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Adapting to Computer Science Adapting to Computer Science 

Abstract Abstract 
Although I am not an engineer who adapted himself to computer science but a mathematician who did 
so, I am familiar enough with the development, concepts, and activities of this new discipline to venture 
an opinion of what must be adapted to in it. 

"Computer and Information Science" is known as "Informatics" on the European continent. It was born as 
a distinct discipline barely a generation ago. As a fresh young discipline, it is an effervescent mixture of 
formal theory, empirical applications, and pragmatic design. Mathematics was just such an effervescent 
mixture in western culture from the renaissance to the middle of the twentieth century. It was then that 
the dynamic effect of high speed, electronic, general purpose computers accelerated the generalization of 
the meaning of the word "computation" This caused the early computer science to recruit not only 
mathematicians but also philosophers (especially logicians), linguists, psychologists, even economists, 
as well as physicists, and a variety of engineers. 

Thus we are, perforce, discussing the changes and adaptations of individuals to disciplines, and 
especially of people in one discipline to another. As we all know, the very word "discipline" indicates that 
there is an initial special effort by an individual to force himself or herself to change. The change involves 
adaptation of one's perceptions to a special way of viewing certain aspects of the - world, and also one's 
behavior in order to produce special results. For example we are familiar with the enormous prosthetic 
devices that physicists have added to their natural sensors and perceptors in order to perceive minute 
particles and to smash atoms in order to do so (at, we might add, enormous expense, and enormous 
stretching of computational activity). We are also familiar with the enormously intricate prosthetic 
devices mathematicians added to their computational effectors, the general symbol manipulators, called 
computers. 
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1 Introduction 

Although I am not an engineer who adapted himself to computer science but a mathematician who 
did so, I am familiar enough with the development, concepts, and activities of this new discipline 
to venture an opinion of what must be adapted to in it. 

"Computer and Information Science" is known as "Informatics" on the European continent. 
It was born as a distinct discipline barely a generation ago. As a fresh young discipline, it is an 
effervescent mixture of formal theory, empirical applications, and pragmatic design. Mathematics 
was just such an effervescent mixture in western culture from the renaissance to  the middle of the 
twentieth century. I t  was then that the dynamic effect of high speed, electronic, general purpose 
computers accelerated the generalization of the meaning of the word "computation" This caused 
the early computer science to  recruit not only mathematicians but also pl~ilosophers (especially 
logicians), linguists, psychologists, even economists, as well as physicists, and a variety of engineers. 

Thus we are, perforce, discussing the changes and adaptations of individuals to  disciplines, and 
especially of people in one discipline to another. As we all know, the very word "discipline" indicates 
that there is an initial special effort by an individual to force himself or herself to change. The 
change illvolves adaptation of one's perceptions to a special way of viewing certain aspects of the - 
world, and also one's behavior in order to produce special results. For example we are familiar with 
the enormous prosthetic devices that physicists have added to  their natural sensors and perceptors 
in order to perceive minute particles and to smash atoms in order to do so (at, we might add, 
enormous expense, and enormous stretching of computational activity). We are also familiar with 
the enormously intricate prosthetic devices mathematicians added to  their computational effectors, 
the general symbol manipulators, called computers. 

The disciplines require us, perhaps less dramatically but always more subtly, to change the way ' 

we understand, llow we act, how we act in order to understand, what we sjlould understand in order 
t o  act, etc. The adaptation of a discipline over a period of time is described by its history; this 
is sometimes slow, in the human scale, over the millenia, and sometimes so fast for humans as to 
be considered revolutionary, as in our two examples, or, more crucially, in the scientific revolutions 
whose structure was studied by Thomas S. I(u11n. 

Because of this concern with adaptability of individuals and disciplines, it is useful to  consider 
a rough taxonomic subdivision of disciplinasy attitudes. Just as the individual's perception and 
behavior is a result of flow of signals, one way from receptors to perceive, and other of commands 
to  effectors lo  act, so are there two types of disciplinary signals; there are descriptions of aspects 
of the world, presented in declarative sentences, and there are prescriptions of what ought to  be 
done about those aspects, in imperative sentences. Theories are logically or em'j?irically organized 
systems of the former, and programs are organized systenls of the latter. Some disciplines are mainly 
concerned with producing theories in what we might call their "object language", reserving their 
programmatic statements to the discussion of their methodology, in what we might call their "meta- 
language"; examples are pure mathematics (where the methodological language is that of logical 
programs), and the empirical sciences (where the methodological language is that of experimental 
programs). Let us call such disciplines "knowledge-oriented". 0 ther disciplines are mainly "action- 
oriented'' and concerned with programs, such as hunting, cooking, manufacturing, constructing, etc. 
Still othei disciplines have as their purpose applying knowledge to achieve action. The professions 
of law, medicine, and engineering are examples. These last must be sensitive to  both the changes in 
knowledge and the changes in activities; they therefore changc more than the knowledge-oriented 
and the action-oriented disciplines they are bridging, and if one of these goes through a revolution 
the connecting professional discipline may well follow suit. In any event, let us call changes in a 
profession caused by changes in the disciplines bridged the "professional change syndrome". 

A young discipline, like a young person is an effervescent mixture of all three of the above 



mentioned types of activity. Until the mid-twentieth century, mathematics and"physics were like 
this. Computer Science is like this now. 

As time goes on, the action of perceiving for the discipline may disturb what is being perceived, 
especially if the perceiving and perceived elements are the same order of the magnitude; this was 
the case with particle physics and quantum mechanics, resulting in the indeterminacy principle. 
More generally, the knowledge-oriented and action-oriented aspects of the young discipline will 
conflict, putting the discipline through a crisis, and possibly a revolution. This has happened 
to  mathematics. Engineering must adapt to both the change in mathematics and the change in 
pl~y'sics, two examples of the professional syndrome in engineering. 

