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Chapter 1 

Semantic Domains. 





1.1 Introduction. 

The theory of domains was established in order to have appropriate spaces on which to define 

semantic functions for the denotational approach to programming-language semantics. There were 
two needs: first, there had to be spaces of several different types available to mirror both the 

type distinctions in the languages and also to allow for different kinds of semantical constructs- 

especially in dealing with languages with side effects; and second, the theory had to account for 
computability properties of functions-if the theory was going to be realistic. The first need is 

complicated by the fact that types can be both compound (or made up from other types) and 
recursive (or self-referential), and that a high-level language of types and a suitable semantics of 

types is required to explain what is going on. The second need is complicated by these complications 

of the semantical definitions and the fact that it has to be checked that the level of abstraction 

reached still allows a precise definition of computability. 
This degree of abstraction had only partly been served by the state of recursion theory in 1969 

when the senior author of this report started working on denotational semantics in collaboration 
with Christopher Strachey. In order to fix some mathematical precision, he took over some defini- 

tions of recursion theorists such as Kleene, Nerode, Davis, and Platek and gave an approach to a 
simple type theory of higher-type functionals. It was only after giving an abstract characterization 
of the spaces obtained (through the construction of bases) that he realized that recursive defini- 

tions of types could be accommodated as well-and that the recursive definitions could incorporate 
function spaces as well. Though it was not the original intention to find semantics of the so-called 
untyped A-calculus, such a semantics emerged along with many ways of interpreting a very large 

variety of languages. 
A large number of people have made essential contributions to the subsequent developments, 

and they have shown in particular that domain theory is not one monolithic theory, but that 
there are several different kinds of constructions giving classes of domains appropriate for different 
mixtures of constructs. The story is, in fact, far from finished even today. In this report we will 

only be able to  touch on a few of the possibilities, but we give pointers to the literature. Also, 
we have attempted to explain the foundations in an elementary way-avoiding heavy prerequisites 
(such as category theory) but still maintaining some level of abstraction-with the hope that such 
an introduction will aid the reader in going further into the theory. 

The chapter is divided into seven sections. In the second section we introduce a simple class 
of ordered structures and discuss the idea of iked points of continuous functions as meanings for 

recursive programs. In the third section we discuss computable functions and effective presentations. 
The fourth section defines some of the operators and functions which are used in semantic definitions 

and describes their distinguishing characteristics. A special collection of such operators called 
powerdomains are discussed in the fifth section. Closure problems with respect to the convex 
powerdomain motivate the introduction of the class of bifinite domains which we describe in the 

sixth section. The seventh section deals with the important issue of obtaining fixed points for 

(certain) operators on domains. We illustrate the method by showing how to find domains D 



satisfying isomorphisms such as D 2 D x D 2 D + D and D 2 N + (D + D). (Such domains are 

models of the above-mentioned untyped X-calculus.) 

Many of the proofs for results presented below are sketched or omitted. With a few exceptions, 
the enthusiastic reader should be able to fill in proofs without great difficulty. For the exceptions 
we provide a warning and a pointer to the literature. 



1.2 Recursive definitions of functions. 

It is the essential purpose of the theory of domains to study classes of spaces which may be used 

to give semantics for recursive definitions. In this section we discuss spaces having certain kinds 
of limits in which a useful fixed point existence theorem holds. We will briefly indicate how this 
theorem can be used in semantic specification. 

1.2.1 Cpo's and the Fixed Point Theorem. 

A partially ordered set is a set D together with a binary relation C which is reflexive, anti-symmetric 

and transitive. We will usually write D for the pair (D,E) and abbreviate the phrase "partially 
ordered set" with the term "posetn. A subset M c D is directed if, for every finite set u C M, 
there is an upper bound x E M for u. A poset D is complete (and hence a cpo) if every directed 
subset M E D has a least upper bound U M  and there is a least element ID in D. When D is 
understood from context, the subscript on ID will usually be dropped. 

It is not hard to see that any finite poset, that has a least element is a cpo. The easiest such 

example is the one point poset I. Another easy example which will come up later is the poset 0 
which has two distinct elements T and I with I C T. The truth value cpo T is the poset which 
has three distinct points, I,true,false, where I C true and I C false (see Figure 1.1). To get 

an example of an infinite cpo, consider the set N of natural numbers with the discrete ordering 
(i.e. n E m if and only if n = m). To get a cpo, we need to add a "bottom" element to N. The 
result is a cpo NL which is pictured in Figure 1.1. This is a rather simple example because it does 
not have any interesting directed subsets. Consider the ordinal w ;  it is not a cpo because it has 

a directed subset (namely w itself) which has no least upper bound. To get a cpo, one needs to 
add a top element to  get the cpo wT pictured in Figure 1.1. For a more subtle class of examples 

of cpo's, let PS be the set of (all) subsets of a set S. Ordered by ordinary set inclusion, PS forms 
a cpo whose least upper bound operation is just set inclusion. As a last example, consider the set 
Q of rational numbers with their usual ordering. Of course, Q lacks the bottom and top elements, 

but there is another problem which causes Q to fail to be a cpo: Q lacks, for example, the square 

root of 2! However, the unit interval [0, 11 of red numbers does form a cpo. 
Given cpo's D and E, a function f : D -, E is monotone if f (x) C f(y) whenever x E y. If 

f is monotone and f ( U M )  = U f (M) for every directed M ,  then f is said to be continuous. A 
function f : D -, E is said to be strict if f ( I )  = I. We will usually write f : D o-t E to indicate 

that f is strict. If f ,g  : D + E, then we say that f C g if and only if f (x) E g(x) for every x E D. 
With this ordering, the poset of continuous functions D -+ E is itself a cpo. Similarly, the poset 
of strict continuous functions Do+ E is also a cpo. (Warning: we use the notation f : D + E to 

indicate that f is a function with domain D and codomain E in the usual set-theoretic sense. On 
the other hand, f E D -, E means that f : D -, E is continuous. A similar convention applies to 
D o+ E. )  

To get a few examples of continuous functions, note that when f : D -, E is monotone and D 
is finite, then f is continuous. In fact, this is true whenever D has no infinite ascending chains. 



Figure 1.1: Examples of cpo's. 

For example, any monotone function f  : NL + E is continuous. On the other hand, the function 

f  : wT -+ 0 which sends the elements of w to I and sends T to T is monotone, but it is not 

continuous. Given sets S, T and function f : S + T we define the extension of f to be the function 

f* : PS -, PT given by taking 

f 8 ( X )  = {f ( 4  I x  E XI 

for each subset X S. The function f' is monotone and, for any collection Xi of subsets of S, we 

have 

In particular, f*  is continuous. For readers who know a bit about functions on the real numbers, 

it is worth noting that a function f  : [O,1] -t [O ,1 ]  on the unit interval may be continuous in the 

cpo sense without being continuous in the usual sense. 

Now, the central theorem may be stated as follows: 

Theorem 1 (Fixed Point) If D is a cpo and f  : D 4 D is continuous, then there is a point 
fix( f) E D such that fix( f )  = f ( f ix (  f ) )  and fix( f )  E x for any x E D such that x  = f  ( x ) .  In other 
words, fix( f )  is the least fixed point o f  f .  

Proof: Note that I C f ( l ) .  By an induction on n using the monotonicity of f ,  it is easy to see 

that f n ( l )  f n + ' ( l )  for every n.  Set f i x ( f )  = U, f n ( l ) .  By  the continuitv of f ,  it is easy to see 

that f i x ( f )  is a fixed point of f .  To see that it is the least such, note that i f  .I i -  ;I fixed point of f ,  
then, for each n, f n ( l )  C f n ( x )  = x .  1 



1.2.2 Some applications of the Fixed Point Theorem. 

The factorial function. As a first illustration of the use of the Fixed Point Theorem, let us consider 
how one might define the factorial function fact : NL --t NL. The usual approach is to. say that 

the factorial function is a strict function which satisfies the following recursive equation for each 
number n: 

where *, - : N x N + N are multiplication and subtraction respectively. But how do we know that 

there is a function fact which satisfies this equation? Define a function 

by setting: 
1 i f n = O  

F(f)(n) = { n *  f ( n -  I) if n > 0 

I i f n = I  

for each f : NL o+ NL. The definition of F is not recursive (F appears only on the left side of the 
equation) so F certainly exists. Moreover, it is easy to check that F is continuous (but not strict). 

Hence, by the Fixed Point Theorem, F has a least fixed point fix(F) and this solution will satisfy 

the equation for fact. 

Context Free Gmmmars. One familiar kind of recursion equation is a-context free grammar. Let 
C be an alphabet. One uses context free grammars to specify subsets of the collection C* of finite 
sequences of letters from C.' Here are some easy examples: 

defines the strings of a's (including the empty string r). 

defines strings consisting either of the letter a alone or a string of n b's followed by an a 
followed by n more b's. 

defines strings of a's of even length. 

'The superscripted asterisk will be used in three entirely different ways in this chapter. Unfortunately, all of these 
usages are standard. Fortunately, however, it is usually easy to tell which meaning is correct from context. 



We may use the Fixed Point Theorem to provide a precise explanation of the semantics of these 

grammars. Since the operations X ct {E)UX{~), X H {a) u {b)X{b), and X w {E) u { ~ } { ~ ) u X X  

are all continuous in the variable X ,  it follows from the Fixed Point Theorem that equations such 

as 

2. X = {a) U {b)X{b) 

corresponding to  the three grammars mentioned above all have least solutions. These solutions are 

the languages defined by the grammars. 

The Schroder-Bernstein Theorem. As a set-theoretic application of the Fixed Point Theorem we 

offer the proof of the following: 

Theorem 2 (Schroder-Bernstein) Let S  and T  be sets. I f f  : S + T and g : T + S are injec- 

tions, then there is a bijection h : S + T .  

Proof: The function Y c-, (T - f*(S))  U f*(g*(Y)) from PT to PT is easily seen to be continuous 

with respect to the inclusion ordering. Hence, by the Fixed Point Theorem, there is a subset 

In particular, T  - Y = f ' ( S  - g*(Y))  since 

T  - Y = T  - ( (T  - f ' ( S ) )  U f ' ( g8 (Y ) ) )  

= ( T  - (T - f * (S ) ) )  n (T - ( f ' ( g* (Y ) ) ) )  
= f ' ( S )  n (T  - ( f ' ( g 8 ( Y ) ) ) )  

= r ( s  - g 8 ( Y ) )  

Now define h : S -t T  by 

y if x  = g ( y )  for some y E Y 
h(x )  = 

f ( x )  otherwise 

This makes sense because g is an injection. Moreover, h  itself is an injection since f and g are 
injections. To see that it is a surjection, suppose y E T. If y E Y, then h(g(y)) = y. If y @ T', then 

y E f . (S  - g * ( Y ) ) ,  so y  = f ( x )  = h(x)  for some x. Thus h is a bijection. a 

1.2.3 Uniformity. 

The question naturally arises as to why we take the least fixed point in order to get the meaning. In 

most instances there will be other choices. There are several answers to this question. First of all, it 

seems intuitively reasonable to take the least defined function satisfying a given recursive equation. 



But more importantly, taking the least fixed point yields a canonical solution. Indeed, it is possible 

to show that, given a cpo D, the function fixD : (D -, D) + D given by f i x D ( f )  = Un fn(l) is 

actually continuous. But are there other operators like fix that could be used? A definition is 

helpful: 

Definition: A fized point operator F is a class of continuous functions 

such that, for each cpo D and continuous function f : D -+ D, we have F D ( ~ )  = f ( f ' ~ ( f  )). I 

Let us say that a fixed point operator F is uniform if, for any pair of continuous functions 
f : D + D and g : E + E and strict continuous function h : Do+ E which makes the following 

diagram commute 

we have h(FD( f )) = FE(g). We leave it to the reader to show that fix is a uniform fixed point 

operator. What is less obvious, and somewhat more surprising, is the following: 

Theorem 3 fix is the unique uniform fized point operator. 

Proof: To see why this must be the case, let D be a cpo and suppose f : D + D is continuous. 

Then the set 

D'= {x E D  1 x C f i x ( f ) )  

is a cpo under the order that i t  inherits from the order on D. In particular, the restriction f' of 
f to D' has f i xD( f )  as its unique fixed point. Now, if i : D' -, D is the inclusion map then the 
following diagram commutes 

f' 

Thus, if F is a uniform fixed point operator, we must have FD( f )  = FDl( f'). But Fat( f ' )  is a fixed 
point of f' and must therefore be equal to  fix^( f ). I 

We hope that these results go some distance toward convincing the reader that fix is a reasonable 
operator to use for the semantics of recursively defined functions. 



1.3 Effectively presented domains. 

There is a significant problem with the full class of cpo's as far as the theory of computation goes. 

There does not seem to be any reasonable way to define a general notion of comp.utable function 

between cpo's. It is easy to  see that these ideas make perfectly good sense for a noteworthy 

collection of examples. Consider a strict function f : N L  o+ NL.  If we take f (n) = I to mean that 

f is undefined at n, then f can be viewed as a partial function on N. We wish to have a concept 

of computability for functions on (some class of) cpo's so that f is computable just in case it 

corresponds to the usual notion of a partial recursive function. But we must also have a definition 

that applies to functionals, that is, functions which may take functions as arguments or return 

functions as values. We already encountered a functional earlier when we defined the factorial. To 

illustrate the point that there is a concept of computability that applies to such operators, consider, 

for example, a functional F : (NI o+ N1) o+ NI which takes a function f : N L  a+ N l  and computes 

the value of f on the number 3. The functional F is continuous and it is intuitively computable. 
This intuition comes from the fact that, to compute F ( f )  on an argument one needs only know 

how to compute f on an argument. 

Our god is to define a class of cpo's for which a notion of "finite approximation" makes sense. 

Let D be a cpo. An element x E D is compact if, whenever M is a directed subset of D and 

x t U M, there is a point y E M such that x E y. We let K(D) denote the set of compact elements 

of D. The cpo D is said to be algebmic if, for every x E D, the set M = {xo E I i (D)  I s o  x} is 

directed and U M = x. In other words, in an algebraic cpo, each element is a directed limit of its 

"finiten (compact) approximations. If D is algebraic and K(D) is countable, then we will say that 

D is a domain. 

With the exception of the unit interval of real numbers, all of the cpo's we have mentioned so far 

are domains. The compact elements of the domain NI cw N i  are the functions with finite domain 

of definition, i.e. those continuous functions f : NI c++ N I  such that {n 1 f (n)  # 1) is finite. As 

another example, the collection PN of subsets of N,  ordered by subset inclusion is a domain whose 

compact elements are just the finite subsets of N .  
One thing which makes domains particularly nice to work with is the way one may describe a 

continuous function f : D + E between domains D and E using the compact elements. Let Gf be 

the set of pairs (so, yo) such that xo E K(D) and yo E K(E)  and yo 5 f(xo). If x E D, then one 

may recover from Gf the value of f on x as 

f (x) = U{YO 1 (so, YO) E Gf and xo L x). 

This allows us to characterize, for example, a continuous function f : PN -+ PN between uncount- 
able cpo's with a countable set Gf. The significance of this fact for the theory of computability is 

not hard to see; we will say that the function f is computable just in case Gf is computable (in a 

sense to be made precise below). 



1.3.1 Normal subposets and projections. 

Before we give the formal definition of computability for domains and continuous functions, we 

digress briefly to  introduce a useful relation on subposets. Given a poset (A, C) and x E A, let 

~ x = { Y E A I Y L x ) .  

Definition: Let A be a poset and suppose N E A. Then N is said to  be normal in A (and we 

write N a A) if, for every x E A, the set N n x is directed. I 

The following lemma lists some useful properties of the relation 4. 

Lemma 4 Let C be a poset with a least element and suppose A and B are subsets of C .  

1. I f A a B a C  then A a C .  

9. If A a C, then I E A. 

4. (P(C), a) is a cpo with {I) as its least element. I 

Intuitively, a normal subposet N aA is an "approximation" to A. The notion of normal subposet 
is closely related to one of the central concepts in the theory of domains. A pair of continuous 

functions g : D -+ E and f : E + D is said to be an embedding-projection pair ( g  is the embedding 

and f is the projection) if they satisfy the following 

where idD and idE are the identity functions on D and E respectively (in future, we drop the 
subscripts when D and E are clear from context) and composition of functions is defined by 

(f o g)(x) = f(g(x)). One can show that each of f and g uniquely determines the other. Hence 
it makes sense to refer to  f as the projection determined by g and refer to g as the embedding 
determined by f .  There is quite a lot to be said about properties of projections and embeddings 
and we cannot begin to provide, in the space of this chapter, the full discussion that these concepts 

deserve (the reader may consult Chapter 0 of [GHK*80] for this). However, a few observations will 
be essential to what follows. We first provide a simple example: 

Example: If f : D + E is a continuous function then there is a strict continuous function 
strict : (D + E) + ( D M  E) given by: 

f (x) if x # 1 strict(f)(x) = { 
I i f x = I  

The function strict is a projection whose corresponding embedding is the inclusion map incl : 

( D o - , E ) - ( D + E ) . I  



In our discussion below we will not try to make much of the distinction between f : D CH E 
and incl( f )  : D -+ E (for example, we may write id : D o-+ D as well as id  : D + D or even 

incl(id) : D D). From the two equations that define the relationship between a projection and 

embedding, i t  is easy to  see that a projection is a surjection (i.e. onto) and an embedding is a.n 

injection (i.e. one-bone).  Thus one may well think of the image of an embedding g : D 4 E as a 

special kind of sub-cpo of E. We shall be especially interested in the case where an embedding is an 

inclusion as in the case of D o+ E and D + E.  Let D be a cpo. We say that a continuous function 

p : D + D is a f i n i tay  projection if p o p  = p C id  and im(p) = {p(x) I x E D) is a domain. Note, in 

particular, that the inclusion map from im(p) into D is an embedding (which has the corestriction 

of p to  its image as the corresponding projection). It is possible to characterize the basis of im(p) 

as follows: 

Lemma 5 If D is  a domain and p : D + D is  a finitary projection, then the set of compact elements 
of im(p) is  just im(p) n K(D). Moreover, im(p) fl K(D)  a K(D). I 

Suppose, on the other hand, that N a K(D). Then it is easy to check that the function p~ : D -+ D 
given by 

PN(X) = U{Y E N I Y 2) 

is a finitary projection. Indeed, the correspondence N w p~ is inverse to the correspondence 

p w im(p) n K(D)  and we have the following: 

Theorem 6 For any domain D there is an  isomorphism between the cpo of normal substructures 
of K(D)  and the poset Fp(D) of finitary projections on D. 1 

In particular, if M Fp(D) is directed then im(U M )  is a domain. This is a fact which will be 

significant later. Indeed, the notions of projection and normal subposet will come up again and 

again throughout the rest of our discussion. 

1.3.2 Effectively presented domains. 

Returning now to  the topic of computability, we will say that a domain is effectively presented if 

the ordering on its basis is decidable and it is possible to effectively recognize the finite normal 

subposets of the basis: 

Definition: Let D be a domain and suppose d : N -, K(D) is a surjection. Then d is an effective 
presentation of D if 

1. the set {(m,n) I dm 5 dn)  is effectively decidable, and 

2. for any finite set u N ,  it is decidable whether {d, I n E u )  Q K ( D ) .  

If (D, d) and (E ,  e )  are effectively presented domains, then a continuous function f : D -t E is said 

to be computable (with respect to d and e )  if and only if, for every n E N ,  the w t  (m  I em C f (d,)} 

is recursively enumerable. I 



Unfortunately, the full class of domains has a serious problem. It is this: there are domains D, E 
such that the cpo D + E is not a domain (we will return to this topic in Section 1.6). Since we 

wish to use D + E in defining computability at higher types, we need some restriction on domains 
D and E which will insure that D + E is a domain. There are several restrictions which will work. 
We begin by presenting one which is relatively simple. Another will be discussed later. 

Definition: A poset A is said to be bounded complete if A has a least element and every bounded 

subset of A has a least upper bound. I 

The bounded complete domains are closely related to a more familiar class of cpo's which arise 

in many places in classical mathematics. A domain D is a (countably based) algebraic l~t t ice  if every 

subset of D has a least upper bound. It  is not hard to see that a domain D is bounded complete if 
and only if the cpo D~ which results from adding a new top element to D is an algebraic lattice. 
The paset PN is an example of an algebraic lattice. On the other hand, the bounded complete 

domain NL o+ NI lacks a top element and therefore fails to be an algebraic lattice. All of the 

domains we have discussed so far are bounded complete. In particular, we have the following: 

Theorem 7 If D and E am bounded complete domains, then D -+ E is also a bounded conaplete 
domain. Moreover, if D and E have eflective presentations, then D -+ E has an eflective presen- 
tation as well. Similar facts hold for Do+ E.  

Proof: (Sketch) It  is not hard to see that D -, E is a bounded complete cpo whenever E is. 
To prove that D -+ E is a domain we must demonstrate its basis. Suppose N a K ( D )  is finite 

and s : N -+ K ( E )  is monotone. Then the function step($) : D -+ E given by taking step(s)(x) = 
U{f(y) I y E N n -1 x }  is continuous and compact in the ordering on D -+ E. These are called step 
functions and it is possible to show that they form a basis for D -+ E. The proof that the poset 

of step functions has decidable ordering and finite normal subposets is tedious, but not difficult, 
using the effective presentations of D and E. The proof of these facts for D o+ E is essentially the 
same since the strict step functions form a basis. I 

In the remaining sections of the chapter we will discuss a great many operators like . -t . and - .. We will leave it to the reader to convince himself that all of these operators preserve the 
property of having an effective presentation. Further discussion of computability on domains may 
be found in [Smy77] and [KT84]. It is hoped that future research in the theory of domains will 

provide a general technique which will incorporate computability into the logic whereby we reason 
about the existence of our operators. This will eliminate the need to provide demonstrations of 

effective presentations. This is a central idea in current investigations but it is beyond our scope 
to discuss it further. 



1.4 Operators and functions. 

There are a host of operators on domains which are needed for the purposes of semantic definitions. 

In this section we mention a few of them. An essential technique for building new operators 

from those which we present here will be introduced below when we discuss solutions of recursive 

equations. 

1.4.1 Products. 

Given posets D and E, the product D x E is the set of pairs (x, y), where x E D and y E E .  
The ordering is coordinatewise, i. e. (x, y) C (x', Y') if and only if x E x' and y C_ y'. We define 
functions fst : D x E + D and snd : D x E + E given by fst(x, y) = x and snd(x, y) = y. If a 

subset L  C D x E is directed, then 

M = fst*(L) = {x I 3y E E. (x, y) E L) 
N = snd*(L) = {y I 3s E D. (3, y) E L )  

are directed. In particular, if D and E are cpo's, then U L  = (U M ,  N) and, of course, L D ~ E  = 
(ID1 IE), so D x E is a cpo. Indeed, if D and E are domains, then D x E is also a domain with 

K ( D  x E )  = K(D)  x K ( E ) .  The property of bounded completeness is also preserved by x . 
Given cpos D,  E, F, one can show that a function f : D x E + F is continuous if and only if it 

is continuous in each of its arguments individually. In other words, f is continuous iff each of the 

following conditions holds: 

1. For every directed set M C D and element e E E, the function fi : D -, F given by x I+ 

f (x, e) is continuous. 

2. For every directed set N E E and element d E D, the function f2 : E + F given by y I+ 

f (d, y) is continuous. 

We leave the proof of this equivalence as an exercise for the reader. 

It is easy to see that each of the functions fst and snd is continuous. Moreover, given 
any cpo F and continuous functions f : F -t D and g : F + E, there is a continuous function 

( f , g ) : F +  D x E such that 

fsto (1,s) = f 
snd 0 ( f ,g )  = g 

and, for any continuous function h : F 4 D x E ,  

(fst o h,snd o h) = h. 

The function (f, g) is given by (f, g)(x) = (f (x), g(x)). 

There is another, more pictorial, way of stating these equational properties of the operator 
(-, -) using a commutative diagram. The desired property can be stated in the following manner: 

given any cpo F and continuous functions f : F -+ D and g : F -, E, there is a unique continuous 

function (f, g) which completes the following diagram: 



This is referred to as the universal property of the operator x .  As operators are given below we 
will describe the universal properties that they satisfy and these will form the basis of a system of 
equational reasoning about continuous functions. Virtually all of the functions needed to describe 
the semantics of (a wide variety of) programming languages may be built from those which are 

used in expressing these universal properties! 
Given continuous functions f : D + D' and g : E + El, we may define a continuous function 

f x g which takes ( x ,  y) to (f (x),g(y)) by setting 

f x g =  (f ofst,gosnd): D x E + D'x E'. 

It is easy to show that idD x idE = idDxE and 

Note that we have "overloadedn the symbol x  so that it works both on pairs of domains and pairs of 

functions. This sort of overloading is quite common in mathematics and we will use it often below. 
In this case (and others to follow) we have an example of what mathematicians call a functor. 

