the other image is determined. This area is divided 

in three parts (pools): a small central one in between two 

larger pools which expand going away from the center. To 

each part a disparity is associated: positive, zero and ne- 

gative. If a zero-crossing has a match in only one of the 

pools, the match ie accepted and recorded; if it has two 

matches in two different pools, the matches are marked as 

ambiguous; if it has two matches in the same pool no match 

is assigned. 

At this stage it can be interesting to observe that, 

because of the way the zero-crossings are characterized, 

when there are more candidates for the 'same zero-crossing, 



there is no information associated with them for computing a 

measure as to which of the matches can be assumed to be more 

probable. Two zero crossings cannot be compared along di- 

mensions such as being positive or negative, having the same 

direction, or being from the same channel. Some indications 

have to be derived from the matches already assigned to the 

neighbours in order to eventully choose among the possible 

candidates. As we will see in the second example we pre- 

sent, an alternative technique can estimate an initial pro- 

bability that a candidate match is correct and then apply 

iterative algorithms to modify these probabilities on the 

basis of the neighbouring evidence, until a situation in 

which the final decision can be made is reached. 

An attempt to disambiguate the possible matches of a 

zero-crossing is made by considering the matches of the 

neighbouring zero-crossings and then computing their predom- 

inant disparity sign. If one of the possible matches under 

consideration holds that disparity, that match is accepted. 

The next step in the algorithm is to check for regions in 

which the density of zero-crossings matched is below a fixed 

threshold. When this happens all the matches in that region 

are discarded. The entire process above is repeated for all 

the channels. 



Now, since a fine resolution requires matches from 

images processed with the smallest window and since the 

pools assigned for finding a match are in this case also the 

smallest, it may happen that larger channels have matches in 

regions where smaller channels do not. In this case the 

disparity information from the bigger channels is used as a 

cue to take, along different directions of projection, 

another pair of images in which those regions can be 

matched. This simulates the adjustment of the eyes in the 

human visual system. At the end of the process the dispari- 

ties coming from the smallest possible channels for each re- 

gion are recorded. Since the disparity information can come 

from different pairs of images, the different positions of 

the "eyes" (camera calibrations) are required in order to 

store all the information together. 

BARNARD AND THOMPSON ALGORITHM 

Barnard and Thompson use interesting points found by 

the Moravec operator, described earlier, as features to be 

matched. After finding interesting points over the whole 

image, those which do not have an associated value as com- 

puted by the operator, above a fixed threshold, are discard- 

ed. The operator is applied to both the images and then, 

for each interesting point in image 1, an association is 

made with all the interesting points in image 2 which are in 



a fixed range about the same position. 

For the disparity labels resulting from the pairs 

consisting of an interesting point in image 1, say P, and 

one of its potential matches in image 2, an initial proba- 

bility of being the correct one, is computed. In order to 

derive this probability the square of each difference 

between a point in a window around the potential match and 

its corresponding point in a window around P is calculated; 

and then the squares are added together to yield the sum, 

say "st' . To each disparity label the weight: 

is associated, where "s" is the above sum and " c "  is a con- 

stant fixed to 10 in the implementation. From these weights 

the probability that the point is not matchable is defined 

a s :  

and the initial probability of having label "L" is given by: 

where p(L/M) is the conditional probability that point P has 

label "L" given that the point is matchable. The condition- 

al probability is given by W(L) divided by the sum of all 



weights associated with the other possible labels. 

In order to update the probability that P has label 

11 LVI , all the interesting points in image' 1 within a fixed 

distance from P are considered. For each of these points 

the probability of the labels which do not differ from the 

label in question being more than 1 are added together. The 

new probability p' is given by: 

where S is the sum just described. A is needed in order not 

to suppress very low probabilities, B defines how fast the 

algorithm will converge. p8(L) is finally normalized to let 

it be in the range [O, 11. Normalizing means dividing by the 

sum of the probabilities p8(L) of all the labels. The al- 

gorithm is stopped when it reaches a stable state or in any 

case after a fixed number of iterations. The labels which 

hold a probability exceeding 0.7 are assigned as good 

matches. 