Since the success of engineering, or engineering aspects of mathematics, physics, and computer 
science, is measured by how many problems it solves, there is a further cause of change, beside 
the professional syndrome, one that we might call the "solved problem syndrome". Here the result 
may be a standard technique that no longer belongs to the profession but is either relegated t o  
the discipline that presented the action problem - for example all of applied mathematics - or 
the result may become a new separate discipline. In the case of engineering an old example of 
the latter is plumbing. In transportation such results have been the train - "engineers", flight - 

"engineer", etc. Somewhat similar is the engineering application of x-rays and electro-magnetics 
to medicine, resulting in Radiology. The latter is still changing, having developed CAT-scans, . 
PET-scans, magnetic resonance techniques, and, by another application of computer techniques, 
three-dimensional graphic imaging. 

To see how engineers must adapt to computer science, we will first see how the engineering aspect 
of mathematics was originally computational. Then we will see how those computational aspects of 
mathematics developed to involve not only physical engineering but also psycllo-linguistic aspects. 
This will lead us to  enumerate the areas of computer science, each of which alone has a formal, 
an empirical, and a design aspect. Some of the formal aspects will be novel t o  engineers, adding 
to the mathematical background a computer engineer requires beyond the analytic background all 
engineers need; but all the design aspects will of course be engineering oriented. What is more, 
so many of these design aspects will be, not physical, but rather psycho-linguistic and hence, close 
enough to  symbolic and human activities to be most novel to engineers. These will require the 
greatest adaptation. 

2 How Mathematics Separated into Pure, Applied, and Compu- 
tat  ional 

Because mathematics arose from the shepherd's need to count, the agricultural need for measure- 
ment and astronomical information, and the urban commercial need for both, calculation and . - 
geometric construction techniques were, of course, ancient. That summation of Pythagorean math- 
ematics, the "Elements" of Euclid, therefore contained those primitive programs, the constructions 
with straight edge and compass, and those sophisticated verifications of the correctness of those 
programs, the formal geometric proofs. Euclid's students could therefore inscribe in a circle regular 
polygons with 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, etc. sides, thereby computing lengths - consider- 
ably more than agriculture required. Meanwhile the Greek, and later the Roman, worlds made 
mechanical use of counting boards (abaci) and counters (calculi) to do their counting and sums. 

However, it was not until the eighth century A.D. that the western werld could begin to profit 
from the Hindu programming of numerical computation. It was then that A1 I<howarizmi in the 
Arabic world made specific the algorithms of algebra; and it was only several hundred years later 
that the Arabs piclied up the Hindu numeral notatioil itself. It was therefore only in the renaissance 
that the numerical symbolisln and its resulting algorithms came to be fully developed. But it already 



had gone beyond simple numerical calculation into algebraic and trigonometric calculations - for 
astronomy as well as for commerce. Even so, the arabic-hindu numerical data structures and the 
corresponding algoritllmic programs for addition and multiplication did not come into cominon 
use until the eighteenth century! 

Thus, from the renaissance until the mid-twentieth century, at a leisurely but slowly accelerat- 
ing pace, mathematicians kept expanding their symbolic notations via their algebraic expressions, 
number theoretic expressions and functional expressions, and computed expressions that were for- 
mal derivatives or exact solutions in terms of the elementary functions to differential and other 
functiollal equations. They were expanding their language of descriptive, implicit and prescriptive, 
explicitly programmed specifications. Solving equational problems meant converting from the first 
type, declarative to the second, imperative specification languages. Note that this was the reverse 
of the Euclidean verification of the imperative construction procedure by the declarative language 
of formal proofs that we inentioned before. 

At the same time that mathematicians were doing notational and computational innovation, 
they were 'simultaneously developing informal theory, and applying both to physics and astronomy 
(these were the three types of activity we mentioned in our introduction). To name only a few in 
this development over the centuries, there were Vieta, Fermat, Descartes, Pascal, Newton, Leibnitz, 
Euler, the Bernouillis, Lagrange, Laplace, Cauchy, ... let us stop at  Gauss just to  see how much 
the different activities spread within a single individual. Gauss was interested not only in pure 
mathematics - the fundamental theorem of algebra, Number-Theory, and differential geometry -, 
but also in applied mathematics - Astronomy and Physics -, and in symbolic invention and new 
extensions to computation - the congruence notation in number theory, algorithms for solving 
systems of linear equations, the method of least squares, and error statistics. In these last activities 
he was a formidable calculator and programmer. In fact it was his early developed theory of ruler , 

and compass construction, and his specification of exactly which regular polygons could be so 
constructed, and his program for doing it specifically for the regular polygon with 17 sides (when 
he was 19 years old) that made him decide to become a mathematician rather than a linguist. He 
had also been interested in philology. 

Some of Gauss's predecessors had also been famous as pl~ilosophers, Descartes, Pascal, and 
Leibnitz for example. These also concerned themselves with logic and the theory and practice of 
computation. 

For example Leibnitz, on the one hand, invented the differential quotient and integral notations 
and informally derived the computational rules of the differential and integral calculus, and, on the 
other he described a formal algebra of logical 'and', 'or' and 'not' as well as predicted the future 
formal logical algebra that he called a "universal characteristic". We will say more about the future 
of this prediction shortly. 

But, in any event, by the end of the eighteenth century the informal concepts of 'infinitesimal', 
'infinite summation', 'continuity', and 'differentiability' became disturbingly paradoxical; and yet 
they had such fertile applications to physics that something had to be done to  verify what could be 
verificd in the symbolic procedures, and to formalizc them so as to safeguard them from paradoxical 
misuse. The whole nineteenth century was occupicd with this goal. 

