- . o
cnn) \ University of Pennsylvania

Libraries ,_
O UNIVERSITY 0f PENNSYLVANIA 4 ScholarlyCOmmonS
Technical Reports (CIS) Department of Computer & Information Science
January 1973

Implementation of an Automatic, a Posteriori, Hierarchical
Classification System

Allen L. Lang
University of Pennsylvania

Susan W. Zagorsky
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation
Allen L. Lang and Susan W. Zagorsky, "Implementation of an Automatic, a Posteriori, Hierarchical
Classification System", . January 1973.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-73-05.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/747
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F747&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/747
mailto:repository@pobox.upenn.edu

Implementation of an Automatic, a Posteriori, Hierarchical Classification System

Abstract

This paper describes a total system which provides the capability to semi-automatically index and
classify any given file of information. The semi-automatic indexing method assigns key terms to each
"document"” in the file . These key terms may be modified, (i.e., added, deleted, or changed) by the user.
The indexed documents are then assigned to categories by an automatic classification algorithm. The
classification assignments are a posteriori. Classification dictionaries are also produced which can be
used as an aid in browsing through the data base and in retrievals from the data base.

Samples are given of the results obtained while indexing and classifying an experimental data base
containing the texts of 1669 radio messages.

Comments

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-73-05.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/747

https://repository.upenn.edu/cis_reports/747

University of Pennsylvania
THE MOORE SCHOOL OF ELECTRICAL ENGINEERING

Technicel Report

IMPLEMENTATION OF AN AUTOMATIC,
A POSTERIORI, HIERARCHICAL CLASSIFICATION SYSBTEM

by

Allen L. Lang
and
Susan W. Zagoraky

Project Supervisor
Noah S. Prywes

January 1973

Prepared for the
Office of Naval Research
Information Systems
Arlington, Va. 22217

under

Contract NOOO1lL-67-A-0216-001k
Project No. NR 0k9-153

DISTRIBUTION STATEMENT

Reproduction in whole or in part is permitted for
any purpose of the United States Government.

University of Pennsylvania
THE MOORE SCHOOL OF ELECTRICAL ENGINEERING

Technical Report

IMPLEMENTATION OF AN AUTOMATIC,
A POSTERIORI, HIERARCHICAL CLASSIFICATION SYSTEM

by

Allen L. Lang
-and’
Susan W. Zagorsky

Project Supervisor
Noah S. Prywes

January 1973

Prepared for the
Office of Naval Research
Information Systems
Arlington, Va. 22217

nmnder

Contract NOOOLL-8T7-A-0216-001k
Project No. NR 049-153

DISTRIBUTION STATEMENT

Reproduction in whole or in part is permitted for
any purpose of the United States Government.

Moore School Report No, 73-05

Security Classification

DOCUMENT CONTROL DATA.R&D ——

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) 20, REPORT SECURITY CLASSIFICATION *
University of Pennsylvania UNCLASSIFIED
The Moore School of Electrical Engineering 25, GROUB !
Philadelphia, Pa. 191TL o

3. REPORY TITLE

IMPLEMENTATION OF AN AUTOMATIC, A POSTERIORI, HIERARCHICAL CLASSIFICATION SYSTEM

4. DESCRIPTIVE NOTES (Type of report and,inclusive dates)

Technical Report

5. AUTHORI(S) (First name, middle initial, last name)

Allen L. Lang and
Susan W. Zagorsky

6. REPORT DATE 78. TOTAL NO. OF PAGES 7b. NO. OF REFS
January 1973 292 10
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)
NOOO14-67-A-0216-001k Moore School Report No. 73-05
b. PROJECT NO.
NR Ol9-153
c. od. a‘r.n:n n}poar NO(S) (Any othsr numbers that may be assigned
d.

10. DISTRIBUTION STATEMENT

Reproduction in whole or in part is permitted for any purpose of the
United States Government

1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Office of Naval Research
Information Systems
Arlington, Virginia 22217

13. ABSTRACT

This paper describes a total system which provides the capability to semi-automatic
index and classify any given file of information. The semi-automatic indexing method
assigns key terms to each "document” in the file. These key terms may be modified,
(i.e., added, deleted, or chenged) by the user. The indexed documents are then
essigned to categories by an sutomatic classification algorithm. The classification
assignments are a posteriori. Clagsification dictionaries are also produced which

can be used as an aid in browsing through the data base and in retrievals from the
data base.

Samples are given of the results obtained while indexing and classifying an
experimental data base containing the texts of 1669 radio messages.

DD "3V..1473 (PAcE) N S

S/N 0101-807-6811 Security Classification

A~31408

Chapter

Chepter

1 -
1.1
1.2

1.3

1.4

2 -

2.1

2.2

2.3

2.4

2.5

2.6

TABLE OF CONTENTS

Introduction to Automatic Classification .eecececes
Purpose of this System ...ececceccccrcescesoesocee
Advanteges of Automatic Classification .ecececsceee
Implementation of an Automatic Classification
AlLGOTith sevevecssesvsssscsssccscesssocsccccsccnce
Note on the Computer Programs .ccseecccoscsscccscces
Semi ~Automatic Indexing cceescocccescccceccvccccee
Purpose of Semi-Automatic Indexing Routines
Overview of the Semi-Automatic Indexing Routines ,
Preparation of the Original Document Collection
FOor INPUL ceceevssscscovoscsccsscscccsscsnsrccocnns
2.3,1 Description of the Standard Input File
2.3.2 Description of Standard Input Records
2.3.3 Programming Considerations ...cccecescccecee
Extraction of Pertinent Words for each Document
in the Collection .ceecescsssccccscocscccscscscasce
2.4,1 INPUL secevecescccccascccscsscssccccccsccse
2.4.2 OULPUL ceesevesscssssctcocsssccssscssccsccs
2.4.3 Program Description sccececccccscesscscccns
Sorting (Alphasbetizing) of Words Within Bach
Document ceesseescsccscccovsssececcccsccnncesocoecs

Elimination of Duplicate Words Within Each

Docmnt .I‘.......Q...0.......I......’....‘.......

2.6.1 Input [E XN ERRNNENNFR R RN XN ENXNNNENENENNENNEN}N}EH}E XN

PAGE

10

10

8 8 b &

N
(o]

28
28

2.7
2.8

2.9

2.10

2,6.2 OULPUL coveeoscceccccscsccssscscsascscsnce
2,6.3 Program Descriptions cceeeccecccccscccacee
Sorting of Entire Collection of Extracted Words .
Elimination of Duplicate Words Within the
Entire Document Collection and Assigning
Each Unique Word a Code Number .e.cccecccecccccnses
2,81 INPUt ceeeescersccsccassesssccscccscosccns
2.8.2 OULPUL cevesecevccncecacsosacsssccscsscons
2.8.3 Program Description cceececececccesscssose
Modifying the Set of Unique Words ...ccccvscecess
2,9.1 Printing the Various Files that have

been Generated ccceseecscoccecseccccsconse
2.9.2 Listing All Veriations of the Same Root

WOrd ceecevcescscsccccscccrccsccsccssoncce
2.9.3 Modifying the SORTED-WORD/DOCUMENT-

NUMBER /FREQUENCY f11€ ccocccesssccccsssecs
2.9.4 Effectively Using the Utilities to

Make Modifications to the Unique

WOrds .ecececceccccccccccccccoccccccscsnns
Creating the Document Surrogates .sececceccecccces
2.10.1 Sorting the SORTED-WORD/DOCUMENT-

NUMBER/CODE file by Documents, Code
2.,10.2 Input t0 DOCSUR scsesssconssseccccccccsnse
2,10.3 Output from DOCSUR eceessesvcsccccecencencs
2.10.4 Program Description cececeecccecscossscoce

PAGE
33
33
37

37
ko

L2

=

50

50

25

62

67

68

68

70
T0

2.11

Chapter 3
3.1

3.2

Summary and Examples of the Semi-Automatic

Indexi-ns Pl'ocedure 0000000000000 00C000080000COCIKGYS

Automatic Classification .ceeecsccccsceccescece

Introduction ceecceccescecssscccsoscscssscccens

CMSFY DeBCriPtion 000 B0 0000 0000000000600 000000»

3.2.1

3.2.2
3.2.3

3.201"

3.2.5

3.2.6
3.2.7

Algorithm Description ceececevecsecscces
3.2.1.1 PASS ONE;.........
302,142 PASS TWO ccoecscoccoccssccscccs
3.2,1¢3 PASS THREE .eccoccccscscccccces
3.2,1.4 Partition Completion .cccceeses
Classification Exeample .ccecececscocoses
Input Flles8 seeceecoscssocsaccsocsersses
3.2.3.1 Balanced Tree Simulation ..cce.
Output FileS8 .cceecevccsccccccssscsorece
3.2.4.1 Final Keyword File ...c.cccceees
3.2.4.2 Document-Node File ...coe0cccee
Intermediate Files .cceccsccccccacccsnce
3.2.5.1 Redundant Document File
3.2.5.2 Intermediate Document Piles...,

3.2.5.3 Intermediate Key Files ...cc0c¢

Classification Output Record ...eceseese

Input Parameters ccceseccccccccccscncesns
3.2.7.1 Stratification Number ..ccccce.
3¢62.T.2 Sensitivity Factor .ccescescescs

3.2.7.3 cell Size 800000 0CO00NOCIOINSIOOSEBSOITOTS

PAGE

78

132
132
136
1ko
141
142
143
143
1kh
150
159
161
161
163
163
163
165
165

168

170
171

3.3
3.4

3.5
3.6

3.2.8
3.2.9

3.2.7.4t Number of keys per
Intermediate Key Record ..eecees

3.2.7.5 Number of keys per finel
Key Reocrd 080000 00scs0ssscscanse

Restrictions on the CILASFY Program

control Totanls 0000 CONOGOEOCONOSOGEOSIIOOIOIOIOEEBTDODIRLES

3¢2.10 Restart Procedures .ccecceccecccscscccscsses

Sort of Final Keyword File .eccccceccocecccscces

Creation of a Hierarchical Tree .ccececesscrcrse

3.14‘01
3.4.2
3.3

3.h4.4

3.k.5
3.4.6

TREE Description .cececceccccccccccacccss
Input File8 .ccoccecoscvcnccscscarscssccces
Intermediate Files .cceccosccccecaccccces
3.4.3.1 Intermediate Intersection

FileB ceccceccscsoscccscccacsene
3.4.3.2 Intermediate File For Future

Intersection cceceecceccocaccsscs
Output Flle ccececocscsccsssescocsccccces
Input Parameters ccocecesvcscescscsscccoe

contr°1 Totals PO OBOOOENNOOOISOOEOSEDNESOISONSNOIOIDS

sort of C].“Biﬁcation Tree 2O PO SOOSOOIOSIOENCSAIOOEPOEPOS

Creation of Node-To-Key Dictionary eccceececsecssce

3.6.1
3.6.2

3.6.3
3-6.h

NDTOKY Description cececescccccsccssccose
Conversion to Canonicel Node Number and

Back AgBIN ceevecccvcscssssccssccacacenee
Input to NDTOKY Program eecescceseccscsce

outmt Files G 00 00 0000050000800 000000000s0

PAGE
172

173
173
174
17?
176
177
182
184
184

184

185
185
185
188
189
189

192

192
194
194

A @

3.7
3.8

3.9
3.10

3.11

3.6.5 Input Parameters cecececccscccccccscscses
3.6.6 Node-to-Key Table Output REpOrt seeccecses
3.6.7 Control TOtals eececesccrcccsssccsscsssss
Sort of Alphabetic Key and Node File .ccceecccce
Creation of Key-to-Node Dictionary .ceesccccccee
3.8.1 KYYOND DeScription .cccecccecoccccsccoces
3.8.2 Input File8 seceeccceccvsscecccsccccscccns
3.8.3 Output FileS .cecececcceccccsosscccasaces
3.8.4 Input Parameters .seeccceccccccccsssccccce
3.8.5 Key-to-Node Output RepPOrt .eccececsccecse
3.8.6 Control Tot8ls secesescesaccsesccssonsocs
Sort of the Document-Node Flle .cceeecceccsceces
Creation of a Final Classified File ..cccocveses
3.10.1 MRGCLY Description cecececceccccccecccses
3.10.2 Input File8 .cececcecrocccocsccccscscscnce
3.10.3 Output File8 .ececvcscccsccccccccscasccce

3.10.3.1 Text RecOrds ceecccccsesccscccse

3.10.3.2 Key ReCOrds seecesescsossceccsse
3.10.4 Input PArameters .eccccesscccscccsccccces
Classification SUMIAryY .ccececcccsccccacsccsccencs
3.11.1 Classification .ceececesccscccccccacsccns
3.11.2 S0ort ONe cececeescecsccosccsccccosccscnss
3.11.3 Build Classification Tree ..cceccoeccsces
3.11.4 SOrt TWO sceecccccccscscocsccessscsccsacs

3.1105 NOde-To"Key IR NN NN NNEENRKNXNENNNR®NNJNHRJNXRENN]

PAGE
196
199
201
201
20l
203
203
203
205

888 % 8

210
210
210
a3
23
25
a7
233
237
248

252

Chepter L
4,1

L,2
4.3

3.11.6 SOrt THree .ccecececoccscsccsccsscoccacns
3.11.7 Key-To-Node scesececcocsssccccsccccasccss
3411.8 Sort FOUr cecceccococrscsscascasscsasence
3.11.9 Create Final Classified File ..cecencceee
Suggestions for the USer ..cececcvcesccccscsoveas
Input File-Text, Abstract, or Title Words
Cholice of Machine ..ccecosecscecccessosccecccene

Further System Enhancements .ecceecccscccccsscses

PAGE
258
262
268
272
278
278
279
280

2,0

2.1

2,2
2.3
2.4
2.5
2.6

2.7

2.8

2.9
2,10

2.11

2‘12

2.13
2.1k
2.15
2.16
2.17
2,18

2.19

FIGURES

Description of a Standard Input File ..cececcccccccsccce
General Flowchart of User Written Prograﬁ to Create

the Standard Input Flle ...eeeccccescesccsccccccsscoccnse
Example of Standard Input RecOrd .eceeececccscccccsscccnsce
Description of Parameter Cards for EXTURD eeccceccccccnss
Description of Record on WORD/DOCUMENT-NUMBER File
Suffix Deletion Routine ceceecescocceccoccccccccccsccance
General Flowchart of Program EXTWRD .ccecccccccccccsccnse
Description of Sort Parameters Required to Sort Words
Within Each Document ccecececcocccssccccccsscesesccasonce
Description of Parameter Card Ford Program ELDID ...ccce.
Description of Input Files to Program EIDID .ccececcccces
Description of UNIQUE-WORD WITHIN DOCUMENT /DOCUMENT-
Genereal Flowchart of Progrem ELDID ceceeccccccccvscocoscs
Description of Sort Field Parsmeters Required to Sort
Entire Collection of WOords ..ceesevscsccccssccsccccccscss
Description of Parameter Card For Program UNWRDS ...ceces
Output Files From Program UNWRDS ..ccceccsscccescssccccsss
General Flowchart of Program UNWRDS .ccccccccccnscsscccss
Description of Parameter Card For Program PRTIFIL .cccccee
Description of Listings Available From Program PRTIFIL ...
Description of Parameter Card For Program ADJCMP .cceecee

Description of Parameter Card For Program UTIIKS ..sceeee

PAGE
1k

15
19

23

34
35

41
43
us
w7
51
52

57

2.20
2.21
2,22
2.23

2.2k
2.25
2.2%6
2.27
2.28
2.29
3.1
3.2
3.2a
3.3
3.h4
3.5
3.6
3.7
3.8
3.9
3.10
3.1
3.12
3.13
3.14

Description of Conmands For Program UTIIKS sececccccccne
Description of Document-Number Card .ccecesccccesccscscs
Sorting Sequence Used in "Alphabetizing” Moxds eecccccss
Description of Sort Field Parameters Required to

Sort by Document,Code ..veceececccsssscsccsssssccsccncss
Description of Parameters Card For Program DOCSUR .eceee
Description of Document Surrogate File, SURROG cccecccee
General Flowchart of Program DOCSUR ceececcecocecccecscs
Summary of the Semi-Automatic Indexing Files .cceececces
General Flowchart of Semi-Automatic Indexing Routines oe
StopList Used in Indexing ccccececoccoscccccccccoccccecse
General System Flowchart .cscececccececsccssccccossssces
Tree Formed in Classification Process .cccecccececccsces
Tree Structure with Canonical Node FNumber Numbering
Results of Example After lst Partition .seecececcceccscs
Tree Structure FOr EXample .cccocecscecccccsccccccscocce
Output Report For EXsmple ..ecesecccecsesssscccccccccscs
Example of Input FALE ceveoccccrccsovocacscrsosassossnse
Example of Balanced Tree Simulation s.ecececcccccccccces
CIASFY Summary Output RePOrt .eececsccscccccscocccscacces
Classification Tree .ceseececccccscccccssccoccccccrcscecns
Paths in Classification Tree ccccovecccscceccoccccceccee
Intersection to Form Final Classification Tree ...ccsc0.
Browsing in Tree .cccececscocccececccsccssscaccssscccces

Node -To-Key Table For Emlc Y R Iy Yy y

KQY'TQ"NO“ Table For Emple 00000 c0000000000000 000000

PAGE

60
61

69
71
72
Th
81
8L
9k
134
137
138
146
148
151
158
160
167
179
181
183
191
200
208

L]

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

Steps in Classification cceecccesccccccccccccccccccosccsne
List of 14 documents to be Classified .ceccececcscscccacs
Final Cell Assigmments For Example .sscccecsccccccccsccce
Document Surrogete Flle ...cceeececccscccscccsccccccescne
Final Keyword Fi2e ..cecssceeccscscoccsscscscssccccccccsce
Document Node File ..ceevceesceccceccccccceccccecsccccens
Input Parameters tO CLASFY ..ceccccsccoccsscaccaccccecccs
CIASFY Control Tot8l8 sececcsscccsccssscccsccscrccccsccss
Classification Tree File cccccececcossscccccsccceccocesses
Input Parsmeters t0 TREE ..cccocecocec0cccccsccecccccccce
Alphabetic Key-Node File ..cccvcceccceccccocescaceccsncne
Node-t0-key DLiCtIiONBYY seeccecscccsccescccsccasccocsossansse
Input Parameters 0 NDTOKY .cscececcconccecocccccasccccccce
Key-to-Node DIctionary secccececscceccnccosscccccscocccesse
Input Parameters tO KYTOND sccccocccoccccccccccoceccccnse
Classified File .eccevcccscscacccecesccsccscsccsscscscscs
Input Parameters tO MRGCLY cccccoccccccccccccccocccocsecs

Classification Tree For Dats BaS€ .scescecessvccccscccscs

PAGE
133
145
149
156
162
6L
169
175
186
187
195
197
198
20k
206
211
21k
238

3.15

3.16
| 3.17
3.18
3.19
3.20

Tree From Data Base Classification ..eececececcccccceesce
Data Base Output Report From CLASFY .cccecccecccsscessoe
Data Base Control Totals From TREE .eceeceecccsccecscccs
Data Base Node-to-Key Table cceseccccoccccscsaccssscasce
Data Base Key-to-Node TBDle .ccccececcccscccscscccscssce

Example of Bocument in Data Ba®e .ceesececcccecsccsosccse

PAGE

219
239
253
263
273

L

1.