CHAPTER 3 

OBJECTS-BACKGROUND SEPARATION 

In a scene composed of a limited number of objects 

contrasting with the background, an algorithm which separ- 

ates the objects from the background is certainly useful for 

the purpose of understanding the scene. In fact, it res- 

tricts the area of interest on which further processing has 

to be done; this implies that the computation time is re- 

duced. Moreover, if the background is uniform and it is the 

correspondence problem that is to be solved, a matching al- 

gorithm is prevented from trying to assign matches to flat 

areas in which differences between points are very smooth. 

In the following we shall describe an algorithm for the 

external contours of one or more objects in a picture. 

Since the objects we will be dealing with are assumed to 

have a high level of variation in order to create interest- 

ing patterns to be matched, the basis of the algorithm is 

that a small background area will be a smooth area, while a 

small area partly or completely on the object will be sub- 

jected to wider variations. 

3 1  DESCRIPTION OF THE ALGORITHM 



Given the above assumptions, in order to separate 

the object(s) from the background, we assign to each pixel 

in the picture an initial probability of it being the pro- 

jection of a background point; this probability is depen- 

dent on the variation existing in a small area centered ar- 

ound the pixel. An estimate of the variation is actually 

computed by using the standard deviation: 

where "gi" is the grey value of a pixel and n is the number 

of pixels to which the computation is extended. If "m" is 

the maximum value of the standard deviation over the picture 

and "s" is the standard deviation around a generic point, 

the probability "b" that this is a background point is given 

by: 

and then the probability "ow that it is an object point is 

given by: 

The probabilities are then normalized to the grey range to 

form an image in which, by convention, darker pixels are 

most probably projections of object points and lighter pix- 



els those of background points. 

Note that points with high probability of being in 

the background are very likely in it. The converse, 

however, is not true; conditions like noise create 

non-homogenity in background areas but there is no condition 

causing homogenity in non-homogenuous areas. Fig. 3.l.b, 

3.2.b and 3.3.b show the initial probabilities. 

In the resulting images we can see that, due basi- 

cally to the noise which affects the pictures, some points 

with high "of' probability will appear within the background. 

In order to achieve a clear separation between the back- 

ground and the objects, i.e to derive well-defined and homo- 

geneous light and dark areas in the picture presenting the 

probabilities, the following algorithm is applied iterative- 

l y  - 
- First we apply a scan line algorithm which is based on the 

assumption that the minimum dimension of the projection of 

an object in the image will always be above a certain 

threshold Tl, say 5 to LO pixels. This allows us to say 

that clusters of dark points below the above threshold 

cannot correspond to object points. Another threshold 

(T2) is given to the algorithm in order to determine the 

probability above which we assume that a point belongs to 



f i g .  3 . 2  
OBJECT-BACKGROUND SEPARATION. 

a.' p i c t u r e  o f  t h e  c o n e ;  
b .  p i c t u r e  o f  t h e  p r o b a b i l i t i e s :  l i g h t  a r e a s  h a v e  h i g h  "b" 

p r o b a b i l i t y ,  dark  a r e a s  h a v e  h i g h  " o w  p r o b a b i l i t y ;  
c .  t h e  p r o b a b i l i t i e s  u p d a t e d  a f t e r  s t e p  1 ;  
d .  u p d a t e  a f t e r  s t e p  2 ;  
e .  u p d a t e  a f t e r  s t e p  1 a g a i n ;  
f .  t h e  c o n t o u r s  drawn o n  t h e  o r i g i n a l  p i c t u r e .  



fig. 3.3 
OBJECT-BACKGROUND SEPARATION. 

a. p i c t u r e  of the C U F P ;  
b. p i c t u r e  of the p r o b a b i l i t i e s :  l i g h t  a r e a s  h a v e  h i g h  "b" 

p r o b a b i l i t y ,  d a r k  a r e a s  h a v e  h i g h  "0" pr o b a b i l i t y ;  
c. t h e  p r o b a b i l i t i e s  updated a f t e r  s t e p  1; 
d. u p d a t e  a f t e r  s t e p  2; 
e. u p d a t e  a f t e r  s t e p  1 a g a i n ;  
f. t h e  c o n t o u r s  d r a w n  o n  the o r i g i n a l  picture. 



the background. This threshold is first chosen high 

enough to avoid labelling object points as background. 