This kind of problem was not new. The Pythagoreans had such great success in their reduction 
of measurelnents to counting, by the use of fractions, that they were confounded by the seeming 
paradox that the diagonal of a. square could not be "rationally" related to the use of its side as a 
unit. The solution of this early mathematical crisis was the geometric theory of ratio and proportion 
and its application to the theory of sinlilar triangles as given in the tenth book of Euclid; neater 
construction theories of the "real numbers" had to wait until the theories of Cantor, Dedeliind, and 
Weierstrass in the later half of the ililleteenth century. 

The Pythagorean failure of the possibility of measuring by simple counting was oilly partly . 



solved by the invention of fractions and real numbers. There still remained.logica1 confusion in 
language; for example Zeno's paradox of Achilles and the Tortoise not only concerned itself with an 
infinite series having a finite limit, but also muddied the water by setting up a confusing correlation 
of a particular linguistic description of the race between the two with the actual occurrence-the time 
taken to  describe the race exactly had nothing to do with the time taken to run it. The nineteenth 
century development of a formal logic even more severe than those employed by Aristotle and 
Euclid brought out more mathematical crises and logical paradoxes. 

For example, Boole in the early nineteenth century developed a symbolic calculus that he called 
"laws of thought". One such law was the one that medieval students of Aristotle called "modus - 

ponens". It states that if we have .two declarative sentences, call them p and q, and if we know that 
the sentence p is true, and also that the sentence of the form 'if p is true, then so is q' is also true, 
then we can conclude that the sentence q is also true. Boole had a neat algebraic symbolization of 
this procedure, an algebraic expression: (p&(p+q)tq); this is, however, a functional expression in 
a Leibnitzian calculus of two-valued logic; it has the value T (for "true") for each of the four possible 
combinations of values T and F (for "false") that p and q can have. Such a function is called a 
tautology (i.e. always true). Lewis Carroll at the end of the century in a paper called "What the ' 

Tortoise said to  Acl~illes", pointed out that to achieve the result of modus ponens would require 
not merely this tautology but also one that states that p and p-q, and it, (p&(p-+q)-3) = Al, 
imply q, i.e. 

A2 = (p&(p-tq)&Al t q ) ,  and further that . , 

A3 = (p&(p+q)&A1&A2+q),and, etc. 

In other words, i t  takes an infinite number of these tautologies to achieve modus ponens. 
The law of thought, modus ponens, is no t  in the Boolean expression language; rather it is a 

valid procedure  in a prescriptive ineta-language that talks about the production of proofs 
in the Boolean objec t  language. The tautologous symbolic expression had been designed to 
symbolize modus ponens, and the synlbol was confused with what it symbolized. The tautology is 

" no more a law of thought than the artist Magritte's picture of a pipe, that he entitled "this is not 
a pipe", is a pipe! 

In general, crises in mathematics were signaled by paradoxes. The paradoxes were usually re- 
solved by finally recognizing that they were either 1. - Reductio ad absurdum proofs that something 
did not exist, 
or 2. - Reductio ad absurdum proofs that some goal was in~possible to achieve by a finite means, . .. , 
or 
that 3. - kixing meta-language with object language caused us to confuse symbols with what was 
being symbolized. 
And even in the reductio ad absurdum solutions, the main problem often was to find out what was 
presumed to  exist but did not, or why it did not. For example 'the real number a is no t  rational' 
or 'the number of prime numbers is no t  finite'. 

Many of the dramatic advances were due to lifting the level of thinliing by meta-linguistic de- 
scription, and by generalization at  the meta-language level. For example-algebraic symbolization is 
a generalization into meta-language of the object language of arithmetic - and analytic symboliza- 
tion is a generalization into meta-language of the algebraic language of arithmetic functions (not 
all functions, are algebraic, or even representable by infinite series of algebraic expressions). But h , 

the symbolic procedures suggested at meta-langua~e symbol level might not have valid meaning 
in the operations at object language level. The mixture of object language and meta-language is 
intuitively powerful, but, like most powerful tools, is dangerously capable of misuse. This was why 
mathematics went even further than Euclid in ca.refully formalizing proofs. Archimedes and Euler 
intuitively handled infinite series correctly, but too many paradoxical operations, such as hidden 



divisions by zero in algebraic meta-language or its equivalent in continuity and differentability 
discussions made careful logic necessary. 

And then the paradoxes even turned up in the logic! 
Cantor, for example, gave a formal definition for two sets having the "same number of elements"; 

it was later used to give a formal definition of cardinal and ordinal numbers, even for infinite sets. 
Re was able to show that there were just as many rational numbers between zerd and one as there 
were natural numbers all told, i.e. that the rational numbers are countably infinite; a seeming 
parados, but not really one; and he capped this result with a reductio ad absurdurn proof by his 
'diagonal method' t o  show that the number of real numbers between zero and one is no t  countably 
infinite, i.e. has a larger  infinity than the number of natural numbers. 

All this activity of formalization to  avoid paradoses and contradictions was resulting in an 
extension of the Pythagorean program of reducing all mathematics to  numbers; it was all being 
reduced to  a formal theory of sets, and then by Frege, and later by Whitehead and Russell, to 
formal logic itself, as foreseen by Leibnitz. But, the logic itself emerged with dangerous paradoxes, 
beyond what Lewis Carroll had recently found in Boole's laws of thought. All this thinking about 
thinking, and mixing meta-language with object languages, seemed fraught with dangers due to 
self-referencing: the numbers of sets of numbers, sets of sets, etc. 

In fact Russell confounded Frege, immediately after Frege's publication with his famous paradox 
of "The set of all sets that are not members of themselves"(is it or is it not a member of itself ?!?!). 
And some further paradoxes brought to the surface the relationships to  language. For example 
there was the Richard paradox, which first pointed out that there could be only a countably 
infinite number of English phrases that specify functions of one natural number variable, and then 
used Cantor's diagonal argument to show that this could not be true. And then there was Berry's . . 
paradox: "The least natural number not nameable in fewer than twenty-two syllables" is hereby 
named in twenty one syllables. 