10.

BIBLIOGRAPHY

Borko, H., "The Conceptual Foundations of Information Systems,"
Systems Development Corporation, Report No. SP-2057:1-37
(May 6, 1965).

Lefkovitz, D., File Structures for On-Line Systems (Spartan
Books, March 1969).

Litofsky, B., "Utility of Automatic Classification Systems for
Information Storage and Retrieval," Ph.D. Dissertation,
The Moore School of Electrical Engimeering, University of
Pennsylvania (May 1969).

Price, D. J. de S., Science Since Babylon (New Haven, Yale
University Press, 1961), page 97.

Price, D. J. de S., "Nations can Publish or Perish,"” Science
and Technology (Oct. 1967): 84-99.

Prywes, N. S., "Browsing in an Automated Library Through Remote
Access," Computer Augmentation of Human Reasoning (June 1964)
pp. 105-130.

Prywes, N. S., '"On-Line Information Storage and Retrieval,"
AGARD Symp. on Storage and Retrieval of Information (June 18-
21, 1968): 1-18.

Prywes, N. S., "Structure and Organization of Very Large Data
Bases,' Proc. Symp. on Critical Factors in Data Management,
UCLA (March 1968).

Salton, G., The Smart Retrieval System, Experiments in Automatic
Document Processing (Prentice-Hall, Inc., 1971), pp. 143-180.

Thompson, D. A., Bennigson, L., and Whitman, D., "A Proposed
Structure for Displayed Information to Minimize Search Time
Through a Data Base," Ametican Docugentation (Jan. 1968):
80~-84.

-1-
CEAYTER 1

1.1 Purpoee of This- System

It has heen estimated tRat 907 of all jeurnals Have been
published in the last 50 years; we are in the-midst of an
"information explosfon." There are abieut 350,000 scientific papers
published yearly and we are rapidly appreoaching 100,000 journals
per year [4, 5]

In 1830, wﬁenhtﬁere were only 300 journals published, the
solutfon to keeping up with the fncreasing mumber of papers was the
publication of the first afistract journal. Now we have reached a
point where an abstract of abstracts will not come close to solving
the "information explosion' problem.

Some method of collecting, organizing and ultimately selectively
retrieving data from any collection of information is needed. Any
person involved in work wiifch must utilize the vast amount of
literature published on some subject, is faced with the mounting
problem of keeping up with the large number of papers and journals
published.

This paper presents a system which used by itself can be an aid
to any user who has a collection of data and needs some method to
organize it so that it can be used more effectively.

Any collection of data, no matker what the gize, can be thought
of as a "library." The texsm litrary, net emly zefers to collections
of journals and books, Hut also to a varlety ef other types of
information such as indPyidual sclentific faets, a collection of law

cases, or In the example of Chapters Two and Three, thie texts of

2=

foreign news broadcasts. Any '"library'" can be thought of as

' where a "document" is any

consisting of a set of "documents,'
unit of information.

Any set of documents can be input to this system, which will
semi-automatically extract terms (descriptors) from each "document,"
classify the documents into categories on the basis of these
descriptors, arrange the classified documents into cells, (the contents
of each cell containing documents that are most alike) and produce a
set of classification dictionaries which aid in browsing through the
data base and also ald in retrieving pertinent documents from the
data base.

Once the documents have been indexed and classified by this
system, the contents of each classification cell (or category) can be
placed onto an easily accessible media (i.e. the contents of each cell
can be listed on a line printer, stored on computer disk or placed
onto microfilm). Once pointed toward a particular page in the listing,
area of the disk or section of microfilm, by the classification
dictionaries, the user could browse through the documents in that
category to find pertinent documents. This browsing and retrieval
can be either manual if the storage media is microfilm or printouts,
or more importantly it can be automatic if this data is stored on a
disk and used in conjunction with an automatic retrieval system.

The experimental data base used in the implementation of this
system was put on microfilm along with its associated dictionaries in

order to facilitate browsing and retrieval.

«3-

The method of this system can be logically extended to the more
far reaching goal of completely automating the library as we know it.
Prywes points out [7] that the indexing and cataloging functions are
the major bottlenecks in most large libraries: '"In any one of the
large libraries or information centers there are thousands of mono-
graphs and serials that are waiting to be catalogued and indexed.
These often lay unused because of the dearth of competent catalogues
and indexes, especially those expert in particular subjects and
languages."

In order to break this bottleneck, the indexing and cataloging
of documents must be automated. The computer can be used in pro-~
cessing natural language text for indexing, and automatic classifi-
cation can be performed for cataloging. The current state of the
art in data management and information storage and retrieval by
computer, along with the automation of the indexing and cataloging
functions, can effectively eliminate the bottleneck and eventually lead
to the all-automatic processing of large libraries and data bases. The
routines developed in this system could function as one of the many
subroutines needed to obtain this goal. Much more research is needed in
the area of text processing to develop further the procedure begun here.
1.2 Advantages of Automatic Classification

This paper deals primarily with the implementation of an automatic
classification algorithm which can be used to perform the cataloging
function in a "library." A document classification algorithm represents
a scheme for placing documents on shelves, in microfilms, in
bibliographic publications, or in our case, into the computer. The

goal of any document classification is to group "like" documents

-
together into categories, wheye “likeness" fs defined Ly the

respectiye classification algorithy used.

Before a document cellectipn can Be classiiied;hﬁbmeyer, it must
be indexed. The pugpose of the fndexing functien s to obtain a
number of descriptors which can act as a surrogate for each document.
As-was mentfoned in the previous section, ft is the classification and
indexing functions that are the major bottlenecks in most large
libraries and must be automated in order to realize all-automatic
library processing.

In a conventional likrary, documents on a common subject are
grouped on the same or adjacent shelves. On the other hand, an
automatic classification algorithm will place the document surrogates
created by the indexing function into convenient units of the computer's
memory such as disk cylinders or magnetic strips. Each of these units
of memory will contain only "like'" documents and will be called cells.

In the realm of automatic classification one can identify two
levels of automation. The first level is the placement of documents
into a priori categories. That is, the categories and sub-categories
to contain '"like" documents are decided upon before the documents are
actually classified.

The other level of classification is the use of automated

techniques to derive the classification categories a posteriori.

In other worda, documents are f{rst placed inte cells, grouping '"like"
documents together in the same cell. (VLikeness" may be deffned by the
number of descriptors or Reywerds common te two document surrogates.)

After every document has heen assigned to a cell, the classification

-5
categories aye defined precisely hy the contentg ¢f each cell. Ome

can see that an a prigri clagsaification regufwes the documents to he
partitioned on the basfs of sope prewdefined or "natural" divisions
of knowledge; whereas, the a posterfori techinique actually optimizes
the classification categeries with respect to the documents existing
in the collection.

Litofsky [3] compares Hoth levels of classiffcation techniques

and lists the following major advantages of an automatic, a posteriori,

heirarchical classiffcatien:

1. Directory 8ize Reduction. The inverted file directory can
be reduced by more than an order of magnitude. This can be
accomplished by forming an inverted file directory on the
classification cells, rather than on the individual documents.

2. Reduction in Memory Accesses. '"Like" documents are grouped
into cells which are segments of mass storage (tracks, cylinders,
magnetic strips) that do not require more than one physical access
motion. Since the transmission time for an entire cell is
usually much smaller than the average access motion time, it
costs little extra iIn time to retrieve all surrogates within a
cell than it would to retrleve a single surrogate. The document
gurrogates in a gfven cell are, by definition, "alike"; there-
fore, there i3 a high probability that multiple retrievals for a
given query would appear in the same cell. This reduces the
number of cells accessed per query and hence the total number of
memory accesses required.

3. Flexibility. With an a posteriori classification, the
categories are decided upon after all documents have been
clasgsified. The resulting classification is therefore specifi-
cally tailored to the individual user's document collection
rather than requiring the document to fit into a priori
categories. Coupled with the automatic nature of the classifi-
cation process, this leads to a large degree of flexihility and
ahility to maintain up-to-date classification schedules.

4. Browsahility. The ability to hrowse through parts of a
collection should he an essential pertfon of any library,
especfally an all-autematfc library. In "The Conceptual
Foundations of Infermaten Systems," Borko [1] notes: "The

user searches for {tems that are Interesting, original, or
stimulating. No one can find these for Afm; Re must Be able to

-6-

browse through the data himself. 1In a library, he
wanders among the shelves picking up documents that
strike his fancy. An automated information system must
provide similar capabilities."

Effective browsing demands a heirarchical classifi-
cation system in order to enable one to start with broad
categories and work towards specific., In a posteriori
classification system the hierarchy is formed by grouping
"like" documents into cells, "like" cells into groups of
cells, etc., until all documents are in one large group:
the entire collection itself. The hierarchy of descriptors
is formed from the bottom (cell) to the top (entire
collection) of the hierarchy. The node names in each level
of the hierarchyare generated automatically and consist of
the set of descriptors which appear in all of the nodes
directly beneath the node in question. The resulting set
of descriptors can be considered an "abstract" [6] of the
knowledge contained beneath that node in the tree (thinking
of the hierarchy as an inverted tree). Classification
schedules are required in order to be able to make use of
a hierarchically classified document collection. These
schedules consist of what shall be called a "node-to-key'
table and a 'key~to-node'" table. The node-to-key table is
analogous to the Dewey decimal classification schedule
where '"node'" 621.3 points to the "key" Electrical Engineering.
The key-to-node table performs the inverse function, that
of producing node numbers corresponding to given keywords
or descriptors.

1.3 Implementation of an Automatic Classification Algorithm

This paper describes the implementation of an automatic classifi-
cation algorithm. This algorithm, which was conceived by Lefkovitz [2]

is of the a posteriori type and produces a hierarchical classification

suitable for efficient browsing.

The classification algorithm is first applied to the entire document
collection (i.e., the top level of the hierarchy) and results in the
partitioning of the collection into groups of "like" documents. These
groups, each of which will contain many documents, constitute the next

level of the hierarchy. In order to further develop the hierarchy, the

algorithm is then re-applied to each one of the groups in turn. The

-7-
process will terminate when all groups meet a cell size criteria.
One can see that this partitioning and re-partitioning of the
collection will produce a tree structure with the entire collection at
the top level and cells that meet the group size criteria at the bottom.

The classification algorithm requires that a surrogate be created
for each document. These surrogates must contain the descriptors
assigned to each document by an indexing function. In order to trans-
form each source document into a surrogate, a "semi''-automatic indexing
algorithm is also implemented.

The indexing algorithm is "semi'"-automatic in that it does not

§

make all of the decisions necessary to create a set of descriptors, and
thus a surrogate, for each source document. The user must interface
with the indexing routines and has final judgement as to the contents of
each surrogate. In this way, the semi-automatic indexing routines
function as a tool, aiding the user in the assignment of descriptors to
each document. While the indexing algorithm described in this paper will
produce a set of descriptors for each document, the reader should not
confuse this algorithm with the automatic indexing function required for
an all-automatic library. The indexing algorithm of this paper is
intended only as a preprocessor for the automatic classification routines
and is by no means fully automatic. An automatic indexing algorithm will
create descriptors for each document without any intervention by a user;
the indexing algorithm of this paper requires user intervention. The
user has routines available to him for changing, adding or deleting

descriptors of a document.

-8~

1.4 Note on the Computer Programs
The automatic classification and semi-automatic indexing

algorithms described in this paper are implemented in FORTRAN;

therefore, they are somewhat independent of the particular computer

being used. The following is a list of suggestions that a user
of these computer programs must be aware of:

1. The user's computer must have at least four tape or

one disk drive and 132k bytes of virtual memory (1 byte = 8 bits).

2. A sort package must be provided in order to sort several
of the intermediate files created.

3. The FORTRAN unit numbers of 5 and 6 are used as the card
input device and line printer respectively.

4. 1In order to run any of the programs, all the user need do

is define his input and output files and supply any required

input cards. Complete program and file descriptions are

given in the next two chapters.

The semi-automatic indexing routines are described in Chapter
Two. These programs accept the user's source documents as input,
assign a set of descriptors to each document, and create document
surrogates., Also output from the semi-automatic indexing programs
a listing of the unique words in the document collection.

Chapter Four describes the automatic classification routines.

These programs take the file of document surrogates created by the

semi-automatic indexing routines and classifies them according to

is

an a posteriori, hierarchical algorithm also described in the chapter.

Output from the classification is a file containing the document

surrogates grouped into the a posteriori categories generated by the

classification algorithm. The following two classification schedules

are also output from the automatic classification routines:

1. Node-to-Key Table. This listing displays the keywords
(descriptors) assigned to each node in the classification
hierarchy. (A node will be assigned many descriptors.)

2. Key-to-Node Table. This listing displays the node
numbers corresponding to each unique descriptor. (A
descriptor may appear at several different nodes.)

~10-
CHAPTER 2
SEMI-AUTOMATIC INDEXING

2.1 Purpose of Semi-Autometlic Indexing Routines

The purpose of the semi-automatic indexing routines is to trans-
form the original collection of documents into a collection of document
"surrogates" which will be input to the automatic classificatiem rou-
tines.

A document surrogate consists of a document number (used to identify
the document) and a set of integer codes corresponding to the descriptors
(keywords) assigned to each document. If the original document collec-
tion has already been indexed, each unique keyword will be assigned an
integer code by the semi-automatic indexing routines. If the original
document collection i1s not indexed, the semi-automatic indexing routines
will extract pertinent words from each document's text (and/or sbstract,
title) and assign them to the document as its descriptors. In elther
case, the keywords are finally replaced by unique code numbers and each
document ic assigned & document number. This set of codes (document num-

ber and keyword codes) constitutes a document surrogate.

2.2 Overview of the Semi-Automatic Indexing Routines

The following eight steps are required to assign a document surro-
gate to each document (each step will be covered in greater detail in the
following sections):

(1) Preparation of the documents for input and assigning each docu-
ment a mumber.

(2) Extraction of pertinent words from each document in the collec-

-11-

tion.

(3) Sorting (alphabetizing) of words within each document.

(4) Elimination of duplicate words within each document.

(5) Sorting (alphabetizing) of entire collection of extracted words.

(6) Elimination of duplicate words within the entire document col-
lection and assigning each unique word a code number. |

(7T) Modifying the set of unique words, i.e., making additioms,
deletions, and changes.

(8) Creation of the surrogate for each document, i.e., replacing
the unique words extracted from each document with the corresponding
code number.
Step (7) requires the user to manually examine the unique words in order
to determine what modifications, if any, must be made. This mamial exam-

ination is why the indexing process is termed "semi"-automatic.

2,3 Preparation of the Original Document €ollection for Input

The original document collection must be placed on a storage medium
(magnetic tape, disk, etc.) in a format acceptable to the semi-automatic
indexing routines. This format will be referred to as "Standard Input
Records" and the storage medium will be called the "Standard Input File."
Since all document collections are somewhat unique, it is the user's
responsibility to write the computer program required to transform his
document collection into Standard Input Records and place these records
onto the Standard Input File. 'This section, which assumes some know-
ledge of computer programming and file structures on the part of the
reader, will describe the Standard Input File, the Standard Input Re-

cords on this file, give necessary programming considerations, and

-12-

present & general flowchart of the required user written program.