Good values are from - 9 0  to - 9 5 .  The picture is then 

scanned line by line and column by column and each point 

which has associated with it a probability above T2 is as- 

signed a probability of 1 of being in the background. 

Those pixels which do not exceed T2, but which have less 

than T1 horizontal or vertical neighbours not exceeding 

T2, are also assigned a probability of 1. Fig, 3.l.c, 

3.2.c and 3.3.c show the results of applying this process 

to fig 3.l.b, 3.2.b and 3.3.b. 

- As a result of the first step some object points might 

have been identified as background points (light points in 

dark areas) and some spurious high "ow-probabilities may 

still be present (dark small clusters in a light neigh- 

bourhood). The second part of the algorithm is oriented 

towards obtaining areas with smooth changes in the associ- 

ated values of the "o" or "b"-probability. This is done 

by averaging the probability values of a point with those 

of its neighbours. The results of this step are shown in 

fig, 3.l.d, 3.2.d and 3.3.d. 

When the algorithm is repeated the input parameters 

will be varied; specifically the threshold T2 will be 

lowered since in the new smoothed image object points with 



h i g h  "b"-probab i l ty  a r e  v e r y  u n l i k e l y  t o  be found.  A new 

v a l u e  o f  T2 w i l l  be about  0 . 5  l e s s  than t h e  p r e v i o u s  o n e .  

F i g .  3 . l . e ,  3 . 2 . e  and 3 . 3 . e  show t h e  f i r s t  s t e p  a p p l i e d  

a g a i n  and then  t h e  c o n t o u r s  a r e  drawn on t h e  o r i g i n a l  p i c -  

t u r e  i n  f i g .  3 . l . f ,  3 . 2 . f  and 3 . 3 . f .  



CHAPTER 4 

THE MATCHING ALGORITHM 

4.1 INTRODUCTION TO THE MATCHING ALGORITHM 

In a general manner the matching problem can be de- 

fined as follows. 

Given a set of target elements T and a set of candi- 

date elements M, we want to identify for each target "ti" 

the corresponding match "mi" . If the targets were complete- 

ly independent from each other, a matching algorithm would 

have the characteristics below: 

- for each target "ti1' the set M would be scanned in order 

to determine the best match to assign to "ti"; 

- the matches previously assigned to other targets would not 
in any way help the search for the correct match. 

For the class of problems we deal with, this situa- 

tion is not the case and the knowledge of the relationships 

between different targets can be used as a means to judge 

the consistency of the matching and as a heuristic measure 

for determining other matches. 

Let N be the number of targets which constrain each 

other and let R be a relation on the set T**N such that if 

tl, ..... tN constrain each other then (tl, ..... ,tN) is in 



R and viceversa. Also let Q be a relation on the set 

(TxM)**N such that if ((tl,ml), ..... ,(tN,mN)) is in Q then 

ml, .... ,mN can be matches of tl, ..... ,tN simultaneously. 
The problem is now to find for each target "ti" a match "mi" 

such that : 

if (tl, ..... ,tN) is in R, then 
((tl,ml), ..... ,(tN,mN)) is in Q. 

This problem is carled the Consistency Matching Problem 

(181 

In the case under discussion, the sets T and M are 

the sets of pixels of two digitized pictures and therefore 

the number N of targets which constrain each other will 

equal the number of pixels in the target image, say n, and 

the number of possible matches for each of them will equal 

the number of pixels in the candidate image, say m. We will 

finally end up with m**n different possible matchings and 

among the consistent ones the most consistent must be cho- 

sen. Moreover, since the two pictures we deal with are 

taken from different points of view, part of the scene which 

appears in the target image could be occluded in the candi- 

date image and then, for some "ti", no correct match would 

exist. This implies that the '*nullw match must be added to 

the set of matches and, since, in practice, m=n, the final 



number of possible matchings will be (n+l)**n. 

In the actual solution some assumptions have been 

made in order to solve this problem. 