There is a very important relationship between the operators and x .  Let D, E and F be 

cpo's. Then there is a function 

apply : ((E + F )  x E) --+ F 

given by taking apply( f ,  x) to be f (x) for any function f : E -t F and element x E E. Indeed, the 

function apply is continuous. Also, given a function f : D x E -+ F, there is a continuous function 

given by taking curry( f )(x)(Y) to be f (x, y). Moreover, curry( f )  is the unique continuous function 

which makes the following diagram commute: 



This uniqueness condition is equivalent to the following equation: 

To see this, suppose equation (1.1) holds and h satisfies 

f = apply o (h x id) 

then 

curry(f) = curry(apply 0 (h x id)) = h 

so the uniqueness condition is satisfied. On the other hand, if curry( f )  is uniquely determined by the 

diagram above, then equation (1.1) follows immediately from the commutativity of the following 

diagram: 

for f = apply o (h x idE). 

It is often useful to have a multiary notation for products. We write 

and define projections 

on; : x(D1, ..., Dn) + D; 

on; = snd o fstn-' 

Similarly, one defines a multiary version of the pairing operation by taking ( ) to be the identity on 

the one point domain and defining 

(fly. 0 . 7  fn) = ((fi, -. fn-I), fn). 

These multiary versions of projection and pairing satisfy a universal property similar to the one for 
the binary product. 



1.4.2 Church's A-notation. 

If we wish to define a function from, say, natural numbers to natural numbers, we typically do 
so by describing the action of that function on a generic number x (a variable) using previously 

defined functions. For example, the squaring function f has the action x w x * x where * is the 

multiplication function. We may now use f to define other functions: for example, a function g 

which takes a function h : N + N to f o h. Continuing in this way we may construct increasingly 

complex function definitions. However, it is sometimes useful to have a notation for functions which 

alleviates the necessity of introducing intermediate names. This purpose is served by a terminology 

known as A-notation which is originally due to Church. 
The idea is this. Instead of introducing a term such as f and describing its action as a function, 

one simply gives the function a name which is basically a description of what it does with its 

argument. In the above case one writes Ax. x * x for f and Ah. f o h for g .  One can use this 

notation to define g without introducing f by defining g to be the function Ah. (Ax. x * x) o h. The 
Ah at the beginning of this expression says that g is a function which is computed by taking its 
argument and substituting it for the variable h in the expression (Ax. x * x) o h. 

The use of the Greek letter A for the operator which binds variables is primarily an historical ac- 

cident. Various programming languages incorporate something essentially equivalent to A-no t at ion 
using other names. In mathematics textbooks it is common to avoid the use of such notation by 

assuming conventions about variable names. For example, one may write 

for the function which takes a real number as an argument and produces as result the square of 

that number less its double. An expression such as 

would denote a function which takes two numbers as arguments-that is, the values of x and y- 

and produces the square of the one number plus the square of the other plus the product of the 

two. One might therefore provide a name for this function by writing something like: 

So f is a function which takes a pair of numbers and produces a number. But what notation 
should we use for the function g that takes a number n as argument and produces the function 
n I+ x2 + x * n + n2? For example, g(2 )  is the function x2 + 2 * x + 4. It is not hard to see that this 

is closely related to the function curry which we discussed above. Modulo the fact that we defined 
curry for domains above, we might have written g = curry(f). Or, to define g directly, we would 
write 

g = Ay. Ax. z2 + x * y + y2. 

The definition of f would need to be given differently since f takes a pair as an argument. We 
therefore write: 

f = A(x,y). x 2 + x *  y + y 2 .  



There is .no impediment to using this notation to describe higher-order functions as well. For 

example, 

Af. f (3) 

takes a function f and evaluates it on the number 3 and 

takes a function and composes it with itself. But these definitions highlight a very critical issue. 
Note that both definitions are ambiguous as they stand. Does the function A f.  f(3) take, for 

example, functions from numbers to reds as argument or does it take a function from numbers to 

sets of numbers as argument? Either of these would, by itself, make sense. What we need to do 

is indicate somewhere in the expression the types of the variables (and constants if their types are 

not already understood). So we might write 

for the operator taking a real valued function as argument and 

A f :  N -+ PN. f(3) 

for the operator taking a PN valued function. 

So far, what we have said applies to almost any class of spaces and functions where products 

and an operator like curry are defined. But for the purposes of programming semantics, we need a 

semantic theory that includes the concept of a fixed point. Such fixed points are guaranteed if we 

stay within the realm of cpo's and continuous functions. But the crucial fact is this: the process of 
A-abstraction preserves continuity. This is because curry(f) is continuous whenever f is. VITe may 

therefore use the notational tools we have described above with complete freedom and still be sure 

that recursive definitions using this notation make sense. 

Demonstrating that the typed A-calculus ( i . e .  the system of notations that we have been de- 

scribing informally here) is really useful in explaining the semantics of programming languages is 

not the objective of this chapter. However, one can already see that it provides a considerable 

latitude for writing function definitions in a simple and mathematically perspicuous manner. 

1.4.3 Smash products. 

In the product D x E of cpo's D and E, there are elements of the form (x, I )  and ( I ,  y). If x # I 
or y # I, then these will be distinct members of D x E. In programming semantics, there are 

occasions when it is desirable to identify the pairs (x, I) and (I, y). For this purpose, there is a 

collapsed version of the product called the smash product. For cpo's D and E, the smash product 

D @ E is the set 

{ ( X ~ Y )  E D x E I x # I and Y # I ) U { I D N E )  



where ~ D @ E  is some new element which is not a pair. The ordering on pairs is coordinatewise and 

we stipulate that I D ~ E  5 z for every z E D  @ E.  There is a continuous surjection 

given by taking - 

(x,y) x # I a n d x # I  
srnash(x, y) = 

I D ~ E  otherwise 

This function establishes a useful relationship between D x  E  and D 8 E. In fact, it is a projection 

whose corresponding embedding is the function unsmash : D 8 E  -t D  x E given by 

if t = (x,y) is a pair 
unsrnash(z) = 

(1,1) if z = ID@E { z  

Let us say that a function f : D x  E + F is bistn'ct if f ( x ,  y) = 1 whenever x = I or y = I. If 
f : D x  E  + F is bistrict and continuous, then g = f o unsmash is the unique strict, continuous 

function which completes the following diagram: 

D x E  

If f : D  + D' and g : E + E' are strict continuous functions, then f @ g = smash o (f x g) o unsmash 
is the unique strict, continuous function which completes the following diagram: 

f x 9  
D x E  - D x - E  

smash smash 

As with the product x  and function space +, there is a relationship between the smash product 

8 and the strict function space o+. In particular, there is a strict continuous function strict-apply 

such that for any strict function f ,  there is a unique strict function strict-curry such that the 

following diagram commutes: 

strict-curry( f )  @ id I strict-apply 



1.4.4 Sums and lifts. 

Given cpo's D and E, we define the coalesced sum D $ E to be the set 

where D - {ID) and E - {IE) are the sets D and E with their respective bottom elements removed 
and LD@E is a new element which is not a pair. It is ordered by taking ID@E E z for all z E D @ E 
and taking (x,m) L (y, n) if and only if m = n and x L y. There are strict continuous functions 

in1 : D cw(D $ E )  and inr : E c n ( D  $ E )  given by taking 

and 

Moreover, if f : D cn F and g : E cw F are strict continuous functions, then there is a unique strict 

continuous function [f, g] which completes the following diagram: 

The function [ f ,  g] is given by 

f(x) if z = (2,O) 
if z  = (y, 1)  

I i f z = I .  

Given continuous functions f : D cw Dl and g : E cw El, we define 

As with the product, it is useful to have a multiary notation for the coalesced sum. We define 

$0 = I 
$(Dl?. . -, D,) = $(Dl,. . . , D n 4 )  $ D, 

and 

in; = inr o inln-'. 



down 

Figure 1.2: The lift of a cpo. 

One may also define [fi,. . . , f,] and prove a universal property. 
Given a cpo D,  we define the lift of D to be the set Dl = (D x (0)) U {I), where I is a new 

element which is not a pair, together with an partial ordering which is given by stipulating that 

(x,0) (y,O) when x C y and I E z for every z E DL. In short, DL is the poset obtained by 

adding a new bottom to D--see Figure 1.2. It is easy to show that DL is a cpo if D is. We define 

a strict continuous function down : DL cw D by 

x i fz=(x ,O)  
down(z) = 

ID otherwise 

and a (non-strict) continuous function up : D -+ DL given by up : z H (x, 0). These functions are 
related by 

down o up = idD 

up o down 7 idD, 

These inequations are reminiscent of those which we gave for embedding-projection pairs, but the 

second inequation has 7 rather than C. We will discuss such pairs of functions later. Given cpo's 
D and E and continuous function f : D + E, there is a unique strict continuous function f t which 
completes the following diagram: 

Given a continuous function f : D -+ E, we define a strict continuous function 



Given cpo's D  and E ,  we define the separated sum D  + E to be the cpo DL $ El. By the 

universal properties for $ and (.)I, we know that h = [ft,gt] is the unique strict continuous 

function which completes the following diagram: 

However, h may not be the only continuous function which completes the diagram. Given contin- 

uous functions f : D  -t Dl and g : E + El, we define 

1.4.5 Isomorphisms and closure properties. 

There are quite a few interesting relationships between the operators above which are implied by 

the definitions and commutative diagrams. We list a few of these in the following lemmas. 

Lemma 8 Let D ,  E  and F  be cpo's, then 

1. D x E Z E x D ,  

2. ( D  x  E )  x F  Y D x ( E  x F ) ,  

Lemma 9 Let D ,  E and F be cpo's, then 



We remarked already that D + E and D cw E are bounded complete domains whenever D and 

E  are. It is not difficult to see that similar closure properties will hold for the other operators we 

have defined in this section: 

Lemma 10 If D  and E are bounded complete domains then so are the cpo's D -+ E,  D cw E ,  
D x  E ,  D @ E ,  D + E ,  D $ E ,  DL.I  

Further discussion of the operators defined in this section and others may be found in [Sco82a] 
and [Sco82b]. 



1.5 Powerdomains. 

We now turn our attention to another collection of operators on domains. Just as we have defined 

a computable analog to the function space, we will now define a computable analog to the powerset 

operation. Actually, we will produce three such operators. In the domain theory literature these 
are called powerdomains. If D is a domain we write 

r Dfl for the upper powerdomain of D, 

r Dk for the convex powerdomain of D, and 

D~ for the lower powerdomain of D. 

The names we use for these operators come from the concepts of upper and lower semi-continuity 

and the interested reader can consult [Smy83b] for a detailed explanation. They commonly appear 

under other names as well. The convex powerdomain Dk was introduced by Gordon Plotkin [Plo76] 

and is therefore sometimes referred to as the Plotkin gowerdomain. The upper powerdomain Dn was 

introduced by Mike Smyth [Smy78] and is sometimes called the Smyth powerdomain. For reasons 

that we will discuss briefly below, this latter powerdomain corresponds to the total correctness 

interpretation of programs. Since Tony Hoare has done much to popularize the study of partial 

correctness properties of programs, the remaining powerdomain pow which corresponds to the 

partial correctness interpretation-sometimes bears his name. 

1.5.1 Intuition. 

There is a basic intuition underlying the powerdomain concept which can be explained through 

the concept of partial information. To keep things simple, let us assume that we are given a finite - 
poset A and asked to  form the poset of finite non-empty subsets of A. As a first guess, one might 

take the non-empty subsets and order them by subset inclusion. However, this operation ignores 

the order structure on A! Think of A as a collection of partial descriptions of data elements: x E y 
just in case x is a partial description of y. What should it mean for one non-empty subset of A 
to be a "partial description" of another? The are at least three reasonable philosophies that one 

might adopt in attempting to answer this question. 

Suppose, for example, that I hold a bag of fruit and I wish to give you information about what 

is in the bag. One such description might be 

A fruit in the bag is a yellow fruit or a red fruit. 

This description is based on two basic pieces of data: "is a yellow fruit" and "is a red fruit". These 

are used to restrict the kinds of fruit which are in the bag. A more informative description of this 

kind would provide further restrictions. Consider the following example: 

A fruit in the bag is a yellow fruit or a cherry or a strawberry. 



It is based on three pieces of data: "is a yellow fruit", 9 s  a cherry" and "is a strawberryn. Since 

these three data provide further restrictions on the contents of the bag (by ruling out the possibility 

of an apple, for example) it is a more informative statement about the bag's contents. On the other 

hand, 

A fruit in the bag is a yellow fruit or a red fruit or a purple fruit. 

is a less informative description because it is more permissive; for instance, it does not rule out 
the possibility that the bag holds a grape. Now suppose that u, v are subsets of the poset A from 

the previous paragraph. With this way of seeing things, we should say that u is below v if the 

restrictions imposed by v are refinements of the restrictions imposed by u: that is, for each y E v, 

there is an x E u such that x y. This is the basic idea behind the upper powerdomain of A. 
Returning to the bag of fruit analogy, we might view the following as a piece of information 

about the contents of the bag 

There is some yellow fruit and some red fruit in the bag. ' 

This information is based on two pieces of data: "is a yellow fruit" and "is a red fruit". However, 

these data are not being used as before. They do not restrict possibilities; instead they offer a 
positive assertion about the contents of the bag. A more informative description of this kind would 

provide a further enumeration and refinement of the contents: 

There is a banana, a cherry and some purple fruit in the bag. 

This refined description does not rule out the possibility that the bag holds a apple, but it does 

insure that there is an cherry. A statment such as 

There is some yellow fruit in the bag. 

is less informative since it does not mention the presence of red fruit. Now suppose that u,  v are 

subsets of the poset A. With this way of seeing things, we should say that u is below v if the 
positive assertions provided by u are extended and refined by v: that is, for each x E u, there is a 

y E v such that x C y. This is the basic idea behind the lower powerdomain of A. 

Now, the convex powerdomain combines these two forms of information. For example, the 
assertion 

If you pull a fruit from the bag, then i t  must be yellow or a cherry, and you can pull a 
yellow fruit fiom the bag and you can pull a cherry from the bag. 

is this combined kind of information. The pair of assertions means that the bag holds some yellow 
fruit and at least one cherry, but nothing else. A more refined description might be 

Ifyou pull a fruit from the bag, then i t  must be a banana or a cherry, and you can pull 
a banana from the bag and you can pull a cherry from the bag. 

A less refined description might be 



If you pull a fruit from the bag, then it  must be yellow or red, and you can pull a yellow 

fruit from the bag and you can pull a red fruit from the bag. 

The reader may be curious about what bags of fruit have to do with programming semantics. The 

powerdomains are used to model non-deterministic computations where one wishes to speak about 

the set of outcomes of a computation. How one wishes to describe such outcomes will determine 

which of the three powerdomains is used. We will attempt to illustrate this idea later in this 

section-when we have given some formal definitions. 

1.5.2 Formal definitions. 

In order to  give the definitions of the powerdomains, it is helpful to have a little information about 

the representation of domains using the concept of a pre-order: 

Definition: A pre-order is a set A together with a binary relation I- which is reflexive and transitive. 

It is conventional to think of the relation a C b as indicating that a is "larger" than b (as in 

mathematical logic, where I$ t- 1C, means that the formula 1C, follows from the hypothesis 4). Of 
course, any poset is also a pre-order. On the other hand, a pre-order may fail to be a poset by not 

satisfying the anti-symmetry axiom. In other words, we may have x t- y and y I- x but x # y. By 

identifying elements x, y which satisfy x I- y and y t- x, we obtain an induced partially ordered set 

from a pre-order (and this why they are called pre-orders). We shall be particularly interested in 

a special kind of subset of a pre-order: 

Definition: An ideal over a pre-order ( A ,  t-) is a subset s A such that 

1. if u C s is finite, then there is an x E s such that x t- y for each y E u,  and 

2. if x E s a n d  x I- y, then y E s.1 

In short, an ideal is a subset which is directed and downward closed. If x E A for a pre-order A, 

then the set 

L ~ = { Y E A I ~ I - Y )  

is an ideal called the principal ideal generated by x. To induce a poset from a pre-order, one can 

take the poset of principal ideals under set inclusion. The poset of all ideals on a pre-order is 
somewhat more interesting: 

Theorem 11 Given a countable pre-order (A,I-), let D be the poset consisting of the ideals over 
A, ordered by set inclusion. If there is an element I E A such that x I- I for each x E A, then D 
is a domain and K(D) is the set of principal ideals over A. 

Proof: Clearly, the ideals of A form a poset under set inclusion and the principal ideal J. I is the 

least element. To see that this poset is complete, suppose that M & D and let x = U M. If we can 

show that x is an ideal, then it is certainly the least upper bound of M in D. To this end, suppose 



u C_ x is finite. Since each element of u must be contained in some element of Ai, there is a finite 

collection of ideals s M such that u Us. Since M is directed, there is an element y E M such 

that z C y for each z E s. Thus u E y and since y is ideal, there is an element a E y such that 

b E a for each b 6 u. But a E y C 2, so it follows that x is an ideal. 
To see that D is a domain, we show that the set of principal ideals is a basis. Suppose A 4  D 

is directed and 1 a C U M for some a E A. Then a E x for some x E M, so 1 a C x. Hence J. a 

is compact in D. Now suppose x E D and u E A is a finite collection of elements of A such that 
1 a C x for each a E u. Then u x and since x is an ideal, there is an element b E x with b I- a 
for each a E u. Thus 1 a E 1 b for each a E u and it follows that the principal ideals below x form 
a directed collection. It  is obvious that the least upper bound (i.e. union) of that collection is x. 

Since x was arbitrary, it follows that D is an algebraic cpo with principal ideals of A as its basis. 
Since A is countable, there are only countably many principal ideals, so D is a domain. 1 

For any set S, we let P j (S)  be the set of finite non-empty subsets of S. We write Pf(S) for 

the set of all finite subsets (including the empty set). Given a poset (A, c), define a pre-ordering 

I-fl on Pj(A) as follows, 

u I-I v if and only if (Vx E u)(3y E v). x 2 y. 

Dually, define a pre-ordering tb on Pj(A) by 

u kb v if and only if (Vy E v)(3x E u). x 7 y. 

And define I-h on Pj(A) by 

u v if and only if u kn v and u kb v. 

If D is a domain, then let D I  be the domain of ideals over (Pj(K(D)), I-I). We call ~b the convex 

powerdomain of D. Similarly, define D h d  ndb to be the domains of ideals over (Pj(K(D)), I-" and 
(Pj(K(D)), kb) respectively. We call D M  the upper powerdomain of D and D~ the lower powerdomain 

of D. 
As an example, we compute the lower powerdomain of NI. Since K(NL) = NI ,  the lower 

powerdomain of N L  is the set of ideals over the pre-order (Pj(Nl), kb). To see what such an ideal 

must look like, note first that u kb u u {I) and u U {I) kb u for any u E pj(NL). From this fact it 
is already possible to see why kb is usually only a pre-oder and not a poset. Now, if u and v both 

contain I, then u kb v iff u > v. Hence we may identify an ideal x E ( N * ) ~  with the union Ux of 
all the elements in x. Thus (NI )~  is isomorphic to the domain PN of all subsets of N under subset 
inclusion. 

Now let us compute the upper powerdomain of NI.  Note that if u and v are finite non-empty 
subsets of NI and I E v, then u kt v. In particular, any ideal x in ( N I ) ~  contains all of the finite 
subsets v of N L  with I E v. So, let us say that a set u E Z;'(NL) is non-trivial if it does not 
contain I and an ideal x E (NL)fl is non-trivial if there is a non-trivial u E x. Now, if u and v are 
non-trivial, then u kH v iff u C v. Therefore, if an ideal x is non-trivial, then it is the principal ideal 



generated by the intersection of its non-trivial elements! The smaller this set is, the larger is the 

ideal x. Hence, the non-trivial ideals in the powerdomain (ordered by subset inclusion) correspond 

to  finite subsets of N (ordered by superset inclusion). If we now throw in the unique trivial ideal, we 

can see that (Nl)H is isomorphic to  the domain of sets { N )  U Pj(N) ordered by superset inclusion. 

Finally, let us look at the convex powerdomain of NI. If u, v E P;(NI), then u l-b v iff 

1. I E wand u >  v o r  

Hence, if x is an ideal and there is a set u E x with I 6 u, then x is the principal ideal generated 

by u. No two distinct principal ideals like this will be comparable. On the other hand, if x is an 

ideal with I E u for each u E x ,  then x y for an arbitrary ideal y iff U s  C U y. Thus the convex 

powerdomain of NI corresponds t o  the set of finite, non-empty subsets of N unioned with the set 

of arbitrary subsets of N I  that contain I. The ordering on these sets is like the pre-ordering t - b  
but extended t o  include infinite sets. 

1.5.3 Universal and closure properties. 

If s , t  E Dh then we define a binary operation 

This set is an ideal and the function bl : Db x D$ + D h  is continuous. Similar facts apply when U 

is defined in this way for Dn and Db. Now, if x E D, define 

{xb = {U E Pj(K(D))  I {xo) u for some compact xo E 3). 

This forms an ideal and 4.0 : D + Db is a continuous function. When one replaces kh in this 
definition by kg or kb ,  then similar facts apply. Strictly speaking, we should decorate the symbols 

U and 4.D with indices to  indicate their types, but this clutters the notation somewhat. Context 

will determine what is intended. 

These three operators (.)d, ( s ) ~  and ( s ) ~  may not seem to  be the most obvious choices for the 

computable analog of the powerset operator. We will attempt to  provide some motivation for 

choosing them in the remainder of this section. Given the operators 61 and 4.[), we may say that a 

point x E D for a domain D is an "element" of a set s in a powerdomain of D if Qx) bl s = s. If s 

and t lie in a powerdomain of D,  then s is a "subsetn o f t  if sUt  = t. Care must be taken, however, 

not to  confuse "sets" in a powerdomain with sets in the usual sense. The relations of "element" 
and "subsetn described above will have different properties in the three different powerdomains. 

Moreover, it may be the case that s is a "subsetn o f t  without it being the case that s t !  
To get some idea how the powerdomains are related to the semantics of non-deterministic 

programs, let us discuss non-deterministic partial functions from N to N. As we have noted before, 

there is a correspondence between partial functions from N to N and strict functions f : NI o+ N I .  
These may be thought of as the meanings of "deterministic" programs, because the output of 



a program is uniquely determined by its input ( i .e .  the meaning is a partial function). Suppose, 
however, that we are dealing with programs which permit some finite non-determinism as discussed 
in the section on non-determinism in the chapter of Peter Mosses. Then we may wish to think of a 

program as having as its meaning a function f : N L  -t P ( N I )  where P is one of the powerdomains. 
For example, if a program may give a 1 or a 2 as an output when given a 0 as input, then we 
will want the meaning f of this program to  satisfy f(0) = 410 bl421 = 41,2). The three different 

powerdomains reflect three different views of how to relate the various possible program behaviors 
in the case of divergence. The upper powerdomain identifies program behaviors which may diverge. 
For example, if program Pl can give output 1 or diverge on any of its inputs, then it will be 

identified with the program Q which diverges everywhere, since Q1,Il = I = 4 1 )  in (NL)n .  
However, program a P2 which always gives 1 as its output (on inputs other than I) will not have 
the same meaning as PI and Ax. I. On the other hand, if the lower powerdomain is used in the 
interpretation of these programs, then PI and P2 will be given the same meaning since 41, I D  = 4 1) 

in ( N L ) ~ .  However, PI and P2 will not have the same meaning as the always divergent program 
Q since Q l ,  l b  # I in the lower powerdomain. Findy,  in the convex powerdomain, none of the 
programs PI, P2, Q have the same meaning since 41, I b ,  411 and 411 are all distinct in (Nl)h. 

To derive properties of the powerdomains like those that we discussed in the previous section 
for the other operators, we need to introduce the concept of a domain with binary operator. 

Definition: A continuous algebm (of signature (2)) is a cpo E together with a continuous binary 
function * : E x E + E. We refer to the following collection of axioms on * as theory ~ b :  

1. associativity: (T * s )  * t = T * (s * t )  

2. commutativity: T * s = s * T 

3. idempotence: s * s = s .  

(These are the well-known semi-lattice axioms.) A homomorphism between continuous algebras D 
and E is a continuous function f : D -, E such that f ( s  * t )  = f ( s )  * f ( t )  for all s, t E D .  I 

It is easy to  check that, for any domain D, each of the algebras ~ h ,  Dm and D~ satisfies ~ h .  

However, ~h is the "free" continuous algebra over D which satisfies ~ b :  

Theorem 12 Let D be a domain. Suppose ( E ,  *) is a continuous algebra which satisfies T ~ .  For 
any continuous f : D + E,  there is a unique homomorphism ext( f )  : ~h + E which completes the 
following diagmm: 



Proof: (Hint) If u = {xl,. . . ,x,) E s E Db, and C is the principal ideal generated by u, then 

define ext(f )(C) = f (xl) * -. - * f (x,). This function has a unique continuous extension to all of Dh 

given by ext( f )(s) = U{ext( f )(C) 1 u E s } .  ) 

Now, consider the following axiom: 

Let T# be the set of axioms obtained by adding axiom 411 to the axioms in ~ b .  Similarly, let Tb be 

obtained by adding the axiom 

to the axioms in Tb. The point is this: Theorem 12 still holds when D~ and ~h are replaced by Dn 

and T U  respectively, or b y  D~ and Tb respectively. 