2.3.1 Description of the Standard Input File

The contents of the Standard Input File are used to create the sur-
rogate for each document; therefore, the user must take care as to vwhat
information he places on this file. The documents in the user's origi-
nal collection mey consist of title, abstract, full text, keywords, or
any combination of these. If the document collection has already been
indexed (i.e., there exist keywords for each document in the collection),
then the user should be sure to place each document's keywords on the
Standard Input Flle. The user may choose to include more informationm,
for each document, than just its keywords; but if keywords exist, they
should be used. If the document collection has not been indexed, then
the document's full text, abstract,- title, or any cambination of these
mist be placed on the Standard Input File, and the semi-automatic index-
ing routines will extract pextinent words from \the information given and

assign them to the document as keywords.

2.3.2 Deecription of Standard Input Records

Once the user has determined what information is to be placed on
the Standard Input File, he must write a computer program to read the
given information for each document, block it into the Standard Input
Records, and write these records to the Standard Input File.

Each Standard Input Record is a collection of the following four
fields (groups) of information: "

(1) Information used by the computer's operating system.

(2) Length of the fourth field.

-13-

(3) Document number.

(4) Text - this is the information that the user had decilded to
place on the Standard Input File.
The meximum length of a Standard Input Record is 4096 bytes (1 byte =
1 character = 8 bits). If the information for any document cemnot fit
into one Standard Input Record, it may span as many records as required,
as long as the document numbers in each record spanned by a document
are the same. Figure 2.0 gives a complete description of a Standard

Input Record.

2.3.3 Programming Considerations

Figure 2.1 shows a general flowchart of the user written program '
that creates the Standard Input File. Input to this program is the in-
formetion that the user wishes to associate with each document (full
text, title, abstract, keywords, or some combination of these). This
information is blocked into Standard Input Record(s), and written to
the Standard Input File.

The flrst fleld in every Standard Input Record contalns information
used by the computer's operating system. (This is usually a length of
block and length of record value.) The user is not responsible for
generating this information in his program; it is usually prefixed to
each user generated record by the operating system before the record is
output. The user must be aware of the length of this operating system
generated field (the length will be referred to as 'S' bytes) in order
to insure that the total length of each Standard Input Record is not

greater than 4096 bytes.

PROGRAM

—fr[-

LENGTH
FIELD # (in bytes) VARIABLE FORMAT DESCRIPTI(N

1l 'g! —— e The user 1s not responsible for creating or
reading this field. It is prefixed to every
user generated record by the operating sys-
tem. Note: If this field is not prefixed
by 0.8, then 5«0 in the length computation
for field #.,

. I5 - Zoned - ; :

2 5 LEN SDecima.l The length of the fourth field.

3 6 - IDNUM I6D; ch oneJd A sequentially generated mumber used to iden-
tify each document.

. EBCDIC .
L Not zg;?g?n. ITEXT characters information that the user wishes to asso-
('A' format) clate with the document may be placed into

this field, which is refered to as the 'TEXT'

ield. (The user may place the documents
text, title, abstract, keywords, or any

ombination of these items into this field.)

Length of Record:
FIGURE 2.0

< 4096 Bytes

DESCRIPTION (F A STANDARD INFUT RRCORD

-17-
WRITE(ITSIF,1¢¢) LEN, IDNUM, (ITEXT(J) ,J=1,LEN)
1¢¢ FORMAT(I5,I6,2¢(2¢5A1))
Where ITSIF 1s the Standard Input File number.

field ﬁ varisble description
2 LEN the length of the fourth field
3 IDNUM the document number
L ITEXT an array containing the infor-

metion assoclated with the docu-
ment and has a maximm dimension
of 4085, (Each position of this
array will contain one character
On.lyo)

As 1llustrated in the flowchart in Figure 2.1, the user's program gener-
ates the last three fields of the Standard Input Record and the compu;
ter's operating system will prefix this information with the first field
before the record is written to the Standard Input File.

The following example will illustrate the reguired processing,
within the user's program, to generate Standard Input Record(s) for a
given document.

Assumptions:

(1) The user has a magnetic tape containing the text of each docu-
ment in his collection.

(2) The LO5th document is being processed and its length is 10,000
bytes (characters).

(3) The length of the field that the operating system prefixes to
every record, fleld number one of the Standerd Input Record, is 8 bytes
(i.e., S=8).

(4) The maximum length of the fourth field, text, of every Standard

Input Record is computed from the formula (L085-S) and is equal to LOTT

-18-

bytes.
The user's program will extract the first two LOT7 byte segments

from the,hosth document and generate two Standard Input Records of totel
length L4096 bytes (length of first field = 8 bytes, second fileld = 5
bytes, third field = 6 bytes, and fourth field = LOT7 bytes). The
remaining 1846 bytes of the 4OSth document will be placed into a third
Standard Input Record whose total length is 1865 bytes (length of first
fleld = 8 bytes, second = 5 bytes, third = 6 bytes, and fourth = 1846
bytes). Figure 2.2 shows the character and hexidecimal representations
of the second and third fields in each of the three generated Standard
Input Records. As can be seen from the hexidecimal representations ’
the user's program generates 5 and 6 byte values for length and docu-

ment number flelds.

2,4 Extraction of Pertinent Words from Each Document in the Collection
Once the user has plaeced his document collection on the Standard

Input File, each document must be analyzed in order to obtain pertinent

words which can be assigned to the document as keywords. Program

~ EXTWRD performs this task by scanning the records on the Standard Input

File, extracting "words" from the fourth field (Text field) of each

Standard Input Record, and saving the extracted "word" on an cutput

file if it is determined that the "word" is pertinent.

2.4,1 Input
Input to program EXIWRD is the Standard Input File and a set of

parameter cards. The user, through these parsmeter cards, defines the

T™e contents of the second and third fields in the
Standard Input Records generated for the

Record Representation Field #2 Field #3
Length = 5 Bytes length = 6 Bytes
1st Character LoT7 405
Hexidecimal LOFLFOFTFT LOLOLOFLFOFS
ond _Character LoTT 405
Hexidecimal LOFLFOF (F{ LOLOLOFEFOFS
3rd Character 1846 405
Hexidecimal LOFLFOFiTo LOLOBOFLFOF> |
Figure 2.2

405th document. -

_6-[-

-20-
meximum length of an extracted word (any word larger than the meximum
will be truncated), a stop list (common words which, if found within
a document, are ignored), and a set of word-delimiting characters
(characters which signal the end of a word such as the 'blank' char-
acter). Flgure 2.3 gives a complete description of the required para-

meter cards.

2.4.2 Output

Output from program EXTWRD consists of a listing of all parameter
cards read in, two statistics generated while pertinent words are being
extracted, and an output file containing the pertinent words extracted
from each document. The two statistics generated are the number of
records (one extracted pertinent word per record) on the output file
and the muber of extracted words eliminated because they were found to
be on the user's stop list. These two statistics can be used to rate
the user's stop list since, if a document's full text is being scanned,
about 1/4 of the total number of words extracted should be found on the
stop 1list and ignored. Each record on the output file, ﬁhich will be
referred to as the 'WORD/DOCUMENT-NUMBER file', consists of & word and
the corresponding document mumber of the Standard Input Record that
contained the word. Figure 2.4 gives a complete description of a

record on the WORD/DOCUMENT-NUMBER file.

2.4.3 Program Description
Program EXTWRD begins by first extracting "words" from each docu-
ment. The definition of an extracted "word" is a string of one or more

(non-word delimiting) characters from the Text field of a Standard

Card #

Columns Progranm

Variable

Format

Description

I

Meximum mmber of characters per word. (Right justified
in the field.) The recommended value is '20', but any
value less than or equal to 20 can be used. This value
must be consistant throughout all of the Semi-Automatic
Indexing routines.

11

This field is used to omit the reading and comparing of
extracted words to a stop list. The value of this field
must either be § or 1, If it is 1, then no stoplist is
read.

If the value of this field is @, then the next eard is
assumed to contein the length of the stoplist, and the
following cards the stoplist 1tself.

LNSTL

5

The mumber of words on the user defined stoplist.

(Right
justified in the field.)

(The fgext 'LNSTL'

cards conain the s

¥plist, one word per card.)

3I* 1-"MAXWL' | ISTOP EBCDID A word on the user defined stoplist left justified in the
Characters | field (i.e., starting in column one).
s - 1-'MAXWL' | ISTOP | EBCDID A word on the user defined stoplist, left justified in the
» characters | field.
(LNSTIA2)*| 1-'MAXWL' | ISTOP EBCDID Last word on the user defined stoplist, left justified in
characters | the field.
Figure 2.3 Description of Parameter Cards Needed for Program EXTWRD

-Ta -

Card # Columns Program |Format Description
Variable
LNSTI+3 1-5 LNDEL I5 Number of characters on word delimiter list. Right
Jjustified in the field.
LNSTL+4 1-'LNDEL" IDEL Al The word delimiting characters. These should include

characters such as * ') (> < and the 'blank', one char-
acter per column, starting with column one of this card.

* These cards are omitted only if the user punches & 'l' in column six (second field) of the first
parameter card.

Figure 2.3, continued

Description of Parameter Cards Needed for Prograsm EXTWRD

-aa-

Field # | Length(in Bytes) | Program Variable | Format Description
1 2¥MAXWL IWORD EBCDIC T™is is the normalized extracted perti-
characters nent word. The length of this field is
| twice the maximum number of characters
per word (MAXWL),which is read from the
first parameter card (The characters
of each word are stored one character
per two bytes, hence length=2%'MAXWL').
2 4 NDN Fixed This is the document number a&SOQiated
Point with the extracted word.
Binary
Length of Record: (2*MAXWI+4) bytes
Figure 2.4

Description of a Record on the WORD/DOEUMENT-NUMBER File

-ga-

-24-

Input Record that either fall between two word-delimiting characters

or between the beginning of the Text fileld and a word-~delimiting char-
acter. In order to avold the premature extraction of the first part

of a word that has been spllt between successive records on the Stan-
dard Input File, the string of characters between a delimiting charac-
ter and the end of the Text field 1s only considered to be a "word" if
the document number in the next Standard Input Record is different from
the current record's document mumber. The user defines his own list of
word-delimiting characters through the input parameter cards.

After each "word" has been extracted, program EXTWRD performs‘
several tests to determine if the extracted "word" 1s pertinent. If
the "word" cannot pass all of the tests, it is not pertinent and 1is
ignored; otherwise, it is written to the output file along with its
corresponding document number.

The first test, in deciding whether or not an extracted "word" is
pertinent, is to examine its length. The extracted "word" 1s ignored
if its length is less than three characters. If the word passes the
length test, its last character is examined. If this character is de-
termined to be a "special character," then the character is dropped
from the word and the next one is examined. (A "special character" is
defined to be any character other than the 26 alphabetics, 10 mmerics,
and the 'blank' character.) When all trailing "special characters"
have been truncated the length test is again performed. The word is
ignored if the truncation of trailing "special characters" has reduced
its length to fewer than three characters. The test for trailing

"special characters" is necessary since any "special character" not on

-25-
the user's word-delimiter list could appear as a tralling character and
ghould be truncated. For example, if the period (.) 1s not defined to
be & word-delimiter, then the last "word" extracted from every declara-
tive sentence will have a period as ite last character. Since some
"speclal characters" can logically appear in t}ze middle of a word? the
user 1s warned against placing all "special characters” on his word-
delimiter 1ist (which would avoid having tralling "special characters"
in extracted "words"). By doing so he would cause strings of charac-
ters, that would normally be extracted as a "word," to be split and/or
deleted. For example, by including the colon (:); hyphen (-), and
slash (/) as word-delimiters, the date '@8/@1/72', the time '9:15', and
the word 'co-operative' would be split and extracted as the following
seven "words": ‘'@8', 'glr, '72', '9', '15¢' ‘'co', and 'operative'. Of
those seven "words," only 'operative' would pass the length test. The
other six "words" would be eliminated, thus losing valid information
from the document. It is suggested that in order to avoid losing in-
formation in this manner, the user include on his word delimiter 1list
only those characters that usually surround and do not appear within
& word, e.g., " ') (<> and the 'blank' character.

After the length and trailing "special characger" tests, the ex-
tracted word is compared to the user defined stop list. This list
contains words that cannot be used as keywords since they have a very
high frequency of occurrence and would add little, if any, information
to a document. (An example of a stop list is given in Section 2.11,
Step 1.) If the extracted word is found to be on the stop 1list it is
ignored; otherwise, the extracted word is considered to be pertinent.

The stop list comparison test is optional and is controlled by the

-26-

user through the first input parameter card (field #2). If the user's
original document collection is indexed, he may choose to'place only
the document's index terme on the Standard Input Flle. In this case,
there 1s no need to perform the stop list test since words extracted
from the Text fleld of each Standard Input Record will only be valid
index terms and are all pertinent by definition. By punching a '1l' in
the sixth column of the first parameter card (see Figure 2.3), the user
will ceuse program EXTWRD to bypass the stop list test. It should be
noted that if the user decides to bypass the stop list test, he should
not include & stop list in the input parameter cards since program
EXTWRD will also bypass reading & stop list.

In order to reduce the total mmber of unique words extracted,
each word that passes all previously described tests (l.e., has been
determined to be pertinent) is first normalized before it is written
to the output file. The normalizing routine, which is a modified ver-
sion of one used by Litofsky (2), removes a mumber of different suf-
fixes. A flowchart of this program is given in Figure 2.5. Suffixes
deleted are: &, es, ed, ing, ings, ion, lons, ly, edly, ingly, plus a
doubled letter immediately follwed by ed or ing. In addition, ies,
ied and ily are replaced by the single letter y. It should be noted
that the above list merely indicates the suffixes that wmay be removed
under appropriate conditions. The user should coﬁm:lt the flow chart
(Figure 2.5) to determine the exact context in which a suffix will be
deleted. The normalizing routine will never reduce a word's length
below three characters.

After the extracted pertinent word has been normalized, it is

ND
LETTER
'EI

EXTER WITH

EXTRACTED
WORD
: REMOVE
e g BEFORE
N
ENDING
REMOVE ';'?
'LY T
: CHANGE .
REHDYE 1 '1' TO 0
'D) yr . \“
REMOVE N
'ING'
REMOVE
'ION'

FIGURE 2.5
SUFFIX DELETION ROUTINE

-28-
written to the WORD/DOCUMENT-NUMBER file along with its document pum-
ber (l.e., the document number from the Standard Input Record that
contained the word). Figure 2.6 presents a general flow chart of

program EXTWRD.

2.5 Sorting (Alphabetizing) of Words Within Each Document

At this point, the words in each document must be sorted in order
to eliminate multiple occurrences of words within any document. (A
sort routine is not included in the Semi-Automatlic Indexing Routines
since it is standard at most computer installations.) The WORD/
DOCUMENT-NUMBER file, which was output from program EXTWRD, should be
input to the user-provided sort routine. The document mumber must be
the major sort field in each record; the characters of each word should
be the minor fields. Pigure 2.7 summarizes the sort field parameters
that must also be input to the sort routine. »Output from this sort
will be the SCRTED-DOCUMENT-NUMBER/WORD file whose format must be iden-
tical to the WORD/DOCUMENT-NUMBER file.(see Figure 2.4).

2.6 Elimination of Duplicate Words Within Each Document
Once the words within each document have been sorted, multiple

occurrences of any word in a document are eliminated by program ELDID.

2.6.1 Input

Input to program ELDID is either the SCRTED-DOCUMENT-NUMBER/WORD
file or the SCRTED-DOCUMENT-NUMBER/WORD/FREQUENCY file (this file will
be described in a later section) and a parameter card.

READ
PARAMETER
CARDS

MORE
NO RECORDS ON
ﬁ o STANMBD
INPUT
FILE?

HAS DOES
tgazitZﬁi:e if LAST WORD ‘ DOC # JUST
last word in pre- NQ~ 1IN PREVIOUS DOC NQ -~ READ MATCH PRE-
vious doc is BEEN PROCESSED , VIOUS DOC #
? ?
ertinent
YES YES
MORE
RECORDS
ON STA YES .
INPUT FILE :
NO CALL EXTRCT
. TO EXTRACT WORDS
. FROM RECORD JUST

D

FIGURE 2.6
GENERAL FLOWCHART OF PROGRAM EXTWRD

-30~

SUBROUTINE

VALID ENTER WITH
EXIRACTED WORD

C EXIT

}___

WORD IS ROT
PERTINENT
IGNORE IT.

YES

FIGURE 2.6
~CONT INURD-

USER

YE

DECIDED TO COMPARE
WORD TO STOP LIST

S

REMOVE LAST
LETTER

CALL NGBMAL TO
DELETE ANY SUFFIXES
AND NORMALIZE WORD
(FIG. 2-5)

-31-

SUBROUTINE

EXTRCT ENTER WITH
RECORD FROM INPUT
FILE

ACTERS IN
FIELD #4 OF INPUT
RECORD

SAVE CHARACTER AS PART
OF CURRENT WORD BEING
EXTRACTED

CALL VALID TO
DETERMINE IF EX-

TRACTED SORD (SAVED
CHARACTERS) 1S
VALID

FIGURE 2.6
~CONTINUED-

Field Type* Length(Bytes) Description
1 FI,A L Major Field - Document Number
2 FI,A 2 first character of word
3 FI,A 2 second character of word
(MAXWL)** | FI,A 2 next to last character of word
(MAXWL)+1 | FI,A 2 last character of word

*FI denotes fixed point integer; A denotes ascending sequence

#¥MAXWL denotes the maximum mumber of characters per word

This was an input parameter to program EXTWRD (see Flgge 2.3).