1. Since the pair of images under consideration will have a 

small disparity we can say that a possible match for tar- 

get "ti" must be localized in an area with coordinates of 

the center equal to the x,y coordinates of "tin in the 

target image. A reasonable area is a rectangular window 

with edges of length equal to 1/10 of the corresponding 

maximum dimension of the picture. Moreover, if the geom- 

try of the system is given, one of the edges of the win- 

dow can be reduced: for istance, if the two cameras lie 

on a horizontal plane, the vertical edge of the window 

can be reduced. 

2. Among the possible matches for target "ti" , only the ones 

which are estimated to be the most probable will be con- 

sidered. The best 3 matches are a satisfactory approxi- 

mation. This number is also dependent on the size of the 

window discussed above: the smaller the window, the 

smaller the number of possible matches that can be cho- 

sen. 

3. The consistency check is limited to the matches of tar- 

gets which have the same y coordinate, that is the rela- 

tion R discussed above will constrain only those targets 



with the same y coordinate. This is justified if the two 

cameras lie on a horizontal plane. In this case, in 

fact, the distortion between two images is basically hor- 

izontal and when the above consistency is satisfied a 

much more global consistency is automatically achieved. 

In case of different geometries the ralation R should 

constrain targets with other linear relationships. 

4.2 IMPLEMENTATION OF THE MATCHING ALGORITHM 

In the current implementation of the algorithm, the 

most probable matches of target "ti" are given by the best 

values of the correlation computed as shown in section 4 of 

chapter 2. Now, let xi,yi and xj,yj be the coordinates of 

the targets "ti" and "tj" and let x'i,y'i and x'j,yOj be the 

coordinates of probable matches "mi" and "mj". The consis- 

tency criterion we have used to check that "mi" and "mj" can 

be correct matches for "ti" and "tj" states that the length 

of the vector: 

m j-mi 

must be in the range: 



or in terms of x,y coordinates 

must be in the range: 

since yj-yi=O. 

These relations can be justified as follows. Let P1 and P2 

be two object points and let pl and p2 be their projections 

in a generic image plane. The length of the segment plp2 is 

a function of the magnitude of the segment PIP2 in space, of 

the distance of PIP2 from the image plane and of the rela- 

tive position of PlP2 with respect to the image plane. If 

another image plane is given, both the distance and the re- 

lative position of PIP2 with respect to the new image plane 

will vary, therefore the magnitude of the projection plp2 

onto this plane will be different. Now, if we consider the 

projections of PlP2 onto the image planes of the cameras, we 

can compute, given the geometry of the system, the maximum 

expectable ratio of the projections tlt2 and mlm2, call it 

"h1I . This maximum ratio can be used as a means to check 

that, for any pair of targets ti,tj, two possible matches 

Itmi" and "mj" define a segment which is consistent with the 

distance between "ti" and "tj". Eventually, by adding and 



subtracting 1 to the above relations we take care of the 

fact that we are dealing with discrete digitized pictures in 

which the projection of each point is recorded with an ap- 

proximation of half a pixel. The details about the computa- 

tion of "h" , are given in Appendix A. 

The algorithm proceeds towards the goal of assigning 

the correct matches to the targets by analysing, one by one, 

the rows of the target picture. 

1. For each element of the row the most probable matches are 

determined, that is, in a window in the candidate image 

centered at the same position of the target in the first 

image, those points for which the correlation values with 

the target in question are the highest are recorded. 

2. Only the most probable matches are first analysed. Among 

them, clusters of compatibility are searched. A cluster 

is defined as a set of compatible matches of k adjacent 

targets. The minimum value of k depends on the resolu- 

tion of the image; in our implementation k is fixed to 5 

(coarse resolution). 

3. The compatibility among such defined clusters is checked; 

each pair of adjacent clusters is checked to see if every 

element in one of them is consistent with all the ele- 

ments in the other. If the compatibility is not satis- 

fied, then the clusters are reduced until this is. If, 



because of the reduction, a cluster goes below the mini- 

mum allowed k, it is discarded. When all pairs of clus- 

ters have been checked, the matches which remain in them 

are assumed to be good matches and will go into the F I N A L  

matching list. 