Thus, by the beginning of the twentieth century, a larger and larger portion of mathematical 
activity was the axiomatization and presentation of mathematical theory in an even more rigid 
formalization than Euclid's elements. This area was called 'pure mathematics'. And IIilbert's pro- 
gram for the development of pure mathematics was t o  axiomatize and present a formal system that 
would cover all possible matl~ematical truths; any properly (i.e. mathematically) stated sentence in 
such a system would be formally provable or else formally contradictable. This optimistic program 
was formally proved to be unattainable toward the middle of the century; Godel showed that any 
sufficiently rich formal system was either inconsistent or incomplete in the sense that there would be 
statements within i t  that were undecidable, i.e. could neither be proved nor disproved. IIis proof 
was something lilce Richard's paradox, using a Cantorian diagonal argument on a formalization 
of a meta-language. At about the same time logicians were uncovering a number of undecidable 
questions and unsolvable problems by developing a number of equivalent theories of computation 
that we will consider below. 

All through the history of lnathematics the word "computatio~~" had been expanding its mean- 
ing. We will shortly examine the process in more detail. The formalization process of the nineteenth 
century accelerated it by including all the algebras, geometries, and logics. But it was the necessity 
to formalize the programming of computations caused by the inhuman speeds of the recent general 
purpose computers that made con~putation include all precisely specifiable symbol manipulation. 
Now general symbol manipulation includes the pragmatic effects of deliberate ambiguity caused by 
shifting interpretation, for example between object language and meta-language. General computer 
programming must therefore include what mathematical logic programming must forbid. Again, 
the mathematical study of arithmetic is independent of the way numbers are represented; the com- 
puter program for addition depends not only on the particular computer type, but also on the . 
number representation system used. There are so inany pragmatic questions in computer theory, 



use, and design that the area of computation and the area of mathematics were pulled apart. 
For a different reason, mainly what we called the solved problem syndrome, applied mathematics 

also separated from pure mathematics. 
By the middle of the twentieth century the applications of mathematics had spread to so 

many different disciplines that the spread was too vast for any single person's curriculum. The 
nlathematical applications, once the mathematical aspect of their disciplines had been precisely 
specified and handled, were relegated to the discipline of the application. A few universities were 
concerned with a united applied mathematics group, but, by and large, the discipline became 
restricted to "pure mathematics". 

3 How Computation broadened its Scope and developed a close 
relationship with Engineering, Logical Theory, and Psycho- 
Linguistics 

Mechanical aids for counting became a necessity especially in urban cultures, for example around 
the Mediterranean in Hellenic and Roman times. And from those beginnings computation, like 
mathematics generally, developed in three interacting strands: 

First there was the development of the physical aids and their psycho-linguistic aspects into 
macllines; the physical aids development is the obvious engineering aspect, the psycho-linguistic 
the more subtle one, as we shall sce. 

Then there was the theoretical aspect-beginning with matllcmatics as a whole, but narrowing 
down to formal proofs, and then to formal logic itself. 

And thirdly, forming a spiral, there was the psycho-linguistic development of naming and spec- 
ifying the data structures (at first, the number yepresentation systems) and the expressions of 
the procedures for handling them (their programs or algorithms). 

During the interacting development of these three phases in computation, it was the expressions 
of the procedures that were turned into machines. For example, as mentioned before, in Hellenistic 
and Roman times, counting and adding were facilitated by counting boards with lines on them for 
placing counters. These static devices, made mobile by fleetly calculating human fingers, were of 
two designs; the first, a simpler design but more bulky, had room for ten counters per line, while 
the second, a more compact one, had five counters per line, and intermediate lines dcsigned for at 
most two counters to indicate the number of full hands of five fingers that had accumulated on the 
base lines. The description of the counting and adding procedures for the bulky counting board 
was, of course, much simpler. 

The two types of roman and chinese abacus are further developments of these placid machines, 
where the lines are replaced first by slots and then by wires, and the counters are beaded in or on 
them vertically instead of being strung out horizontally; in the more compact type the intermediate 
lines are vertically above the ones they relate to. 

The Roman sylnbolization of the total number counted on a board was a compact dcscription 
of the picture on a compact board, using I and V for the first line and its associate, X and L for the 
second, C and D for the third, etc., and a reversing grammar to obtain extra compactness, IV for 
1111, XL for XXXX, etc. The parsing of these number representation phrases was fairly complicated 
in order to achieve conlpactness and representatiorl on one line. 

The Hindu-Arabic symbolization, especially when a symbol for an empty line, zero, was intro- 
duced, was a compact description of the bulliier abacus. This second phrase structure language 
used the position of the numeral to represent the position of the wire and thereby avoided the 
necessity of using a larger and larger alphabet for more and more wires. Moreover, the algorithm 
for addition in this language had a considerably simpler description than did that for addition in 



the .roman numeral phrase structure language.' 
It would seem that it took mankind a thousand years to  decide that the descriptive language 

for the bulkier machine was more useful. The algorithm for addition in the arabic symbol system 
has a much simpler description as well as a need for only a finite alphabet. 

The young Pascal (19 years old) assisted his tax-collecting father by designing a more mobile 
mechanical adding machine than the abacus. It simulated in hardware the program for addition 
in the Arabic system. And within a generation Leibnitz adapted the same technique to make the 
machine do multiplication, albeit with the vigorous help of the human hand, i.e. some software 
was still necessary. 