Figure 2.7

Description of Sort Field Parameters

Required to Sort Words Within Each Document

-33-

The paremeter card contains three values: (1) the maximum number
of words allowed per document, (2) the meximum number of characters per
word, and (3) a parameter to determine which of the two possible input
files will be used. Figure 2.8 gives a complete description of the
parameter card and Figure 2.9 deécribe-s the two possible input files.

The maximum number of words allowed per document may be any value
from 1-250, but 1t 1s our suggestion that & value of 100 or less be
used. For any document with more words than thls maximm value, its

document number and asctual mumber of words will be printed.

2.6.2 output

output from program ELDID is the UNIQUE-WORD / .
DOCUMEN T-NUMBER /FREQUENCY file. Each record on this
file contains a unique word within a given document, the document's
number, and the word's frequency within the document. Figure 2.10
glves a description of this file. Also output is the list of documents
with more worde than the user defined maximum. Before the Classifica-
tion Routines can be run, the mumber of words in these documents must
be reduced to below this meximm. (Several utility programs will be
described in later sections that will aid the user in reducing the mm-
ber of words in these documents.) The total number of documents in the
collection, and the number of records on the output file are also

printed.

2.6.3 Program Description
Program ELDID performs the task of eliminating duplicate words

and producing a frequency distribution of the words in each document.

-3k

Column| Program
Variable

Format

Description

1-3 MAXKS

I3

12

Maximum number of words allowed per docu-
ment. For each document with more than the
maximum number of words, its document num-
ber and actual number of words are printed.
T™he value of this parameter may be from
1-250 and must be right justified in the
field. The recommended value is < 100.

Maximum mumber of characters per word,
right justified in the field. This number
mst be identical to the first field of
the first parameter card for progrem
EXTWRD (see Figure 2.3).

The value of this parameter must either
be a ¢ or 1.

If 1t is & @§: the input file is assumed
to be the SORTED-DOCUMENT-NUMBER/WORD
FREQUENCY file.

If it 1s & 1: the input file is assumed
to be the ..SORPED-DOCUMENT-NUMBER/WORD
file (see Figure 2.9 for a description of
these two files).

Figure 2.8

Description of Parameter Card for Program ELDID

Value of
Parameter Length |Program
IPRM File Name Field # | (Bytes) |Variable | Format Description
1) SORTED~ DOCUMENT-NUMBER / 1 2¥MAXWL | IWORD EBCDIC Word from a document
: WORD/FREQUENCY characters
2 L NDN Fixed Document number
Point
Binary
3 2 NFQ Fixed Number of occurrences of
Point the word within the
Binary document
Record Lengbh=2¥MAXWIA+6
1 SORTED-DOCUMENT- NUMBER/ 1 2*¥MAXWIL, | IWORD EBCDIC Word from & docum#nt
WORD characters
2 L NDN Fixed Document; -Number
Point
Binary
Record Length=2¥MAXWL+4
Figure 2.9

Description of the Two Possible Input Files to Program ELDID

Field # | Length(Bytes) |Program Variable | Format Description

1 2¥MAXWL, TIPWORD EBCDIC unique word in a document
characters
2 L IPREVD Fixed document number
Point
Binary
3 2 IWFQ Fixed Frequency of occurrence of the unique
Point word within the document
Binary

Record Length = 2%MAXWIA46

Figure 2.10

Description of UNIQUE-WORD/DOCUMENT-NUMBER/FREQUENCY File

37
This program begins by reading a word from the input file. If this

current word matches the previous word in the document, a frequency
counter is irCremented and another word is read. If the current word
does not match the previous word in the document, the previous word,
its document number, and frequency are written to the output file. The
number of words in each document is accumulated. If this accumulated
total is greater than the user-defined meximum, then the document's
number and the actual number of words in the document are printed.

Figure 2,11 presents a general flowchart of program ELDID.

2.7 Sorting of Entire Collection of Extracted Words

Once the duplicate words within each document have been eliminated,
the entire collection of words must be sorted. The UNIQUE-WORD/

DOCUMENT-NUMBER /FREQUENCY file contains unique words within

each document, but a word may appear in several documents; hence this
file should be input to the sort routine. The word in each record must
be the major sort field; the document number should be the minor field.
Output from the sort will be the SORTED-WORD/DOCUMENT-NUMBER/FREQUENCY
file whose format must be identical to the UNIQUE-WCRD/
DOCUMENT-NUMBER/FREQUENCY file (see Figure 2,10). As noted in Section
2.5, the user is responsible for providing a sort routine. Figure 2.12
sumearizes the sort field parameters required by the sort routine in

order to sort the entire collectlon of words.

2.8 Elimination of Duplicate Words Within the Entire Document
Collection and Assigning Each Unique Word a Code Number

After sorting the words on the UNIQUE-WORD /b

-38~ (\START ‘)

READ PARAMETER
CARD

READ
RECORD
FROM
INPUT FILE

i

INITIALIZE ALL
COUNTERS, SAVE WORD,

DOC #, (AND FREQUENCY)
\ | FROM RECORD JUST READ

MORE
RECORDS ON

\/

INPUT FILE

DOC # JUST
READ MATCH
PREVIOUS DOC #

INCREMENT THE

DOCUMENT

FREQUENCY OF THE
CURRENT WORD WITH-
IN THE CURRENT

PREVIOUS WORD
?

FIGURE 2.11
GENERAL FLOWCHART OF PROGRAM ELDID

-39~

NEW DOC BEING
PROCESSED

INCKREMENT THE FOLLOWING RY
ONE: A) # OF WORDS IN DOC.

B) # OF RECORDS ON THE OUTIUT
FILE C) # OF DOCUMENTS IN THE
COLLECT1ON

WRITE
THE PREVIOUS
WORD, ITS DOC.
NUMBERS, AND ITS
REQUENCY WITH-

PRINT DOCUMENT
NUMBER AND ACTUAL #
OF WORDS IN THE
PREVIOUS DOCUMENT

PREVIOUS
DOCUMENT CON-
TAIN TOO MANY
ORDS

INCREMENT THE NUM- RESET NUMBER OF WORDS
BER OF DOCUMENTS IN DOCUMENT TO ZERO.

WITI TOO0 MANY
WORDS BY ONE.

e —

NEW WORD, SAME SAVE NEW
DOC. BEING DOCUMENT NUM-
PROCESSED BER

INCREMENT THE FOLLOWING BY ONE3
A) # OF WORDS IN DOCUMENT
B) # OF RECORDS ON OUTPUT FILE

RITE
PREVIOUS

WORD, ITS DOC- RESET FREQUENCY OF
WORD WITHIN DOC.

COUNTER

FIGURE 2.11
-CONTINUED-

A
SAVE NEW WOKD ‘ : >

- =40~

NO MORE RECORDS
ON INPUT FILE

Y

INCREMENT THE FOLLOWING BY
ONE:
A) # OF WORDS IN DOCUMENT
B) # OF RECORDS ON OUTPUT
FILE

ITE
PREVIOUS
WORD, ITS DOC-
UMENT #, AND

ITS FREQUENCY

INCREMENT NUMBER
OF DOCUMENTS WITH
TOO MANY WORDS BY
ONE.

Y

PRINT THE FOLLOWING:

A) # OF RECORDS ON OUT-
PUT FILE

B) # OF DOCUMENTS WITH
TOO MANY WORDS

C) # OF DOCUMENTS IN
THE COLLECTION

FIGURE 2.11
-CONTINUED-

=41~

Field Length
Number Type* (Bytes) Description
1 FI,A 2 first character of word
2 FI,A 2 second character of word
3 FI,A 2 third character of word
(MAXWL)** | FI,A 2 last character of word
(MAXWL)+1 | FI,A L document number

*FI denotes fixed point integer; A denotes ascending sequence

*¥MAXWI, denotes the maximum number of characters per word.

was an input parameter to program ELDID (see Figure 2.8)

Figure 2.12

Description of Sort Field Parameters

Required to Sort the Entire Collection of Words

This

[

-L42-
DOCUMENT-NUMBER/FREQUENCY file, duplicate words within the entire docu-
ment collection are eliminated and each is assigned a code number.,
Program UNWRDS performs this task and produces a file containing only

unigque words.

2.8.1 Input

Input to program UNWRDS is the SORTED-WORD/DOCUMENT-NUMBER/
FREQUENCY file and a parameter 'card. The parameter card conteins two
fields: (1) A parameter to determine which output option to use (see
Section 2.8.2), and (2) the maximum number of characters per word.
Figure 2.13 gives a complete description of this parameter card. (The
input file is identical in structure to the UNIQUE-WORD/DOCUMENT-

NUMBER/FREQUENCY file which is described in Figure 2,10.)

2.8.2 Output

The user can choose one of two output options for program UNWRDS.
The first field on the input parameter card ls used to determine which
option is to be taken. |

If the value of this fleld is zero, then duplicate words on the
input file are eliminated and the UNIQUE-WORD/NUMBER-CF-DOCUMENTS/
TOTAL-FREQUENCY file is produced. Each record on thls file conslsts of
a unique word, the mmber of documents that contained the word, and the
total frequency with which the word occurred.

If the value of the input parameter is one, then two output files
are generated. The first, the UNIQUE-WORD/CODE-NUMBER, contains one
record for each unique word. Each record on this file contains &

unique-word and the integer code mumber assigned to it. The second
L

-43-

Column

Program Varlable

Format

Description

IPRM

I1

12

Parameter used to determin#
the output option.

If zero, the UNIQUE-WORD/|
NUMBER-CF - DOCUMENTS / TOTAL-
FREQUENCY file is generated

If one, the UNIQUE-WORD/
CODE and SORTED-WORD/DOCU-
MENT-NUMBER/CODE files are
generated (see Figure 2.14
for a complete description
of these files).

Maximum number of charac-
ters per word, right justi-
fied in the field. This
number must be identicdl to
the second field of the
parameter card for program
ELDID (see Figure 2.8).

-

Figure 2.13

Description of Parameter Card for Program UNWRDS

4l
file, the SORTED-WORD/DOCUMENT-NUMBER/CODE file, is identical in struc-
ture to the input file (i.e., one record for each unique word within a
document) except that the word's frequency has been replaced by its
unique code rnumber. Figure 2.14 gives a complete description of the
three possible files. The uses of each file willl be discussed in

later sectlons.

2.8.3 Program Description

Program UNWRDS produces the set of unique words within the doeu-
ment collection and assigns s unique code to each. The program com;:}aa.res
adjacent words on the input file. The total frequency of occurrence
and mumber of documents containing the word are accumlated as long as
the current and previous word match. Whenever adjacent words do not
match, a new code mumber is assigned to the current word and the total
frequency and number of documents counters are both reset.

If option zero is specified, then whenever adjacent words do not
match, the previous word, its total frequency, and the mmmber of docu-
ments containing the word are output to the UNIQUE-WORD/NUMBER- GF-
DOCUMENTS/TOTAL-FREQUENCY file. Since program FLDID eliminated dupli-
cate words within documents, there is a one-to-one correspondence be-
tween the frequency with which a word occurs on the input file and the
mumber of documents that contain the word. The total frequency is
computed by summing the frequency of the word in each document that
contained it.

If option one is specified, then every record on the input file is
output to the SORTED-WORD/DOCUMENT-NUMBER/CODE file after the frequency

field has been replaced by the word's unique code rumber. Whenever

Velue of Field | Length |Progran
Parameter File Name Number| (Bytes) |Variable | Format Description
TPRM
¢ -UNIQUE-WORD/NUMBER- OF-
DOCUMENTS,/ TOTAL-FREQUENCY] 1 2*MAXWL IWORD | EBCDIC unique word
characters
2 n NDOC Fixed mmber of documents
Point that contained the word
Binary
3 4 ITFQ Fixed total frequency of the
Point word
Record Length=2*MAXWIA-8 Binary
1 “UNIQUE-WORD/CODE 1 2*MAXWL | IWORD | EBCDIC unique word
characters
2 2 NREC Fixed Code mumber assigned to
Point the word
Record Length=2¥MAXWIA2 Binary
1 SORTED-WQRD/DOCUMENT- 1 2*MAXVL IWORD | EBCDIC word (not necessarily
NUMBER/CODE unique)
2 L NDN Fixed Document Number
Point
Binary
3 2 KODE Fixed code assigned to the
Point word (each unigue word is
Record Length=2%MAXWIA+6 Binary assigned a unigue m’de)‘_j
Figure 2.14

Possible Output Files from Program UNWRDS

_g.].z-

~46-
adjacent words on the input file do not match, the previocus word and
its corresponding code .number are output to the UNIQUE-WORD/CODE file.

Figure 2.15 presents a general flowchart of program UNWRDS.

2.9 Modifying the Set of Unique Words

Once the set of unique words has been created (output option
zero), but before each word is given a unigue code (output option one),
the user should examine the unique words in order to make any desired
changes, additions, or deletions. Odtput option zero of program UNWRDS
will produce the set of unique words without assigning code numbers to
each one. The unique words can then be examined and modified before
finally running program UNWRDS with output option one, which will
assign a code number to each word. This mamial examination of the words
by the user is why the indexing process is "semi"-automatic.

There are several reasons for examining and modifying the set of
unique words before assigning code numbers:

A. There may be misspelled words that should be changed.

B. There may be words within a document that do not convey any
significant information and should therefore bé deleteé.

C. The suffix deletion routine, within the program that extracts
pertinent words from the documents (program EXTWRD), does not
drop all possible suffixes; therefore, the same root word may
occur with slightly different endings. All variations of the
same root should be changed to the proper form of the word.

D. All documents with more words than the user allows must be
examined. The user must either increase the maximum number

of words per document (up to, but no larger than, 250), or

~47-

READ PARAMETE
CARD

READ
RECORD
FROM INPUT
FILE

NREC « 0
KODE « 0

SET # OF RECORDS
ON SORTED-WORD/
DOC #/CODE FILE TO
ZERO

SAVE WORD FROM
RECORD JUST READ:
NDOC « 1

y

TOTAL FREQUENCY +
FREQUENCY OF WORD
JUST READ

INCREMENT # OF
RECORDS ON THE SORTH
ED-WORD/DOC #/CODE
IFILE BY ONE

FIGURE 2.15
GENERAL FLOWCHART OF PROGRAM UNWRDS

WORD JUST
READ MATCH

PREVIOUS WORD
? .

INCREMENT TOTAL
FREQUENCY BY FREQUENCY
OF WORD JUST READ.

NPOC +
NDOC

+1

0 IPRM
?

1

INCREMENT # OF RECORDE
ON THE SORTED-WORD/BOC,
#/CODE FILE BY ONE

CURRENT
WORD, ITS DOC
NUMBER, AND KODE
TO THE SORTED-
ORD/BOC. #/C0DR
FILE

FIGURE 2.15
~CONTINUED-

~49~

NO MORE RECORDS
ON INPUT FILE

|

NREC +

WRITE URITE
PREVIOUS PREVIOUS
WORD AND NREC WORD, NDOC,

TO THE UNIQUE-

PRINT THE NUMBER PRINT THE NUMBER OF

OF RECORDS ON THE RECORDS ON THE UNIQUE-

UNIQUE~WORD/CODE WORD/# OF DOCUMENTS/

FILE. i.e. NREC TOTAL~FREQUENCY FILE.
i.e. BREC

Kn.____,—»ﬂ”"ﬂﬂﬂ“-d

PRINT THE NUMBER
OF RECORDS ON THE
SORTED-WORD/DOC. #
/CODE FILE

D, *

FIGURE 2.15
-~CONTINUED~

WORD JUST
READ MATCH

PREVIOUS WORD
?

INCREMENT TOTAL

FREQUENCY BY FREQUENCY
OF WORD JUST READ.

NBOC «+
NDOC

e

1

INCREMENT # OF RECORDS
ON THE SORTED-WORD/BOC|
#/CODE FILE BY ONE

NT
WORD, ITS DOC
NUMBER, AND KODE
TO THE SORTED-
ORB/BOC . #/CODE,
FILE

FIGURE 2.15
~CONTINUED-

WRITE
PREVIOUS
WORD AND NREC

TO THE UNIQUE-

~49-

NO MORE RECORDS
ON INPUT FILE

PRINT THE NUMBER
OF RECORDS ON THE
UNIQUE~WORD/CODE
FILE. i.e. NREC

PRINT THE NUMBER
OF RECORDS ON THE
SORTED-WORD/DOC. #
/CODE FILE

|

NREC «

PRINT THE NUMBER OF
RECORDS ON THE UNIQUE-
WORD/# OF DOCUMENTS/
TOTAL-FREQUENCY FILE.
i.e. BRRC

_.____..——-"‘/’J

(s)

FIGURE 2.15
~CONT INUED-

WORD JUST
READ MATCH

PREVIOUS WORD
?

INCREMENT TOTAL
FREQUENCY BY FREQUENCY
OF WORD JUST READ.