As was the case with the smash product and lift operators, a diagram like the one in Theorem 12 

gives rise to  another important operation on functions. I f f  : D -t E is a continuous function, then 

there is a unique homomorphism f h  which completes the following diagram: 

Namely, one defines f h  = ext(Q.1 o f).  Of course, there are functions fu and f b  with similar 

definitions. 
Two of the powerdomains preserve the property of bounded completeness: 

Lemma 13 If D is a bounded complete donaain then so are DH and D ~ .  

Proof: We leave for the reader the exercise of showing that a domain D is bounded complete if 

and only if every finite bounded subset of its basis has a least upper bound. To see that D~ is 

bounded complete, just note that, for any pair of sets u,v E P?(l((D)), the ideal generated by 

their union u U v is the least upper bound in D~ for the ideals generated by u and v. To see that 

Dd is bounded complete, suppose u, v, w E Pj(I<(D)) with w I-" and w I-"- Let w' be the set of 

elements z E K(D) such that there are elements x E u and y E v and z is the least upper bound 

of {x, y). The set w' is non-empty because {u, v) is bounded. Moreover, it is not hard to see that 

w kn w' and w' I-If u and w' I-If v. Hence the ideal generated by w' is the least upper bound of the 

ideals generated by u and v. ) 



1.6 Bifinite domains. 

Of the operators that we have discussed so far, only the convex powerdomain (.)b does not take 
bounded complete domains to bounded complete domains. To see this in a simple example, consider 
the finite poset T x T and the following elements of Pj(T x T): 

u = {(I,true), (1,false)) 
v = {(true, I), (false, I)) 
u' = {(true, true), (false, false)) 
v' = {(true, false), (false, true)) 

It is not hard to see that u' and v' are minimal upper bounds for {u, v) with respect to the ordering 
I-h. Hence no least upper bound for {u, u') exists and (T x ~ ) h  is therefore not bounded complete. In 
this section we introduce a natural class of domains on which all of the operators we have discussed 

above (including the convex powerdomain) are closed. This class is defined as follows: 

Definition: Let D be a cpo. Let M be the set of finitary projections with finite image. Then D 
is said to be bifinite if M is countable, directed and U M  = id. I 

The bifinite cpo's are motivated, in part, by considerations from category theory and the definition 

above is a restatement of their categorical definition. They were first defined by Plotkin [Plo76] 
(where they are called "SFP-objectsn) and the term "bifinite" is due to Paul Taylor. Bifinite 

domains (and various closely related classes of cpo's) have also been discussed under other names 

such as "strongly algebraic" [Smy83a, Gun861 and "profinite" [Gun871 domains. 

1.6.1 Plotkin orders. 

As we suggested earlier, the image of a finitary projection p :  D + D on a domain D can be 
viewed as an approximation to D. A bifinite domain is one which is a directed limit of its finite 
approximations. But what is this really saying about the structure of D? First of all, it follows from 

properties of finitary projections that we mentioned earlier that whenever p : D + D is a finitary 
projection and im(p) is finite, then irn(p) C_ K(D). From this, together with the fact that the set 
M is directed and U M  = id, it is possible to show D is a domain with U{im(p) I p f ,Vf) as its 
basis. We may now use the correspondence which we noted in Theorem 6 to provide a condition 

on the basis of a domain which characterizes the domain as being bifinite. Recall that N a A for 
posets N and A if N n 1 x is directed for every x E A. 

Definition: A poset A is a Plotkin order if, for every finite subset u & A, there is a finite set N a A 
with u C N . I  

Theorem 14 The following are equivalent for any cpo D. 

1 .  D is bifinite. 



Figure 1.3: Posets that are not Plotkin orders. 

2. D is a domain and K ( D )  is a Plotkin order. I 

To get some idea what a Plotkin order looks like, it helps to have a definition. Given a poset A 
and a finite set u C A, an upper bound x for u is minimal if, for any upper bound y for u, y L x 

implies y = x. A set v of minimal upper bounds for u is said to be complete if, for every upper 

bound x for u, there is a y E v with y C x. Now, let A be a Plotkin order and suppose u C A is 

finite. Then there is a finite N a A with u N. The set N must contain a complete set of minimal 

upper bounds for u (why?). This shows the first fact about Plotkin orders: every finite subset has 

a complete set of minimal upper bounds. This rules out configurations like the one pictured in 

Figure 1.3a where the pair of points indicated by closed circles do not have such a complete set 

of minimal upper bounds. But the set N is finite so we have our second fact: every finite subset 

must have a finite complete set of minimal upper bounds. This rules out configurations like the one 

pictured in Figure 1.3b where the pair of points indicated by closed circles has a complete set of 

minimal upper bounds but not a finite one. However, having finite complete sets of minimal upper 

bounds for finite subsets is not a sufficient condition for characterizing the Plotkin orders. To see 

why, let A be a poset which has finite complete sets of minimal upper bounds for finite subsets. If 

u A is finite, let 

U ( u )  = {x I x is the minimal upper bound for some v u) .  

Now, if u G N 4 A, then U ( u )  G N. Hence, Un(u)  N for each n. If N is finite, then there must be 
an n for which Un(u)  = Un+'(u). This is a third fact about Plotkin orders: for each finite u C A, 

UOQ(u) = Un Un(u )  is finite. To see what can go wrong, note that UOQ(u) is infinite when u is the 
pair of points indicated by closed circles in Figure 1.3~.  

1.6.2 Closure properties. 

Proposition 15 A bounded complete domain a's bifinite. 



Proof: Suppose D is bounded complete and u E K(D) is a finite subset of the basis of D. Let 

N = {x I x is the least upper bound of a finite subset of u ). 

Note that N is finite; we claim that N a K(D). Suppose x is the least upper bound of a finite set 

v C K(D). Since D is algebraic, there is a directed subset hf E K ( D )  such that x = U M. But 
the elements of v are compact. Hence, for every y E v, there is a y' E M with y 5 y'. Since M 
is directed, there is some t. E M which is an upper bound for v. Now, z C x so x = z and x is 
therefore compact. This shows that N C K(D). Suppose v N is bounded, then the least upper 
bound of v is the same as the least upper bound of the set {x E u 1 x C y for some y E v) so the 

least upper bound of v is in N. Now, if x E K(D), then S = (1 x) n N is bounded. Since S has a 
least upper bound which, apparently, lies in S, we conclude that S is directed. 1 

Theorem 16 If D is bifinite, then the poset Fp(D) of finitary projections on D is an algebraic 
lattice and the inclusion map i : Fp(D) L, (D -, D) ia an embedding. 

Proof: (Sketch) One uses Theorem 6 to show that Fp(D) is an algebraic lattice. Suppose 

f : D + D is continuous. Let 

Sf = {x E K(D) I x C f(x)l .  

One can show that there is a least set Nf such that Sf C Nf a K(D). This set determines a finitary 

projection p ~ ,  as in the discussion before Theorem 6. On the other hand, if f : D + D is a finitary 
projection then Nf = im(f) n K(D) and f = p ~ , .  The remaining steps required to verify that 
f I+ Nf is a projection are straight-forward. I 

Lemma 17 If D and E are bifinite domains, then so are the cpo's D -+ E, D o-, E, D x E ,  D @ E ,  
D + E, D $  E, DL, ~ b ,  D~ and D ~ .  

Proof: We will outline proofs for two sample cases. We begin with the function space operator. 
Suppose p : D -+ D and q : E -r E are finitary projections. Given a continuous function f : D + E, 
define O(q,p)(f) = qo f op. The function O(q,p) defines a finitary projection on D + E. Moreover, 

if p and q have finite images, then so does O(q,p). If we let M be the set of functions O(q, p) such 

that p and q are finitary projections with finite image, then it is easy to see that U M = id. Hence 
D -, E is bifinite. We will encounter the function O again in the next section. 

To see that ~b is bifinite, one shows that the set 

M = jpb I p E Fp(D) and im(p) is finite) 

is directed and has the identity as its least upper bound. The functions in M are themselves finitary 

projections with finite images so ~4 is bifinite. I 

One may conclude from this lemma that the bifinite domains have rather robust closure prop- 
erties. But there is something else about bifinite domains which makes them special. They are the 
largest class of domains which are closed under the operators listed in the Lemma. Tn fact, there is 
the following: 



Theorem 18 If D and D + D are domains, then D is bifinite. I 

The theorem is due to Smyth and its 'proof may be found in [Smy83a]. It is carried out by 

analyzing each of the cases pictured in Figure 1.3 and showing that if D -, D is not a domain, then 
D cannot be bifinite. A similar result for the bounded complete domains can be found in [Gun86]. 



1.7 Recursive definitions of domains. 

Many of the data types that arise in the semantics of computer programming languages may be 
seen as solutions of recursive domain equations. Consider, for example, the equation T % T + T (of 

course, this is an isomorphism rather than an equality, but let us not make much of this distinction 
for the moment). How would we go about finding a domain which solves this equation? Suppose we 
start with the one point domain To = I as the first approximation to the desired solution. Taking 

the proof of the Fixed Point Theorem as our guide, we build the domain TI = To +To = I + I as the 

second approximation. Now, there is a unique embedding eo : To -, TI so this gives a precise sense 
in which To approximates T I .  The next approximation to our solution is the domain T2 = Tl + TI 

and again there is an embedding el = eo + eo : TI + T2. If we continue along this path we build a 
sequence 

To Tl % Tz 41, ... 
of approximations to the fd simple binary tree. To get a domain, we must add limits for each of 
the branches. The resulting domain (i.e. the full simple binary tree with the limit points added) 

is, indeed, a Usolution" of T 2 T + T. This is a l l  very informal, however; how are we to make this 
idea mathematically precise and, at the same time, sufficiently general? 

1.7.1 Solving domain equations with closures. 

In this section we discuss a technique for solving recursive domain equations by relating domains 
to functions by the 4magen map (im) and then using the ideas of the previous section to solve 

equations. There are two (closely related) ways of doing this which we will illustrate. The first of 
these is based on the following concept: 

* 
Definition: Let D and E be cpo's. A continuous function r : D + E is a closure if there is a 
continuous function s : E + D such that r o s = id and s o r 2 id. I 

By analogy with the notion of a finitary projection, we will say that a function T : D + D is a 

finitary closure if r o r = r 4 id and im(r) is a domain. In the event that D is a domain, the 
requirement that im(r) be a domain is unnecessary because we have the following: 

Lemma 19 If D is a domain and r : D + D satisfies the equation r o r = r 4 id, then im(r) is a 
domain. I 

The Lemma is proved by showing that {r(x) I x E K ( D ) )  forms a basis for im(r). We will say that 
a domain E is a closure of D if it  is isomorphic to im(r) for some finitary closure T on D. We let 

Fc(D) be the poset of finitary closures r : D + D. 

Lemma 20 If D is a domain, then Fc(D) is a cpo. I 

Definition: Let us say that an operator F on cpo7s is repnesentable over a cpo U if and only if 
there is a continuous function RF which completes the following diagram (up to isomorphism): 



F 
Cpo's - Cpo's 

im 1 1 im 

i .e. im(RF(r)) g F(im(r)) for every closure r .  I 

This idea extends to multiary operators as well. For example, the function space operator -. . is 

representable over a cpo U if there is a continuous function 

such that, for any r, s E Fc(U), 

irn(R(r, s)) Y im(r) -i im(s) 

A operator (Fly . . . , F,) is defined to be representable if each of the operators F; is. Note that a 

composition of representable operators is representable. 

Theorem 21 If an operator F is representable over a cpo U, then there is a domain D such that 

D 2i F(D). 

Proof: Suppose RF represents F. By the Fixed Point Theorem, there is an r E Fc(U) such that 

T = RF(r). Thus im(r) = im(RF(r)) 2 F(im(r)) so im(r) is the desired domain. 1 

Now we know how to solve domain equations. For example, to solve T 2 T + T we need to find 

a domain U and continuous function f : U -, U which represents the operator F(-Y)  = X f X. 
But we are still left with the problem of finding a domain over which such operations may be 

represented! The next step is to  look at a simple structure which can be used to represent several 

of the operations in which we are interested. 

Given sets S and T, let T' be the set of (all) functions from S into T. If T is a cpo, then T~ 
is also a cpo under the pointwise ordering. Now, it is not hard to see that the domain equation 

X S X x l T  (where lT is the two point lattice) has, as one of its solutions, the cpo (lTIN. In 

fact, this cpo is isomorphic to the algebraic cpo PN of subsets of N which we discussed in the first 

section. It  is particularly interesting because of the following: 

Theorem 22 For any (countably based) algebraic lattice L, there is a closure r : PN -, L. 

Proof: Let lo, 11, 1 2 , .  . . be an enumeration of the basis of L. Given S C N ,  let r(S) = U{I ,  I n E S) .  

If I E L, let s(1) = {n I I, C I). We leave for the reader the (easy) demonstration that r , s  are 

continuous with r o s = id and s o r  2 id. 1 



Structures such as PN are often referred to as universal domains because they have a rich 

collection of domains as retracts. In the remainder of this section we will discuss two more similar 

constructions and show how they may be used to provide representations for operators. 

Unfortunately, there is no representation for the operator F(X)  = X + X over PN. However, 

there are some much more interesting operators which are representable over PN. In particular, 

Lemma 23 The function space operator is representable over PN. 

Proof: Consider the algebraic lattice of functions PN -+ PN. By Theorem 22, we know that there 
are continuous functions 

@, : PN -, (PN + PN) 

Q, : (PN + PN) -, PN 

such that @, o  Q, = id and g, o 9, 7 id. Now, suppose r , s  E Fc(PN) (that is, r o  r = r 7 id 

and s o  s = s 2 id). Given a continuous function f : PN + PN, let O(s, r)(f) = s o  f o  r and define 

To see that this function is a finitary closure, we take x E PN and compute 

and 

R-.(r, s)(x) = g,(s 0 (9,(x)) 0 r) 2 Q,(@,(x)) 7 x. 

Thus we have defined a function, 

which we now demonstrate to be a representation of the function space operator. 

Given r, s E Fc(PN), we must show that there is an isomorphism 

' im(R(r, s)) 2 im(r) + irn(s) 

for each T,S E Fc(PN). Now, there is an evident isomorphism between continuous functions 
f : im(r) -, irn(s) and continuous functions g : PN -, PN such that g = s o g o  r. We claim that 

Q, cuts down to an isomorphism between such functions and the sets in the image of R,(r,s). 

Since 9, o  Q, = id, we need only show that (Q,  o  @,)(x) = x for each x = R,(r,s)(x). But if 



then 

Hence irn(R,(r,s)) 2 irn(r) + irn(s) and we may conclude that R, represents + over PN. 1 

A similar construction can be carried out for the product operator. Suppose 

ax  : PN + (PN x PN) 

I, : (PN x PN) -, PN 

such that ax  o Q x  = id and Qx o a X  J id. For r,s E Fp(PN) define 

We leave for the reader the demonstration that this makes sense and Rx represents the product 

operator. 

Suppose that L is an algebraic lattice. Then there are continuous functions 

such that aL o QL = id and QL o @L 2 id. Then the function 

represents the constant operator X w L because irn(QL o a L )  2 L. A similar argument can be 

used to show that a constant operator X I+ D is representable over a domain U if and only if D is 

a closure of U. 

1.7.2 Modelling the untyped A-calculus. 

It is tempting to try to solve the domain equation D Y D -+ D by the methods just discussed. 

Unfortunately, the equation I Z I + I (corresponding to the fact that on a one-point set there is 

only one possible self-map) shows that there is no guarantee that the result will be at all interesting. 

There has to be a way to build in some nontrival structure that is not wiped out by the fixed-point 

process. Methods are described in [Sco76a, Sco80a1, but the following, from [Sco76b, Sco80b1, is 

more direct and more general. 

Lemma 24  Let U be a non-trivial cpo. If the product and function space operators can be repre- 
sented over U, then there are non-trivial domains D and E such that E 2 E x E and D 2 D + E.  

Proof: We can represent F ( X )  = U x X x X over U, so there is a closure A of U such that 
A S U x A x A. Thus U x A E U x (U x A x A) S (U x A) x (U x A). So E = U x A is non-trivial 

and E It' E x E. Now, E is a closure of U so G ( X )  = X + E is representable over U .  Hence there 

is a cpo D 2 D + E. This cpo is non-trivial because E is. I 



Theorem 25 If 6' is a non-trivial domain which represents p d u c t s  and function spaces, then 

there as a non-trivial domain D such that D 2 D x D 2 D -t D and D is the image of a closure 

on U .  

Proof: Let D and E be the domains given by Lemma 24. Then 

and 
D + D S D + ( D ~ E ) ~ ( D X D ) - + E ~ D + E % D .  I 

We note, in fact, that D will have F N  itself represented by a closure on U. Hence, to get a 

non-trivial solution for D 2 D -, D 2 D x D, take U in the theorem to be PN. What good is 

such a domain? The answer is that a D satisfying these isomorphisms is a model for a very strong 
A-calculus. If we expand the syntax of A-calculus given in Section 5.3 of the chapter by hlosses to 
allow pairings, we would have: 

E ..- ..- (Ax. E )  I E1(E2) I x ( pair 1 fst ( snd 

Now, Mosses points out that under the semantic function he defines, many digerent expressions 
are mapped into the same. values. We can say that the model satisfies certain equations. In 

particular, under the isomorphisms obtained in our theorems above, the following equations will 
be satisfied: 

1. (Ax. E )  = (Ay. [y/x]E) (provided y is not free in E )  

2. (Ax. E)(Ef)  = [Et/x]E 

3. (Ax. E(z)) = E (provided z is not free in E )  

In these equations, the third and sixth especially emphasize the isomorphisms D = D -, D and 
D = D x D. There are models where D -+ D is represented by a closure on D (as is D x D) 
but where this is not an isomorphism. It follows that the special equations are independent of the 
others. 

In [Rev871 the question is brought up whether we can add to the above equations one relating 
functional abstraction with pairing. In particular, the following would be interesting: 

This equation identifies the primitive pairing with what could be called pointwise pairing. This 

equation is independent from the others, but a model for it can be obtained from the first model by 



introducing a new pairing and application operation that does things pointwise in a suitable sense. 

There must be many other kinds of models that relate the functional structure to other constructs 

as well. 

Suppose we have domains that satisfy just the six equations. Then from the primitive operations 

given, many others can be defined. The operation of A-abstraction is, to be sure, a variable-binding 

operator (somewhat like a quantifier), but the others are algebraic in nature. As stated, application 

is a binary operation, and pair, fst and snd are constants. But we can define binary, ternary, and 

unary operations such as: pair(x)(y), pair(x)(pair(y)(z)), fst(x), snd(y), pair(snd(z))(fst(z)), and 

many, many more. In other words, the domain D will become a model of many kinds of algebras. 

In general, an algebm is a set together with several operations defined on it, taking values in the 

same set. The simplest situation is to consider finitary operations (i.e., operations taking a fixed 

finite number of arguments). When giving an algebra, the sequence of arities of the fundamental 

operations is called the signature of the algebra. Thus, a ring is often given with just two binary 

operations (addition and multiplication) making a signature (2,2). Now, subtraction is definable in 

first-order logic from addition, but the definition is not equational. Therefore, it may be better to 

consider a ring as an algebra of signature (2,2,2) with subtraction being taken as primitive. Of, 
course it is enough to  have the minus operation, which is unary. So, a signature (2,1,2) is also 

popular. Strictly speaking, however, different signatures correspond to algebras of different types. 

Not every algebra of signature (2,2,2) is "equivalent" to one of signature (2,1,2); rings as algebras 

have very special properties. 
By a continuous algebm we mean a domain with various continuous operations singled out. In 

particular, our A-calculus model can be considered as a continuous algebra of signature (2,0,0,0,0,0). 

The binary operation is the operation of functional application. Here, 0 indicates a 0-ary operation, 

which is just a constant. We already know the constants pair, fst, snd. The other two popular 
constants from the literature on A-calculus are Galled S and Ii. In terms of A-abstraction they can 

be defined as follows: 
s = (Ax. (AY. (Az. x(~)(Y(z))))) 
K = (Ax. (Ay. 2)) 

They enjoy many, many equations in the algebra (see, for example, [Bar84]) and, in fact, any 

equation involving the A-operator can be rewritten purely algebraically in terms of S and Ii and 

application. 

We will call an expression in the notation of applicative algebra which has no variables a 

combination. Any combination F defines an n-ary operation: 

What we have been remarking is that the algebras so obtained from combinations can be very 

rich. In a series of papers [Eng81, Eng] Engeler discussed just how rich these algebras can be. A 

representative result, following Engeler, will be exhibited here. 

Theorem 26 Given a signature (sl, s z ,  . . . , s,), there are combinations Fl, F2, . . . , F,, defining op- 

erations on D of these ara'ties such that whenever a continuous algebm of this signature is given 



on a domain A that is a mtmct of D, then A can be made isomorphic to a subalgebra of this fixed 

algebm structure on D. 

Proof: If A is a retract of D, then A can be regarded as a subset of D, and all the continuous 

operations on A can be naturally extended to continuous operations on D of the same arities. (This 

does not solve the problem, since the operations on D depend on the choice of A. That is to say, at 

the start A is a subalgebra of the wrong algebra on D.) We can call these operations ol,02,. . . , on. 

We are going to. define the representation of A as a subalgebra of D by means of a continuous 

function p : A + D defined by means of a fixed-point equation: 

(pair(Xx2 . . . Ax,, . p(o,(a,fst(x2), . . . ,fst(x,,)))) 

(K)  1.. -) 
In this way, we build into p the elements from A and the operations as well. The question is how 

to read off the coded information. 

Consider the following combinations: 

Fl = Ax. fst(snd(x)) 

F2 = Ax. fst(snd(snd(x))) 

F, = Ax. fst(snd(snd(. . . snd(x)))), 

which have to be rewritten in terms of S, K ,  fst, and snd. We then calculate that 

This means if we consider the algebra (D, Fl, F2,. . . , Fn), then we can find by means of the 

definition of p any algebra (A, 01,02,. . . ,on), isomorphic to a subalgebra of the first algebra. I 

1.7.3 Solving domain equations with projections. 

As we mentioned earlier, one slightly bothersome drawback to PN as a domain for solving recursive 

domain equations is the fact that it cannot represent the sum operator +. One might try to 

overcome this problem by using the operator ( + . )T as a substitute since this is representable 

over PN. However, the added top element seems unmotivated and gets in the way. It is probably 

possible to  find a cpo which will represent the operators x, +, +. However, for the sake of variety, 

we will discuss a slightly different method for solving domain equations. Let us say that an operator 

F on cpo's is p-representable over a cpo U if and only if there is a continuous function RF which 

completes the following diagram (up to isomorphism): 



F 
Cpo's - Cpo's 

Since there will be no chance of confusion, let us just use the term "representable" for 'Lp- 

representable" for the remainder of this section. Since Fp(U) is a cpo we can solve domain equations 

in the same way we did before provided we can find domains over which the necessary operators 
can be represented. 

The construction of a suitable domain is somewhat more involved than was the case for PN. 
We begin by describing the basis of a domain U .  Let S be the set of rational numbers of the form 

n/2m where 0 5 n < 2m and 0 < m. As the basis U o  of our domain we take finite (non-empty) 

unions of half open intervals [r ,  t) = { s  E S I r 5 s  < t}. A typical element would look like 

We order these sets by superset so that the interval [O,1) is the least element. There is no top 

element under this ordering. If we adjoin the emptyset, say B = Uo U (81, then we get a Boolean 
algebm. (Note that the complement of a finite union of intervals is again one such-unless it is 

empty.) In particular, any interval contains a proper sub-interval so, as a Boolean algebra, B 
is atomless. But B is countable, and-up to isomorphism-the only countable atomless Boolean 

algebra is the free one on countably many generators. But this Boolean algebra has the property 

that every countable Boolean algebra is isomorphic to a subalgebra. Now, suppose A is a countable 

bounded complete poset. Let B' be the boolean algebra of subsets of A generated by those subsets 

of the form f x = {y E A I x E y)  and order this collection by superset so that 0 will be its largest 

element. The map i : x I+ f x is a monotone injection which preserves existing least upper bounds. 

Moreover, a subset u E A is bounded just in case nZE, 1 x is non-empty. Now, if j : B' -+ B maps 

B' isomorphically onto a subalgebra of B, then the composition j o i cuts down to an isomorphism 

between A and a normal subposet A' a Uo. Letting U be the domain of ideals over Uo we may now 

conclude the following: 

Theorem 27 For any bounded complete domain D ,  there is a projection 

We can now use this to see that an equation like X NI + (X -+ X) has a solution. The proof 
that + is representable over U is almost identical to the proof we gave above that it is representable 

over PN. To get a representation for +, take a pair of continuous functions 



such that 9+ o Q+ = id and @+ o 9+ & id. Then take 

Also, there is a representation RN, for constant operator X w NL. Hence the operator X o 
NI + ( X  + X )  is represented over U by the function 

We have, in fact, the following: 

Lemma 28 The following opemtors are repmsentable over U: +, -, x,  €3, +, $, (-)I, (.)n, I 

This means that we have solutions over the bounded complete domains for a quite substantial 

class of recursive equations. More discussion of U may be found in [Sco81], [Sco82a] and [Sco82b]. 