The explosion of functional equation solving techniques in mathematics during the next two ,, 

hundred years made a more Gauss-like calculator desirable. At the beginning of the nineteenth 
century Charles Babba.ge felt tbat all function table construction should be made mechanically 
and automatically, and he spent some decades designing a "difference engine" that would do the 
job. He was also convinced that a device similar to  the cards controlling a Jacquard loom in 
textile weaving could be used to allow the descriptions of many procedures to serve as different 
programs in one and the same "analytic engine". Although his mechanization ambitions were 
defeated because technology was not advanced enough to standardize the necessary parts, these 
ambitions were prophetic enough to  anticipate Hollerith's punched card machines at the end of the 
century, and the electro-mechanical relay machines of Konrad Zuse, Howard Aiken, and George 
Stibitz a hundred years after his time. In effect Babbage had invented the concept of programming 
general purpose calculating machines and the idea of programming languages for the specification 
of how to run numerical algorithms. His message was kept alive not only by the designers of 
machines in the forties and fifties of this century in the United States and Britain, and onto the 
European continent, including the Russian mathematicians and engineers following Tchebycheff, 
but also by the logicians in the thirties, forties and fifties. These latter developed a general theory 
of computation even before electronics took over. 

We therefore return t o  the portion of the history of mathematics where an extension of the 
concept of computation was occurring in the nineteenth century. We have already noted that 
following a1 I<howarizmi a meta-language for arithmetic, namely algebra, appeared and flourished. ' 

- 

The solution of algebraic equations as explicit functions of their coefficients was sought. Where the 
solutions were impossible in the number systems already available, new extensions to  the number 
concept were invented. We have already remarked on this happening when the P ythagoreans had to 
deal with that anachronism of the future, x2  = 2. Then, through the renaissance, it resulted in the 
invention of the next ima.gina,ry class, the nega.tive numbers, yielding the solution to all equations of 
the form a x  + b = 0, except, of course, for n = 0. Then a unified solution to  all quadratic equations, 
a x 2  + bx + c = 0, was found as a function of a, b, and c, provided the invention of numbers was ' 

extended to  include another imaginary class, first called imaginary numbers, and finally accepted 
as the "complex numbers"; and the unified solution called for addition, subtraction, multiplication, 
division, and, the Pythagorean crisis having long been understood (?), the operation of taking 
a square root. The program, or algorithm for the constructioll of the solutions were presented. . .  
explicitly in an &lgebraic form. What could be said about all algebraic equations? Gauss finally 
proved that the complex numbers would suffice to solve them, but not by an algebraic formula. 
(We would now say that "the complex number system is algebraically closed".) By his time the 

'Because the  natural numbers form a simple chain, the  same linguistic expressions, the number namers, serve 
the double purpose of being enumerators - while the counting proceeds - and summarizers - when the  counting 
ends. When we want t o  stress this difference we use ordinal language instead of cardinals; thejr isomorphism is  a 
deep property of finite natural enumeration. This  isomorphism is lost in both infinite cardinals versus ordinals, and 
in 'tree names' a s  against 'tree addresses' in ramified structures such as  decision trees, fanlily trees, classification 
systems, or organization charts. 



construction of the solution by addition, subtraction, multiplication, division, and the extraction 
of roots had been achieved for degrees 3 and 4, and no more. 

It was then that Galois, by studying the effect of permuting the roots of an equation, discussed 
the algebraic systems called groups. He found that those and only those equations were "solvable 
by radicals" whose Galois group has a certain restricted structure; and he further found that the 
general algebraic equation of degree greater than or equal to  five did not have this structure, called, 
incidentally, "solvability". Thus another condition for solvability and unsolvability emerged, as had 
those that prompted the invention of extensions to the number system, or Gauss's condition for 
solvability by straight edge and compass construction. 

Computation now included co~nbinatoric ones concerned with rearrangements of objects, and 
counting arrangements fulfilling various conditions. The theory of probability had already depended 
upon such combinatoric processes in the study of games of chance, at least since the time of 
Fermat and Pascal; And Euler had considered counting and classifying paths on road maps or on 
edges of polyhedra in the beginnings of co~nbinatory topology known as Analysis Situs"; and the 
specification of the new algebraic groups themselves appeared in a study of strings of characters, 
each character representing a generator, where certain pairs of strings were identified as producing 
the same group elements. Computation now included the purely syntactic study of certain types 
of symbol manipulation (ignoring the symbolism); its application to  group theory and a variety of 
algebras, geometries, and topologies were studied through the nineteenth century by, for example, 
Hamilton, Cayley, Poincare, and Burnside. At the outbreak of World War 1, Thue was publishing 
papers on "word problems" that were fore-runners of some of the general theories of computation. 
Cantor's diagonalization proof was a syntactic game with number representation words. The logical 
paradoxes were semantic games with words as well. Logicians of the Polish school, their student 
Herbrand, and Gentzen were also thinking in terms of syntactics and semantics of such symbol 
manipulation games. Finally, after Godel's work that we mentioned above, the logicians of the 
thirties and forties followed three types of approach (and their mixtures) to  a general theory of 
computation. They all produced important examples of unsolvable problems, sllowing the limits of 
such general computation; and the theories were proved to  be equivalent. 

The first approach presented purely syntactic "rewriting systems" as in the "presentations" of 
groups, and the generalization toward word problems by Thue. Post's "production systems" or 
"semi-Thue" systems was an example, and Post presented an undecidable problem, the "corrc- 
spondence problem". So~ne years later it was shows that the word problem for semi-groups and 
groups, namely determining whether two products of generators represented the same element, was 
undecidable. In this class, some ycars later, was hlarkov's theory of algorithms. 

The second approach presented formalizations of the meta-language of such syntactical symbol 
manipulation; the characters in the meta-language had ~neanings (semantic content) and were 
therefore really symbols, where the object language characters might not be. For example, Church, 
in his A-calculus, eliminated thc confusion in nlathematical notation between synibolization of a 
function and symbolizatioll of the value of a function for a general element in its domain. Rosser 
concerned himself with the possibility of reducing a A-expression to a "normal form". Curry 
considered primitive symbol manipulating operators, the "combinators", and their combinations. 
And Icleene formalized recursion to produce a theory of recursive functions. This approach has had 
a direct effect in recent studies of programrni~lg language semantics and in the theory of program 
verificatioll. 