NDOC «
NDOC
_+1

1

INCREMENT # OF RECORDE
ON THE SORTED-WORD/BOC
#/CODE FILE BY ONE

CURRENT
WORD, ITS DOC
NUMBER, AND KO
TO THE SORTED-
RB/BOC . #/CO!
FILE

FIGUBE 2.15
~CONTINUED-

WRITE
PREVIOUS
WORD AND NREC

~49-

NO MORE RECORDS
ON INPUT FILE

NREC +
NREC

TO THE UNIQUE-

PRINT THE NUMBER
OF RECORDS ON THE
UNIQUE-WORD/CODE
FILE. i.e. NREC

PRINT THE NUMBER
OF RECORDS ON THE
SORTED-WORD/DOC. #
/CODE FILE

PRINT THE NUMBER OF
RECORDS ON THE WNIQUE-
WORD/# OF DOCUMENTS/
TOTAL~FREQUENCY FILE.
i.e. RREC

k~.____._——r""———__‘

~(ws)~

FIGURE 2.15
~CONTINUED~

-40—

WORD JUST
READ MATCH

PREVIOUS WORD
?

INCREMENT TOTAL
FREQUENCY BY FREQUENCY
OF WORD JUST READ.

NBOC +
NDOC
+1

1

INCREMENT # OF RECORDE
ON THE SORTED-WORD/BOC
#/CODE FILE BY ONE

CURRENT
WORD, ITS DOC

FIGURE 2.15
~CONTINUED-

-49-

NO MORE RECORDS
ON INPUT FILE

NREC <«
NREC

WRITE
PREVIOUS
WORD AND NREC

TO THE UNIQUE-

PRINT THE NUMBER PRINT THE NUMBER OF

OF RECORDS ON THE RECORDS ON THE UNIQUE-

UNIQUE-WORD/CODE WORD/# OF DOCUMENTS/

FILE. i.e. NREC TOTAL~FREQUENCY FILE.
i.e. NRRC

\~.___,_,»ﬂf"""'.—d

PRINT THE NUMBER
OF RECORDS ON THE
SORTED-WORD/DOC. #
/CODE FILE

(- !

FIGURE 2.15
-CONT INUED-

-50-
delete certain words in the documents that are too large.
The following three utility programs may be used to aid the user
in printing the set of unique words, deciding which modifications
should be made, and actually making the additions, deletions, and

changes to the set of unique words.

2.9.1 Printing the Variocus Files That Have Been Generated
Program PRT¥FIL may be used to print any one of the following

files:

1. The UNIQUE-WORD/DOCUMENT-NUMBER/FREQUENCY-WITHIN-DOCUMENT

file

2, The SCRTED-WORD/DOCUMENT-NUMBER/FREQUENCY file

3. The UNIQUE-WORD/NUMBER-OF-DOCUMENTS/TOTAI~-FREQUENCY file

L, Te UNIQUE-WORD/CODE file.
Input to the program is the file to be printed, an option number to
tell program PRTFIL which file to expect, and the mumber of records to
be printed. Figure 2.16 describes the required input card for this
program and Figure 2.17 shows the required option number for each of
the above four files and describes the corresponding listing that is

generated.

2.9.2 Listing All Variations of the Same Root Word

Progrem ADJCMP scans the sorted words and displays adjacent words
that are spelled 'similarly.' This program can be used to locate
variations of the same root since all variations will be in adjacent
positions on the sorted word list.

Input to program ADJCMP is a file containing sorted words and a

_60-

Column Format Description
1-6 16 Docunent Number right Justified
7_12 I6 " n
13-18 16 " "
19-24 16 " "
25-30 16 " "
31_36 I6 " n
37-k42 16 " "
h3_)_,_8 I6 " 1t
L9-54 16 " "
55_60 I6] n
61-66 16 " "
67_.-{2 I6 n 1"
73-78 I6 n "
79 - Nothing should be punched in this column.
A non-blank character should be punched in
80 column 80 if there are more document-mmber
cards. The last document-mmber card of a
set must have & blank in column 80.

Figure atal
Description of the Document-Number Card

-61-

Sorting Sorting
Sequence Character Sequence Character
1 A 27 'blank'
2 B 28 ¢
3 c 29 .
L D 30 <
5 E 31 (
6 F 32 +
T G 33 I
8 H 3k &
9 I 35 !
10 J 36 $
11 K 37 *
12 L 38)
13 M 39 H
14 N 4o —
15 0 b1 -
16 P Lo /
17 Q L3 ’
18 R 4y %
19 S ks
20 T 46 >
21 U L7 ?
22 \'s 48 :
23 W Lo #
2k X 50 @
25 Y 51 t
26 Z 52 =
5 3 n
Figure 2.22

Sorting Sequence to Be Used in "Alphabetizing'" Words

-62-
4) An FRASE commend with a non-blank column 80. (ERASE must be

performed on all occurrences of the word(s).) Care should be taken in
using the ERASE command. If the second word in the operand field is
incorrect, all words on the input file fram the first word in the
operand field until the incorrect second word will be deleted. If the
second word is not on the input file, all words from the first until
the position where the misspelled word would occur in the input file
would be deleted. A misspelled second word can therefore cause a sig-
nificant loss of data.

5) An ADD command with a blank column 80. (ADD can only be per-
formed on specific documents.)

6) Trying to add a word that is already in the file.

7) T™he document mumbers are not in ascending order on the
document-mmber card(s).

8) Trying to DELETE, CHANGE, or ERASE words that are not on the
input file.

If any of the above conditions occur, an appropriate error message
will be printed. These messages are self explanatory and the user
should change the card(s) that caused the error and rerun the program.
Before the program can be restarted, however, the MODIFIED-SORTED-WORD/
DOCUMENT-NUMBER /FREQUENCY file must be sorbted on the word and document
number. (Section 2.7 describes the required sort.)

2.9.4 Effectively Using the Utilities to Make Modifications to the
Unigue Words
As stated previously, before assigning code numbers to the set of

unique words, the user will probably went to examine and.ﬁodify these

-63-

words. The utility progrems, previously described, can be used as
"tools' to not only help the user decide what modifications should be
made, but also to physically modify the SORTED-WORD/DOCUMENT-NUMBER/
FREQUENCY file.

The user has previously input to program EXTWRD the maximum num-
ber of pertinent words allowed per document, and the program produced
a list of the documents that were too large. This list contains the
document number and the total number of words in each document contain-
ing more words than the user allows.

Program ADJCMP can be run, either before or after program UNWRDS,
in order to produce a list of similar words. I:f.‘- the user waits until
after running program UNWRDS to execute the adjacent word comparison
routine, ADJCMP, then he can use the UNIQUE-WORD/NUMRBRR-OF-DOCUMENTS/
TOTAL-FREQUENCY file as input. In this case, the number of documents
containing each word and each word's total frequency will be printed
along with the groups of similar words. If the user wishes to save
time by running the adjacent word compare routine before he runs UNWRDS,
he must use the SORTED-WORD/DOCUMENT-NUMBER/FREQUENCY file as input,
and the groups of similar words will be printed without any associated
statistics., The advantage of obtaining the statistics (number of doc-
uments containing the word and total frequency) along with the groups
of similar words 1is that they may be used to determine a.word's rela-
tive importance.

The user also has the option of listing several files that have
been created. These listings can be used to help the user decide what
modifications should be made. Using options 3, 2, and 2 of program

PRIFIL, the user can list the UNIQUE-WORD/NUMBER-OF-DOCUMENTS/TOTAL-

-64-

FREQUENCY, SORTED-WORD/DOCUMENT-NUMBER: FREQUENCY, and UNIQUE-WORD/
DOCUMENT-NUMBER/FREQUENCY files respectively. The UNIQUE-WORD/NUMBER-
OF-DOCUMENTS/ TOTAL-FREQUENCY file can also be sorted by either the
number of documents contalning the word or the total frequency fields
and listed with option 3 of program PRIFIL. Assuming that the user has
obtained these four listings, he should consider the following pro-
cedures in deciding what modifications should be made to the SORTED-
WORD/DOCUMENT-NUMBER/FREQUENCY file:

1) The listing of the UNIQUE-WORDS/NUMBER-CF-DOCUMENTS/TOTAI~
FREQUENCY file should be examined thoroughly. This list can be used
to easily locate groups of words, with no apparent information content,
that can be ERASED or DEILETED. Misspelled words must also be loca.ted.
and CHANGED to their correct spelling. Since no document numbers
appear on this listing, any modifications made in conjunction with this
listing must be made to all occurrences of the word (i.e., column 80 on
the modification command must be blank).

2) If the UNIQUE-WORDS/NUMBER-OF-DOCUMENTS/TOTAL~FREBQUENCY file is
sorted by either the mumber of documents containing the word or the
total frequency fields and listed by option mmber 3 of progrem PRTFIL,
then the user may utilize this listing to determine the relative im-
portance of certain words. Very high and very low fregquency words
should be thoroughly exemined since they have a significant effect
upon the resulting classification. The user should DELETE any‘ nonsense
words and CHANGE all misspellings. Again, any modifications made by
using this listing must be to all occurrences of the word.‘

3) The list of similar words can be used to determine CHANGES that

mist be made. All variations of the same root word should be CHANGED

-65-

to the proper spelling of the root. In order to insure consistancy,
all CHANGES should be made to every occurrence of the word.

4) In any of the above three procedures, if the user needs to
know what documents mentioned a particular word, then he should con-
sult the listing of the SORTED-WORDS/DOCUMENT-NUMBER/FREQUENCY file.
This listing shows the mumbers of all documents that mention each word
and the user can include the document rumbers he wishes to modify on
the document-number card(s) immediately following the corresponding
modification command card.

5) The listings of the document mumbers that contain more words
than the user allows (output from program ELDID) and the UNIQUE-WORD/
DOCﬁMENTLNUMBER/FREQUENCY file can be used to reduce the mumber of
words in all documents that are too large. The user can examine the
words in each document that is too large and DELETE or CHANGE words in
order to reduce the total number of wards in each document within the
user's specification. If it is impossible t6 reduce the size of all

documents to within the meximum, then the maximum must be redefined and
given a higher value. (Note: the maximum cannot be set greater than
25Q)

The user is not restricted to the procedures and utilities des-
cribed in this section. These are 'tools' 1o be used at his discretion.
The user has the option of writing his own utility progrems and design-
ing procedures that will aid his decision as to what modifications must
be made to the SORTED-WORD/DOCUMENT-NUMBER/FREQUENCY file.

By vwhatever means he chooses, the user must decide upon the needed
modifications and punch the corresponding modification command cards.

These cards must be arranged to correspond to the order in which the

-66-
words to be modified appear on the listing of the UNIQUE-WORD/NUMBER-
OF -DOCUMENTS/TOTAL~FREQUENCY file.

After running program UTIIXKS with the newly created modification
cards as input, the user must "re-cyle" through several steps before
he can assign code mumbers to each unique word and finally create
surrogates for each document. "Re-cycling" is necessary becsuse some
of the modifications may have created duplicate words within some doc-
uments and these must be eliminated. The following steps must be tsken
in order to "re-cycle":

1) Sort the ME@DIFIED-SCRTED-WCGRD/DOCUMENT-NUMEER/FREQUENCY file,
which is output from program UTIIKS, by document mumber and word. See
Section 2.5 for a description of the required sort. (The sort of Sec-
tion 2.5 can be used even though the records on the previocus input file
to the sort were two bYytes shorter.)

2) Run program ELDID, specifying input option zero. (See Section
2.6.) The output of the sort of Step 1 sbove is to be used as input.
The user may also redefine the maximm mmber of words allowed per doc-
uments when running ELDID.

3) Te output file from ELDID should then be sorted by word, docu-
ment-number. Section 2.7 describes this sort.

4) Progrem UNWRDS must now be executed with the output of the sort
in Step 3 above used as the input file. If the user feels that more
modifications may be necessary, he can specify cutput option zero and
re-cycle sgain. If the user thinks that he has sufficiently "cleaned-
up" the set of unique words and is ready to create the document surro-
gates, then he should terminate the re-cycle prc;cess and specify out-

put option one.

-67-

The user may '"re-cycle" as many times as necessary until he is
satisfied that the set of unique words are relatively free of mis-
spellings, nonsense words (that convey little information), and that
most variations of the root words have been changed to a consistent
form. The documents with more words than the user allows should
have been examined, and elther the total mumber of words in each
reduced or a new maximum (5 250) defined to cover the largest document.
When the user has sufficiently "cleaned-up" the set of unique words,
re-cycling is terminated and codes may be assigned to each word by
running program UNWRDS with output option one (see Step 4 above). This
output option will cause the UNIQUE-WORD/CODE and SORTED-WCRD/DOCUMENT-
NUMBER/CODE files to be generated; the latter file will be used to

create the surrogates for each document.

2,10 Creating the Document Surrogates

After the user is satisfied that the unique words have been
"cleaned-up" by "re-cycling" with the utilities and procedurés des-
cribed in the 1a.s1$ section, he is ready %o create a surrogate for each
document. The final step in the "re-cycling" procedure was to run
program UNWRDS with output option one, thus producing the UNIQUE-WORD/
CODE and SORTED-WORD/DOCUMENT-NUMBER/CODE files.

The user should list the UNIQUE-WORD/CODE file with option 4 of
the utility program PRIFIL. This listing, which may be used as a
reference, contains the set of unijgue words and their respective code
numbers .

The SORTED-WORD/DOCUMENT-NUMBER/CODE file is used to create a

surrogate for each document. As shown in Figure 2.1k, each record

-68-

on this file contains a word, the number of the document that it ap-
peared in, and the word's code number. If the word occurred in sever-
al documents, then there is a record for each document that mentioned
the word. (Each of these records will have identical word and code
number fields; the document number fields will correspond to the num-
bers of the documents that contained the word.) Since the SORTED-
WORD/DOCUMENT-NUMBER/CODE file is in "alphabetical" order, it must
first be sorted by document before it can be used to create the docu-

ment surrogates.

2.10.1 Sorting the SORTED-WORD/DOCUMENT-NUMBER/CODE File by
Document, Code

The SORTED-WORD/DOCUMENT-NUMBER/COIE file must be imput to a sort
routine that uses the document-mumber as the major sort field and the
code number as the minor field. Figure 2.23 summarizes the sort field
paremeters that must also be input to the sort routine. Output from
this sort will be the DOCUMENT-NUMBER/CODE/WORD file. The structure
of this output file is identical to the input file, except that the
words are now in "alphabetical" order by document. After completing
the sort, program DOCSUR may be run to create the surrogates for each

document.

2.10.2 Input to DOCSUR
Input to program DOCSUR is the DOCUMENT-NUMBER/CODE/WORD file
Just created and a parameter card containing the mmber of documents

in the collection, maximum number of words per document, and the maxi-

mum number of characters per word.‘ The structure of the DOCUMENT-

-69-

Field

Number Type* Length (Bytes) Description
1 FI,A 4 Document Number
2 FI,A 2 Code Number

*FI denotes fixed point integer; A denotes ascending sequence

Figure 2.23

Description of Sort Field Parameters
Required to Sort by Document RNumber, Code

-70-

NUMBER,/CODE/WORD file is identical to the SCRTED-WORD/DOCUMENT-NUMBER/
CODE file (see Figure 2.1h4) and the parsmeter card is described in
Figure 2.2k,

If the user does not recall the exact mumber of documents in his
collection, he should consult the printed output from program ELDID.

The meximum number of words allowed per document has been dis-
cussed with respect to program ELDID (see Section 2.6.1). That pro-
gram produced a list of the documents that were too large and at this
point in the indexing process the user must have either reduced the
size of those documents (using the utilities and procedures outlined
in Section 2.9.4), or redefined his maximm to correspond to the
largest document. Program DOCSUR will drop words from any document
containing more than the maximum number of words read from the input
card; therefore, the user should define this maximum value to corre-
spond to the largest document in order to avoid any loss of in{oma—

tion. (Note that the meximum must be less than or equal to 250.)

2.10.3 Output from DOCSUR
Output from program DOCSUR is the document surrogate file,
SURROG. Each record on this file corresponds to s document surrogate.

(See Figure 2.25 for a complete f£ile description.)

2,10.4 Program Description

Program DOCSUR reads the DOCUMENT-NUMBER/CODE/WORD file and ac-
cumilates the codes that correspond to the descriptors assigned to each
document. When the document rumber in the current record does not

match the previous document's number, then the codes accumilated up

-T1-

Column

Program Variable

Format

Description

-9

10-11

NDOC

16

I3

I2

Number of documents in the user's
collection, right justified in the
field. Tis value may be obtained
from the printout from program ELDID.

Maximum number of words allowed per
document, right justified in this
field. Any document with more than
this maximm number of words will
have its extra words dropped; there-
fore, the user should insure that
this value corresponde to the size of
his largest document.

Maximum number of cheracters per word,
right Justified in this field. This
sumber mst be consistant throughout
all of the Semi-Automatic Indexing
routines.

Figure 2.2k

Description of the Parameter Card for Program DOCSUR

-T2-

ield | Length [Program

umber| (Bytes) { Variable| Format Description

1 L IPREVD |Fixed Point [Document Number
Binary

2 2 NDKY Fixed Point {Number of codes (words) in this sur-
Binary rogate (must be < 250)

3 L4 LEN Fixed Point|Length of cell (mist be the actual num-
Binary ber of surrogates - first record only)

L 2 KCL Fixed Point [Terminal cell flag (not used in pro-
Binary gram DOCSUR)

5 2 LEV Fixed Point|Level in which terminal cell occurred
Binary (not used in probram DOCSUR)

6 2 TNODE Fixed Point|Node number of terminal cell (not
Binary used in program DOCSUR)

7 2 KYSUR(1) [Fixed Point|First code in surrogate
Binary

8 2 KYSUR(2) | Fixed Point|Second code in surrogate
Binary

6+NDKY| 2 KYSUR Fixed Point|Last code in surrogate
(NDKY) |Binary

Record Length = (NDKY*2+16)

Figure 2.