1.7.4 Representing operators on bifinite domains. 

The convex powerdomain (.)h cannot be representable over U because it does not preserve bounded 

completeness. We construct a domain over which this operator can be'represented as follows. Given 

a poset A, define M(A) to be the of pairs (x,u) E A x Pf(A) such that x C r for every r E u. 
Define a pre-ordering on M ( A )  by setting (x,u) I- (y, v) if and only if there is a z E u such that 
z g y. Now, given a domain D, we define D+ to be the domain of ideals over ( M ( A ) ,  I-). 

Theorem 29 If D is bifinite, then so is D+. Momouer, if D 2 D+ and E is any bifinite domain, 
then there is a projection p : D -+ E. I 

A full proof of the theorem may be found in [Gun87]. We will attempt to offer some hint about 
how the desired fixed point is obtained. At the first step we take the domain I = {I) containing 
only the single point I. At the second step, I+ ,  there are elements a = (I, { I ) )  and b = (I, 0) 
with b F a. At the third step there are five elements 

which form the partially ordered set I++ pictured in Figure 1.4. Note that there is another element 

(a, {a, b}) E M(I+) but this satisfies (a, {a)) I- (a, {a, b)) and (a, {a, b}) b ( a ,  { a ) )  so we have 

identified these elements in the picture. The next step I+++ has 20 elements (up to equivalence 
in the sense just mentioned) and it is also pictured in Figure 1.4. We leave the task of drawing a 
picture of I++++ as an exercise for the (zealous) reader. It should be noted that each stage of the 
construction is embedded in the next one by the map x ++ (x, {x)). The closed circles in the figure 
are intended to give a hint of how this embedding looks. 

The technique which we have used to build this domain can be generalized and used for other 
classes as well [GJ88]. 

We have the following: 



Figure 1.4: A domain for representing operators on bifinites. 

Lemma 30 The following operators are p-representable over V: 4, w, x, @I, +, (.)tf, 

(.Ib, (.Ib. 1 

As with most of the other operators, to get a representation for (-)b, take a pair of continuous 

functions 
ah : V + V" 
Qb : v" + v 

such that ah o ilrh = id ahd Qh o ah C id. Then 

is a representation for the convex powerdomain operator. 

We hope that the reader has begun to note a pattern in the way operators are represented. Most 

of the operators (x ,  8, +, $, (.)I, ( . ) h )  may be handled rather straight-forwardly using the 

corresponding action of these operators on functions. Slightly more care must be taken in dealing 

with the function space and strict function space operators where one must use a function like O. 

The stock of operators that we have defined in tlus chapter is quite powerful and it can be used for 

a wide range of denotational specifications. However, the methods that we have used to show facts 

such as representability (using finitary closures or finitary projections) will apply to a very large 

class of operators which satisfy certain sufficient conditions. 



To understand this phenomenon, one must pass to a more general theory in which such operators 
are a basic topic of study. This is the theory of categories. Many people find it difficult to gain 
access to the theory of domains when it is described with categorical terminology. On the other 
hand, it  is difficult to explain basic concepts of domain theory without the extremely useful general 
language of category theory. A good exposition of the relevance of category theory to the theory 
of semantic domains may be found in [SP82]. 

Only a small number of categories of spaces having the properties which we have described 

above are known to  exist. What are the special traits that these categories possess? First of all, 
they have product and function space functors which satisfy the relationship we described at the 
beginning of section 4. This property, known as cartesian closure is a well-known characteristic 
of categories such as that of sets and functions. But our cartesian closed categories have not only 

fixed points for (all) morphisms but fixed points for many functors as well. It is this latter feature 
which makes them well adapted to the task of acting as classes of semantic domains. One additional 

property which makes these categories special is the existence of domains for representing functors. 
This is not to say that there are not other categories which will have the desired properties. 

One particularly interesting example are the stable structures of Berry [Ber78] which we have not 
had the space to discuss here. Interesting new examples of such categories are being uncovered 

by researchers at the time of the writing of this chapter. The reader will find a few leads to 
such examples in the published literature listed below, and we expect that many quite different 
approaches will be put forward in future years. 
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Chapter 2 

Denot at ional Semantics. 



2.1 Introduction 

In programming linguistics, as in the study of natural languages, "syntax" is distinguished from 
"semantics". The syntax of a programming language is concerned only with the structure of 

programs: whether programs are "legal"; the connections and relations between the symbols and 
phrases that occur in them. Semantics deals with what legal programs mean: the "behaviour" 

they produce when executed by computers. 
The topic of this chapter, Denotational Semantics, is a framework for the formal description of 

programming language semantics. The main idea of Denotational Semantics is that each phrase of 
the language described is given a denotation: a mathematical object that represents the contribution 
of the phrase to the meaning of any complete program in which it occurs. Moreover, the denotation 

of each phrase is determined just by the denotations of its subphrases. 
Thus Denotational Semantics is concerned with giving mathematical models for programming 

languages. Models are constructed from given mathematical entities (functions, numbers, tuples, 
etc.). This is in contrast to the axiomatic approach used in other major frameworks, such as Hoare 

Logic [lo] and Structured Operational Semantics [24]. 
The primary aim of Denotational Semantics is to allow canonical definitions of the meanings of 

programs. A canonical, denotational definition of a programming language documents the design 
of the language. It also establishes a standard for implementations of the language--ensuring that 
each program gives essentially the same results on a l l  implementations that conform to the standard. 
A denotational definition does not specify the techniques to be used in implementations; it may, 
however, suggest some, and it has been shown feasible to develop implementations systematically 

from specifications written using the denotational approach. Finally, a denotational definition 
provides a basis for reasoning about the correctness of programs-either directly, or by means of 
derived proof rules for correctness assertions. 

A further aim of Denotational Semantics is to promote insight regarding the concepts underlying 
programming languages. Such insight might help to guide the design of new (and perhaps "better") 
programming languages. 

Currently, most programming language standards documents attempt to define semantics by 
means of informal explanations. This is in contrast to syntax, where formal grammars are rou- 

tinely used in standards (in preference to informal explanations). However, experience has shown 
that informal explanations of semantics, even when they are carefully worded, are usually incom- 
plete or inconsistent (or both), and open to misinterpretation by implementors. They are also an 
inadequate basis for reasoning about program correctness, and totally unsuitable for generation 

of implementations. These inherent defects of informal explanations do not afflict denotational 
definitions (except when definitions are left unfinished, or when their formal status is weakened by 
excessive use of informal abbreviations and conventions). 

This chapter has two purposes. The first of these is to explain the formalism used in Denota- 

tional Semantics: abstract syntax, semantic functions, and semantic domains. Section 2.2 relates 
concrete syntax and abstract syntax. Section 2.3 considers the nature of semantic functions, and ex- 



plains the properties of compositionality and full abstractness. Section 2.4 summarizes the concepts 

and notation of semantic domains, referring to  Gunter and Scott [18] for a detailed presentation of 

domain theory. 

The second purpose of this chapter is to illustrate the major standard techniques that are 

used in denotational descriptions of programming languages: environnaents, stores, continuations, 

etc. Section 2.5 explains the relation between these techniques and some fundamental concepts 

of programming languages, and uses the techniques to give denotational descriptions of many 

conventional programming constructs. 

The Bibliographical Notes (Section 2.6) provide references to some significant works on Deno- 

tational Semantics. 

The reader is expected to be familiar with the basic notions of discrete mathematics (sets, 

functions, relations, partial orders) and to be prepared to meet a substantial amount of formal 

notation. Familiarity with programming languages is an advantage, but not essential. 



2.2 Syntax 
# 

As mentioned at the beginning, the syntax of a programming language is concerned only with the 

structum of programs: which programs are "legaln; what are the connections and relations between 

the symbols and phrases that occur in them. 
There are several kinds of syntax, which we distinguish below. (Readers who are familiar 

with the distinction between "concrete syntaxn and "abstract syntax" may prefer to skip to Sec- 

tion 2.2.3.) 

2.2.1 Concrete syntax 

Concrete Syntax treats a language as a set of strings over an alphabet of symbols. 

Concrete syntax is usually specified by a grammar that gives "productionsn for generating 

strings of symbols, using auxiliary "nonterminaln symbols. So-called "regularn grammars are inad- 

equate for specifying syntax of programming languages: "context-freen grammars are required, at 

least. 

Definition: A context-free grammar G is a quadruple (N,T, P,so) where N is a finite set of 

nonterminal symbols, T is a finite set of terminal symbols (disjoint from N), P C N x ( N  U T)* is 
a finite set of productions, and so E N is the start symbol. 

(In this section, X* is the set of strings over X ,  for any set X; the empty string is indicated by 

A, and string concatenation by juxtaposition. The notation X* is given a different interpretation 

when X is a semantic domain, from Section 2.4 onwards.) 

It is common practice to distinguish a lexical level and a phrase level in concrete syntax. The 

terminal symbols in the grammar specifying the lexical level are single characters; those in the 

phrase-level grammar are the nonterminal symbols of the lexical grammar. Here, let us ignore the 

distinction between the lexical and phrase levels, for simplicity. 

When presenting a grammar, it is enough to list the productions: the sets of nonterminal and 

terminal symbols are implicit, the start symbol is determined by the first production. We write 

a production (a, (xl . . . x,)) as a ::= XI . .  . x,. We may also group several productions for the 
same nonterminal, separating the alternative strings on the right-hand side by '1'. (This notation 

for grammars is essentially the same as so-called BNF.) For later use, a mnemonic name called a 

phrase sort is associated with each nonterminal symbol (we write the phrase sort in parentheses) 

and occurrences of nonterminal symbols in right-hand sides of productions may be distinguished 
by subscripts. 

An example of a grammar for the concrete syntax of a simple language of expressions is given 
in Table 2.1. (The productions for identifiers are omitted, as they are of no interest.) 

We could define the language of strings generated by a context-free grammar in terms of "deriva- 
tion stepsn. For our purposes here, it is more convenient to go straight to the notion of "derivation 

treesn, in which the order of derivation steps is ignored. 



(EXPRESSION) 
E ::= T  I E + T  I E - T  

(TERM) 
T ::= F  I T * F  

(FACTOR) 
F ::= I 1  ( E l  

(IDENTIFIER) 
I ::= unspecified 

Table 2.1: A grammar for concrete syntax 

Definition: Let L be a set (of labels). An L-labeled tree t is a pair (1, (tl . -st,)), where 1 E L, 
n 2 0, and tl . . . t, is a string of L-labeled trees. We say that t has label 1 and branches tl, . . . ,t,. 

Let TreeL be the set of finite L-labeled trees; this is the least set that is closed under construction 
of L-labeled trees. 

(Of course, other representations of trees are possible, e.g., as partial functions from "occur- 
rences" to  labels.) 

Definition: For any t E TreeL, frontier(t) E L* is defined (inductively) by 

if n = 0; 
frontier(1, (tl - t,)) = 

frontier(t1) . frontier(t,), if n > 0. 

Definition: A derivation tree according to a grammar G = (N, T, P, so) is a finite (N U T)-labeled 

tree with label so, such that if a node labeled a has branches labeled X I , .  . . ,x,, n > 0, then 

(a, (XI . 3,)) € P. 
The set of dl derivation trees according to G is denoted by TreeG. 

For notational convenience we identify the tree (1, (A)) with 1. This allows us to write, e.g., 

(a, (xl t x2)) to  form a derivation tree, where t is a tree and 21, $2 are terminal symbols. Figure 2.1 
depicts a derivation tree according to the grammar of Table 2.1. 

Now that we know what derivation trees are, let us use them to define the languages generated 

by grammars: 

Definition: The language of strings L(G) C T* generated by a grammar G = (N, T, P, so) is given 

by 

If any string in L(G) has more than one derivation tree, then G is said to be ambiguozss. 



Figure 2.1: A derivation tree for concrete syntax 

Whereas ambiguity seems to  be an inescapable feature of natural languages, it is to be avoided 

in programming languages. For example, there should be no vagueness about whether 'a*b+c' is to 
be read as 'a* (b+c) ' or as ' (a*b) +c', since they should evaluate to different results, in general. (Of 
course grouping may not matter in some cases, such as 'a+b+c9.) Moreover, the efficient generation 
of language parsers from grammars requires special kinds of unambiguous grammars, e.g., satisfying 
the so-called LALR(1) condition. 

Unfortunately, unambiguous grammars tend to be substantially more complex than ambiguous 
grammars for the same language, and they often require nonterminal symbols and productions that 

have no relevance to  the essential phrase structure of the language concerned. For the purposes of 
semantics, the phrase structure of languages should be as simple as possible, devoid of semantically- 

irrelevant details. Yet there should be no ambiguity in the structure of phrases! Thus we are led 
to use ambiguous grammars, but to interpret them in such a way that the specified syntactic 

entities themselves can be unambiguously decomposed. Such a framework is provided by so-called 
"abstractn syntax. 

2.2.2 Abstract syntax 

Abstract syntax treats a language as a set of trees. The important thing about trees is that, 
unlike strings, their compositional structure is inherently unambiguous: there is only one way of 

constructing a particular tree out of its (immediate) sub-trees. 
It is convenient to use derivation trees to represent abstract syntax. Abstract syntax is specified 

using the same kind of (context-free) grammar that is used for concrete syntax-but now there is no 



worry about ambiguity. An example of a grammar for abstract syntax is given in Table 2.2. It gives 
an appropriate abstract syntax for the language generated by the grammar of Table 2.1. Notice 

that the nonterminal symbols T and F, together with the terminal symbols '(' and 'I,,  are not 

present in the abstract syntax: they were only for grouping in concrete syntax. Also, the various 

concrete expressions involving operators are collapsed into a single form of abstract expression-at 

the expense of introducing the nonterminal symbol 0. Figure 2.2 shows a derivation tree according 

to the grammar of Table 2.2. 

(EXPRESSION) 

E ::= I ( El 0 E.L 

(OPERATOR) 
0 : : = + I - [ *  

(IDENTIFIER) 

I ::= unspecified 

Table 2.2: A grammar for abstract syntax 

Figure 2.2: A derivation tree for abstract syntax 

Definition: The abstrnct syntax defined by a grammar G is TreeG, the set of derivation trees 

according to G. 

The phrase sorts associated with nonterminal symbols in our grammars (such as EXPRESSION, 

IDENTIFIER) identify corresponding sets of derivation trees (note that such trees generally occur 
only as branches of trees in TreeG). 

Abstract syntax may be characterized algebraically, using the notion of a "signature", as follows. 

Definition: Let S be a set (of sorts). An S-sorted signature C is a family of sets {Cw,s)wES*,sES 

(of operators). 

A C-algebra A consists of a family {As)sES of sets (called carriers) and for each operator 

f E Csl...snrs a total function fA : A,, x x A,, + A,. 



Definition: A C-homomorphism h : A -, B (where A and B are C-algebras) is a family {h,),Es 

of (total) functions h, : A, -+ B, such that for each 'f E C,, ..., ,,, and ai E A,, 

The composition h' o h of C-homomorphisms h : A + B, h' : B -+ C is the family of func- 
tions {h: o hs)sEs. The identity C-homomorphism idA : A -t A is the family of identity functions 

{idA,}sES. The C-algebras A, Bare said to be isomorphic when there exist C-homomorphisms 
h : A -t B,  h' : B + A such that h'o h = idA and h o h' = idg. 

The key concept is that of "initialityn: 

Definition: A C-algebra I is initial in a class C of C-algebras iff there is a unique C-homomorphism 

from I to each algebra in C. 

Proposition 31 If I and J are both initial in a class C of C-algebras, then I and J are isomorphic. 

Proof: Let h : I + J, h' : J + I be the unique homomorphisms given by the initiality of I, re- 

spectively J. Now h' o h and idz are both homomorphisms from I to itself; by the initiality of I 
they must be equal. Similarly, h o h' = id J 

For each grammar G we define a corresponding signature CG, as follows: 

Definition: Let G = (N, T, P,so). Then CG is the N-sorted signature with 

CG,~,...,,,, = {P E P I p = (s, ( ~ 0 ~ 1 .  . .  nun)); 210,. . . , un E T*) 

for each (sl . . . s,) E N* and s E N. 

By the way, not all signatures can be made into context-free grammars: a signature may have an 
infinite number of sorts and operators. Notice also that a signature does not have a distinguished 
"start sortn. 

Now TreeG can be made into a CG-algebra, which we denote by A(G), as follows. Take the 
carriers A(G), to be A(N,T, P,s) for each s E N. (In practice it is convenient to refer to these 
sets by mnemonic names, associated with nonterminal symbols when grammars are specified.) For 
each p E CG,,,...,,,, with p = (s, (uOsl . . . s,u,)), where u1, . . . , u, E T*, define a function 

PA(G) : d(G)sl X . . - X A(G),, -+ A(G), 

by letting for all ti E A(G),,, for i = 1,. . . ,n, 

Proposition 32 A(G) is initial in the class of all CG-algebras. 

Proof: Let A be any CG-algebra. Define {h, : d(G), + A,)sEs inductively, as follows. If t = 
(s, (uotl . . . t n ~ n ) )  with each ui E T* and each ti E A(G),,, and p = (s, (uOsl . . . snun)), then 



hs(t) =  PA(^,, (ti), . . . , hs, (t,)). 

As each t E A(G), is uniquely decomposable as (s, (uOtl . . . tnun)), the h, are well-defined (and they 
are total since derivation trees are finite). Moreover it can be seen that this definition is forced by 

the homomorphic property, so {hs l sES is the unique homomorphism from A(G) to A. 'Hence A(G) 

is initial in the class of all CG-algebras1 

Denotational Semantics defines the semantics of a programming language on the basis of its 
abstract syntax. The semantics of some concrete syntax may be obtained as well: by giving a 

function that maps concrete syntax into abstract syntax. Assuming that the concrete grammar is 
unambiguous, i t  is enough to map concrete derivation trees into abstract derivation trees. (This 

map might be neither 1-1 nor onto, in general. Trying to invert it is called "pretty-printing", or 

"unparsing" .) 
The specification of the function from concrete to abstract syntax is quite trivial if the grammar 

for abstract syntax is obtained systematically from that for concrete syntax, just by "unifying" 

nonterminals and eliminating "chain productions". In fact the grammar of Table 2.2 was obtained 

from that of Table 2.1 (mainly) in that way; the corresponding map from concrete to abstract 
syntax may be imagined from the example where the tree in Figure 2.1 is mapped to that in 

Figure 2.2. 
In general, i t  is up to the semanticist to choose an appropriate abstract syntax for a given 

language. Different choices may influence the difficulty of specifying the semantics. For instance, 
consider the rather trivial "language" of binary numerals, with concrete syntax given by the gram- 
mar in Table 2.3. Of course the semantics of binary numerals can be specified for the given syntax; 

but it turns out (as shown in Section 2.3) to be significantly simpler when the abstract syntax is 
given by the grammar in Table 2.4. (This latter grammar is unambiguous, so it could be used for 

concrete syntax as well as abstract syntax. But in general, the grammars used for abstract syntax 
are highly ambiguous, e.g., as for expressions in Table 2.2.) 

Table 2.3: Concrete syntax for binary numerals 

Table 2.4: Abstract syntax for binary numerals 

There do not seem to be any hard and fast rules for choosing grammars for abstract syntax. 

Usually, one has to compromise between on the one hand, keeping close to a given grammar for 
concrete syntax, and on the other hand, facilitating the semantic description. 



Note that it is not required that the frontiers of the trees generated by the abstract grammar are 

the strings generated by the given concrete grammar, nor even that the same terminal symbols are 

used. In fact some authors prefer to use disjoint sets of symbols in concrete and abstract grammars, 

to avoid altogether any chance of confusion between concrete and abstract syntax. Here, we take the 

opposite position, and use symbols that make our grammars for abstract syntax strongly suggestive 

of familiar concrete syntax. 

2.2.3 Context-sensitive Syntax 

The grammars used here for specifying abstract syntax are context-free. But it is well-known 

that several features of programming languages are context-sensitive, and cannot be described by 

context-free grammars (e.g., that identifiers be declared before they are referred to, and that the 

"types" of operands match their operators). 
In Denotational Semantics, context-sensitive syntax is regarded as a part of semantics, called 

static semantics (because it depends only on the program text, not on the input). For simplicity, 

let us assume that the static semantics of a program is just a truth-value indicating the legality of 

the program. Then the rest of the semantics of programs can be specified independently of their 

static semantics-the semantics of programs that are not legal (according to  the static semantics) 

is defined, but irrelevant. 

In practice, a proper treatment of static semantics might involve specification of error messages. 

Also, it may be convenient for a static semantics to yield abstract syntax that reflects context- 

sensitive disambiguations (for instance, whether occurrences of '+' are arithmetical, or set union), 

and to define the rest of the semantics on the disambiguated abstract syntax. 

Static semantics is not considered further in this chapter. For a study of the semantics of types, 

see [26]. 

So much for syntax. 



2.3 Semantics 

Consider an entire program in some programming language. What is the nature of its semantics? 

First of all let us dismiss any effects that the program might have on human readers, e.g., evoking 

feelings of admiration or (perhaps more often) disgust. In contrast to  philology, programming 

linguistics is not concerned with subjective qualities at  all. The semantics of a program is dependent 

only on the objective behaviour that the program causes (directly) when executed by computers. 

Now computers are complex mechanisms, and all kinds of things can be observed to  happen when 

they execute programs: lights flash, disc heads move, electric currents flow in circuits, characters 
appear on screens or on paper, etc. For programs that are specifically intended to  control such 

physical'behaviour, it would be necessary to consider these phenomena in their semantics. 

But here, let us restrict our attention to  programs whose behaviour is intended to be independent 

of particular computers. Such programs are typically written in general, high-level programming 

languages that actually deny the programmer direct control over the details of physical behaviour. 

The appropriate semantics of these programs is implementation-independent, consisting of just 

those features of program execution that are common to  all implementations. 

The implementation-independent semantics of a program may typically be modeled mathemat- 

ically as a function (or relation) between inputs and outputs-where an input or output item might 

be just a number. The concrete representation of input and output as strings of bits is (usually) 

implementation-dependent, and hence ignored; likewise, the length of time taken for program execu- 

tion. But termination properties are generally implementation-independent, and should therefore 

be taken into account in semantics. 

Thus the semantics of a program is a mathematical object that models the program's 

implementation-independent behaviour. The semantics of a programming language consists of 

the semantics of all its programs. 

Actually, some details of semantics are often left implementation-defined, e.g., limits on the 

size of numbers, maximum depth of recursive activation. These are regarded as parameters of 

the semantics; when such parameters are supplied, the implementation-independent semantics of a 

particular subclass of implementations is obtained. 

A standard for implementations of a programming language may be established by: 

(i) specifying the semantics of all programs in the language; and 

(ii) specifying a "conformance" relation between semantic objects and implementation be- 

haviours. 

Our concern in this chapter is with (i), but let us digress for a moment to indicate how (ii) might 

be done. 

Assume a correspondence between the inputs and outputs in the semantic model and some 

physical objects processed by implementations. Let a program and its input be given. If these 
uniquely determine output (and termination properties) then a conforming implementation, when 

given the physical representations of the program and input, must produce a representation of the 



output-computing "for evern if the semantics specifies non-termination. If, however, there are 

several possible outputs for a given program and input-i.e., the program is nondeterministic-the 

implementation need only produce one of them (perhaps not terminating if that is a possibility); 

the implementation may or may not be nondeterministic itself. 

2.3.1 Denotations 

Now back to  our main concern: specifying the semantics of programs. The characteristic feature of 
Denotational Semantics is that one gives semantic objects for all phrases-not only for complete 
programs. The semantic object specified for a phrase is called the denotation of the phrase. The 
idea is that the denotation of each phrase represents the contribution of that phrase to the semantics 

of any complete program in which it may occur. 
The denotations of compound phrases must depend only on the denotations of their subphrases. 

(Of course, the denotations of basic phrases do not depend on anything.) This is called compsi- 

tionalit y . 
It should be noted that the semantic analyst is free to choose the denotations of phrases- 

subject to compositionality. Sometimes there is a "natural", optimal choice, where phrases have the 
same denotations whenever they are interchangeable (without altering behaviour) in all complete 

progmms; then the denotations are called fully abstmct, and they capture just the "essential" 

semantics of phrases. 
Note that considering interchangeability only in complete progmms lets the notion of full ab- 

stractness refer directly to  the behauiours of programs, rather than to their denotations. Different 

choices of which phrases are regarded as complete programs may give different conclusions con- 
cerning whether full abstractness obtains. 

It is not always easy (or even possible) to find and specify fully abstract denotations, so in 
practice a compromise is made between simplicity and abstractness. 