The third approach was more pragmatic in that it specified the users or interpreters of the 
symbols being manipulated as well as the syntactics and semantics of the manipulations. These 
users and interpreters were the symbol manipulating machines, and the approach was directly 
descended from Babbage. The prime example of this approach was that of Turing. I-Ie specified 
the concept, that of Turing maclline, as any mechanisln that had a finite number of states and - 



a infinite tape tlrat, at each cell, could be read, or erased, or printed on, or switched 
to  another cell depending on the state the machine was in, and had a switch to another state as 
part of tlre interpretation of tlre symbol. Prime illustrations of Turing machines were concatenators 
of strings of symbols, copiers, combiners, etc. A carefully designed combination of a few of these 
Turing showed to  be universal in the sense that it could copy tlre specification of any special machine 
and imitate it. The tapes specifying turing machines served as programs for tlre universal turillg 
machine. The concepts of program, procedure, algorithm, and machine had become identified as 
far as tlreir effect was concerned, even though their uses of space and time might be quite different. 
Turing showed tlrat it was impossible to  construct a program tlrat would accept any program and 
appropriate data and determine in a finite time \vlletlrer or not the problem represented by the 
program and data would come to a halt or would continue indefinitely. During the second world 
war, Turing was also involved with the design and use of a machine in Britain, tlre Colossus, whose 
main purpose seems to have been cryptanalytic. 

This brings us to  the time of general purpose machines and electronic developments. 
The electro-mechanical calculating machines were already so much faster tlran human compu- - 

tation that they required prior program preparation. Rutishauser even contemplated making the 
programmiilg process itself partly automatic; he therefore foresaw the extension of tlre meaning of 
the word "computation" that the succession of generations of machines were about to  add to math- 
ematical general symbol manipulation, namely the construction of computer programs themselves. 

The first electronic general purpose calculating machine, tlre ENIAC, was at first programmed 
for special problems by hand-plugging the interconnection of the registers from which and into 
which data was to  be moved and operated on. Later a code system for setting up such appropriate - 
hard-wire switching was entered on the tables used for storing numerical data by switches, i.e. the 
programs were coded numerically. 

The EDVAC, immediately after the ENIAC, was designed with a fast access internal storage 
(mercury dclay lines) of one thousand and twenty four words that could be either data or coded 
instructions. Effectively, the program was the switclring design of the special purpose machine one 
wanted the general purpose machine to become; contents of a storage cell were data if they were 
sent to air adder, say, but were an instruction if they were sent to tlre "instruction register" to be 
interpreted (i.e. decoded, or parsed) as an instruction; and not infrequently, in a programmed loop, 
the first was done to  change the address of tlre addend to be used, and immediately afterwards the 
second was done to  tlre result. The machine was nlodifying its own instructions, as though self- 
consciously. This brings to  mind the mixing of meta-language (i.e. the prograniincd instructions) 
and object language (the conlputational data). 

On the one hand this common storage of instructions and data led to the construction of 
programmed compilers and interpreters of higher level languages; on the other hand it illustrates 
the principle of the "logical equivalence of hardware and software". It was later modified by the 
introduction of standard binary codes for the complete typewriter keyboard. The data was no 
longer viewed as just numerical. The similarity of these electronic symbol manipulators to the 
universal turing machine was now more obvious tlran ever. 

The piogramming of interpreters of higher level languages now forced the self-conscious exam- 
ination and imitation of psycho-linguistic processes. Meanwhile mathematics was being applied to 
psychology and linguistics. 

The mathematical psyclrology, at first, concerned itself with stochastic learning models of the 
reinforcement type; its only effect on computation was to sharpen the programming technique 
of delayed random selection. In fact it was the attempt to program problem solving with its 
unpredictable storage requirements, and to do it on a machine with magnetic drum storage that 
prompted the invention of list structure and "push-down" storage techniques in this country. This 
led to  the dynamic storage allocation we will say more about shortly, and advanced the development 
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* 
of the area called artificial intelligence. 

The mathematical linguistics introduced the Chomsky hierarchy of phrase structure languages. 
These were approximations of the linguistic procedures employed by humans in their use of natural 
languages, but immediately enriched the theory of computer languages. They gave us the various 
types of automata, finite state, push down, etc. that were needed to  parse them, and models of 
formal languages, e.g. finite state, context-free, etc., that were useful in studying and designing 
computer languages and analyzing the general computation process. 

, At first the coding of this computation process was done by specialists - the machine coders; 
in addition there were the specialists (sometimes these same machine coders) who entered the 
problems in the machine, ran them, arranged for their reading and printing, etc. The machine time 
was too expensive to  be slowed down by the single user; the set of problems of a number of users 
was batched and scheduled by the operators. 

The advancement in machine tecl~nology came at a rapid rate, though, luckily, a t  a slow enough 
rate so that internal, fast access storage was still expensive and therefore too small to afford 
separating instructions from data. Thus, when the magnetic auxiliary storage devices, tapes and 
drums, were enhanced by the faster access, internal storage (the core memories), the internal storage 
could increase moderately; the increase was enough to permit the specialized coder to be replaced . , 

by a program, the aforementioned compiler or interpreter of some standard higher level language; 
it also permitted a partial replacement of the macl~ine operator by an automatic scheduler that 
shared the time allotted to  a number of users, their inputs, their required auxiliary storage, and 
their outputs. This latter software was an "operating system" that also handled the allocation 
of internal storage dynamically, not only to schedule the time sharing of the users but also to 
allocate unpredictable storage needs of the single user. There were at  least two types of dynamic 
storage allocation that lllachine users needed. The first was the recursively defined functions in such 
higher level programming languages as ALGOL and LISP, and the second was for the unpredictable 
storage necessary in the automatic simulation of lrdman problem solving in the new area of artificial 
intelligence that we illentioiled above. 