25

Description of the Document Surrogate File, SURROG

SURROGATES CREATED
BY ONE

-~75=-

PLACE CODE JUST
READ INTO CURRENT
SURROGATE

ON INPUT
FILE

RECORD
FROM INPUT
FILE

DOCUMENT #
ATCH PREVIOUS
DOCUMENT #

INCREMENT # OF

RITE
SURROGATE
JUST CREATED
TO OUTPUT
FILE

SET NUMBER OF CODEY
IN SURROGATE TO
ZERO

FIGURE 2.26
~CONTINUED-

-76~

CURRENT DOCUMENT
HAS TOO MANY
DESCRIPTORS

DECREMENT # OF
CODES IN CURRENT
SURROGATE BY ONE

DISPLAY CURRENT
WORD AND XT§ CODE
NUMBER ON PRINTER.

FROM INPUT
FILE

FIGURE 2.26
~CONTINUED-

PRINT NUMBER OF
SURROGATES
CREATED

W o

YES

-77-

NO MORE RECORDS ON
INPUT FILE

)

INCREMENT # OF
SURROGATES CREATED
BY ONE

CREATED TO

OF SUR-
ROGATES CREATED
ATCH # OF DOCS.

N COLLECTION

PRINT WARNIRG
THAT NUMBER OF
SURROGATES DOES
NOT MATCH # OF
DOCUMENTS.

\~_____,—ﬂ"”"—"‘

FIGURE 2.26
~CONTINUED-

s e A e e ————

_78-'

Creating the document surrogate flle, SURROG, completes the
Semi-Automatic Indexing Rmtine,s. This f£ile, vhich conteins a sur-
rogate for each document, is the main input file to the Automatic
Clagsification Routines which are discussed in the following chapter,
These routines will re-arrange the é.ommienp surrogates into cells,
each cell being a classification and containing only surrogates of

similar documents.

2.11 Summary and Examples of the Semi-Automatic Indexing Procedure

This section can be used ag. a reference when running the Semi-
Automatic Indexing Routines. A set of steps are provided that mast be
followed in order to index the user's document collection, ie.,
transform each source document into a surrogate (on f£ile SURROG) for
input to the Automatic Classification Routines.

Each of the steps presented in this section either describes a
program that must be run or a decision that the user must make in
order to proceed with the Semi-Automatic Indexing process. The pur-
pose, input and output of each step are given. The inputs are data
cards and/or a file created in a previous step. (All files are se-
quential and may be either disk or tape volumes.) Outputs are print-
outs and/or file(s) to be input to a later step(s). References are
given in each step to the section within this chapter that describes
the step and to the figures that describe the input cards, If a Sfbep
should fail, due to the abnormal termination of its program, then the
failing step must be restarted. (Restarting from the beginning of a
step can easlly be done by providing the required input, output, and

running the required program.) Each step is also illustrated with

-19-

an example from the Semi-Automatic Ind.ex:l.gg of a data base obtained
from the Foreign Broadcast Information Seﬁice. The data base con-
tains the complete text of 1669 messages (documents) that were broad-
cast in 1971 and deal with world-wide events--political, military,
social, and economic. A typical message (document) comsists of
200-300 words. A few of the messages are considerasbly shorter .and
some are guite long (i.e., 1000 words or more). The Semi-Automatic
Indexing Routines and Automatic Clagsification Routines were run on
the Moore School's Spectra TO and the messages (documents) of the
FBIS data base were indexéd and automatically classified. Each step
illustrated in this section shows the deck sebup used on the Spectre
TO and any output generated from the semi-automatic indexing of the
FBIS data base. The deck se‘&up consists of:

1) log-on to ccxnpu‘ber.

2) definition of input and output files

3) execution command to run the program

4) the program's corresponding data card(s)

5) log-off from computer.
The printouts contain run time error messages and file statistics
(i.e., number of output records). All information shown in the ex-
amples pertain to the indexing of the FBIS data base, run cn the
Spectra TO0. This same data base is also used to illustrate the Auto-
matic Clasgification Routines @eecribed in the next chapter. In order
to further clarify the sbteps presented in this section, the user will
want to refer to Figures 2,27 and:2.28.

Figure 2.27 summarizes all of the files needed for Semi-Automatic

Indexing. The following informatiomis:given for each file: its name

-80-
and reference used in Figure 2.28, the program that creates the file,

the program(s) that use the file as input, the number of the figure
that gives a complete description of the file, the record length in
bytes (for variable length records, the maximum length is given), the
record type (variable or fixed length records, and a brief descrip-
tion of the file's contents. h

Except for the Standard Input File, which contains the user's
documents in a fixed format, and the SURROG file, which contains the
surrogates for each document, a standard file naming convention is
used throughtout this chapter. The file names have the following
form: NAMEAA/NAMEBB/NAMECC, where 'NAMEXX' is the name of a field
within the file's record. If the file's records have three(two)
fields, then the file name has three (two) NAMEXX's. For example, the
file that contains the unique words within each document has the follow-
ing three fields in every record: (1) the unigue word, (2) the docu-
ment number, (3) the frequency of occurrence within the document.

The name of this file is the UNIQUE-WORD/DOCUMENT-NUMBER/FREQUENCY
file.

Figure 2.28 gives a generalized flowchart of the Semi-Automstic
Indexing Routines (Steps). The flow of processing is shown down the
center of each page and is represented by solid lines connecting each
processing bax. (Each processing box corresponds to s step.) All in-
puts to each step and outputs from each step are given on the left and
right respectively of the step. These inputs and outputs‘ are repre-
sented by the horizontal dashed lines entering and leaving each pro-
cessing step. If a file or listing is ocutput from one step and input

to a later step, then it will appear on the right of the step that

-81-

File Name< output From Input To File Record Record Description
Description Length Type
. Given in (Bytes)l
Figure
Standard Input File user EXTWRD 2.0 4096 v This file contains the titles, abstracts, full text,
(reference #1) written (mex Lmum) keywords, or any combination of these from the user's
program documents. This information is placed on the Standard
Input File in a fixed format by & user written program.
3>
'WORD/DOCUMENT-NUMBER | EXTWRD Sort by
(reference #2) doc. #, word 2.k Ly F Each record on this file contains a pertinent word
extracted from a document and the document's number.
The words are grouped by document.
SORTED-DOCUMENT- gort by ELDID 2.9 Ly F Each record on this file is identical in structure to
NUMBER/WORD doc. # word the WORD/DOCUMENT-NUMEER file except that they have
(reference #3) ' been sorted into"alphabetical"order by document.
UNIQIIE-WORﬁ/ ELDID ' Sort by 2.1¢ 46 F Each record on this file contains a unique word that
DOCUMENT-NUMBER,/ word, doc. # appeared within a document, the document's number, and
[FREQUENCY PRTFIL ‘ the frequency of the word. The words are in'alphabeti-
(reference #4) cal’ order by document.
SORTED-WORD/ Sort by UNWRDS 2.1¢E 46 F Each record on this file is identical in structure to
DOCUMENT-NUMBER/ word, doc. # |UTIIKS the UNIQUE-WORD/DOCUMENT-NUMBER/FREQUENCY file except
[FREQUENCY ADJCMP that the words are all in"alphabetical' order. If a
(reference #5) PRTFIL -word appears in several documents, then there is a re-
cord for each document that mentions the word.
UNIQUE-WORD/ UNWRDS PRTFIL 2,14 L8 F Each record on this file contains a unique word from
NUMBER- OF - DOCUMENTS / ADJCMP the entire collection of documents, the number of docu-
TOTAL~FREQUENCY ments that mention the word, and the word's total
(reference #6) frequency. The words ere in"alphabetical’ order.

Figure 2.27

Summary of the Semi-Automatic Indexing Files

. ————————— e B

PO .

-82-
File Name?® Output From Input To File Record Record Description '
Description Length Type
Given in (Bytes)1
Figure
4ODIFIED-SORTED-WORD/ | UTTIKS Sort by 2.1¢l+ 46 F Each record on this file is identical in structure to the
OCUMENT-NUMBER/ doc. #, word SORTED-WORD/DOCUMENT-NUMBER/FREQUENCY file. This file
REQUENCY . contains all of the modifications that the user has made
(reference #7) to the words (i.e., ADD, DELETE, CHANGE, end ERASE).
b
SORTED-DOCUMENT- - | Sort by ELDID 2.9 L6 F This file 1s the MODIFIED-SORTED-WORD/DOCUMENT-NUMBER/
NUMBER/WORD/FREQUENCY | doc. #, word FREQUENCY sorted such that the words are in"alphabetical
(reference #3A) order by document. i
i
SORTED-WORD/ UKNWRDS Sort by 2.14 46 F Each record on this file contains a word, the number of the ‘
DOGJMENT-NUMBER/ doc. #, code document that mentioned the word, end the word's code. If |
CODE - . a word occurred in several documente, then there is & record
(reference #8) for each document that mentioned the word. The words are in
"alphabetical'order.
DOCUMENT-NUMBER/ Sort by DOCSUR 2.11&T 46 F Each record on this file is identical in structure to the
CODE/WORD doc. #, code SORTED-WORD/DOCUMENT-NUMBER/CODE file. ‘The words are now
(reference #i¢ in "alphabetical’ order by document.
[SURROG DOCSUR Automatic 2.25 516 F Each record on this file contains a document surrogate.
Classification (max imum) These are ordered by document number.
Routines
UNIQUE-WORD/CODE UNWRDS PRTFIL 2.1k 2 F This file contains the unique words of the entire document
(reference #9) collection in“alphabetical” order. Along with each word is
its code number.

lEach record length was computed assuming that 2¢ wes used as the maximum number of characters per word (MAXWL). The records are written in a binary
(unformatted) mode; hence, the user mist be aware of any control information that is suffixed to each unformatted record by the operating system, thus

increasing the length of each record.

2

Along with the file name 1s a reference number which corresponds to the reference mumbers used in Figure 2,28,
3F1gure 2.14 gives the description of an identical file: SORTED-WORD/DOCUMENT-NUMBER/CODE.
UNIQUE-WORD/ DOCUMENT- NUMBER/FREQUENCY

hFigure 2.1¢ gives the description of an identical file:

Figure 2.27, contimued

-83-
generates it and on the left of the step(s) that require it as input.
Reference numbers are given to the files and letters to the listings.
(A1l files are sequential and may be either tape or disk.)

For example, program EIDID produces an output file (reference
number 4), UNIQUE-WORD/DOCUMENT-NUMBER/FREQUENCY, and a listing (ref-
erence letter E) of the mmbers of the documents that were too large.
Both of these are on the output (right) side of the ELDID processing
step. The UNIQUE-WORD/DOCUMENT-NUMBER/FREQUENCY file is later input
to a sort and program PRIFIL. The listing is input to the step that
requires the user to examine listings in order to decide what, if any,
modifications he wishes to make to the unique words of the document
collection. In these cases the UNIQUE-WORD/DOCUMENT-NUMBER/FREQUENCY
file and the listing of documents that are too large appear on the

input (left) side of the corresponding processing steps.

B

USER
WRITTEN PRO-
GRAM

A USER'S
COLLECTION OFf. INPUT _._.
DOCUMENTS

STANDARD
OUTRVT INPUT -————
FILE

INPUT
PARAMETER
CARDS

S~~~ ... INPUT EXTWRD
STANDARD R

INPUT e
-- FILE

SORT BY DOC#,

WORD
(STEP 2)
INPUT
PARAMETER
CARD QUENCY FILE
OPTION: 1
ELDID

(STEP 3A) \Qureur’
. \

LIST OF DOCUMENTS |
WITH TOO MANY
WORDS

FIGURE 2.28
GENERAL. FLOWCHART OF SEMI-AUTOMATIC INDEXING ROUTINES

. . N . +85«

v~

SORT BY WORD,
DOC.# (STEP 4)

/" INPUT PARAMETER
CARD

OPTION: ¢

IQUE-
WORD/NUMBER~

OF-DOCUMENTS/
TOTAL-FREQUENCY} - -~ -
FILE

-~ UNWRDS
~<IRUT L (sTEP 5) OUTPUT

SORTED-
WORD/

DOCUMENT-
NUMBER FRE-
QUENCY FILE

NIQUE- LISTING OF UNIQUE
WORD/ PRTFIL . WORDS IN EACH
DOCUMENT-~ OPTION: 2
D- NUMBER FRE- |LLUN
QUENCY FILE

DOCUMENT
----- (STEP 6A) R L--D

ALPHABETIC LISTING
o 42 Ve s
INPUT OPTION: 2

cee - (STEP 6B) QUTPUT _, | THAT CONTAIN THEM | _
QUENCY FILE e ;

ALPHABETIC LISTING

OF ALL WORDS, # OF
ptabied 3 DOCS THAT CONTAIN
D‘ JINEUT . (STEP 6C) UTPUT . _ .| THEM, AND TOTAL ____D
QUENCY FILE FRFQUENCY

_—/——__

FIGURE 2,28
' ‘*GGNTINUEB-

s ¥ b
N Ve

IQUE- w
WORD/NUMBER-
OF-DOCUMENTS/
----- TOTAL-
FREQUENCY
FILE
]
v LIST OF UNIQUE
SORT EITHER PRIFIL WORDS IN ORDER OF
BY NUMBER-OF- INPUT OPTION: 3 RELATIVE OCCURRANCH
DOCUMENTS OR INPUT (STEP 6D) UTRUZ| IN DOCUMENT B
TOTAL-FREQUENCY COLLECTION ’D
NIQUE-
WORD/NUMBER~- ADIQMP LIST OF SIMILAR
OF-DOCUMENTS/\ INPUT OPTION: ¢ WORDS
-e-={ TOTAL- }------- (STEP 7) UTPUL L—-{E>
FREQUENCY
FILE

USER EXAMINES

LISTINGS PRODUCED
IN STEPS 3,6 & 7

- - w - -

LISTINGS TO
DETERMINE REQUIRED
MODIFICATION TO
UNIQUE WORDS

(STEP 8)

INP

UTP

.-

ARE

THERE ANY

MODIFICATIONS TO

THE UNIQUE WORDS
?

FIGURE 2.28
-CONTINUED-

—

USER PUNCHES
MODIFICATIONS
ON CARDS

USER PUNCHED
MODIFICATION
CARDS

WORD/DOCU-
MENT NUMBER/
FREQUENCY

FILE

SORTED-WORD
DOCUMENT-
NUMBER/
FREQUENCY
FILE

INPUT PARAMETER
CARD
OPTION: @

"

Sew
-
-
-

SORTED-
DOCUMENT-
NUMBER/WORD/
FREQUENCY FILE

-87-

UTILKS
(STEP 9)

A

SORT BY DOC.#,
WORD (STEP 10)

ELDID
(STEP 3B)

FIGURE 2.28
~CONTINUED-

LISTING OF ERRO
IN MODIFICATION

CARDS

FREQUENCY
FILE

SORTED-
DOCUMENT-
NUMBER/WORD/
FREQUENCY

FILE

BER/FREQUENCY
FILE

\ LIST OF DOCUMEN
WITH TOO MANY
WORDS

-88-

INPUT PARAMETER
CARD
OPTION: 1

©

s UNWRDS

SORTED-
WORD/

(STEP 11)

DOCUMENT-
NUMBER/FRE-
QUENCY FILE

SORTED-

WORD/ SORT BY
DOCUMENT- pocC.#, CODE

-— NUMBER CODE | PFUYL-»{ (STEP 12)
FILE

4

NUMBER/
CODE/
WORD FILE

DOCSUR
NRUT . (STEP 13)

PRTFIL
OPTION:
e - - (STEP 14)

HALT

FIGURE 2.28
-CONTINUED-

WORD/DOCU-
MENT-NUMBER/
CODE FILE

UNIQUE-
WORD/CODE
FILE

DOCUMENT-
NUMBER/
CODE/
WORD FILE

SURROG __
FILE

TO
AUTOMATIC

CLASSIFICATION
- ROUTINES

LIST OF UNIQUE
WORDS AND THEIR
CODES

_____,,—”"_—-

-89-

Some of the steps given in this section require the user to sort
the data on a file. Since generalized sort packages are standard
software at most computer installations, a sort packege is not in-
cluded. in the routines described in this paper. Most of the sort steps
"alphabetize" the words on the input file. The "alphabetization" re-
quired by the Semi-Automatic Indexing Routine is unique in that the
"plank" character must fall after the "z" (and not before the "a") in
the collating sequence (see Figure 2.,22). Each sort step refers to a
figure where the sort fleld parameters, required as inmput to the sort,
are described. These sort field param.e;bers give the ma.:]qr through
minor sort fields of the input record and the corresponding length of
each field. The user must also provide his sort routines with the lo-
cation of the fields within the input records to he sorted. The user
may refer to the figures that describe the corresponding input file to
each sort in order to determine the location of ea.,ch field within the
record. It should be noted that each character of the keyword in an
input record is defined as a separate field whose length is two bytes
and format is fixed point integer. By referring to each character of
a keyword as a fleld, instead of the entire keyword as one large field,
the sort routine will automatically "alphabetize" according to the re-
quired collating sefuence.