As an introductory (and quite trivial) example take the binary numerals. An abstract syntax 

for binary numerals was suggested in Section 2.2. Now let us extend the syntax to allow "programsn 
consisting of signed binary numerals, see Table 2.5. 

(SIGNED-BINARY-NUMERAL) 

Z ::= B I - B  

(BINARY-NUMERAL) 

B  ::= 0  1 1  ( B O  I B 1  

Table 2.5: Abstract syntax for signed binary numerals 

The meanings (i.e., "behaviours") of signed binary numerals are supposed to  be integers in 
Z, according to the usual interpretation of binary notation (i.e., the most significant bit is the 
left-most), negated if preceded by '-'. We are free to choose the denotations for unsigned binary 
numerals B. The natural choice is to let each B denote the obvious natural number in N. and such 



denotations (specified formally in Section 2.3.2) are indeed fully abstract. 

Any other choice of denotations is perhaps rather contrived in this simple example, but let us 

consider an alternative possibility so as to illustrate lack of full abstractness. 

We could choose the denotation of B to be a pair (n, I) E N 2 ,  where n gives the numerical value 

of B and 1 gives its length. Then the denotation of a signed binary numeral 'B' or '-B' would 

be determined just by n. Such denotations can be defined compositionally, but they are not fully 

abstract: for instance, the phrases '0' and '00' get distinct denotations, yet they can always be 

interchanged in any signed binary numeral without affecting its meaning. 

Now consider the original (concrete) grammar for unsigned binary numerals (Table 2.4) and 

regard it as a specification of abstract syntax. With this phrase structure, we are no longer able to 

take the denotation of B to  be just its numerical value: the value of the phrase '1B' is determined 

not only by the numerical value of B, but also by the number of its leading zeros. In fact the 

(n, 1) E N2 denotations mentioned above turn out to  be fully abstract for this syntax. 

The above example shows that the property of full abstractness can be rather sensitive to 

the structure of abstract syntax-and thereby casts doubt on its appropriateness as an absolute 

criterion of the quality of denotational descriptions. 

In Denotational Semantics, there is in general a sharp distinction between syntax and seman- 

tics, and denotations consist of mathematical objects (such as numbers and functions) that exist 

completely independently of programming languages. In particular, denotations do not usually 

incorporate program phrases as components. In fact it would not conflict with compositional- 

ity to let phrases denote even themselves, but such "denotations" tend to have (extremely) poor 

abstractness. 

There are two cases, however, when it is desirable to use phrases as denotations: 

identifiers usually have to be their own denotations (e.g., in declarations); and 

for languages like LISP, where phrases can be computed, the denotation of a phrase essentially 

corresponds to its abstract syntax (and the benefits of the denotational approach are then 

questionable, since semantic equivalence is just syntactic identity). 

2.3.2 Semantic Functions 

Semantic functions map phrases (of abstract syntax) to their actual denotations. The semantics of 

a programming language may be specified by defining a semantic function for each sort of phrase. 

Recall that abstract syntactic entities have an unambiguous structure. Hence semantic functions 

may be defined inductively by specifying, for each syntactic construct, its denotation in terms of 

the denotations of its components (if there are any). The conventional way of writing such an 
inductive definition in Denotational Semantics is as a set of so-called semantic equations, with (in 
general) one semantic equation for each production of the abstract syntax. 

Let a ,  a*, . . . , a, be (possibly-subscripted) nonterminal symbols, with associated phrase sorts 

S, SI, . . . , s,. Let F,, F,,, . .. , F3, be semantic functions mapping phrases of sort s ( i )  to their 



denotations (in practice, the semantic functions are usually given mnemonic names when they are 

introduced). Then the semantic equation for the production 'a ::= uoal. . . anun7 is of the form 

Fs [ U O ~ I  . a n ~ n  ] = f (Z1 [all , . - 7  3 8 ,  [an]). I, 

The way that the denotations of the phrases al ,  . . . , a, are combined is expressed using whatever 

notation is available for specifying particular objects-determining a function, written f above. 
Note that the emphatic brackets [ ]I separate the realm of syntax from that of semantics, which 

avoids confusion when programming languages contain the same mathematical notations as are 
used for expressing denotations. 

To illustrate the form of semantic equations, let us specify denotations for signed binary numer- 

als (with the abstract syntax given in Table 2.5). We take for granted the ordinary mathematical 

notation (0,1,2,+, -, x)  for specifying particular integers in Z and natural numbers in N. The 

semantic functions (2 for signed binary numerals, B for unsigned binary numerals) are defined 
inductively by the semantic equations given in Table 2.6. 

Table 2.6: Denotations for signed binary numerals 

Perhaps the standard interpretation of binary notation is so much taken for granted that we 
may seem to be merely "stating the obvious" in the semantic equations. But we could just as well 

have specified alternative interpretations, e.g., by reversing the r6les of '0' and 'I,, or by making 
the right-most bit the most significant. 

In effect, the semantic equations reduce the semantics of the language described (here, the binary 
numerals) to that of a "known" language (here, that of ordinary arithmetic). This reduction may 
also be viewed as a "syntax-directed translation", although it is then essential to bear in mind that 
phrases are semantically-equivalent whenever they are translated to notation that has the same 
interpretation, not merely the same fom. 



An alternative way of specifying semantic functions is to exploit the formulation of abstract 

syntax as an initial algebra, discussed in Section 2.2. Recall that the abstract syntax A(G) specified 

by a grammar G is a CG-algebra, where CG is the signature corresponding to the productions of 

G. As A(G) is the initial CG-algebra (Proposition 32), there is a unique CG-homomorphism from 

A(G) to any other CG-algebra. So all that is needed is to make the spaces of denotations into a 

"target" CG-dgebra, say D, by defining a function p~ for each p E CG, i.e., for each production p 

of G. Then the semantic functions are given as the components of the unique CG-hOmOmOrphism 

from A(G) to  D. 

This approach is known as Initial Algebra Semantics. Whereas such an explicit algebraic for- 

mulation can be convenient for some purposes, the approach is essentially the same as Denotational 

Semantics, and it is a simple matter to transform semantic equations into specifications of target 

algebras-or vice versa-while preserving the semantic functions that are thereby defined. 

2.3.3 Notational Conventions 

Some abbreviatory techniques are commonly used in semantic equations: 

a The semantics of a construct may be specified in terms of that of a compound phrase, provided 

no circularity is introduced into the inductive definition. For instance, we might specify 

S[ if E then ] = s[ if E then S else skip ] 

where S[ if E then Sl else S2 ] is specified by 6 ordinary semantic equation. As well as 

abbreviating the right-hand sides of semantic equations, the use of this technique emphasizes 

that the syntactic construct is just "syntactic sugar" and does not add anything of (semantic) 

interest to the language. 

a There may be several semantic functions for a single phrase sort, say 31 : P + D;. This 
corresponds to  a single function 3 : P + (Dl x . . . x D,), with the components of denotations 

being defined separately. 

The names of semantic functions may be omitted (when there is no possibility of confusion). 

In particular, when identifiers are essentially their own denotations, their (injective) semantic 

function is generally omitted. 

These abbreviations have been found to increase the readability of denotational descriptions 
without jeopardizing their formality. 



2.4 Domains 

Appropriate mathematical spaces for the denotations of programming constructs are called (se- 

mantic) domains. Here, after a brief introduction to the basic concept of a domain, a summary is 
given of the notation used for specifying domains and their elements. A thorough explanation of 
the notation, together with the theory of domains, is given by Gunter and Scott [18]. The main 
techniques for choosing domains for use in denotational descriptions of programming languages are 

demonstrated in Section 2.5. 

2.4.1 Domain Structure 

Domains are sets whose elements are partially-ordered according to their degree of "definedness". 
When x is less defined than y in some domain D, we write x ED y and say that x approximates y 
in D.  (Mention of the domain concerned may be omitted when it  is clear from the context.) Every 
domain D is assumed to have a l a s t  element ID, representing "undefinedness"; moreover there 
are limits U, x, for all (countable) increasing sequences xo L xl L . . L x, L -. (Thus domains 
are so-called (w-)cpos. Further conditions on domains are imposed by Gunter and Scott [18]; but 

these conditions need not concern us here, as their primary purpose is to ensure that the class of 
domains is closed under various constructions.) 

For an example, consider the set of partial functions from N to N, and for partial functions 
f,g, let f 5 g iff graph(f) C graph(g). This gives a domain: C is a partial order corresponding 

to definedness; the least element I is the empty function (but every total function is maximal, so 
there is no greatest element); and the limit of any increasing sequence of functions is given by the 

union of the graphs of the functions. 
A domain D may be defined simply by specifying its elements and it approximation relation [Z, 

as above. But it is tedious to check each time that & has the required properties-and to define 
ad hoc notation for identifying elements. 

In practice, the domains used in denotational descriptions are generally defined as solutions 
(up to isomorphism) of domain equations involving the standard primitive domains and standard 

domain constructions. Not only does this ensure that the defined structures really are domains, it 
also provides us with standard notation for their elements. 

The standard primitive domains are obtained merely by adding I to an unordered (but at most 
countable) set, of course letting I t x for all x. Domains with such a trivial structure are called 

flat. For example the domain T of truth values is obtained by adding I to the set {true,false), and 
the domain NL of natural numbers by adding I to N. 

There are standard domain constructions that correspond closely to well-known set construc- 
tions: Cartesian product, disjoint union, function space, and power sets. Of course these domain 
constructions have to take account of the E relation, as well as the elements; this leads to several 
possibilities. 

Before proceeding to the details of the standard domain notation, let us consider what functions 
between domains are required. 



The functions generally needed for the semantics of programming languages are monotone, in 

that they preserve the relation 5 :  

and continuous, in that they also preserve limits of increasing sequences: 

xo G XI C E zn E . . implies f (U x,) = U f (x,). 
n n 

Note that we do not insist that functions preserve least elements. Those functions f that do satisfy 

are called strict. Constant functions are non-strict functions (in general). 

Partial functions from N to N are represented by strict total functions from NL to NI, the 

result l corresponding to "undefined". Notice, by the way, that all strict functions on NL are 

continuous-but in practice, we only make use of those that are computable in the usual sense. 

The importance of continuity is two-fold: 

(i) Let D be a domain. For any continuous function f : D + D there is a least a: E D such that 

This x is c d e d  the least fixed point of f ,  written fix( f). It is given by U, f n ( l ) .  

Non-monotone functions on domains need not have fixed points at all; whether monotone 

(but non-continuous) functions on domains always have least fixed points depends on the 

precise structure of domains, but in any case their fixed points are not necessarily obtainable 

as the limits of countable increasing sequences. 

(ii) There exists a non-trivial domain D, such that 

provided that D, -t D, is just the space of continuous functions on D,. Domains such as 

D, that "contain" their own (continuous) function space are called reflexive. 

If D, + D, were to be the space of all functions, D, would have to be the trivial (one-point) 

domain, by Cantor's Theorem. 

Least fixed points of continuous functions provide appropriate denotations for iterative and 

recursive programming constructs. Reflexive domains are needed for the denotations of constructs 

that may involve "self-application" : procedures with procedure parameters in ALGOLGO, functions 
with dynamic bindings in LISP, assignments of procedures to variables in C, etc. Even when self- 

application is forbidden (e.g., by type constraints), it may still be simpler to specify denotations as 

elements of reflexive domains, rather than to introduce infinite families of non-reflexive domains. 

The structure of domains described above is further motivated by the fact that domains with 

continuous functions provide denotations for almost all useful programming constructs. (The only 

exception seems to  be constructs that involve secalled "unbounded nondeterminism", correspond- 

ing to infinite sets of implementation-dependent choices.) 



2.4.2 Domain Notation 

Now for a summary of the notation for specifying domains and their elements, following Gunter 

and Scott [18]. The (abstract) syntax of the notation is given in Table 2.7. Some conventions for 
disambiguating the written representation of the notation, together with some abbreviations for 

commonly-occurring patterns of notation, are given in Section 2.4.3. 

(DOMAIN-EXPRESSIONS) 
d : : = w I I I O I T I N L I  

dl -, d2 I dl - d2 I 
dl x x dn 1 dl 8 ...@ dn 1 
dl + ...+ dn 1 dl @ @dn I 
dl I d* ( dOO 1 dh 

(DOMAIN-VARIABLES) 
w ::= arbitrary symbols 

(EXPRESSIONS) 
e ::= x I ld I T ) true ( false I 

el =d e2 I ifel then e2 elsee3 1 0 I succ I 
Ax E d. e I el e2 ( idd 1 el o e2 I fixd I strictd ( 

(el, .- . ,en) I (el,- . . ,en) I on! 1 smashd I 
[el, ,en] I in: I UPd 1 downd 1 
4eb I el e2 I eh I extd 

(VARIABLES) 
x ::= arbitrary symbols 

Table 2.7: Notation for domains and elements 

Let us start with domain expressions, d. These may include references to domain variables, w, 
whose interpretation is supplied by the context of the domain expression. This context is generally 
a set of domain equations of the form 

~1 = dl,. . ., wn = dn 

where the wj are distinct and no other variables occur in the d;. As is shown by Gunter and Scott 
[18], there is always a "minimal" solution to such a set of equations (up to isomorphism). We need 
not worry here about the construction of the solution-the equations themselves express all that 
we really need to know about the defined domains. Note, however, that the simple equation 



defines D to be the trivial (one-point) domain! Most domain equations that arise in practice do 
not admit trivial solutions. (Gunter and Scott [18] show how to force non-trivial solutions to 

D = D -t 0 . )  

Element expressions e may include references to element variables x whose domain and inter- 

pretation is supplied by the context. Usually the context is just the enclosing (element) expression, 

but we also allow auxiliary definitions of the form 

The scope of an auxiliary definition is the entire specification. (Mutually-dependent auxiliary 

definitions may be regarded as abbreviations for independent definitions involving the least fixed 

point operator.) 

Basic Domains 

I d  denotes the least element of a domain d. 

I is the 1-point domain, consisting only of 11. 

0 is the 2-point domain, consisting of l o  and T. (Domains do not usually have greatest elements, 

so there is no need for a general notation Td. )  

Truth Values 

T is the flat 3-point domain of truth values, consisting of IT, true, and false. 

el = d  e2 tests the equality of el and ea in any f i t  domain d. The value is IT if either or both of 

el and e2 denote ld; otherwise it is true or false. (The monotonicity and continuity of =d 

follow from the flatness of d: equality would not be monotonic on a non-flat domain.) 

ifel then ep else e3 requires el to denote an element of T, and e2, e3 to denote elements of some 

domain d. Then it denotes ez if el denotes true; it denotes e3 if el denotes false; and it denotes 

l d  if el denotes IT. 

In practice we allow all the usual Boolean functions, extended strictly (in all arguments) to T, 

and written using infix notation. 

Natural Numbers 

NI is the flat domain of natural numbers, consisting of  IN^, 0, 1, . . . (no infinity). 

succ denotes the strict extension of the successor function from N to NI. 

In practice we allow all known (computable) functions on the natural numbers, extended strictly 

in all arguments to NI, and written using infix notation. 



Function Domains 

dl + d2 denotes the domain of all continuous functions from the domain denoted by dl to the 
domain denoted by d2. (Henceforth the tedious "denoted byn is generally omitted.) We have 

f [Idl-d2 9 iff f(x) L d 2  9 ( ~ )  for x in dl. 

Ax E d. e denotes the (continuous) function f given by defining f(x) = e, where x ranges over d. 
This provides the context for interpreting references to x in e. 

el e2 denotes the result f (x) of applying the function f : d + d' denoted by el to the value x E d 

denoted by e2. 

idd denotes the identity function on domain d. 

el o ep denotes the composition of the functions fl : d' + d" and f2 : d + d' denoted by el and e2, 
respectively, so that for all x E d, (el o e2)(x) = el(e2(x)). 

fixd denotes the least fixed point operator for domain d, which maps each function f in d + d to 
the least solution x of the equation x = f (x). 

dl cw d2 denotes the restriction of dl -t d2 to strict functions. 

strictd denotes the function that maps each function in dl + d2 to the corresponding strict function 
in d, where d = dl o+ d2. 

Product Domains 

dl x -.. x dn denotes the Cartesian product domain of n-tuples, for any n 2 2, generalizing the 
binary product domain of pairs. We have (xl,. . . ,xn) Ld,  x...xd, (yl,. . . , y,) iff x; L d i  y; for 
i =  1, ..., n. 

(el,. . . ,en) denotes the n-tuple with components el,. . . ,en, for any n 2 2. 

(el,. . . ,en) denotes the target tupling of the functions denoted by the e;, abbreviating 
Ax E d. (el(x), . . . ,e,(x)), where x does not occur in the ei. 

on; denotes the projection onto the i'th component, mapping (xl,. . . ,x,) to X i  , where d = 

dl x .-. x dn. 

dl 8 -. 8 dn denotes the "smashn product obtained from the Cartesian product by identifying all 

the n-tuples that have any I components. Note that @ preserves flatness of domains. 

Wnashd denotes the function that maps each element of d, where d = dl x . - -  x d,, to the corre- 
sponding element of dl 8 . . -8 d,, giving I if any of the components are I. 



Sum Domains 

dl + -. . + dn denotes the "separated" sum domain d whose elements are (distinguished copies of) 
the elements of the d; together with a new ld. Elements of d originating from different 

summands d; are incomparable in d. 

dl $ ... $ dn denotes the "coalesced" sum domain d where the I elements of (the distinguished 

copies of) the d; are identified with l d .  Note that $ preserves flatness of domains. 

inid denotes the injection function mapping elements of d; to  the corresponding elements of d, where 

d = d l $ . . - $ d n  and l i i s n .  

[el,. . . ,en] denotes the 'case analysis" of the functions f; : d; -+ d' denoted by the e;, mapping 

ini(%) t o  the value of f i ( x )  for 1 5 i 5 n (but mapping I to I). 

Lifted Domains 

dl denotes the lifted domain d' obtained by adding a new l d t  under (a distinguished copy of) d. 

upd denotes the function that maps each element of d to  the corresponding element of dl. 

downd denotes the function that maps each element of dl back to the corresponding element of d. 

Lists 

d' denotes the domain of lists of finite length, with non-lcomponents in d. Note that lists with 

different lengths are incomparable in 5. 

doo denotes the domain of infinite lists with components in d. Here, the "empty" list is the infinite 

list of 1 's.  We let l1 Cd- 12 iff every component of ll approximates the corresponding 

component of 12. Thus the empty ]list approximates all other lists. 

Power Domains 

d b denotes the "natural" (convex, Plotkin) power domain. Its elements may be imagined as equiv- 

alence classes of sets, where two sets are equivalent iff this follows from the continuity (and 

associativity, commutativity and absorption) of the binary union operation. 

E.g., if x E y [I: z, then the sets {x, y,z) and {x,z) are equivalent; moreover, if xo & XI 5 
- - C xn C - - - and X = {x, I 0 5 n), then X is equivalent to X U {U, x,). 

The other power domains (upper, lower) considered by Gunter and Scott [18] are not used in 
this chapter: they do not accurately reflect the possibility of non-termination, as they force 

sets X U {I) to be equivalent either to  {I) or to X. 

{e) denotes the element of db corresponding to the set {x), where e denotes the element x E d. 



el Ld e2 denotes the element of db corresponding to the union of X1 and X2, where el and e2 denote 
elements of a power domain dh corresponding to the sets X1 and X2. 

eh denotes the pointwise extension of e to  map dl --t d2 h ,  where e denotes a function in dl + d2. 

extd extends functions in d = dl -, dzb to dlh + d2h. 

It is possible to represent the empty set by using the domain 0 $d instead of just d h; emptiness 
can be tested for using [Ax E 0. el,Ax E db. el]. However, there is no (continnous) test for 

membership in power domains (just as there is no continuous test for equality on non-flat domains). 
So much for the basic notation for domains and their elements. 

2.4.3 Notational Conventions 

When the above notation is written in semantic descriptions, domain expressions in element ex- 

pressions are generally omitted when they can be deduced from the context. Parentheses are used 
to indicate grouping, although the following conventions allow some parentheses to be omitted: 

Function domain constructions -, and cw associate to the right, and have weaker precedence 
than +, $, x, and 8: 
Dl x D2 + D3 -' D4 is grouped as (Dl x D2) -+ (D3 --, Dq). 

r Application is left-associative, and has higher precedence than the other operators: f x y is 

grouped as (f x) y , and f o g(x) is grouped a s  f o (g(x)); 

r Abstraction Ax E d. e extends as far as possible: (Ax E D. f x) is grouped as (Ax E D. (f x)); 

r Composition o is associative, so its iteration does not need grouping. 

(Without these conventions, our semantic descriptions would require an uncomfortable number of 
parentheses.) Furthermore, when implied unambiguously by the context, the following operations 
may be omitted: 

r isomorphism between w and d, when w = d is a specified domain equation; 

r the following isomorphisms (which follow from the definitions of the basic domains and domain 
constructors): 

- dl + ...+ dn 2 ( d l ) ~  @ ... @ ( d n ) ~ ;  

- 0 !2 I*; 

- T Y ( 0  $ 0) ,  mapping true to inl(lo); 

- NI 2 (O$ NL),mapping 0 to inl(lo); 

- d* E ( 0  $ (d 8 d*)); 

- dOO 2 (d x dm); 



- dm G!i (NL o-, d); 

injections ini : di C- dl $ - - - $ dn; 

"bottom extensions" of functions f : d; + d' to sum domains: 

[...,I, f,I ,... ] : d l $ . - . $ d n ~ d r ;  

the inclusions of dl 8 . @I d, in dl x . . . x d, and of d M dr in d + dr, and the strict inclusion 

o f d l @ . . . @ d , i n d l + - . . + d  ,. 

Finally, the notation X(xl E dl, . . . , xn E dn ). e abbreviates 

AX E dl x - - x dn. (Axl E dl. . . AX, E d,. e)(onlx). . . (on,x) 

(where x does not occur in e). I t  denotes the function f defined by f (xl,. . . , x,) = e. 



2.5 Techniques 

The preceding sections introduced all the formalism that is needed for specifying denotational 

descriptions of programming languages: grammars, for specifying abstract syntax; domain notation, 
for specifying domains and their elements; and semantic equations, for specifying semantic functions 
mapping syntactic entities to their denotations. 

This section gives some examples of denotational descriptions. The main purpose of the exam- 
ples is to show what techniques are available for modeling the fundamental concepts of programming 
languages (sequential computation, scope rules, local variables, etc.). 

Familiarity with these techniques allows the task of specifying a denotational semantics of a 

language to be factorized into (i) analyzing the language in terms of the fundamental concepts, and 
(ii) combining the techniques for modeling the concepts involved. Furthermore, the understanding 

of a given denotational description may be facilitated by recognition of the use of the various 
techniques. 

The programming constructs-dealt with in the examples below are, in general, simplified versions 
of constructs to  be found in conventional "high-level" programming languages. It is not claimed 

that the agglomeration of the exemplified constructs would make a particularly elegant and/or 

practical programming language. 
Section 2.5.1 outlines the semantics of litemls (numerals, strings, etc.). Then Section 2.5.2 

specifies denotations for arithmetical and Boolean expressions, illustrating a simple technique for 
dealing with "errors". Section 2.5.3 shows how to specify denotations for constant declarations, 

using "environments" to model scopes. Section 2.5.4 extends expressions to include function ab- 
stmctions, and gives a denotational description of the A-calculus. 

Next, Section 2.5.5 gives denotations for variable declamtions, using "stores" and "locations". 
Then Section 2.5.6 deals with statements, using "direct" semantics; it also explains how the tech- 

nique of "continuations" can be used to model jumps. Section 2.5.7 describes procedures with 
various modes of parameter evaluation. 

Section 2.5.8 distinguishes between the concepts of "batch" and "interactiven input and output. 
Section 2.5.9 shows how powerdomains can be used to model nondeterministic progmms. Finally, 
Section 2.5.10 introduces "resumptions" and uses them to give denotations for a simple form of 
concurrent pmesses. 

Caveat: In Section 2.5.2, the denotations of expressions are simply (numerical, etc.) values. 
But later, they have to be changed: in Section 2.5.3 (to be functions of environments), and again in 
Section 2.5.5 (to be functions of stores). Such changes to denotations entail tedious changes to the 
semantic equations that involve them. This rather unfortunate feature of conventional denotational 
descriptions stems from the fact that the notation used in the semantic equations has to match the 
precise domain structure of denotations. 

Of course, these changes would be unnecessary if denotations of expressions were to be functions 
of environments and stores from the start. Although that might be appropriate when giving a 
denotational description of a complete programming language, it is undesirable in this introduction: 



the complexity of the denotations of simple constructs would obscure the relation between particular 

program constructs and the appropriate techniques for modeling them. 
An alternative approach is to introduce auxiliary notation for combining denotations. Then 

when domains of denotations are changed, only the definition of the auxiliary notation requires 

modification: the semantic equations themselves may be left unchanged. Moreover, the auxiliary 

notation may be chosen to correspond directly to fundamental concepts, such as "sequencing" and 

"block structuren, so that the semantic equations explicate the fundamental conceptual analysis of 

the described constructs. Such an approach is presented elsewhere [34]. It would be inappropriate 

to adopt it here, as it tends to  hide the mathematical essence of denotations, and would give a 

distorted impression of the conventional approach. to Denotational Semantics. 