Thus the human calculating processes, even at the programming and operating level, were self- 
consciously examined and programmed. The programming and operating levelitself was recognized 
as a type of calculation much like the algebraic, analytic, and symbol manipulative level. 

Meanwhile the extension of programming capability to the machine user caused the explosion 
of computer applications to  all disciplines that were sophisticated enough to  develop advanced 
symbolic manipulation. This includes even such action oriented disciplines as sports, with their 
diagrammatic simulation representable in computer graphics. The market expanded rapidly and 
supported the hardware, software, and a,pplication research. The machines advanced in generations - 

of from five to ten years each - the transistorized generation, semi-conductor devices, large-scale - - 
integration, and the VLSI methods now used to construct micro-processing chips the size of finger 
nails. Sin~ultaneous with the drastic decrease in size came a drastic increase in speed, a drastic 
lowering of cost, and a drastic expansion of the market because of a drastic extension of the meaning 
of computation and its applications; for example, business data processing applications were once 
again, as in the renaissa.nce, an important use of machines, but now with the counters, recorders, 
and summarizers, i.e. the large staffs of clerks, also replaced by machines. 

Meanwhile, during one generation of engineers and clerical staffs, the hardware and software . 
went through three or four generatioils of change. What is more, the software production is now 
much more expensive then the hardware, and needs fully as much engineering. Far from the 
secrecy about conlputational design and use that characterized the international and intra-national 
relations immediately following the second world war, it is now clear to all that it is more profitable 
for all to standardize types of machine design, language design, and information interchange. 

The computer systems and computations, therefore, are not merely proliferating; they are 



actually clustering into larger and larger networks for the interchange of such computed information. 
It is not merely airlines that need such "distributed system computation" but also all extended 
business corporations, and international academic research. 

In summary, the word "computation" now means "any precisely specified process of symbol 
manipulation", even pictorial. VIThen restricted to computer prograniming, the semantics, i.e. the 
meanings of symbols is restricted to the symbol manipulative. But these meanings can be espanded 
to  visual and other prosthetic sensing and effecting devices we choose to  add to  the machine's data 
assemblers and output reactors. This is what is done in the computations for robotics. And, 
indeed, some of the most humanly interactive programming techniques are now object-oriented, 
mixing digital video graphics, digital audio sound, in distributed computation and information 
networks. 

. .  - 
4 The Areas (9) of the discipline of Computation (Informatics) 

and the parts of each that are engineering oriented. 

We have seen that until recently it was not unusual for the same thinker to  concern himself with 
philosophy, formal theory, empirical questions and design problems. So far i t  would seem that 
informatics, unlike most other academic disciplines, requires that three types of thinking be acquired 
in its educational curriculum; the curricula suggested by the Association for Computing Machinery . 
(ACM) and the Institute of Electrical and Electronic Engineers (IEEE) reflect this. The three types 
are formal theoretic, empirical and experimental, and design oriented types of thinking (roughly, 
syntactic, semantic, and pragmatic). A most recent sucll discussion ("Computing as a Discipline", 
by Peter J .  Denning et. al. in CACM, January 19S9) lists nine sub-areas with these three types of . ,  
thinking in each. They present this "Definition Matrix for the Computing Discipline" as follows: 

1. Algorithms and Data Structures 
2. Programming Languages I I 
3. Architecture 
4. Numerical and Symbolic Computation 
5. Operating Systems 

6.  Software Methodology and Engineering 

7. Databases and Information Retrieval 
8. Artificial Intelligence and Robotics 

9. Human - Computer Con~munication L 
* (We have appended their appendix to show the detailed subjects). 

Design 

And they say "It is the explicit and intricate intertwining of the ancient threads of calculation 
and logical symbol manipulation, together with the modern threads of electronics and electronic 
representation of information, that gave birth to the discipliile of computing". I hope the previous 
section has helped to illustrate this statement in greater detail. 

TVe note that each of these nine areas has "substantial design and implementation issues". These 
are, naturally, in the purview of engineering. All engineering, like all professions that transform 
knowledge into action, was always pragmatic, both in the popular and in the technical sense (in 
linguistics, "pragmatics" is concerned with resolution of ambiguity by recognition of context and 
appropriate interpretation). Furthermore, adaptabi1ity to  humans has always been an engineering 
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consideration, in fact the original motivation, whence some areas have made a special study of it - . 
e.g. systems engineering, illdustrial engineering, ergonomics (i.e. man-machine interaction), etc. 

But it was a1wa.y~ the relationships of material objects and surroundings t o  humans that was 
involved; what about the design of procedures, of general and special purpose languages, of auto- 
matic scheduling of distributed devices (including computers) for a distributed audience, of editing 
systems, of types of communications, of types of graphics, of human sensory reactions to types of 
prosthetic sensing, and the like? Surely aeronautical and space engineering have been concerned 
with the last of these. But have we designed types of thinliing before, and prepared the world at 
large to  live with them? 

Before going on to  consider what engineers have to adapt to because of computer science (or 
within computer science) let us rema.rk on how stable the contents of computer science is likely 
to be; for, just as mathelnatics has changed into (almost) a pure "knowledge-or1entedn discipline, 

' might not computer science do likewise? 
Because so much of it remains "action-oriented", namely programming and the fact that it is 

equivalent in a way to  machine design, I believe it nus t  remain a professional type of discipline, just 
like engineering, which it  overlaps. Moreover it will have, I believe, the "solved problem syndrome" 
to  an even greater extent then mathematics did (with applied mathematics), because there are so 
many disciplines involved with symbol manipulation; there may be very many mathematical needs 
in other disciplines, but there are even more symbolic needs (e.g. diagrammatic plans in sports). 
Even in mathematics, n~ethodological discussions concerning clumsiness or neatness of notations 
are examples of applied informatics! And yet the linowledge-oriented and action-oriented parts 
of computer and information science will still have to remain balanced because the programming 
activity and machine design activity must, due to their "logical" equivalence. 