When examining the exemples of the semi-automatic indexing of the
FBIS date base, the user should be sware of the following:

1) The meximm number of characters per word was set at 20. Each
of the record lengths given in Figure 2.27 is computed using this

value. (The keyword in each record occupies 40 bytes, i.e., twenty

-90-

characters at 2 bytes per character. The actual character is in the
first of two bytes and a "blank" character is stored in the second.
This is a constraint required by the FORTRAN language used to write
the routines. The smallest addressable entity is a two byte field.)

2) The records on each file were written in unformatted (binary)
mode. The Spectra TO prefixes every unformatted record with a U4 byte
control word; therefore, the actual length of a record can be computed
by adding 4 to the record lengths given in Figure 2.27. The user must
be aware of any such control bytes prefixed to unformatted records by
the operating system of his computer. This is especially important
vhen preparing the sort fields parameter card discussed in the previous
paragraph. The length and format of each sort field is given to the
user in the description of the sort fields parameter cards; however,
the actual locations of the sort fields can énly be ccmﬁ;ted from the
file description after the user knows what, if any, control information
is prefixed to his records. In the case of the Spectra, the first byte
of data is actuslly the fifth byte in the data record due to the 4 byte
control field prefixed to each unformatted record.

3) The files are created sequentislly and maSr be elther disk or
tape volumnes. Tapes were used for the Spectra runs. The maximm
blocksize that can be written by the Moore Schogl‘s Spectra 70 is 4096
bytes.

4) Bach file was referred to by the Spectra as FBISKX, where XX is
the reference mumber of the file gliven in Figures 2.27 and 2.28.

5) The standerd input (cards) and output (line printer) unit mm-

bers were 5 and 6 respectively.
Each of the following steps corresponds to a processing box in the
flowchart of Figure 2.28,

-95-
STEP 2 - Sort the Words in Each Document

Purpose: To arrange the words within each document in "alphsbetical”
order (Section 2.5).

Input: WORD/DOCUMENT-NUMBER File (FBIS@2)

Output: SORTED-DOCEMENT-NUMBER/WORD File (FBIS@3)

Example: The following is the deck setup and corresponding printout
from the Spectra TO's standard sow package used to sort the input
file by document-number, word: (The user is responsible for provid-
ing a sort routine, a standard utility at most computer installa-
tions, to sort the input file. The document-number should be the
mejor field and each character of the word should be the minor
fields; see Figure 2.T)

/LOGON

/ERASE FBIS@2

/FILE FBIS@2,LINK=SORTIN,RECFORM=F ,RECSIZE=48,BLKSIZE=4088,FCBTYPE=SAM, -
/VOLUME=FBIS@2, DEVICE=T9N , STA TE=FOREIGN, OPEN=INPUT

(Definition of WORD -NMBER FILE g5 input)

/FILE FBIS@3,LINK=SORTQUT,RECFCRM=F ,RECSIZE=48,BIKSIZE=4088, -
/FCBTYPE=SAM, VOLUME=FBIS@ 3, DEVICE=TON , OPEN=CU TPUT

(Definition of SORTED-DX -NMMBER/WORD File as output)

/FILE PDISK,LINK=SORIWK,VOLUMB=LANG@L, DEVICE=D590,SPACE=(10000,1000)
(Definition of a private disk volume as work space for the sort. The
user can compute the amount of work space needed from the number of re-

cords on the input file and the length of each record.)

/EXEC SORT
(Command to run the sort routine)

SQRT FIEIDS:()-#S,LL,A,S,2,A,7,E,A,9,2,A,ll,2,A,l3,2,A,15,2,A,17,2,A,19,2,A,
21’2’A)23)2’A)25)2)A,27’2’A’29)2’A’ 3132)A’33’2JA’3532,A)37,2’A’39)2,A)
41,2,A,43,2,A) ,FORMAT=FI

(Tis command tells the sort routine that the document-number is the
major sort field, and the individusl characters of a word, from the lst

to the 20th respectively, 'axe the minor sort fields. All flelds are Fixed
Point Integers and are sorted in Ascending order; see Figure 2.7.)

END

-96-

(The following messages were printed by the sort routine:)

s1g1
S116
s116

S116

/LOGOFF

TSOS SORT/MERG DONE

NWMBER OF OUTPUT RECORDS - 00000277177
NUWMBER OF INPUT RECORDS - 00000277177
NUMBER OF SORTED RECORDS - 00000277177

The "alphabetization" required by this step must correspond to the

collating sequence in Fig., 2,22, The most notable exception to ordinary

alphabetization is that the "blank" character sorts after the "z" instead

of before the "a " The user must specify the sort fields according to

Figure 2.7, thus assuring the correct "alphabetization," e.g., see SORT

FIELDS command above,

-97-
STEP 3 A - Run Program ELDID
Purpose: To eliminate the duplicate words within each document and
assign each unique word a frequency-within-document value (section
2.6).
Input: (1) SORTED-DOCUMENT-NUMBER/WORD file (FBIS@3) - must be
assigned FORTRAN unit number 21.
(2) Input Parameter Card. (Specify input option 1; see Figure
2.8) - read from FORTRAN unit number 5.
Qutput: (1) UNIQUE-WORD/DOCUMENT-NUMBER/FREQUENCY file (FBIS@L) - must
be assigned FORTRAN unit number 22.

(2) Listing of the numbers of the documents that contain too
wany words. (The user specifies the maximum number of words allowed
per document on the Input Parameter Card. The number of words per
document must be < 250.)

Example: (1) Deck Setup for Spectra T7O:
/LOGON
/ERASE FBIS@3
/FILE FBIS@3,LINK=DSET21,RECFORM=F ,RECSIZE=48,BLKSIZE=4088, -
/FCBTYPE=BTAM, VOLUME=FBIS@3, DEVICE=TON ,STA TE<FOREIGN, OPEN=INPUT
(Definition of SORC!ED-DOCUMENT—NUMBER/WORD file as input)
/FILE FBIS@4,LINK=DSETR2,RECFORM=F ,RECSIZE=50,BLKSIZE=4050, -
BTYPE=BTAM , VOLUNE=FBIS@h , DEVICE=TON , OPEN=OUTEUT
(Definition of UNIQUE-WORD/DOCUMENT-NUMBER/FREQUENCY file as output)

/EXEC LMELDID
(Command to run the load module corresponding to program ELDID.)

1¢gegi
(Input Parameter Card specifying (A) the maximum number of words per
document is 1¢¢, (B) the maximum length of a word in characters is 2g,

and (c) the input option is 1.)

/LOGOFF

-98-

(2) Sample output from progrem ELDID:
PROGRAM ELDID STARTED.
VALUE OF INPUT OPTION PARAMETER: 1
INPUT FILE ASSUMED TO BE: ' SORTED-DOCUMENT-NUMBER/WORD
MAXIMUM KEYS PER DOCUMENT: 1¢¢
MAXTMUM LENGTH OF A WORD: eg
THE FOLLOWING DOCUMENTS HAVE MORE THAN. }00 UNIQUE WORDS:

DOCUMENT # # OF WORDS

1 266

2 190

3 248

N 20k

8 210

9 198

10 188
1 168
12 118
13 211
15 123
18 205
164k 152
1645 143
1648 128
1649 118
1650 106
1651 113
1652 105
1655 181
1657 . 168
1658 180
1662 139
1663 155
1664 256

NUMBER OF RECORDS WRITTEN ON UNIQUE-WORD/DOCUMENT/FREQUENCY FILE: 19¢892
NUMBER OF DOCUMENTS WITH MORE THAN 1¢¢ UNIQUE KEYS: T63
NUMBER OF DOCUMENTS IN COLLECTION: 1669

END OF PROCESSING FOR PROGRAM ELDID.

STEP 4 - Sort All Words

Purpose: To arrange the entire collection of words in "alphabetical"
order (Section 2.7).

Input: UNIQUE-WORD/DOCUMENT-NUMBER/FREQUENCY file (FBIS@L).

Qutput: SORTED-WORD/DOCUMENT-NUMBER/FREQUENCY file (FBIS@5).

Example: The following is the deck setup and corresponding printout
from the Spectra TO's steandard sort package used to sort the input
file by word, document-number: (The user is responsible for provid-
ing a sort routine, a standard utility at most computer installa-
tions, to sort the input file. Each character of the word, from the
first to the last, must be the major sort fields and the document
number the minor field; see Figure 2.12.)

/LOGON

/ERASE FBISgA4

/FILE FBIS@L ,LINK=SORTIN,RECFORM=F ,RECSIZE=5@,BLKSIZE=4@5¢ ,FCBTYPE=SAM, -
/VOLUME=FBIS@l , DEVICE=TON, STA TE=FOREIGN , OPEN=INFUT

(Definition of UNIQUE-WORD/DOCUMENT-NUMBER/FREQUENCY file as input.)
/FILE FBIS@S,LINK=SORTQUT,RECFORM=F ,RECSIZE=5@ , BLKSIZE=\¢5¢, -
/FCBTYPE=SAM ,VOLIME=FBIS@5 ,DEVICE=TON , O PENwOUTPUT

(Definition of SORTED-WORD/DOCUMENT-NUMBER/FREQUENCY file as output.)
/FILE PDISK,LINK=SORIWK, VOLUME=LANG@1,DEVICE=D590,SPACE=(10000,1000)
(Definition of a private disk volume as work space for the sort. The
user can compute the amount of work space needed from the number of re-
cords on the input file and the length of each record.)

/EXEC SORT
(Command to run the sort routine.)

SORT FIELDS=(5,2,4,7,2,A,9,2,A,11,2,A,13,2,A,15,2,A,17,2,A,19,2,A,21,2,A,
23’2)A,25JQ’A,27)2,A,29,23AJ 31’2’A, 33,2)A) 35 ,E,A, 37,2’A’ 39)2’A’)"'1,2}A,

43,2,A,45,4,A) ,FORMAT=FI

(This command tells the sort routine that each character of the word,
from the 1st to the 20th, are the major sort fields, and the document
rmumber is the minor field. All fields are Fixed Point Integers and are
sorted in Ascending order; see Figure 2.12.)

-100~-

END

(The following messages were printed by the sort routine:)

S1¢1 TSOS SORT/MERGE DONB

S116 NUMBER OF OUTPUT RECORDS - 00000190892

s116 NUMBER OF INFUT RECORDS - 00000190892

S116 NUMBER OF SORTED RECORDS - 00000190892

/LOGOFF

The "alphsbetization" required by this step must correspond to the
collating sequence in Fig. 2.22. The mogt notable exception to ordinary
alphabetization is that the "blank" character sorts after the "z" instead
of before the "a " The user must specify the sort fields according to
Figure 2.12, thus assuring the correct "alphasbetization,"” e.g., see

SORT FIELDS command above,

-101-
STEP 5 - Run Program UNWRDS
Purpose: To eliminate the duplicate words within the entire document
collection, and to assign each unique word two statisties: (1) the
number of documents that contained the word and (2) the total fre-
quency of occurrence (Section 2.8).
Input: (1) SORTED-WORD/DOCUMENT-NUMBER/FREQUENCY file (FBIS@S) - must
be assigned to FORTRAN unit 21.
(2) Input Parameter Card. (Specify output option @; see Figure
2.13.)
Output: UNIQUE-WORD/NUMBER-(CF~DOCUMENTS/TOTRL-FREQUENCY file (FBIS@6)
- must be assigned to FORTRAN unit 22,
Example: (1) Deck setup for Spectra 7O:
/L.OGON
/ERASE FBIS@5
/FILE FBIS@S5,LINK=DSET21,RECFORM=F,RECSIZE=5@ ,BLKSIZE=4#5¢ , FCBTYPE=BTAM, -
/VOLUME=FBIS@5 , DEVICE=TSN, STATE=FCREIGN , OPEN=INPUT
(Definition of SORTED-WORD/DOCUMENT-NUMBER/FREQUENCY file as input.)
/FILE FBIS@6,LINK=DSET22,RECFORM=F ,RECSIZE=52,BLKSIZE=4056,FCBTYPE=BTM, -
/VOLUME=FBIS@6 , DEVICE=T9N , OPEN=CUTPUT
(Definition of UNIQUE-WORD/NUMBER-(OF-DOCUMENTS/TOTAL-FREQUENCY file as
output.)

/EXEC LMUNWRDS
(Command to run the load wmodule corresponding to program UNWRDS.)

%?gput Parameter Card specifying (A) the output option is ¢ and (B) the
maximm number of characters per word is 2¢.)
/LOGCFF
(2) Sample output from program UNWRDS:
PROGRAM UNWRDS STARTED.
OUTPUT OPTION PARAMETER: @

MAXIMUM CHARACTERS PER WORD: 2§

-102-

UNIQUE-WORD/NUMBER- OF - DOCUMENTS / TOTAL-FREQUENCY FILE BEING CREATED.

NUMBER OF RECORDS ON UNIQUE-WORD/NUMBER-CF-DOCUMENTS/TOTML~FREQUENCY
FILE: 21473

PROCESSING FINISHED FOR PROGRAM UNWRDS.

-103~-
STEP 6 - Run Utility Program PRTFIL

Purpose: This utllity program should be used to list the contents of

various files (Section 2.9).

Input: (1) Each time this program is run any one of the following

files can be used as input - must 5e assigned FORTRAN, unit 12.

A. UNIQUE-WORD/DOCUMENT-NUMBER/FREQUENCY (FBIS@L)

B. SORTED-WORD/DOCUMENT-NUMBER/FREQUENCY (FBIS@S)

C. UNIQUE-WORD/NUMBER-OF-DOCUMENTS/ TOTAL-FREQUENCY (FBIS@6)

D. The UNIQUE-WORD/NUMBER-OF-DOCUMENTS/TOTAL-FREQUENCY file can
either be sorted, using the installations standard sort package, by
the number-of-documents or total-frequency fields and input to this
run.

(2) Input Parameter Card - must be read from FORTRAN unit 5.

This card (Figure 2.16) has two values: the input option and the

number of records (words) to be printed. For each of the above input

files, the following values should be used for the input option
parameter:

A. Input Option: 2

B. Input Option: 2

C. Input QOption: 3

D. Input Option: 3

Output: The following four listings are generated, depending upon
which input file was used. Note: only one listing is generated per
run. To get all four listings, program PRTFIL must be run four
times, each time using a different file and the proper Input Para-
meter Card.

A. Listing of the unique words within each document. Each word is

-10k4-
printed along with its document number and a frequency that corres-
ponds to the number of times the word occurred within the glven docu-
ment. All words in document one are listed first, then document
two, ete,

B. Listing of all words in "alphabetical" order. Each word is printed
along with its document number and frequency within document. If a
word appears in several documents, then the word, document number,
and frequency are listed for each document that contained the word.

C. List of unique words wilthin the entire document collection. The
words are listed in "alphabetical" order and each word is only
printed once. Along with each word, two statistics are listed: (1)
Number of documents that contained the word and (2) The total fre-
quency of the word.

D. List of unique words in order of relative occurrence within the
entire document collection. This listing is identical to the listing
in C. above except that the words are either ordered by the number
of documents that contained the word or the word's total frequency
(depending upon which field the user chooses to sort the UNIQUE-
WORD/NUMBER- (F - DOCUMEN'TS / TOTAL-FREQUENCY file).

Example: (1) Deck setup from Spectra TO for each possible input file:

A. /LOGON
/FILE FBIS@h,LINK=DSET12,RECFORMsF ,RECSIZE=5@, BLKSIZEwhi5¢,
/FCBTYPE=BTAM, DEVICE=TGN , OPEN=INFUT
j(g;i;%.?:)ttion of the UNIQUE—WORD/DOCUMENT—NUI@ER/FREQUENCY file as

/EXEC IMPRIFIL
(Command to run the load module corresponding to program PRTFIL.)

2 199892

(Data card specifying input option 2 and 190,892 records (words) to

B.

Ce

D.

-105-

be printed. The number of records on the UNIQUE-WORD/DOCUMENT-
NUMBER/FREQUENCY file may be obtained from the printout of pro-
grem EIDID, i.e., Step 3.)

/LOGCFF
/LOGON

/FILE FBIS@5,LINK=DSET12,RECFORM=F ,RECSIZE=5@,BIKSIZE=L¢5(, -
/FCBTYPE=BTAM, DEVICE=TSN, OPEN=INFUT

(Defin;.tion of the SORTED-WORD/DOCUMENT-NUMBER/FREQUENCY file as
input.

/EXEC IMPRTFIL
(Command to run the load module corresponding to program PRTFIL.)

2 190892

(Data card specifying input option 2 and 190,892 records (words)
to be printed. The number of records on the SCRTED-WORD/DOCUMENT-
NUMBER/FREQUENCY file is identical to the number of records on the
UNIQUE-WORD/DOCUMENT-NUMBER/FREQUENCY file. This value can also
be obtained from the SORT printout in Step 4.)

/LOGON

/FILE FBIS@6,LINK=DSETL2,RECFORM=F ,RECSIZE=52,BLKSIZE=U#56, -
/FCBTYPE=BTM, DEVICE=T9N , OPEN=INFUT

(Definition of UNIQUE-WORD/NUMBER~-CF-DOCUMENTS/TOTAL-FREQUENCY
file as input.)