2.5.1 Literals 

The syntax of a programming language usually includes "literalsn (sometimes called "literal con- 

stants'', or just "constantsn). A literal is a symbol (or phrase) that always refers to the same item 

of data, irrespective of where it occurs. Examples of literals are 'true' and 'false', numerals, 

characters, and character strings. 

The denotational semantics of literals is fairly straightforward, but somewhat tedious, to specify. 

We have already seen a simple example: binary numerals (Section 2.3). So let us skip most of the 

details here. A skeleton abstract syntax for literals is given in Table 2.8. 

(LITERAL) 

L ::= t r u e  I f a l s e  1 N I C I CS 

(NUMERAL) 

N ::= unspecified 

(CHARACTER) 

C ::= unspecified 

(CHARACTER-STRING) 

CS ::= unspecified 

Table 2.8: Syntax for literals 

For the denotations of 'true' and 'false', we may use the values true and false of the standard 

domain T. The denotations of numerals should take into account that different implementations 

generally impose different bounds on the magnitude of numbers, and on the accuracy of "real" 

numbers. So let the domain of numbers-together with the associated operations-be a parameter 

of the semantics. The same goes for the denotations of characters (the ordering may vary between 

implementations) and strings (their length may be bounded). Let us leave such parameters as 
unspecified variables in the semantic description. 

For example, let the domains Nurn, Char, and String be unspecified domain variables, together 



with various variables for elements of, and functions on, these domains; see Table 2.9. It is straight- 
forward to  define the semantic functions introduced in Table 2.10 in terms of the given elements 

and functions. The details are omitted here. 

Num = unspecified 

zero,one E Num 

neg E N u m w  Nurn 

sum, diff E (Num 8 Num) o+ Nurn 

prod,div C (Num 8 Num) (2-, Nurn 

Char = unspecified 

ord E C h a r m  Num 

chr E Num- Char 

String = unspecified 

str E Char* o-+ String 

chrs E String c w  Char* 

V = T $ Num $ Char $ String 

Table 2.9: Domains for literals 

L : LITERAL + V 

JV' : NUMERAL -+ Nurn 

C : CHARACTER + Char 

C S  : CHARACTER-STRING -+ String 

Table 2.10: Denotations for literals 

By the way, the domains of literal denotations are generally fiat (and countable). Note in 
particular that the finite numerical approximations to real numbers made by computers should 

not be represented by values related by the computational approximation ordering of domains, L: 



once an approximate real number has been computed, further computation does not improve the 

degree of approximation of that number. (Of course, a program may indeed compute a series of 

approximate .numbers, but the numbers are not necessarily increasingly-good approximations to 
' 

some particular number.) 

2.5.2 Expressions 

Expressions in programming languages are constructed using operators and (perhaps) if-then-else 

from primitive expressions, including literals. Abstract syntax for some typical expressions is given 

in Table 2.11. (Further expressions are considered in later sections.) 

(EXPRESSION) 

E ::= L I MO E;; ( El DO & I if El then E2 else I% 

(MONADIC-OPERATOR) 

MO ::= 1 ( - 

(DYADIC-OPERATOR) 

D O : : = A I V ( + I - I * ( =  

Table 2.11: Syntax for expressions 

We take the denotations of expressions to be elements of a domain EV that consists of truth- 

values, numbers, etc., representing the result of expression evaluation. The domain EV is a so-called 

"characteristic domainn, and its relation to other characteristic domains introduced in later sections 

can give valuable insight into the essence of the described programming language. For now we let 

EV contain the same values as V, i.e., the values of literals; later, further expressible values are 

introduced. 

We are now ready to define the denotations of expressions and operators; see Table 2.12. Note 

that the notational conventions introduced at the end of Section 2.4 are much exploited in the 

semantic equations. For instance, in the equation for if-expressions, there is an a.pplication of a 

function ( A t  E T. . . .) to an argument in EV; however, T is a summand of V, which is isomorphic 

to EV, so the given function, f say, is implicitly extended to [f, - L N ~ ~ + E v ,  -!-c~~~-+Ev, I ~ ~ ~ ~ ~ ~ + ~ ~ ]  E 

(T $ Num $ Char $ String) + EV, and then composed with an isomorphism to give a function in 

EV + EV. 

Thus the denotation of an erroneous expression such as 'if 42 then.. . else.. . ' is I. The 
semantics of such erroneous expressions is actually irrelevant, provided that programs containing 
them are deemed illegal. More generally, however, it might be better to avoid representing errors by 

I, as the essential use of I (in later sections) is to represent non-termination. To do this we would 

have to introduce special elements for representing errors into all domains, and the extra notation 

for specifying the treatment of errors would be an unwelcome burden in the semantic equations. 



EV = V 

& : EXPRESSION -+ EV 

&[ L ] = L[L] 

E [  M O  & I = M O [ M O I ( & [ E l l )  

&[ El D O  E2 ] = Z)O[DO](srnash(&[El], &[Ez] ) )  

&[ if f i  then & else & ] = (At E T. if t then &[&I else &[&I) 
(&[El l)  

M O  : MONADIC-OPERATOR --+ (V O+ V)  

MO[  7 ] = At E T. if t then false else true 

MO[ - ] = An E Num. diff(zero, n) 

DO : DYADIC-OPERATOR -+ ( V @ V - V )  

DO[ A 1 = X(tl E T,tz E T). iftl then t 2  else false 

. . . 
DO[ + ] = A(nl E Num, nz E Nurn). surn(nl, n2) 

. * a  

DO[ = 1 = A(v1 E V,v2 E V). (v i  =v v2) 

Table 2.12: Denotations for expressions 



2.5.3 Constant Declarations 

Identifiers are symbols used as "tokensn for values. In programming languages, there are various 

constructs which introduce identifiers and "bind" them to values. It  is conventional to refer to the 

value,to which an identifier is bound as the value "denotedn by the identifier, but this terminology 

is a bit misleading: the denotation of an identifier is the identifier itself (or rather, an element of a 

semantic domain corresponding to the abstract syntax of identifiers). 

Let us start with some simple "constant declarations", whose abstract syntax is given in Ta- 

ble 2.13. The intended effect of the declaration ' v a l  I = E' is to "bindn I to the value of E. The 

construct ' l e t  CD i n  E7 determines the "scope" of such "bindings": the bindings made by CD 

are available throughout E--except where overridden by another binding for the same identifier, 

since 'let's may be nested, giving a "block structure" in expressions. In 'CD1 ; CDa7, the scope 

of the bindings introduced by CD1 includes CDz. The phrase 'rec CD7 extends the scope of the 

declarations in CD to  CD itself, making them "mutually-recursive" . 

(CONSTANT-DECLARATIONS) 

CD ::= val I = E I CD1; C& I r e c  CD 

(EXPRESSION) 

E ::= I I l e t  CD in E 

Table 2.13: Syntax for constant declarations 

In the semantics, we write DV for the domain that represents the values "denotablen by identi- 

fiers. DV is a characteristic domain, like EV. In real programming languages there are sometimes 

values that are expressible but not denotablenumbers in ALGOLGO, for instance. Less obviously, 

there may be values that are denotable but not expressible-types in PASCAL, for instance. 
"Environmentsn are used to represent associations between identifiers and denoted values. The 

domain of environments, together with some basic functions on environments, is defined in Ta- 

ble 2.14. Ide is assumed to be a flat domain corresponding to the abstract phrase sort IDENTIFIER. 

The element T E 0 is used to indicate the absence of a denoted value. (To allow the presence of a 

denoted value to be tested, we would have to lift DV to DVL, since the denoted value might be I.) 

Notice that overlay(e, el) gives precedence to e, whereas combine(e, e') = combine(ef, e )  is intended 

for uniting the bindings of disjoint sets of identifiers. 

The result of expression evaluation now depends, in general, on the values bound to the identi- 

fiers that occur in it. This dependence is represented by letting the denotation of an expression be a 

function from environments to expressible values-which requires rewriting the semantic equations 

previously specified for expressions. 

Clearly, an appropriate denotation for a constant declaration is a function from environments to 

environments. But there is a choice to be made: should the resulting environment be the argument 

environment extended by the new bindings? or just the new bindings by themselves? Let us choose 

the latter, which gives a bit more flexibility, exploited in later sections. 



Env = Ide + (DV $ 0 )  

void = X I  E Ide. inz T 

E Env 

bound = X I  E Ide. Xe E Env. [idDv,l](e(I)) 

E Ide + Env -+ DV 

binding = X I  E Ide. Xv E DV. XI' E Ide. i f1 =id, I' then inl(v) else in2(T) 

E Ide + DV -+ Env 

overlay = X(e E Env, e' E Env). X I  E Ide. [idDv, Xx E 0. e1(I)](e(I)) 

E Env x Env -, Env 

combine = X(e E Env, Xe' E Env). X I  E Ide. [Ad E DV. [I, Xx E 0. dl, Ax E 0. i d ~ v ~ o ]  

(e(I>)(e1(I>> 

E Env x Env b Env 

Table 2.14: Notation for environments 

The denotations of constant declarations and of the related expressions, together with the 
modified denotations of the previously-specified expressions, are defined in Table 2.15. 

The semantics of recursive declarations makes use of fixEnv, which gives the least fixed point 
of the function in Env -+ Env to which it is applied. To see that this provides the appropriate 

denotations, consider CD[ rec v a l  I = E ](el. From the semantic equations we have 

CD[ rec val I = E ](e) = 
fix(Xe1 E Env. binding(I)(&[E](overlay(e1, e)))) 

i.e., the least e' E Env such that 

e' = binding(I)(&[E](overlay(el, e))). 

Let v = &[E](overlay(e1,e)); we have 

v = &[E](overlay(binding I v, e)) 

and in fact 

v = fix(Xvf E EV. &[Ej(overlay(binding I v', e))). 

Notice that a direct circularity in the recursive declarations gives rise to I as a denoted value, 

e-g., 



DV = V 

EV = V 

C V  : CONSTANT-DECLARATIONS + Env + Env 

CD[ val I = E ] = Xe E Env. binding I (&[E]e) 

CV[ CD1 ; C& ] = Xe E Env. (Xel E Env. overlay(CDICDz]l(overlay(el, e)), el)) 

(CD[CD1Ie) 

CV[ rec CD ] = Xe E Env. fix(Xe1 E Env. CD[CD](overlay(e1, e))) 

& : EXPRESSION -+ Env + EV 

I[ I ] = Xe E Env. bound I e  

&[ let 'CD in E 1 = Xe E Env. E([E](overlay(CV[CD]e,e)) 

&[ L ] = Xe E Env. L[L] 

&[ M O  & ] = Xe E Env. MO[MO](&[El]e) 

I[ & D O  ,?& 1 = Xe E Env. DO[DO](smash(l[~]e,&[E2]e)) 

&[ if then ,?& e l se  E3 ] = Xe E Env. (At  E T. if t then IIIEz]e else &[E3]e) 

f [El 3 4  

Table 2.15: Denotations for constant declarations and expressions (modified) 

CV[ rec val I = I ] = binding II 

in contrast to a mere "forward reference": 

CD[ rec (val I = It; val I' = 0) ] = overlay(binding ItO,binding I O ) .  

The most interesting case is when the sequence of environments ek defined by 

eb = binding(I)( IgE](~))  

e i  = binding(I)(CI[~](overlay(e~, e)) 



is strictly increasing, converging to-but never reaching-the limit point e' = U, eh. With the 
expressions considered so far, it is not possible to get such a sequence; but it becomes possible 

when function abstractions are introduced, as in the next section. 

2.5.4 Function Abstractions 

"Functions" in programs resemble mathematical functions: they return values when applied to 
arguments. In programs, however, the evaluation of arguments may diverge, so it is necessary to 

take into account not only the relation between argument values and result values, but also the 
stage at which an argument expression is evaluated: straight away, or when (if) ever the value of 
the argument is required for calculating the result of the application. 

Various programming languages allow functions to be declared, i.e., bound to identifiers. Often, 
functions may also be passed as arguments to other functions. But only in a few languages is 

it possible to express functions directly, by means of so-called "abstractionsn, without necessarily 
binding them to identifiers. (These languages are generally the so-called "functional programming 
languages" .) 

The syntax given in Table 2.16 allows functions to be expressed by abstractions of the form 'fun 
(val  I )  E'; we refer to 'va l  I' as the "parameter declarationn of the abstraction (further forms 

of parameter declarations are introduced later) and to  E as  the "bodyn. Notice that constant dec- 
larations of the form 'val I' = fun (val I )  E' resemble "function declarationsn in conventional 

programming languages; recursive references to I' in E are allowed when the declaration is prefixed 
by 'rec'. 

The phrase 'l$ (& 1 ' expresses the application of a function to an argument, with the "actual 
parametern JZ& being evaluated before the evaluation of the body of the function abstraction is 

commenced-this "mode" of parameter evaluation is known as "call by value". (Functions in 
programming languages are usually allowed to have lists of parameters; this feature is omitted 
here, for simplicity.) 
- 

(EXPRESSION) 

E ::= fun (PD) E I El(&) 

(PARAMETER-DECLARATION) 
PD ::= val  I 

Table 2.16: Syntax for functions and parameter declarations 

There are two distinct possibilities for the scopes of declarations in relation to abstractions, aris- 
ing from identifiers which occur in the bodies of abstractions, but which refer to outer declarations. 
With so-called static scopes, the scopes of declarations extend into the bodies of an abstraction at 
the point where the abstraction is introduced, so that the declaration referred to by an identifier is 

fixed. With dynamic scopes, the body of an abstraction is evaluated in the scope of the declarations 
at each point of application, so that the declaration referred to by an identifier in an a.bstraction 



body may vary-and be different from that referred to with static scopes. There is some dispute 

in the programming community about which of these scope rules is "better". Here, the semantic 

description of static scopes is illustrated; dynamic scopes are only marginally more complicated to 

describe. 

The domains for use in the semantics of function abstractions are specified in Table 2.17. Notice 

that the definitions of DV and EV supercede the previous definitions. (No changes are needed to the 

semantic equations for declarations and expressions given in Table 2.12, thanks to  our notational 

conventions about injections and extensions related to sums.) 

F = (PV M FV)L 

P V = V $ F  

FV = V 

D V = V $ F  

E V = V $ F  

& : EXPRESSION - -  Env -r EV 

£1 fun ( P D )  E ] = 
Xe E Env. (up o strict)(Xv E PV. idw(£[E](overlay(PVIPDJjv, e)))) 

£1 El (&I 1 = Xe E Env. (down o id~)(£[E~]e)(l[Ez]e) 

PV : PARAMETER-DECLARATIONS --+ PV -+ Env 

PV[ val I 1 = Xu E PV. binding I v  

Table 2.17: Denotations for functions and parameter declarations 

To model abstractions it is obvious to use functions. The domains consisting of parameter values, 

PV, and function result values, FV, may be regarded as characteristic domains. Few programming 

languages allow functions to be returned as results (and some even forbid functions as arguments). 

The functions corresponding to the values of abstractions are taken to be strict, reflecting 

value-mode parameter evaluation: I represents the non- termination of an evaluation, and the non- 

termination of an argument evaluation implies the non-termination of the function application. 

The abstraction values are 2ified so that an abstraction never evaluates to I. 
Notice that the domain F is reftexive: it is isomorphic to a domain that (essentially) includes a 

domain of functions from F. 
The semantic equations for function abstractions are given in Table 2.17. Various isomorphisms 



are left implicit, for instance that between DV and EV; likewise, some injections and extensions 

related to sum domains are omitted. 
An alternative mode of parameter evaluation is to delay evaluation until the parameter is used. 

This mode is referred to as "call by name". (The main difference it  makes to the semantics of 

expressions is that an evaluation which doesn't terminate with value-mode, may terminate when 

name-mode is used instead.) 
Only a few programming languages provide name-mode parameters. Much the same effect, 

however, can be achieved by passing a (parameterless) abstraction as a parameter, and applying it 
(to no parameters) wherever the value of the parameter is required. 

The main theoretical significance of name-mode abstractions is that they correspond directly 
to  X-abstractions in the X-calculus of Church (see [4]). Consider the abstract syntax for X-calculus 
expressions given in Table 2.18. The axiom of so-called "P-conversion" of the X-calculus makes 

an application ' ( X I .  E )  (El)' equivalent to the expression obtained by substituting E' for I in E 

(with due regard to static scopes of X-bindings), and this is just E when I does not occur in E. 

(EXPRESSION) 

E ::= ( X I .  E l  I El(&) I I 

I I ..- ..- unspecified I 
- - -- - - - - - - -  

Table 2.18: Syntax for X-expressions 

It is a simple matter to  adapt the domains that were used to represent value-mode abstractions, 
so as to  provide a denotational semantics for the X-calculus. The only necessary changes are to let 
FV include F, and to remove the restriction of F to  strict functions; but let us dispense with the 

lifting as well, as it is no longer significant. The presence of V (in FV) ensures that the solution 
to  the domain equations is non-trivial. (The standad model for the X-calculus [18] is obtained by 
taking PV = FV = F, leaving essentially F = F + F, and the trivial solution has to be avoided 
another way.) 

The denotations for the X-calculus are specified in Table 2.19, where for once the injections and 
extensions related to the sum domain are made explicit (although the isomorphisms between the 
left- and right-hand sides of the specified domain equations are still omitted). 

The standard model for the X-calculus has been extensively studied, and there are some signif- 
icant theorems about it. Most of these carry over to the denotations defined above. First of all, 
there is the theorem that the semantics does indeed model 0-conversion: 

Proposition 33 For any X-expressions ' X I .  E ' and E', 

Here 'CE1/Il E' is the proper substitution of E' for free occurrences of I in E: the identifiers of 
X-abstractions in E are assumed (or made) to be different from the free identifiers in El. 



F = PV + FV 

P V = V $ F  

F V = V $ F  

D V = V $ F  

E V = V $ F  

& : EXPRESSION -+ Env -, EV 

&[ ( X I .  E )  1 = 

Xe E Env. inz(Xv E PV. £[E](overlay(binding I v,  e))) 

&[ EL 1 = Xe E Env. [I, id~](&I[El]le)(&[&k) 

Table 2.19: Denotations for X-expressions 

The key to proving the above theorem is: 

Lemma 34 (Substitution) For any X-expressions E, E', for any identifier I, and for any e E 
Env, 

The following theorem implies that @-reduction is sufficient for symbolic computation of ap- 

proximations to any desired degree of closeness. Let A(E) be the set of approximate normal forms 

of E (obtained from E by finite sequences of P-reductions, followed by the replacement of any 

remaining redexes by an expression '0' denoting I). 

Theorem 35 (Limiting Completeness) For any X-expression E, 

The original proof by Wadsworth [59] involves the introduction of an auxiliary calculus with numer- 

ical labels forcing all reduction sequences to terminate. An alternative proof is given by Mosses and 

Plotkin [36] by introducing an "intermediate" denotational semantics, where denotations are taken 
to be functions of an argument in the chain domain of extended natural numbers (i.e., with oo): 

for finite arguments, the intermediate semantics gives approximations, corresponding to the deno- 

tations of approximate normal forms; the standard denotations are obtained when the argument is 

00. 



2.5.5 Variable Declarations 

The preceding sections dealt with expressions, constant declarations, and function abstractions. In 
conventional programming langu&es, these constructs play a minor r61e in comparison to state- 

ments (also called "commandsn), which operate on "variablesn. This section deals with the seman- 
tics of variables; statements themselves are deferred to the next section. 

In programs, variables are entities that provide access to stored data. The assignment of a value 
to a variable has the effect of modifying the stored data, whereas merely inspecting the current 
value of a variable causes no modification. 

This concept of a variable is somewhat different from that of a variable in mathematics. In 

mathematical terms, variables stand for particular unknown values-often, the arguments of func- 

tions. These variables do indeed get "assigned" values, e.g., by function application. But the values 

thus assigned do not subsequently vary: a variable refers to the same value throughout the term in 

which it is used. In fact mathematical variables correspond closely to identifiers in programming 
languages. 

Program variables may be simple or compound. The latter have component variables that may 

be assigned values individually; the value of a compound variable depends on the values of its 
component variables. 

Consider the syntax specified in Table 2.20. The variable declaration 'var I: T' determines a 

"freshn variable for storing values of the "typen T, and binds I to the variable. Variable declarations 

are combined by ' V& , VD2'; such declarations do not include each other in their scopes (although 

in our simple example language, it would make no difference if they did, as  variable declarations do 
not refer to  identifiers at all). The types 'bool', 'num' are for declaring simple variables, for storing 
truth-values, respectively numbers; the type 'T [I.. N1' is for declaring compound variables that 

have N independent component variables for storing values of type T. In the expression 'El [E2] ', 
El is supposed to evaluate to  a compound variable, v, and & to a positive integer, n; then the 
result is  the nth component variable of v. 

(VARIABLE-DECLARATIONS) 

VD ::= var I :  T I VDI, VD2 

(TYPE) 
T ::= boo1 I num I T C1. . Nl 

Table 2.20: Syntax for variable declarations and types 

Types are used for two purposes in programming languages: to facilitate checking that programs 
are well-formed, prior to execution; and to indicate how much storage to allocate, during execution. 
Here, we are only concerned with the dynamic semantics of programs, which-in general-does not 
involve type checking, only storage allocation. (Mitchell [26] provides an extensive study of the 



semantics of types.) 

"Stores" are used to represent associations between simple variables and their values. Simple 

variables are represented by "locations" in stores; their only relevant property is that they can be 

distinguished from each other. Thus a simple variable identifier gets bound to a location, which in 

turn gives access to  the current value stored in the variable. It is possible for two identifiers to be 

bound (in the same scope) to the same location: then assignment to the one changes the value of 

the other. Such identifiers are called "aliases". 

Compound variables can be represented by values with variables (ultimately, locations) as com- 

ponents. Whereas assignment to distinct simple variables is independent, distinct compound vari- 

ables may "share" component variables. 

The domain of storable values, SV, consists of those items of data that can be stored at single 

locations. It  may be considered to be a characteristic domain. 

The domain of (states of) stores, S, is defined in Table 2.21, together with some basic functions 

on stores. A location mapped to false is "free", and a location mapped to true is "reserved" but 

not yet "initialized". Notice that the function 'location' is left unspecified-it is supposed to select 

any location that is not reserved in the given state. It is usual to ignore the boundedness of real 

computer storage in denotational semantics, so 'location' may be assumed not to produce I (unless 

applied to a state in which all the locations have somehow been reserved). 

Some further notation concerned with compound variables is specified in Table 2.22. It provides 

convenient generalizations of the basic functions on stores. LV is the domain of all variables; RV 
is the domain of assignable values. (The names of these domains stem from the sides of the 

assignment statement on which variables and assignable values are used: "leftn and "right".) They 

are considered to be characteristic domains. Usually, as here, LV has Loc as a summand, and RV 
has SV as a summand. 

The denotations of variable declarations and types are given in Table 2.23. It is convenient to 

introduce a second semantic function for variable declarations: for specifying that variables are no 

longer accessiblewhen exiting the scope of local variable declarations, for instance. Formally, the 

denotation of a variable declaration VD is the pair (VV[ VD], VU[ VD]). 

The appropriate denotations for expressions, declarations, etc., are now functions of stores, as 

well as environments. Whether expression evaluation should be allowed to affect the store-known 

as "side-effectsv-is controversial: some languages (such as C) actually encourage side-effects in 

expressions, but allow the order of evaluation of expressions to be specified; others make the order 

of evaluation of expressions "implementation-dependentn, so that the semantics of programs that 

try to exploit side-effects in expressions becomes nondeterministic. Here, let us forbid side-effects, 

for simplicity. Thus denotations of expressions may be functions from environments and stores to 
expressible values-there is no need to return the current store, as it is unchanged. 

We must modify the semantic equations for expressions, now that the denotations of expressions 

take stores as arguments. But first, note that in various contexts, there is an implicit "coercion" 

when the expression evaluation results in a variable, but the current value of the variable is required. 