4. The targets which have not been given matches by the pre- 

vious steps are now analysed. For each of them the list 

of the most probable matches is scanned in decreasing 

order of probability until a match, consistent with the 

ones which are in the F I N A L  list, is found, if any such 

match exists. These matches will go into a temporary 

(TEMP) list from which the largest number of matches com- 

patible with each other will eventually be extracted and 

added to the F I N A L  list. This step is repeated until 

each target has an associated match or till no more 

matches can be added to the F I N A L  list. Naturally, at 

each iteration, matches which have already been analysed 

will not be considered again. 

5. If a target still does not have an associated match, this 

is computed by linearly interpolating the ones of the 

closest targets which have been matched, provided that 

these targets are not at a distance greater than a given 

value, say three pixels. The targets remaining without a 

match are associated with the "null" match. 



4.3. EXAMPLE 

We shall now illustrate this procedure by means of 

an example. This shows how matches are assigned to a subset 

of targets points of a single row. The row in question is 

the 52nd. row of a 100 by 100 image. The targets go from 

the 62nd. to the 79th. position on the row. The value of 

"h" has been fixed to 1.6. 

- Table 1 lists for each target under consideration the most 
probable matches (matrix MATCHES) obtained using correla- 

tion. 

- Table 2 shows the results of the second step, i.e. the 

initial clusters which have been identified. 

- In Table 3 the clusters have been checked to see if they 

were compatible with each other. Two elements of the 

first cluster have been discarded. Table 3 also shows the 

mutual compatibilities between the two clusters. We can 

see that by eliminating the matches of targets (52,67) and 

(52,68) from the first cluster, we have minimized the 

number of matches to be discarded. The matches which re- 

main in the clusters go into the FINAL list. 

- In Table 4 the results of step 4 are shown. The FINAL 

list has been expanded. 

- Eventually three matches are computed by linear interpola- 
tion and the final FINAL list is in table 5. 



TABLE 1 

Matrix MATCHES. 
For each target (1st. and 5th. row) the 3 best 
matches are listed. For each target and for 
each match the y and x coordinates are shown. 

TABLE 2 

Matrix MATCHES. 
Two clusters have been identified by step 2. 



TABLE 3 

Matrix MATCHES. 
The clusters of TABLE 2 after they have 
been reduced by the consistency check. 

Table of compatibilities between the matches 
in the clusters. The x-coordinates of the 
corresponding targets are listed along the 
vertical and horizontal axis. 

- 
5 2  5 7  5 2  5 8  5 2  5 9  5 2  60  5 2  6 1  .......................... 
5 2  7 0  5 2  7 1  5 2  7 3  5 2  7 4  5 2  7 4  5 2  7 5  ------------------- 

FINAL list. 
The matches inserted into the FINAL list 
after step 3. 



TABLE 4 

- -- - - - 

Matrix MATCHES. 
The table shows the matches consistent with 
the clusters. 

TEMP list. 
The matches consistent with clusters are stored 
in a temporary list. 

FINAL list. 
The FINAL list is updated with the largest 
number of consistent matches from the TEMP 
list. In this example all the matches from the 
TEMP list are copied into the FINAL list and 
then step 4 is not repeated again. 

TABLE 5 

FINAL list 
The FINAL list after linear interpolation. 



4 .4 .  MORE DETAILS ABOUT THE ALGORITHM AND ITS APPLICATION 

TO STEREO PAIRS OF IMAGES 

We shall now describe more details about the al- 

gorithm we have discussed and then present some examples 

of its application to stereo pairs of images. 

We have said that the matching algorithm in order 

to define the correspondence between targets and candi- 

dates first defines, among the most probable matches, 

clusters of compatible matches. These clusters are as- 

sumed to be a good starting point for global matching, 

since the consistency among highly probable matches rein- 

forces the probability that each match is correct. Now, 

in order to ensure the consistency between different clus- 

ters, we check the clusters with each other and then re- 

duce them until the consistency is satisfied. In particu- 

lar, since the evidence that a target has a wrong match 

comes from the matches associated with its neighbours, we 

consider only those matches which come from adjacent clus- 

ters and which are associated with points in the first 

image displaced by not more than 10 pixels. 