5 Where Engineers need Adapting in order to participate fully 
in Computer Science 

We have remarked in the introduction that professional disciplines may be expected to  change faster , , 

than those that are almost purely knowledge-oriented, or those almost purely action-oriented. we 
gave two types of change symptoms, the "professional change syndrome', and the "solved problem 
syndrome". The variety of typcs of engineering of the past and present is due to the variety of 
knowledge-oriented and action-oriented disciplines they bridge. They each changed rapidly because 
of the professional change syndrome and some have disappeared because of the solved-problem 
syndrome. 

Now essentially all the engineering types have had their share of applied mathematics, both in 
their theory, and in their computational practice. Mostly these theories and computations have 
been from analysis and froin statistics; and, this will naturally continue in the needs from computer 
science. All engineers will continue to need numerical analysis in their core education, and all will 
need introductory computer courses leading to computer aided design (CAD), and probably enough 
graphics for both displays and to replace, for example, mechallical drawing. IIowever, in addition 
to these core requirements, in their early engineering education, they must still do something to 
keep up with the rapidly changing computer field (the professional change syndrome again). They 
will have to have a colltinuiilg education in general, and the computcr field will have to bc part of 
it. Due to the solved problem syndrome they must be prepared either to  change over to a resulting 
new discipline or to switch to  new problems. In either case, continuing education, whether on the 
job or in a sabbatical, is necessary. 

For computer engineers in particular, their core requirements in mathematics must be more than - 

the analysis courses all engineers need. They must have abstract algebra and logic as wcll. These 



are necessary in the understanding of programming language design and programming language 
capabilities. They are also necessary for the understanding of the logical limits of computation, 
where analysis of computational complexity would still not show what is impossible. Since, like all 
engineers, they must concern themselves with man-machine interaction, some ergonomics should, 
of course, be part of their education; but, because of the psycllo-linguistic effects they must be 
concerned with, they should go deeper into cognitive science. After all, when they design a hardware 
- software - peopleware system, because of the logical equivalence of hardware and software, they 
must decide on which parts are more efficient in hardware and which in software; but they must 
also be concerned, not only with machine efficiency, but with psychological interaction as well. Not 
only should they be concerned with reasonable interaction between the user and the rest of the 
system, but with the distribution of users, advisers, machines, and interactive software in extended 
networks. 



' References 

[I] Bell, E.T. - Men of Mathematics - Dover 1937 (see Zeno, Eudoxus, Archimedes, Pascal, Leibniz, 
Euler, Gauss, Cauchy, Galois, Boole, Cantor). 

[2] Luce, R.D., Bush, R.R. and Galanter, E., eds. Handbook of Mathematical Psychology - vol. 
I1 - Wiley, 1963, (Chaps. 11, 12, 13 by Chomsky, Chomsky & Miller, Miller & Chomsky). 

[3] Luce, R.D., Buscll, R.R. and Galanter, E., eds. Readings in Mathematical Psychology - MTiley 
1963 (see Miller - The Magical Number 7). 

[4] Boyer, C.B. - A History of Mathematics - Wiley 1968. 

[5] Pullam, J.M. - The History of the Abacus - Hutchinson & Company - London - 1968. 

[6] Kuhn, T.S. - The Structure of Scientific Revolutions - University of Chicago Press - Chicago 
- 2nd enlarged ed., 1970. 

[7] Ralston, A. - Introduction to Programming & Computer Science - McGraw Hill 1971 - (see 
Chapter 1). 

[8] Goldstine, H.H. - The Computer from Pascal to von Neumann - Princeton University Press - 
1972. 

[9] Harmon, M. - Stretching Man's Mind, MasonJCharter, 1975. 

[lo] Randell, B. (ed.) - The Origins of Digital Computers; Selected Papers, Springer-Verlag 1975 - 
(see Babbage, Hollerith, Zuse, Aiken & Hopper, Stibitz, etc.). 

[ll] Hofstadter, D.R. - Godel, Escher, Bach - Basic Books, 1975. 

[12] Metropolis, N., Howlett, J .  & Rota, Gian-Carlo; (eds.) - A History of computation in the 
Twentieth Century, Acadelllic Press, 1980, (see the Colossus,Backus, Ershov & Shura-Bura, 
Bigelow, Burlis, Stibitz, IVillies, Bauer, Eckert, Mauchly, Booth, Zuse). 

[13] McNaughton, R. - Elementary Computability, Formal Languages, and Automata, Prentice- 
Hall, 1982. 

[14] Shelley & Cashman - Computer Fundamentals for an Information Age-Anaheim Publishillg 
Company - 1984. . - 

[15] Machlup, F. & Mansfield, U. (eds.) - Forward by George A. Miller - The Study of Information: 
Interdisciplinary Messages; Wiley 1983 (see sections 1,2,3,4 on Cognitive Science, Computer 
and Information Science, Artificial Intelligence, and Linguistics: also the equivalent of section 
2 in I<aowledge; vol. 4, no. 2, December 1982, pp. 164 - 251). 

[16] MTood, D. - Theory of Computation, Harper & Row, 1987. 

[17] Denning, P.J., Comer, D.E., Gries, D., et. al. - Computing as a Discipline - and the Appendix 
in Communications of the ACM, vol. 32, no. I.: January 1939. 

[l8! Penzias, A. - Ideas and Informatioll - Managing in a High-Tech World - W.W. Norton, 1989,,, 
esp. chaps.' 2,3,4. 


	Adapting to Computer Science
	Recommended Citation

	Adapting to Computer Science
	Abstract
	Comments

	tmp.1201285372.pdf.QG3Sv