Such contexts include operands of operators and conditions of if-then-else expressions. Very few 



S = Loc -, (SV $ T) 

LOC = 0 $ LOC 

empty = X I  E Loc. false 

E S 

reservation = X I  E Loc. Xs E S. 
(XI' E Loc. if 1 = L ~ ~  I' then true else ~(1'))' 

E L o c - + S + S  

freedom = X I  E Loc. Xs E S. 
(XI' E Loc. if 1 = L ~ ~  I' then false else s(1')) 

E Loc+S+S 

store = X I  E Loc. Xv E SV. Xs E S. 
(XI' E Loc. if 1 =L,, I' then v else ~(1')) 

E L o c - , S V - , S ~ S  

stored = XI  E Loc. As E S. [idsv,l](s(I)) 

E Loc -, S -, SV 

location = unspecified 

E S -+ Loc 

allocation = Xs E S. (X I  E Loc. (I, reservation I s))(location s) 

E S + L o c x S  
- 

Table 2.21: Notation for stores 



LV = Loc$ LV* 

RV = SV$ RV* 

allocations = A( f E S + LV x S, n E NI). 

if n = 0 then Xs E S. (T, s) else 

(X(1 E LV, s E S). (X(1* E LV*, sf E S). ((1, 1*), s)) 
(allocations( f, n - 1) s)) o f 

E ( S + L V x S ) x N i + S + L V x S  

freedoms = X(f E LV + S + S,n E NI). 

if n = 0 then XI* E 0. ids else 

X(1 E LV, I *  E LV*). freedoms( f, n - 1) l *  o f 1 

E ( L V + S + S ) x N l + L V + S - + S  

component = Xn E NL. if n = 1 then on1 else component(n - 1) o on2 

E N1+LV*-+LV 

assign = [store, 

[XI E 0. Xv E 0. ids, 

X(1 E LV,l* E LV*). X(v E RV,v* E RV*). 
assign I* v* o assign 1 v]] 

E L V + R V + S + S  

assigned = [stored, 

[A1 E 0. As E S. (T, s), 

X(1 E LV, I* E LV*). (X(v E RV, s E S). 

(A(v* E RV*, sf E S). ((v, v*), s')) 

(assigned I* s)) o assigned 111 

E L V - + S + R V x S  

Table 2.22: Notation for compound variables 



S V = T $ N u m  

V2) : VARIABLE-DECLARATIONS --t S  -+ (Env x  S) 

V D [  var I: T 1 = (X(1 E LV,s E S). (binding I I,  s)) o 'TIT] 

VD[ VD1, VD2 ] = (X(el E Env, sl E S). (X(e2 E Env, s 2  E S). (combine(e1, ez), s2)) 

(V'D[VDz]s1)) 
o V'D[VDl] 

YU : VARIABLE-DECLARATIONS -+ Env 4 S  o+ S 

VU[ var I: T ] = Xe E Env. IU[T](bound I e) 

VU[ VDl , VD2 ] = Xe 15 Env. VU[VD2]e o VU[V&]e 

~ : T Y P E + S + L V X S  

7[ bool ] = allocation 

7[ num ] = allocation 

7[ T [I. . N1 1 = allocations(7[T],N[N]) 

7 U  : TYPE -+ LVO+SO+S 

7U[  bool ] = freedom 

7U[  num ] = freedom 

7U[ T [I. . N1 ] = freedoms(lU[T],N[N]) 

Table 2.23: Denotations for variable declarations and types 



programming languages insist that the programmer use an explicit operator on a variable in order 

to obtain its current value. 

In practical programming languages, various coercions are allowed. A good example is the 

coercion from a parameterless function to  the result of applying the function, allowed in A L G O L ~ O  

and PASCAL. Of course, a static semantic analysis could use contextual information to recognize 

such coercions and replace them by explicit operators. But in general, it is easy enough to deal with 

coercions directly in the dynamic semantics-although languages like A L G O L ~ ~  and ADA allow so 

many coercions that it may then be preferable to define the dynamic semantics on the basis of an 

intermediate abstract syntax where the coercions have been made explicit. 

It is convenient to introduce a secondary semantic function for expressions, R, that corresponds 

to ordinary evaluation followed by coercion (when possible). The modifications to our previous 

specification are straightforward; the result is shown in Table 2.24, together with the semantic 

equation for 'a [GI '. 

2.5.6 Statements 

The statements (or commands) of programming languages include assignments of values to vari- 

ables, and constructs to control the order in which assignments are executed. Some typical syntax 

for statements is given in Table 2.25. 

In the assignment statement 'I& : = &', the left-hand side & must evaluate to a variable and E2 

must evaluate to an assignable value. The executions of the statements in 'Sl ; S2' are sequenced 

(from left to right!) and 'skip' corresponds to an empty sequence of statements. Conditional 

execution is provided by 'if E then Sl', whereas 'while E do S19 iterates Sl as long as E is 

true. The block 'begin VD; Sl end' limits the scope of the variable declarations in VD to the 
statements Sl , so that the variables themselves are "local" to the block, and may safely be re-used 

after the execution of Sl-assuming that "pointersn to local variables are not permitted. Let us 

defer consideration of the remaining statements in Table 2.25 until later in this section. 

The denotational semantics of statements is quite simple: denotations are given by functions, 

from environments and stores, to stores. The bottom store represents the non-termination of 
statement execution, and the functions are strict in their store argument, reflecting that non- 

termination cannot be "ignored" by subsequent statements. 

We are now ready to define the denotations of statements: see Table 2.26. Notice that the 
use of VU improves the abstractness of statement denotations: without it, the states produced by 

statement denotations would depend on the local variables allocated in inner blocks. 

The following proposition is a direct consequence of the semantic equations, using the unfolding 
property of 'fix'. 

Proposition 36 

S[ while E do Sl 1 = S[ i f  E then (Sl; while E do Sl) 1. 



F = ( P V o - t S o - +  FV)I 

P V = V $ F $ L V  

F V = v  

D V = V $ F $ L V  

E V = V $ F $ L V  

R : EXPRESSION + Env -+ S + RV 

R[ E ] = Xe E Env. As E S. [idRV, I, A1 E LV. assigned 1 s](&[E]e s) 

& : EXPRESSION -+ Env + S -+ EV 

I[ L ] = Xe E Env. As E S. L[L] 

&[ M O  & ] = Xe E Env. As E S. MO[MO](R[&]e s) 

&[ & D O  ] = Xe E Env. Xs E S. VOIDO](srnash(RIEl]e s,R[&]e s)) 

&[ if El then & else & ] = 
Xe E Env. As E S. (At E T. if t then &[&]e s else &[E3je s) 

( 7 W i l e s )  

&[ I ] = Xe E Env. As E S. bound I e  

&I let CD in E 1 = Xe E Env. As E S. E[E](overlay(CV[CD]e s, e) s) 

I[ fun (PD) E ] = 

Xe E Env. As E S. (up o strict)(Xv E PV. idFv o &[E](overlay(PV[PD]v, e))) 

&[ EI ] = Xe E Env. Xs E S. (down o i d ~ ) ( £ [ E ~ ] e  s)(&[&je s) s 

I [  El CEzl ] = Xe E Env. As E S. component(&[&F;les,R[&]e s) 

C V  : CONSTANT-DECLARATIONS + Env + S + Env 

CV[ val I = E ] = Xe E Env. As E S. binding I (& [E ]e  s) 

CV[ CD1; CD2 ] = Xe E Env. As E S. 
(Xel E Env. overlay(CVICDz](overlay(el, e)) s, el)) 

(cv[cDl]e 3) 

CV[ rec CD I) = Xe E Env. Xs E S. fix(Xet E Env. CD[CD](overlay(e', e)) s) 

uu 
Table 2.24: Denotations for expressions (modified) 



(STATEMENTS) 

S ::= El := fi I Sl; S2 1 sk ip  I 
if E then Sl ( while E do Sl ( 

begin VD; Sl end 1 
s top  1 I: Sl 1 got0 I 

Table 2.25: Syntax for statements 

S : STATEMENTS + Env + S o+ S 

S[ El := f i  ] = Xe E Env. Xs E S. (XI E LV. Xu E RV.strictassign1vs) 

(EIE1Be 4(RfE2Be 8) 

St SI ; & ] = Xe E Env. S[S2]e o S[Sl]e 

S[ sk ip  1 = Xe E Env. ids 

S[ i f  E then  Sl ] = Xe E Env. Xs E S. (At E T. ift then SISl]es else s)  

(RBEle s)  

S[ while E do Sl ] = Xe E Env. fix(Xc E S c- S. X s  E S. 
(At E T. if t then c(SISl]e s) else s)  

(R[Ele 4) 
S[ begin VD; Sl end ] = 

Xe E Env. (X(el E Env, s E S). YUIVD](et)(S[~](overlay(e', e))(s))) 
o VD[VD]e 

Table 2.26: Denotations for statements (direct) 

Now let us consider the statement 'stop9, whose intended effect is that when (if ever) the 

execution of a statement reaches i t ,  the execution of the enclosing program is terminated-without 

further changes to  the state, just as if control had reached the end of the program normally. We 

may say that 'stop' causes a jump to the end of the program. (For now, let programs be simply 

statements. The semantics of programs is considered further in Section 2.5.8.) 

However, with the denotations for statements used so far, we have (for any statement Sl and 

e E Env): 

S[C Sl; while t r u e  do sk ip  ]e = fix(idcdc) o SIISl]e 

which is in conflict with the intended equivalence of 'stop; while t r u e  do skip'  to 'stop'. 

In order to  deal with 'stop', we clearly have to change the denotation of 'Sl ; S2'. There are 

two main techniques available for modeling jumps such as 'stop': "flags", and "continuations". 



The technique using flags is to use a domain of denotations such as Env 4 S o+(S $ S). Then 

a resulting store in (say) the first summand may represent normal termination, and a result in the 
second summand may represent that 'stop' has been executed, so that no further statements are 

to be executed. Thus we would have 

It is easy to imagine the analogous changes that would be needed to the semantic equations for 
the other statements, to take account of the two possibilities for resulting stores. (No changes 

would be needed to  the semantic equations for expressions and declarations, as they do not involve 

statements.) 
The alternative technique for dealing with jumps is to let denotations of statements take contin- 

uations as arguments. The continuation argument represents the semantics of what would be the 

"rest of the program", if the statement were to terminate normally. In the denotation of each state- 
ment, it is specified whether to use the continuation argument, or to ignore it and use a different 
continuation, such as the empty continuation, which represents a jump to the end of the program. 
A divergent iterative statement just never gets around to using the argument continuation (and 

strictness is no longer needed to reflect the preservation of divergence). 
In the rest of this section, the use of the continuations technique is illustrated, albeit briefly. 

Let the characteristic domains (DV, EV, etc.) be as usual. The domain of statement continu- 
ations may be taken to be simply the domain S + S of functions on stores. For uniformity, let 
all denotations be functions of continuations. The continuations of expressions are functions from 
values to  ordinary continuations, those for declarations are functions from environments to continu- 
ations, etc. (Auxiliary operations, such as assign, could be changed to take continuation arguments 

as well, if desired.) Such a semantics is called a "continuation semantics"; our previous examples 
of semantics are called "directn. 

Sufficient semantic equations to illustrate the technique of continuations are given in Table 2.27. 
(The semantic functions of the continuation semantics are marked with primes to distinguish them 

from the corresponding direct semantic functions.) Notice the order of composition in the semantic 

equation for 'Sl ; &': the opposite to that in direct semantics! 
The transformation from direct to continuation semantics is straightforward. It may seem quite 

obvious that the transformation gives an "equivalent" semantics, but it is non-trivial to prove 

such results: the relations to be established between the domains of the direct and continuation 
semantics have to be defined recursively, and then shown to be well-defined and "inclusive" [44]. 

Continuations were originally introduced to model the semantics of general 'goto'-statements. 

Consider again the syntax given in Table 2.25. An occurrence of a labeled statement 'I: Sl' may 
be regarded as a declaration that binds I, where the scope of this binding is the smallest enclosing 
block 'begin VD ; Sl end'. 

The execution of 'goto I' is intended to jump to  the statement labeled by I. It may be seen 
to consist of 



C = S - , S  

&' : EXPRESSION -, Env -, (EV + C) C 

Rt : EXPRESSION + Env -t (RV + C) -, C 

VDt : VARIABLE-DECLARATIONS -, Env 4 (Env -+ C) -+ C 

. . . 
St : STATEMENTS -+ Env 4 C + C 

S t [  El := & ] = Xe E Env. Xc E C. 
£'[&Be ( X I  E LV. Rt[&]e (Xu E RV. c o (assign I v))) 

St [  Sl ; & ] = Xe E Env. Xc E C. St[Sl]e (St[&]e c )  

Sta skip = Xe E Env. Xc E C. c 

S t [  while E do Sl ] = Xe E Env. fix(Xg E C -, C: Xc E C. 
RtIE]e (At E T. i f  t then St[S1]le (g (c ) )  else c ) )  

S t [  s t o p  ] = Xe E Env. Xc E C. ids 

St[  goto I ] = Xe E Env. Xc E C. bound I e 

CPt  : STATEMENTS 4 Env + C + Env 

Table 2.27: Denotations for statements (continuations) 

1. the termination of enclosing statements (including procedure calls) up to the innermost 'begin 

V D  ; Sl end9 that includes the declaration of the label I; then 

2. the execution of those parts of 4 that follow after the label I ;  and finally 

3. the normal termination of 'begin V D  ; Sl end', provided that no further jump prevents this. 

(Actually, this analysis suggests a direct semantics using flags, where label identifiers are bound 

to pairs consisting of "activation levels" and direct statement denotations: continuations are not 

actually necessary for the denotational description of 'goto'-statements.) 
Letting C be a summand of DV, the value bound to  I by 'I: Sl' is Stl[Sl]e c ,  where c is the 

continuation argument of S t [  I: Sl ]e. So assuming that the environment argument e includes 

this binding, the denotation of the 'goto'-statement merely replaces its argument continuation by 

the continuation bound to I, as specified in Table 2.27. The declarative component of statement 



denotations may be expressed by a semantic function C'V' whose definition involves a fixed point, 
which reflects that the continuations denoted by label identifiers in a block may be mutually- 
recursive. The details are somewhat tedious; let us omit them here, as unrestricted jumps to labels 

are not allowed in most modern high-level programming languages. 
Note that continuations give possibilities for jumps that are even less "disciplined" than those 

provided by the 'goto' statement: a general continuation need have no relation at all to the context 
of where it  is used! 

Continuations have been advocated as a standard technique for modeling programming lan- 
guages (dong with the use of environments and states) in preference to  direct semantics. Although 
the adoption of this policy would give a welcome uniformity in models, it would also make the 

domains of denotations for simple languages (e.g., the A-calculus) unnecessarily complex-and, at 
least in some cases, the introduction of continuations would actually reduce the abstractness of 
denotations. 

The popularity of continuations seems to be partly due to the accompanying notational 

convenienc~especially that the order in which denotations of sub-phrases occur in semantic equa- 
tions corresponds to the order in which the phrases are intended to be executed: left to right. 
(Perhaps direct semantics would be more popular if function application and composition were 
to  be written "backwards".) Another notational virtue of continuations is that "errors" can be 
handled neatly, by ignoring the continuation argument and using a general error-continuation. 

2.5.7 Procedure Abstractions 

Procedure abstractions are much like function abstractions. The only difference is that the body 
of a procedure abstraction is a statement, rather than an expression. 

By the way, many programming languages do not d o w  functions to be expressed (or declared) 
directly: procedures must be used instead. The body of the procedure then includes a special 
statement that determines the value to be returned (in ALGOLGO and PASCAL, this statement 
looks like an assignment to the procedure identifier!). 

Syntax for procedure abstractions is given in Table 2.28. As with functions, we consider pro- 
cedures with only a single parameter; but now some more modes of parameter evaluation are 

introduced. 

(-EXPRESSION) 
E ..- ..- proc ( P D )  Sl 

(PARAMETER-DECLARATION) 
PD ::= var I :  T ( I :  T 

(STATEMENTS) 
s ::= 

Table 2.28: Syntax for procedures 



The procedure abstraction 'proc (var I: T )  Sl' requires its parameter to evaluate to a vari- 

able, and I denotes that variable in the body Sr. This mode of parameter evaluation is usually 

known as "call by referknce", but here we refer to it as "variable-mode" parameter evaluation. 

The procedure abstraction 'proc (I: T )  Sl' requires its parameter to  be coercible to an 

assignable value; then a local variable is allocated and initialized with the parameter value, and 

I denotes the variable in the body Sl. This mode of parameter evaluation is usually known as 

"call by value", but it should not be confused with the value-mode parameter evaluation that was 

considered for function abstractions: that did not involve any local variable allocation. Let us refer 

to this mode as "copy-mode" parameter evaluation. 

The procedure call statement 'El (&I' executes the body of the procedure abstraction produced 

by evaluating El, passing the argument obtained by evaluating the parameter E2. 
Note that execution of the procedure body may have an effect on the state, by assignment to 

a non-local variable. With variable-mode parameters, there is also the possibility of modifying the 

state by assigning to the formal parameter of the abstraction; whereas with copy-mode, such an 

assignment merely modifies the l m l  variable denoted by the parameter identifier. Note also that 

variable-mode d o w s  two different identifiers to denote the same variable, i.e., "aliasing". 

Now for the formal semantics of procedures. The denotations of procedure expressions, param- 

eter declarations, and statements are defined in Table 2.29. 
The procedure call syntax 'El(&)' does not give any indication of the mode of parameter 

evaluation, so we leave it  to the denotation of the parameter declaration to perform any required 

coercion of the parameter value. An alternative technique is to let the evaluation of the parameter 

expression & depend on a mode component of the value of the procedure expression El. 

By the way, the second semantic function for parameter declarations, PU, is analogous to the 

semantic function VU for variable declarations, explained in Section 2.5.5. 

2.5.8 Programs 

As discussed in Section 2.3, the semantics of an entire program should be a mathematical represen- 

tation of the observable behaviour when it is executed by computers (but ignoring implementation- 

dependent details). Typically, this behaviour involves streams of "input" and "output". 

By definition, the input of a program is the information that is supplied to it by the user; the 

output is the information that the user gets back. However, it is important to take into account not 

only what information is supplied, but also when the supply takes place. The main distinction in 

conventional programming languages is between so-called "batch" and "interactive" input-output. 

With batch input, all the input to the program is supplied at the start of the program. The 
input may then be regarded as stbred, in a "file". Batch output is likewise accumulated in a file, 

and only given to the user when (if ever) the program terminates. 

On the other hand, interactive input is provided gradually, as a stream of data, while the 

program is running; the program may have to wait for further input data to be provided before it 

can proceed. Similarly, interactive output is provided to the user while the program is running, as 



P = (PVO-*SO-+S)~ 

P V = V $ F $ L V $ P  

D V = V $ F $ L V $ P  

E V = V $ F $ L V $ P  

E : EXPRESSION + Env + S -t EV 

f[ proc (PD) S ] = 
Xe E Env. up(strictXv E PV. 

(X(et E Env, s E S). PU [PD]e'(SIS](overlay(el, e)))) 

o PD [PDIe) 

S : STATEMENTS + Env -, S o+ S 

S [  E-I (&I ] = Xe E Env. Xs E S. (down o idp)(EEEl]e s)(f[Ez]e s) s 

PD : PARAMETER-DECLARATION + PV + S --+ Env x S 

PD[ val I :  T ] = Xv E PV. As E S. (binding I v, s) 

PD[ var I: T ] =. XI E LV. As E S. (binding I l , s )  

PD[ I :  T ] = X u €  PV. XsE S. 
(Xu' E RV. (X(1' E LV, s' E S). (binding I l', assign 1' v' 5 ' ) )  

(I[ Tls)) 
([XI E LV. assigned I s, idRv, I, I ] (v ) )  

PU : PARAMETER-DECLARATION + Env -, S -, S 

pU[ val I ] = Xe E Env. ids 

PU[ var I: T ] = Xe E Env. ids 

PUB I :  T ] = Xe E Env. TU[T](bound I e) 

Table 2.29: Denotations for procedures 



soon as it has been determined. 
Note that interactive input-output allows (later) items of input to depend on (earlier) items of 

output. For instance, input may be stimulated by an output "promptn. 
We may regard batch input-output as merely a special case of interactive input-output: the 

program starts, and then immediately reads and stores the entire input; output is stored until the 

program is about to terminate, and then the entire output is given to the user. 
The essential difference between batch and interactive input-output shows up in connection with 

programs that (on purpose) may run 6'for ever": batch input-output cannot reflect the semantics 

of such programs. Familiar examples are traffic-light controllers, operating systems, and screen 

editors. These programs might, if allowed, read an infinite stream of input, and produce an infinite 
stream of output. (They might also terminate, in response to particular input--or "spontaneously", 

when an error occurs.) Moreover, once an item of output has been produced, it cannot be revoked 
by the program (e.g., the traffic-light controller cannot "undo" the changing of a light). 

Consider the abstract syntax for input-output statements and programs specified in Table 2.30. 
There is nothing in the given syntax that indicates whether the semantics of input-output is 

supposed to be batch or interactive. Let us consider both semantics. We restrict items of input 
and output to be truth-values and numbers, i.e., the same as SV. 

(PROGRAM) 

P ::= prog S 

(STATEMENTS) 

S ::= read E I write E 

Table 2.30: Syntax for programs 

For batch semantics, we may take the representation of streams to be finite lists. The semantic 

equations for programs, and for read and write statements, are given in Table 2.31; our previous 
semantic equations for other statements have to be modified to take account of the extra arguments, 
but the details are omitted here. 

The following proposition confirms that batch output is not observable when program execution 
doesn't terminate: 

Proposition 37 

P[ prog whi l e  t r u e  do write 0 ] = P[ prog whi l e  true do s k i p  ] = 1. 

The reason for this is that the denotation of the non-terminating while-loop is given by the least 
fixed point of a strict function. 

Now for interactive input-output semantics for the same language. See Table 2.32. Let us 
first change from SV* to SV', which represents infinite (and partial) streams. (The only difference 
between SV' and the standard domain construction SVm is that the latter allows I components to 

be followed by non-l  components.) This change by itself would not make any substantial difference 
! 
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In = SV* 

Out = SV* 

P : PROGRAM + (In o+ Out) 

P[ prog Sl ] = X i  E In. on3(S[S~](void)(empty, i ,T)) 

S : STATEMENTS + Env t (S @ In @ Out) -(S 8 In 8 Out) 

S[ read E ] = Xe E Env. A(s E S , i  E In,o E Out). 

(XI E Loc. [I, X(v E SV, it E In). smash(store I v s, if, o)]) 

( W I e  s)(i> 

S[ write E = Xe E Env. X(s E S, i E In, o E Out). 

(Av E SV. smash(s, i, extend v 0)) 

(R[Ele s )  

extend = Xv E SV. [Ax E 0. (v, T), 

X(vt E SV, o E Out). (v', extend v o)] 

E SV + Out + Out 

Table 2.31: Denotations for programs (batch) 

to  the semantics of programs: input-output would still be batch, and the above proposition would 

still hold. 

The essential change is to ensure that an item of output becomes incorporated in the program's 

semantics, irrevocably, as soon as the corresponding 'write' statement is executed. There are var- 

ious ways of achieving this property: in particular, by using continuations. Reverting temporarily 

to continuation semantics (see Section 2.5.6) we define the interactive semantics of programs as 

shown in Table 2.32. 

Proposition 38 

P'[ prog while true do write 0 ] # 

Pt[ prog while true do skip 1. 

It is instructive to see how to deal with interactive input-output without using continuations. 

Consider the domain 10 defined in Table 2.33, and let statement denotations be given by functions 

from environments and stores to 10. Each element of 10 represents a sequence of readings and 



sv' = SV 8 SV$L 

In = SV$ 

Out = SV$ 

C = S 4 In 4 Out 

Pf : PROGRAM 4 In 4 Out 

Pf[ prog Sl ] = St[Sl](void)(Xs E S. X i  E In. T)(empty). 

Sf : STATEMENTS 4 Env + C -, C 

Sf[ read E 1 = Xe E Env. Xc E C. 
It[E]e (XI E Loc. Xs E S. X(v E SV, i E In). (c o store 1 v) s i)) 

Sf[ write E ] = Xe E Env. Xc E C. 
Rt[E]e(Xv E SV. Xs E So  Xi E In. smash(v, up(cs i))) 

Table 2.32: Denotations for programs (interactive, continuations) 

writings, ending (if at all) with a state. This might not seem particularly abstract, but notice 

that statement denotations must reflect the order in which readings and writing occur, since the 

semantics of a program in In + Out reveals this information when applied to partial inputs. 

The semantic equations specified in Table 2.33 illustrate this technique. The fixed point used 

in the denotation of 'Sl ; S2' essentially corresponds to going through the input and output corre- 

sponding to Sl until a find state is reached, and then starting S2; similarly for programs. It can 

be shown that interactive output is modeled. 

Now consider "piping" the output of one program into the input of another, as e-xpressed by 

a program construct 'PI I P29. With interactive input-output, both programs can be started 

simultaneously-but the execution of the second program may have to be suspended to await input 

that has yet to be output by the first program. The start of the first program could be delayed 

until the second program actually tries to read from its input (if ever), and then execution could 

alternate between the two programs, according to the input-output. All these possibilities are 
expressed by the same semantic equation: 

With batch input-output, the second program does not start until the first one terminates. 

As with statements, such sequential execution can be modeled by composition of strict functions 



lo = s $ (SV - 1 0 ) ~  $ (SV 63 101). 

P : PROGRAM --, In --, Out 

P[ prog Sl ] = fix(Xh E 10 -+ In -, Out. 
[ A s  E S. X i  E In.T, 

X f E SV -+ 10. X(v E SV, i E In). h( f(v))(i), 
X(v E SV, io E 10). Xi E In. (v,up(h(io)(i)))]) 

(S[S1l(void)(empty 1) 

S : STATEMENTS -+ Env -t S o+ 10 

S[ & := I& ] = X ~ E  Env. X S E  S. 
(XI E Loc. Xv E SV. inl(store I us)) 

(&[E1Ies)(R[Eile 3) 

S[ read E ] = Xe E Env. X s  E S. 
(XI E Loc. in2(Xv E SV. up(inl(store 1 v s)))) 

(&[file $1 
S[ write E ] = Xe E Env. Xs E S. 