We now assume that the majority of the cluster 

elements are correct matches for the corresponding tar- 

gets. This implies that an algorithm which reduces the 



clusters has to preserve the largest possible set of com- 

patible matches. In order to do this each element is as- 

signed a degree of incompatibility equal to the number of 

elements in the other cluster with which it is inconsis- 

tent. The element with the highest degree of incompati- 

bility is eliminated first and then the degrees of incom- 

patibility of those elements with which it was inconsis- 

tent are reduced by 1. The algorithm is applied itera- 

tively until no more incompatibilities are present. With 

reference to the example of section 4.3, first the match 

of target 68 and then the match of target 67 are eliminat- 

ed. 

We now note that in the cluster merging process 

(step 4 )  we have to solve a problem similar to the check- 

ing of clusters. In other words we have to determine the 

largest set of elements in the TEMP list which are compa- 

tible with each other. The above algorithm is still ap- 

plicable if we consider the sets of elements which have to 

be checked against each other as coinciding with the TEMP 

list. 

Fig. 4.1 4.2 4.3, a and b, show three pairs of 

images to which the matching algorithm has been applied. 

The first two pairs have been obtained by rotating the box 



fig. 4.1 
HATCHING. 

a and b. a stereo pair of views of  the box;  
d and e. some samples of  the matches determined by the 

algorithm; 
f. disparity nap. 



fig. 4.2 
MATCHING. 

and b. a stereo pair of views of the c o n e ;  
and e. some samples of the matches determined by the 
algorithm; 

disparity map. 



fig. 4 . 3  
MATCHING. 

a  and b .  a  s t e r e o  p a i r  o f  v i e w s  o f  t h e  Lab; 
d  and e .  some samples  o f  t h e  matches determined by  t h e  

a l g o r i t h m ;  
f .  d i s p a r i t y  m a p .  



and the cone by 5 degrees around a vertical axis. This has 

been chosen so as to be coincident with the hidden vertical 

edge in the case of the box, and so that it crosses the base 

circumference in the case of the cone. The pictures of the 

Lab have been taken from two different viewpoints with the 

orientations of the camera differing by about 1 degree. The 

values of "h" used in the three examples are 1.55, 1.55 and 

1.24 respectively. Fig. 4.1 4.2 4.3, c and d, show some 

sample targets and their corresponding matches. Finally 

fig. 4.l.e, 4.2.e and 4.3.e show the disparity maps computed 

by the algorithm. They represent the absolute values of the 

horizontal disparities. In particular, black points corres- 

pond to targets which have not been given a match by the al- 

gorithm. In the example of the cone note that since the 

axis of rotation does not pass through the vertex, non zero 

disparities for points close to the vertex are justified. 

Note that while the disparity maps of the box and of the 

cone give. a clear idea of the objects under analysis, the 

map of a more complicated scene does not do so (fig 4.3.e). 

This is due to the small disparities and to the coarse reso- 

lution of the images and also due to the one pixel impreci- 

sion of the algorithm (see app.A). In any case it is inter- 

esting to observe that the algorithm defines areas of uni- 

form disparity in accordance with the continuity assumption. 



APPENDIX A 
G 

CHECKING FACTOR 

Let P1 and P2 be two object points and pl and p2 

their projections on an image plane (fig. A.l). On the 

plane defined by P1 P2 and the center of projection C let 

A be the angle that the vector PIP2 forms with the image 

plane and let B be the angle that the ray projecting P1 

forms with the perpendicular to plp2, say "r" . We want to 

derive an expression for the ratio, say "h" , of the pro- 

jection of P1P2 in two different image planes and then de- 

termine the maximum value, say hmax, that this ratio can 

reach. Obviously, the two projections will be defined by 

a pair of targets and by an associated pair of possible 

matches. Note that in section 4.2 we have used the nota- 

tion "h" to refer to hmax. 

First we note that when, in one of the views, PI 

and P2 lie on the same projecting ray, the corresponding 

projection plp2=O and hmax becomes infinite. Since in 

this case Am90-B, in the following we will assume A to be 

less than 90-B. In practice A will be constrained to be 

less than the above theoretically permissible maximum. 