(Xu E SV. ins(v, up(inl(s)))) 

('R[E2le 3) 

S[ skip  ] = Xe E Env. ids 

S[ Sl; S2 ] = Xe E Env. X s  E S. 
fix(Xg E 10 -, 10. 

[S[S2Ie, 
Xf E S V + I O . ~ O  f, 
X(v E SV, io E 10). (v, up(g(io)))]) 

(SES1le 

Table 2.33: Denotations for programs (interactive, direct) 



(the semantic equation for piped programs remains the same, assuming P is defined as for batch 

input-output). 

2.5.9 Nondeterminism 

The final technique illustrated in this chapter is the use of power domains to model nondeterministic 

constructs such as "guarded commands" and interleaving. 

For our purposes here, it is not necessary to understand the actual structure of power domains. 

All that we need to know about a power domain is that it is equipped with a continuous union 

operation (associative, commutative, m d  absorptive), a continuous singleton operation, and that 

functions on domains can be extended pointwise to power domains. (Recall the notation adopted 

in Section 2.4. We use only the natural, or convex, power domain; the other power domains do not 

accurately reflect the possibility of divergence.) 
Consider the syntax for guarded statements given in Table 2.34. The intention of ' E  -> Sl' 

is that the statement Sl is guarded by E and may only be executed if E  evaluates to true. So 

far, this resembles 'if E then &'; the difference is that guarded statements may be "unitedn 

by the construct 'GI fl G2', whose execution consists of executing precisely one of the guarded 

statements in GI and G2. Notice that (when E evaluates to a truth-value) the guarded statement 

expresses a deterministic choice between Sl and S2, whereas 

true -> Sl true -> S2 

expresses a nondeterministic choice. 

Table 2.34: Syntax for guarded statements 

Both the statements ' if  G f i '  and 'do G od' involve the execution of G, when possible. Let 

us regard the former as equivalent to an empty statement when it is not possible to execute G. 
With the latter, the execution of G is repeated, as many times as possible. 

We take the denotations for statements to be functions from environments and stores to elements 

of the power domain sb; these elements represent the non-empty sets of possible states resulting from 

statement execution (possibly including I). The denotations of guarded statements are similar, but 

T represents the empty set of states. The semantic equations are specified in Table 2.35. (We do 

not need to change the denotations of expressions and declarations, which axe still deterministic.) 



Q : GUARDED-STATEMENTS + Env + S o+(O $ sh) 
Q[ E -> Sl ] = Xe E Env. strictXs E S. 

(At E T. if t then in2(S[Sl]e s )  else inl T)(R[E]e s) 

Q[ GI G2 ] = Xe E Env. strictXs E S. \ 

[Ax E 0. idOeSs, 
Xpl E sh. [Ax E 0. in2(pl), 

X P ~  E Sh+ in2(~1 U pr)ll(G[Gile s)(G[G2]e s) 

S : STATEMENTS Env + S o-+ sh 
S[ if G f i ] = Xe E Env. strictXs E S. 

[Ax E 0. 4s)' idsb](G[G]e 8) 

S[ do G od ] = Xe E Env. fix(Xc E So+ ~ h .  strictXs E S. 
[Ax E 0. Qs), ext(c)](G[G]e s)) 

Table 2.35: Denotations for guarded statements 

As an illustration of the semantic equivalence that is induced by the above definitions, consider 

the two statements Sl, Sz shown in Table 2.36. It is obvious that Sz has the possibility of not 

terminating; what may be less obvious is that Sl has precisely the same possibilities: 

Proposition 39 

S[SlIl = S[S21. 

Thus both statements have the possibility of terminating with the variable 'y' having any (non- 
negative) v a l u m r  of not terminating. The infinite number of possibilities arises here from the 

itemtion of a choice between a finite number of possibilities: the possibility of non-termination 
cannot be eliminated (c.f. Konig's Lemma). 

x := 0; x := 0; 
y := 0; y := 0; 
dox=O - > x : = i  dox=O - > x : = l  

a X=O -> := Y+I n X=O -> := Y+I 

od n true -> do true -> skip od 

od 

Table 2.36: Examples of guarded statements Sl, S2 

However, one could imagine having a primitive statement with an infinite number of possibilities, 
excluding non-termination. E.g., consider 'randomize E', which is supposed to set a variable E 



to some arbitrary integer. Here we understand "arbitrary" to mean just that the value chosen is 

completely out of the control of the program-it is implementation-dependent. (Thus a particular 

implementation might always choose zero, or the successor of the previous choice. Classes of 

genuinely-random implementations could be considered as well.) 

It is important to note that our domain of statement denotations above does not contain any 

element that can be used for the denotation of an always-terminating 'randomize' statement. In 

fact any attempt to express such a set as 

as an element of NJ. always ends up by including {l) as well. 

So let us omit further consideration of randomizing statements, and proceed to illustrate a tech- 

nique known as "resumptions", which is useful for giving a denotational semantics for concurrent 

processes. 

2.5.10 Concurrency 

The language constructs considered so far in this chapter come from conventional programming 

languages, designed to be implemented sequentially. Several modem programming languages have 

constructs for expressing so-called "concurrent processes", and may be implemented on a "dis- 

tributed system" of computers (or on a single computer that simulates a distributed system). 

Typically, the processes are executed asynchronously, and they interact by sending messages and 

making "rendezvous". 

In the denotationd semantics of concurrent systems, the concurrent execution steps of different 

processes are usually regarded as "interleaved". Although interleaving is a rather artificial concept 

when dealing with physically-distributed systems (due to the lack of a universal time scale) it is not 

generally possible to distinguish the possible behaviours of proper concurrent systems from their 

interleaved counterparts-at least, not unless the observer of the behaviours is distributed too. 

The final example of this chapter deals with a very simple form of concurrency: interleaved 

statements. The syntax of these statements is given in Table 2.37. 
- - 

Table 2.37: Syntax for interleaved statements 

The intention with the statement 'Sl I I S2' is that Sl and S2 are executed concurrently and 
asynchronously. If Sl and S2 use the same variables, the result of their concurrent execution may 
depend on the order in which the "stepsn of Sl are executed in relation to those of S2, i.e., on the 

interleaving. Let us assume that assignment statements are single, "indivisible" steps of execution, 

so the state does not change during the evaluation of the left- and right-ha,nd sides. The construct 

'< Sl >' makes the execution of any statement S1 an indivisible step (sometimes ca,lled a "critical 

region" ). 



Note that when Sl and & are "independent" (e.g., when they use different variables) an execu- 

tion of 'Sl I I S2' gives the same result as the execution of 'Sl ; S2', or of 'S2 ; Sly; but in general 
there are other possible results. 

Now consider statements 

With all our previous denotations for statements, we have SISl] = SI[S2]. But when statements 

include 'S1 I I &', we expect 

since the interleaving 'x := 0 ;  x := 1 ;  x := x+i' of Sl with S2 sets x to  2, whereas the inter- 

leaving of 'x : = 1' with itself does not have this possibility. 
Thus it  can be seen that the compositionality of denotational semantics forces SISl] # S[S2] 

when concurrent statements are included. The appropriate denotations for statements are so- 
called "resumptions", which are rather like segmented ("staccato") continuations. A domain of 

resumptions is defined in Table 2.38. The semantic function for statements, S, maps environment 
directly to resumptions, which are themselves functions of stores. 

Consider p = SISll)e s. It represents the set of possible results of executing the first step of Sl . 
An element inl(sl) of this set corresponds to the possibility that there is only one step, resulting in 

the state s1 (although this "step" might be an indivisible sequence of steps). An element inn(up T ,  st) 
corresponds to  the result of the first step being an intermediate state st, together with a resumption 
T which, when applied to s' (or to some other state) gives the set of possible results from the next 

step of Sl , and so on. 
Resumptions provide adequate denotations for interleaved statements, as the semantic equa- 

tions in Table 2.38 show. However, these denotations are not particularly abstract: e.g., we get 

S[ skip 1 # S[ skip; skip 1, even though the two statements are clearly interchangeable in 

any program. It  is currently an open problem to  define fully abstract denotations for concurrent 
interleaved statements (using standard semantic domain constructions). 

The technique of resumptions can also be used for expressing denotations of communicating 
concurrent processes (with the "store" component representing pending communications). 

We have finished illustrating the use of the main descriptive techniques of Denotational Seman- 
tics: environments, stores, strictness, flags, continuations, power domains, and resumptions. The 
various works referenced in the following bibliographical notes provide further illustrations of the 

use of these techniques, and show how to obtain denotations for many of the constructs to be found 
in "real" programming languages. 



R = S -(S $ (RL 8 S))$ 

S : STATEMENTS + Env + R 

S[ & := & 1 = Xe E Env. strictXs E S. 
(XI  E LV. Xv E RV.4 store I v s))(&[El]e s)(R[&]e s) 

SI  Sl ; Sz 1 = Xe E Env. fix(X f E R 4 R. Xr E R. 

ext[s[s2Be9 
X(rl E RL, sf E S). (f (r'), s')] 0 T) 

(S[S1le> 

S[ skip ] = Xe E Env. strictXs E S. {sB 

S[ S1 I I Sz ] = Xe E Env. fix(Xg E (R x R) 4 R. 
X(rl E R, r z  E R). strictXs E S. 

(extL.2, E RI, sf E S). (g(~:,~2),5')1(~1(~))) LJ 

(ex t [ r~ ,  X(rk E RL,~ '  E S). (g(~1, r~ ) ,~ ' ) ] ( r2 (~ ) ) ) )  

(s[sile>(s[siBe) 
S[ < Sl > 1 = Xe E Env. fix(Ah E R -+ R. X r  E R. 

ext[Xs E S. Qs), 
X(rf E R,sl E S). h(r')(sl)] o r) 

(SCS1De) 

Table 2.38: Denotations for interleaved statements 



2.6 Bibliographical Notes 

This final section refers to  some published works on Denotational Semantics and related topics, 

and indicates their significance. 

2.6.1 Development 

The development of Denotational Semantics began with the paper "Towards a Formal Semantics" 

[52], written by Christopher Strachey in 1964 for the IF'IP Working Conference on Formal Language 

Description Lunguages. The paper introduces compositionally-defined semantic functions that map 

abstract syntax to "operatorsn (i.e., functions), and it makes use of the fixed-point combinator, Y, 
for expressing the denotations of loops. It also introduces (compound) L-values and R-values, in 

connection with the semantics of 'assignment and parameter-passing. The treatment of identifier 

bindings follows Landin's approach [21]: identifiers are mapped to bound variables of A-abstractions. 
Strachey's paper "Fundamental Concepts of Programming Languages" [53] provides much of 

the conceptual analysis of programming languages that underlies their denotational semantics. 

The main theoretical problem with Strachey's early work was that, formally, denotations were 

specified using the type-free A-calculus, for which there was no known model. In fact Strachey was 
merely using A-abstractions as a convenient way of expressing functions, rather than as a formal 

calculus. However, the fixed-point combinator Y was needed (for obtaining a compositional seman- 
tics for iterative constructs, for instance). Because Y involves self-application, it was considered to 
be "paradoxical": it could be interpreted operationally, but it could not be regarded as expressing 
a function. By 1969, Dana Scott had become interested in Strachey's ideas. In an exciting col- 
laboration with Strachey, Scott first convinced Strachey to give up the type-free A-calculus; then 

he discovered that it did have a model, after all. Soon after that, Scott established the Theory 
of Semantic Domains, providing adequate foundations for the semantic descriptions that Strachey 
had been writing. 

The original paper on semantic domains by Scott [46] takes domains to be complete lattices 
(rather than the cpos used nowadays). Domains have effectively-given bases; Cartesian product, 
(coalesced) sum, and continuous function space are allowed as domain constructors; and solutions 
of domain equations are found as limits of sequences of embeddings. A domain providing a model 
for self-application (and hence for the A-calculus) is given, and a recursively-defined domain for 

the denotations of storable procedures is proposed. (For references to  subsequent presentations of 
domain theory, see [18].) 

In a joint paper [48], Scott and Strachey present what is essentially the approach now known as 
Denotational Semantics (it was called "Mathematical Semanticsn until 1976). The paper establishes 

meta-notation for defining semantic functions, and uses functional notation-rather than the A- 
calculus-for specifying denotations. Here, for the first time, denotations are taken to be functions 
of environments, following a suggestion of Scott. The abstract syntax of finite programs is a set 

of derivation trees, although it is pointed out that this set could be made into a domain: then 
semantic functions are continuous, and their existence is guaranteed by the fixed point theorem 



(see also [47], where partial and infinite programs are considered). 

The notion of "characteristic domains" was introduced by Strachey in [54], where characteristic 

domains are given for ALGOLGO and for a pedagogical language (PAL). 
The use of continuations in denotational semantics was proposed by Christopher Wadsworth, 

and reported in a joint paper with Strachey [55]. The present author was one of the first to exploit 

the technique, in a denotational description of ALGOLGO [28]. 

By the mid-1970's, sufficient techniques had been developed for specifying the denotational 

semantics of any conventional (sequential) programming language. Moreover, J ~ h n  Reynolds [44] 

and Robert Milne [22] had devised a way of proving the equivalence of denotational descriptions 

that involve different domains (e.g., direct and continuation semantics for the same language). 

Wadsworth had shown the relation between the computational and denotational semantics of the 

A-calculus [59] (see also [36]). The present author had constructed a prototype "semantics imple- 

mentation systemn (SIS), for generating implementations of programming languages directly from 

their denotational descriptions [29, 30, 311. Strachey's inspiration was sorely missed after his un- 

timely death in 1975; but there was confidence that denotational semantics was the best approach 

to  programming language semantics, and that it would be a routine matter to apply it to any real 

programming language. 

Then the increasing interest in concurrent systems of processes led to the development of pro- 

gramming languages with non-deterministic constructs. An early treatment by Robin Milner [25] 

introduced a technique using so-called "oraclesn, but did not give sufficiently abstract denotations: 

for instance, non-deterministic choice was not commutative. Then Gordon Plotkin showed how to 

define power domains [40]. The introduction of power domains required domains to be cpos, rather 

than complete lattices. Moreover, for domains to be closed under power domain constructions, the 

cpos had to  be restricted to be so-called SFP objects: limits of sequences of finite cpos (equivalent 

t o  the bifinite cpo's, see [18]). Much of Plotkin's paper is devoted to establishing the SFP frame- 

work. Also, the technique of "resumptions" is introduced, and used to define the denotations for 
some simple parallel programs. 

Mike Smyth gave a simple presentation of Plotkin's power domains [49] (and introduced a 

"weak" power domain). Matthew Hennessy and Plotkin together defined a category of "non- 

deterministic" domains [20], and showed that the (Plotkin) power domain, D'J, of a domain D is 

just the free continuous semi-lattice generated by D. They also introduced a tensor product for non- 

deterministic domains, and obtained full abstractness for a simple (although somewhat artificial) 

parallel programming language. Krzysztof Apt and Plotkin [3] related the Plotkin power domain 

to  operational semantics; they showed that Smyth's weak power domain (of states) corresponds to 

Dijkstra's predicate transformers. Plotkin [41] generalized power domains to  deal with countable 

non-determinism. Samson Abramsky has shown [I] that the Plotkin power domain gives fully 
abstract denotations when observable behaviour is characterized by classes of finite experiments. 

There has also been work on power domains using complete metric spaces [2]. 

Despite all the above works, it is debatable whether the denotational treatment of concurrency 

is satisfactory. There are difficulties with getting reasonable abstractness of denotations when 



using resumptions. Moreover, the use of power domains gives an unwelcome notational burden. 
In contrast, Structural Operational Semantics (illustrated in [24]) extends easily from sequential 

languages to concurrency. 
Another problem with the applicability of Denotational Semantics concerns the pragmatic as- 

pects of denotational descriptions. For "toy" languages, it is quite a simple matter to "lay the 

domains on the table" (following [MI), and to give semantic equations that define appropriate (but 
not necessarily fully abstract) denotations. However, the approach does not scale up easily to 

"real" programming languages, which (unfortunately) seem to require a large number of complex 

domains for their denotational semantics. Partly because the semantic equations depend explicitly 
on the domains of denotations, it can be extremely difficult to comprehend a large denotational 

description. 
A related problem is that it is not feasible to re-use parts of the description of one language 

(PASCAL, say) in the description of another language ( M O D U L A ~ ,  for instance). Analogous problems 
in software engineering were alleviated by the introduction of "modules". Denotational Semantics 
has no notation for expressing modules. In fact if the definitions of the domains of denotations were 
to  be encapsulated in modules, it would not be possible to express denotations using A-notation 
in the semantic equations: one would have to use auxiliary operations, defined in the modules, for 

expressing primitive denotations and for combining denotations. Thus it  seems that a high degree 

of modularity is incompatible with (conventional) denotational semantics. 

An aggravating factor, concerning the problem of (writing and reading) large denotational 
descriptions, may be that the intimate relation between higher-order functions on domains and 

computational properties is not immediately apparent. (For example, with non-strict functions, 
arguments may not need to be evaluated.) It is difficult for the non-specialist to appreciate the 
abstract denotations of programming constructs. 

The effort required to formulate a denotational semantics for a real programming language is 
reflected by the lack of published denotational descriptions of complete, real programming lan- 

guages. Efforts have been made for SNOBOL [56], ALGOLGO [28], A L G O L ~ ~  [22], PASCAL [58], 
and ADA [ll]. In general, these descriptions make some simplifying assumptions about the pro- 
gramming language concerned; they also omit the definitions of various "primitive" functions, and 
use numerous notational conventions whose formal status is somewhat unclear. (Of course, much 

the s a m e a n d  other-criticisms could be made of alternative forms of semantics.) 
Hope for the future of denotational semantics lies in the recent popularization of two languages 

that have been designed with formal (denotational) semantics in mind: Standard ML [19], and 
Scheme [43]. Although the denotational descriptions of these languages are not used formally as 

standards for implementations, they do show that it is possible to give complete descriptions of 
useful languages. 



2.6.2 Exposition 

There are several expository works that explain the basic notions of Denotational Semantics, and 

give examples of the prevailing techniques for choosing denotations: 

Bob Tennent 1571 provides a basic tutorial introduction, containing a semantic description of 

Reynold's experimental language GEDANKEN and a useful bibliography. 

The epic work by Milne and Strachey [23], completed by Milne after Strachey's death, con- 

tains careful discussions of many techniques for choosing denotations, including less abstract "non- 

standard" denotations. The examples given are related to A L G O L ~ ~ .  It is a valuable reference for 

further study of Denotational Semantics. 
Joe Stoy's book [50] is partly based on Strachey's lectures at Oxford; consequently, scant at- 

tention is paid to the syntactic constructs of later programming languages, such as PASCAL. The 

foreword by Scott gives an detailed appreciation of Strachey and his work. 

The book by Mike Gordon [16] takes an engineering approach: it does not explain foundations 

a t  all. The techniques illustrated are adequate for the description of most Pascal-like programming 

languages. 

The introductory book on Denotational Semantics by Dave Schmidt 1451 includes a rather 

comprehensive description of domain theory (including power domains). The book covers a number 

of incidental topics, such as semantics-directed compiler generation, and there is a substantial 

bibliography. 

Unfortunately, there is considerable variation in the notation (and notational conventions) used 

in the works referenced above: almost the only common notational feature is the use of 'A' for 

function abstraction and juxtaposition for function application! The reader should be prepared to 

adapt not only to  different symbols used for the same constants and operators, but also to different 

choices of what to  regard as primitive and what to define as auxiliary notation. (N.B. the notation 

presented and used in this chapter is not an accepted standard.) 

2.6.3 Variations 

The approach to semantics presented in this chapter, whose development is sketched above, may be 

regarded as the main theme of Denotational Semantics: abstract syntax, domains of denotations, 

semantic functions defined by semantic equations using A-notation. Some significant variations on 

this theme are indicated below. 

Initial Algebra Semantics 

(This approach was sketched in Sections 2.2 and 2.3.) Initial Algebra Semantics was developed 
by Joseph Goguen, Jim Thatcher, Eric Wagner, and Jesse wright [15]. Although it is formally 

equivalent to denotational semantics, it has the advantage of making it explicit that abstract 

syntax is an initial algebra, and that semantic functions are homomorphic. Explicit structural 
induction proofs in denotational semantics can here be replaced by appeals to initiality. It is easy 

to extend Initial Algebra Semantics to continuous algebras, so as to allow infinite programs, whereas 



with denotational semantics, abstract syntax has to be changed from sets to cpos. An additional 
benefit of Initial Algebra Semantics is that one always names the domains of denotations; this 

seems to encourage the specification of denotations as compositions, rather than as applications 
and abstractions (but this is only a matter of style). Initial Algebra Semantics has not yet been 

applied to  real programming languages. 
The French school of Algebraic Semantics [17] has concentrated on the semantics of program 

schemes, rather than of particular programming languages. (See [9].) 

OBJ 

Goguen and Kamran Parsaye-Ghomi show in [14] how the algebraic specification language OBJT 
(a precursor of O B J ~  [13]) can be used to give modular semantic descriptions of programming 
languages. Their framework is first-order, and not strictly compositional; but higher-order algebras, 
which give the power of A-notation in an algebraic framework [39, 42, 121, could be used instead of 

OB J ,  with similar modularity. 
Despite the use of explicit modules, the semantic equations given by Goguen and Parsaye-Ghomi 

are still sensitive to the functionality of denotations. The approach has not been applied to real 
programming languages. 

VDM 

The Vienna Development Method, VDM [5], has an elaborate notation, called META-IV, that can 
be used to  give denotational descriptions of programming languages. Although there are quite a 

few variants of META-IV, these share a substantial, partly-standardized auxiliary notation that 
provides a number of useful "flatn domain constructors (e.g., sets, maps) and declarative and 
imperative constructs (e.g., let-constructions, storage allocation, sequencing, exception-handling). 
However, this auxiliary notation is a supplement to, rather than a replacement for, the A-nota,tion. 
The foundations of META-IV have been investigated by Stoy [51] and Brian Monahan [27]. 

In contrast to Denotational Semantics, VDM avoids the use of high-order functions and non- 
strict abstractions, in order to keep close to the familiar objects of conventional programming. 
(Andrzej Blikle and Andrzej Tarlecki [7] went even further, and advocated avoidance of reflexive 
domains.) But as in Denotational Semantics, there are severe problems with large-scale descriptions, 

due to the lack of modularity. The fact that it has been possible to develop semantic descriptions of 
real programming languages such as CHILL [8] and ADA [6] in (extended versions of) META-IV is a 

tribute to the discipline and energy of their authors, rather than evidence of an inherent superiority 
of META-IV over Denotational Semantics. 

Action Semantics 

Action Semantics [38, 37, 33, 60, 35, 321 is something of a mixture of the denotational, algebraic, 

and operational approaches to formal semantics. It has been under development since 1977, by 



the present author and (since 1984) David Watt. A brief summary of the main features of Action 
Semantics is given below. 

The primary aim is to make it easier to deal with semantic descriptions of "real" programming 
languages. Factors that have been addressed include modularity (to obtain ease of modification, 
extension, and re-use) and notation (to improve comprehensibility). 

Action Semantics is compositional, just like Denotational Semantics. The essential difference 
between Action Semantics and Denotational Semantics concerns the entities that are taken as the 
denotations of program phrases: so-called "actions", rather than functions on semantic domains. 
Actually9 some actions do correspond closely to functions, and are determined purely by the re- 

lation between the "informationn that they receive and produce. But other actions have a more 
operational essence: they process information gradually, and they may interfere (or collaborate) 

when put together. 
The standard notation for actions is polymorphic, in that actions may be combined without 

regard to  what "kindn of information they process: transient or stored data, bindings, or communi- 

cations. Furthermore, the different kinds of information are processed independently. This allows 
the semantic equations for (say) arithmetical expressions to stay the same, even when expressions 

might be polluted with "side-effects" or communications. 
The fundamental concepts of programming languages (as identified by Strachey, and implicit 

in most denotationd descriptions) can be expressed straightforwardly in action notation. The 

comprehensibility of action semantic descriptions is enhanced by the use of suggestive words, rather 
than (to programmers) cryptic mathematical symbols: in the usual concrete representation of action 

notation, for example, the action combinator expressing sequential performance is written as infixed 
'then'. The notation is claimed to be a reasonable "compromisen between previous formal notations 
and informal English. 

The theory of actions includes some pleasant algebraic laws. However, the basic understanding 

of actions is operational, and action equivalence is defined by a (structural) operational seman- 
tics [32]. Action notation may also be defined denotationally, and used as auxiliary notation in 
conventional denotational descriptions, as illustrated in [34]. 

At the time of writing, it is not apparent whether Action Semantics will turn out to be any 
more palatable than Denotational Semantics to the programming community. 
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