This implies some limitations for the algorithm and we 

will discuss them later. 





With reference to fig. A.l we can say that: 

plp2 = (PIP2 cosA - QP') d/D1 

and therefore 

pip2 = ~ 1 ~ 2  COSA[~ - QP'/(P~PZ COSA)] ~ / D I  

Since 

QP' P1P2 sinA tgB 

therefore 

For given P1 and P2 fixed in space, if we let A1 A2, 

B1 B2, Dl1 Dl2 and dl d2 be the above quantities special- 

ized for a stereo pair of views, wemwill obtain: 

h = [cosAl(l - tgAl tgB1) Dl2 dl] 
/[cosA2(1 - tg~2'tg~2) Dl1 d2] 

Eventually, if we assume that the distances Dl and d from 

the two image planes are constant, we can write: 

In order to generalize the above expression for 



all possible vectors PIP2 we assume A to be positive in 

the anticlockwise direction and B to be positive in the 

clockwise direction. Note that the largest absolute value 

of B, say Bmax, is achieved when the ray projecting P1 

crosses one of the edges of the image plane. Moreover, 

since we deal with small disparities not greater than 10 

pixels, the difference between B1 and B2 will be very 

small, about 1 degree. Finally, for almost horizontal 

vectors PlP2, the difference between A1 and A2 is approxi- 

mately the disparity angle between the image planes of the 

cameras. 

To derive the maximum value of h we express h as h=hl+h2 

where 

h2 is clearly maximum when abs(A1) is less than abs(A2), 

and abs(A2) is the maximum allowed. Under the assumption 

abs(A)<abs(90-B) the function l-tgAtgB ranges between 0 

and 2 and shows the maximum slope near the extremes, that 

is when abs(A) and abs(B) are both maximum. The maximum 

value of h2 is found when both numerator and denominator 

go to 0 and not to 2 since, in this case, for the same 

variations, smaller quantities are being divided. In 



other words, the maximum value of h2 is reached when 

abs(A1) and abs(B1) are less than abs(A2) and abs(B2) res- 

pectively and when A2 and B2 hold the maximum values and 

have the same sign. Since hl and h2 are maximum for the 

same values of A1 and A2, hmax is reached when: 

A2 abs(Amax) 

A1 = abs(Amax) - (angle between the image planes) 
B2 = abs(Bmax) 

B1 = abs(Bmax) - -1 

Now, to allow hmax to be a general check for the matching 

procedure we cannot choose' it either too large or too 

small. A large value of hmax would not be a good check 

for small variations of the projections in the two image 

planes, while a small value of hmax would consider to be 

wrong those variations corresponding to large values of 

A's and B's. Moreover, in deciding the value of hmax we 

consider the fact that a wrong match is more frequent when 

large variations occur. Thus, if hmax is not a strict 

check for small variations, this is not crucial. If we 

assume for example that the angles between the image 

planes and the value of Bmax, which are both constant of 

the system, are about 5 and 10 degrees respectively, with 

hmax=1.54 we can correctly check situations in which Amax 



is less than 75 degrees. Note that a large value of A 

corresponds to sharp variations in the depth of P1 and P2. 

In this case the continuity assumption is not satisfied. 

To conclude we want to stress three points. 

First, since the targets for which we check the consisten- 

cy of the matches are in a limited range, fixed to 10 in 

the implementation, even when the check is generous it 

does not allow in any case wide variations in the number 

of pixels. Secondly, to allow a match to be accepted, it 

must be consistent with the matches of all the targets 

within a distance of 10. Thirdly, because of the limita- 

tion on A, some correct matches could be discarded and 

some targets remain unmatched. The final linear interpo- 

lation can recover some of these matches. 

The checking procedure could be improved by defin- 

ing a correspondence between plp2 and the associated B 

angle. In this way, knowing the projections in two dif- 

ferent image planes and then B1 and B2, we could compute 

the maximum possible variation hmax as a function of B1 

and B2 with a consequently better precision for the entire 

checking procedure. This has not been implemented in the 

actual version of the algorithm. 
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