/EXEC IMPRTFIL
(Command to run the load module corresponding to program PRTFIL.)

3 @g21k73

(Data card specifying input option 3 and 21,473 records (words)
to be printed. The number of records on the UNIQUE-WORD/NUMBER-
OF-DOCUMENTS/ TOTAL~-FREQUENCY file may be obtained from. the print-
out of program UNWRDS, i.e., Step 5.

/LOGOFF

Note; this deck setup shows the commands that first sort the
UNIQUE-WORD/NUMBER- OF- DOCUMENTS / TOTAL-FREQUENCY file by the
NUMBER-QF-DOCUMENTS field and then runs program PRIFIL with the
sorted file as input.

/LOGON

/ERASE FBIS@6

-106-

/FILE FBIS$6,LINK=SORTIN,RECF(RM=F ,RECSIZE=52, BLKSIZE=4056,
/FCBTYPE=SAM, VOLUME=FBIS@6 , DEVICE=T9N , OPEN=INFUT

(Definition of the UNIQUE-WORD/NUMBER-OF-DOCUMENTS/TOTAL~FREQUENCY
file as input to the sort routine.)

/FILE DUMY,LINK=SORTOUT,RECFORM=F ,RECSIZE=52 ,BLKSIZE=4056,
/FCBTYPE=SAM, VOLUME=DUMY , IEVICE=TON , CPEN=CU TPUT
(Definition of a scratch file named DUMY as output from the sort.)

/FILE PDISK,LINK=SORTWK, VOLUME=LANG@L, DEVICE=D590;
/SPACE=(10000,1000)

(Definition of a private disk volume as work space for the sort.

The user can compute the amount of work space needed from the number
of records on the UNIQUE-WORD/NUMBER-CF-DOCUMENTS/TOTAL-FREQUENCY
file and the length of each record.)

/EXEC SORT
(Cormand to run the sort routine.)

SCRT FIELDS=(45,4,A) ,FORMAT=FI

(This command tells the sort routine that the mmber of documents
containing the word is the major sort field, this value begins with
the L5th byte of each record, is 4 bybes long, it is to be sorted in
Ascending sequence, and its format is Fixed Point Integer.)

END
(End of sort commands.)

/STEP
/ERASE DUMY

/FILE DUMY,LINK=DSET12,RECFCRM=F ,RECSIZE=52,BLKSIZE=4#56,
/FCBTYPE=BTAM, VOLUME=DUMY , DEVICE=T9N , OFEN=INFUT

(Definition of the file, DUMY, that was output from the sort and is
to be input to program PRTFIL.)

3 g21473

(Data card specifying input option 3 and 21,473 records (words) to
be printed. The mumber of records on the sorted file, DUMY, is
identical to the mumber of records on the UNIQUE-WORD/NUMBER-(CF-
DOCUMENTS/ TOTRL-FREQUENCY file.) ‘

/LOGCFF

-107-

(2) Semple output from each of the four possible input

files:

A.

KEYS

UNITE

Us

VISIT
WOMAN
AMBASSADGR
AFRIL
BULGARIAN

VIETNAM

VA

WORKER
ADMINISTRATIVE
AGGRESSIVE

AIR

APRIL
BULGARIAN
CHINA

NFHEHWHDEHEW NHHHH\HHO-g

e e 0 ~]-J-Y=J~J~]AOVYO\e ¢ ¢ O\O\O\\I‘IU]\\J'IU'IO e o g

This example shows the last few words in document 5, the words
in document 6, and the first few words in document 7. Note
that the word BULGARIAN occurred two times in document 6 and

four times in document 7.

-108-

KEYS DOC. # FREQ,/DOC
AFRO-ASTIAN 83 1
AFRO-ASTAN 485 1
AFRO-ASTAN 561 1
AFRO-ASIAN 833 2

" AFRO-ASIAN 93k 1
AFRO-ASIAN 1149 3
AFRO-ASIAN 1275 2
AFRO-SATAN 1275 1
AFRO-SHIRAZI 1055 1
AFSUME 855 1
AFTERMATH 84 1
AFTERMA TH 900 1
AFTERMA TH 915 1
AFTERWARD 32 1
AFTERWARD 425 1
AFTERWARD 5Ll 1
AFTERWARD g1 1
AGAINIST 58 1
AGAINIST 659 1
AGARTATA 632 1
AGARTAIA 892 1
AGARTAIA 1353 1
AGARTATA 1636 1
ACED 165 2
AGED 1272 1
AGENCYCCORRESPONDENT 13 1
AGENCY 13 1
AGENCY 1k 2
AGENCY 61 1
AGENCY 79 1
AGENCY 12k 3

This example shows the words in "alphabetical" (note that
AGENCY comes after AGENCYCORRESPONDENT because the "blank"
character sorts after the "z") order. The word AFRO-ASIAN
occurred in documents 83, 485, 561, 833, 934, 1149, and 1275.
Its frequency of occurrence within each of the respective docu-
ments was 1, 1, 1, 2, 1, 3, and 2. (This information is sum-

marized in the next example.)

-109-
KEYS # DOCS WITH KEY TOTAL FREQ.

AFOREMENTIONE
AFORESAID
AFRATD
AFRICAN
AFRICA
AFRO-AMERICAN
AFRO-ASIAN
AFRO-SATAN
AFRO-SHIRAZI
AFSUME
AFTERMATH

N

WHHR3UESVW o
N &

wrRrHRPERESVwW o

This example shows the worde in "alphabetical" order. Note
that the word AFRO-ASIAN occurred in seven documents with a
total frequency of eleven. (These values were obtained by
summarizing the informetion in the previous example.)
"Similar" words such as AFRICAN and AFRICA will appear on the

list of "similar" words which is output from program ADJCMP.

-110-

KEYS # DOCS WITH KEY TOTAL FRER.
RAHMANJ 1 1
RAKOV . 1 1
PETROLEUM-EXPORT 1 1
PORK 1 2
NONCOMMUNIST 1 1
OVERCROWD 1 1
ONE-THIRD 1 1
RECREATTONAL 1 1
PLEKHANOV 1 3
QUEER 1 1
PRESSNOTE 1 3
REFINE 1 1
REFLEX 1 1
REFRIGERATOR 1 2
POLYMETRLLIC 1 1
REFIT 1 1
DHANMAMDI 2 2
DEFIATE 2 2
DIGNITARY 2 2
DMITRY 2 2
EESE 2 2
DAZZLE 2 2
DEDUCE 2 2
EGON 2 2
DISAVOW 2 3
DAT 2 2
DESPISE 2 2
DMITRIY 2 3
DEGENERA TE 2 2

This example shows some of the words that only appeared in one
document (REFRIGERATOR with a total frequency of 2) and some of
the words that appeared in only two documents (DIGNITARY with

a total frequency of 2).

~111~
STEP 7 - Run Program ADJCMP

Purpose: To produce & listing of all "similar" words (Sectiom 2.9).
Input: (1) There are two possible input files. The file that is

chosen as input muist be assigned FORTRAN unit 21.

A. UNIQUE-WORD/NUMBER~OF-DOCUMENTS/TOTML-FREQUENCY (FBIS@6)

B. SORTED-WORD/DOCUMENT-NUMBER/FREQUENCY (FBIS@S)

(2) Input Parameter Card - must be read from FORTRAN unit num-
ber 5. This card (Figure 2.18) defines a "similar" word and con-
taims an input option parameter. For each of the above input files,
the following value should be used for the input option parameter:
A. Input option: ¢
B. Input option: 1

Output: Listing that contains groups of similar words.

A. If the UNIQUE-WORD/NUMBER-CF-DOCUMENTS/TOTAL-FREQUENCY file is
used as input (input option @ specified) then each word will be
printed with two statistics: (1) number of documents that con-
tained the word and (2) the word's total frequency.

B. If the SORTED-WORD/DOCUMENT-NUMBER/FREQUENCY file is used as
input (input option 1), then the list of "similar" words is pro-
duced without any ataﬁistics.

It is suggested that the UNIQUE-WORD/NUMBER-OF-DOCUMENTS/TOTAL-

FREQUENCY file be used as input since the corresponding statistics

that are printed along with the "similar" word are helpful in

determining which word(s) in a group of "similar" words are more
important.
Example: The following exaumple shows the deck setup and printout

from program ADJCMP. The UNIQUE-WORD/NUMBER-OF-DOCUMENTS/TOTAL-

-112-
FREQUENCY file is used as input.

(1) Semple deck sebup from Spectra TO:
/LOGON
/ERASE FBIS@6

/FILE FBIS@6,LINK=DSET21,RECFORM=F ,RECSIZE=52, BLKS IZE=4056, -
/FCBTYPE=BTAM, VOLUME=FBIS@6 , DEVICE=TSN , STATE=FOREIGN , OPEN=INPUT
(Definition of the UNIQUE-WORD/NUMBER-OF-DJCUMENTS/TOTAL-FREQUENCY file
as input.))

/EXEC IMADJCMP
{Command to run the load module that corresponds to program ADJCMR,)

gogdp 3pgeg

(Data card specifying: (1) the maximum number of characters per word is
2@, For adjacent words on the input file to be considergd "similaer"

(2) the first three characters of each word must match exactly and (3)
the maximum length of disagreement must be no greater than two. (Length
of disegreement is defined to be the mumber of characters between the
first pair of corresponding characters, in the words being tested for
"similarity", that do not match and the end of the longer word.)

Finally the input card specifies (4) that in input option is §.

/LOGOFF

-113-
(2) sample output from program ADJCMP.
WORD # DOCS WITH WORD TOTAL FREQ.

AFRICAN 23
AFRICA 34

&8

AGENDA 17
AGENT 39

AGRICULTURE
AGRICULTU

AHMAD
AHEM

AIRLIFT
AIRLINE

&L KE & @R

AKAHATA
AKAHAT

ATAH
ATAN
ATARM

Brer #w Fo Fo v&

'5‘)!—'!-‘ = N

ATLBANIAN
ALBANTA

ATLEKSANDR
ATLEKSANDUR

ALEKSEYEV
AIEKSEY

ALEXANDER
ALFXANDRA
ALEXANDRE

ALIA
ALIEN

Erv mwroe me Rov vw
]
PO O PPO P HON O

o

This example shows groups of "similar" words, the number of documents
containing each word, and the total frequency of each word. The user
would want to CHANGE AFRICAN TO AFRICA with program UTIIKS in order to
normalize the set of unique words.

-11k-
STEP 8 - Examining the Listings Produced in Steps 3, 6, and 7

(Section 2.9)

Purpose: To determine what modifications must be made to the unique
words of the document collection in order to normalize these words.
Input: The user can examine any or all of the following six listings:

A. Listing of the numbers of the documents that contained more words
than the user allows (Step 3). The user may want to change or
delete some words in the documents that are too large.

B. Listing of the UNIQUE-WORD/DOCUMENT-NUMBER/FREQUENCY file
(Step 6). Since this listing contains the words grouped by doc-
ument, the user may reference this list to find out exactly what
words have been assigned to a particular document.

C. Listing of the SORTED:WORD/DOCUMENT-NUMBER/FREQUENCY (Step 6).
T™e user may reference this list to determine exactly what docu-
ments contained a particular word.

D. Listing of the UNIQUE-WORD/NUMBER-OF-DOCUMENTS/TOTL-FREQUENCY
file (Step 6). This listing shows the unique words of the col-
lection in "alphabetical" order.

E. Listing of the UNIQUE-WORD/NUMBER-CF-DOCUMENTS/TOTAL-FREQUENCY
file that has been sorted by either the number of documents or
total frequency field (Step 6). This listing shows the unique
vords in order of relative occurrence in the document collection.

F. Listing of "similar" words (Step 7). This list can be used to
determine misspellings or occurrences of several variations of
the same root word.

Output: The user must either decide upon the modifications that must

be made or that his collection of words are sufficiently free of

-115-
errors and the words are in a normal form (i.e., several variations

of the same root word do not exist).

In the former case, a set of modification cards must be punched
to be used as input to program UTIIKS (Step 9).

In the latter case, the user may proceed directly to the steps
that produce the document surrogates (Step 11).

The following six examples correspond to the six input listings
mentioned above: (The decisions made in each example are taken
from the sample listing given in Steps 3, 6, and T7.)

A. The total number of words in documents 1, 2, 3, . . . 1663, 1664
mist be either reduced to < 100 or the meximum number of words
allowed per document increased. (Note that document 1 has 266
words. Since the maximum number of words cannot be greater than
250, document number 1 must be reduced by at least 16 words.
Likewise document 1664 must be reduced by at least 6 words.)

B. Bach of the documents that are too large may be examined individ-
ually. This can be a long process, especially if there are many
documents with more words than the user allows. It is suggested
that the user first make modifications to the entire collection,
as opposed to particular document(s), then recycle getting
another list of documents that are too large. Hopefully this
new list will be small enough to either examine each document
individuelly or redefine the waximum number of words per document
to correspond to the largest document (must be < 250).

C. The user may want to examine documents 83, 485, 561, 833, 934,
1149, and 1275 (using the listing in example B. above) to deter-
mine if AFRO-ASTAN is to be changed to either AFRO, ASIAN, or

both. (The user cannot change AFRO-ASIAN to both AFRO and ASIAN

-116-
directly. He must CHANGE AFRO-ASIAN TO AFRO and ADD ASIAN to
documents 83, 485, 561, 833, 934, 1149, 1275.)

The user may also want to examine document 1275 to determine
if AFRO-SAIAN is misspelled. (The words AFRO-ASIAN and AFRO-
SATAN will only appear on the list of "similar" words if the
user specifies a value of 5 or more for the length of disagree-
ment parameter. This number is much too high since it will
cause too many words to be displayed as "similar.")

The user may want to DELETE AFSUME as a nonsense word or CHANGE
AFSUME TO ASSUME. The word AFOREMENTIONE occurred in six docu-
ments. The user may either delete it as having little importance
or change it.

This listing is one of the most important. It gives the unique
words in alphabetical order and may be used to locate candidates
for deletion and changes.

Severgl words on this list (PORK, OVERCROWD, etc.) occur in only
one document and only once in that doca_.zment. The user may want
to delete these as having little importance. If the user chooses
to delete all words that occurred in one document with a fre-
quency of one, then a computer program may be written to do this
automatically.

The most frequently occurring words may also be examined indi-
vidually. Since these words occur very often, they will have a
profound influence on the classification. The user should care-
fully examine the most frequently occurring words deleting words

with little importance.

-117-
F. Several words on this list should be changed since they are

either misspelled or are variations of the same root word, e.g.,
CHANGE AFRICAN TO AFRICA, CHANGE AGRIGULTU TO AGRIGULTURE, and
CHANGE ALBANIAN TO ALBANIA.

The list of "similar" words, along with the list of unique
words in "alphabetical" order will be the most useful tools in
determining the modifications to the unique words of the docu-
ment collection.

If after examining the listings, the user decides there are no modi-
fications to be made, then he is ready to create the document surro-
gates and should proceed to Step 1l.

If the user decides that the unique words must be modified, then
he should punch the corresponding modification cards (Figures 2.2(
and 2.21) and recycle through the indexing process by proceeding to

Step 9..

-118-
STEP 9 -~ Run Program UTILKS
Purpose: To start the re-cycling process by updating the words of
the document collection according to the modifications decided upon
in Step 8 (Section 2.9).
Input: (1) SORTED-WORD/DOCUMENT-NUMBER/FREQUENCY file (FBIS@5) -
must be assigned FORTRAN unit number 21.

(2) Modification Cards - must be read from FORTRAN unit num-
ber 5 (Figures 2.2 and 2.21)., These cards must be "alphabetized"
on the first word in the card. The sequence in Figure 2.22 must
be used when "alphabetizing" these words. (If the order of the
modification cards corresponds to the order of the words on the
UNIQUE-WCRD/NUMBER- OF - DOCUMENTS/ TOTAL-FREQUENCY file, then the
user 1s assured of having the modification cards in the correct
"alphabetical" order, since the words on this file are "alpha-
betized" according to the sequence in Figure 2.22,)

Output: (1) MODIFIED-SORTED-WORD/DOCUMENT-NUMBER/FREQUENCY file
(FBIS@T7) - must be assigned FORTRAN unit 22.

(2) Error Messages - any errors in the modification cards
should be corrected. The user has the choice of either saving these
corrections for the next re-cycle (the corrections must be. merged
with any modification cards punched for the new cycle) or perform-
ing a sort routine identical to Step 4 in order to re;-sort the
MODIFIED-SORTED-WORD/DOCUMENT-NUMBER /FREQUENCY file and then immedi-
ately re-running program UTIIKS with the correctéd modification
cards.

Example: (1) Semple deck setup from SPECTRA TO:

-119-
/LOGON

/FILE FBIS@5,LINK=DSETRL,RECFORM=F ,RECSIZE=5@,BLKSIZE=L@5¢, -
/FCBTYPE=BTAM, DEVICE=T9N, OPEN=INPUT
(Definition of the SORTED-WORD/DOCUMENT-NUMBER/FREQUENCY file as input.)

/FILE FBIS@T,LINK=DSETR2,RECFORM=F,RECSIZE=5@,BIKSIZE=4@5¢, -
/FCBTYPE=BTAM, VOLUME=FBIS@7 ,DEVICE=TON , OPEN=CUTPUT

(Definition)of the MODIFIED-SORTED-WORD/DOCUMENT-NUMBER/FREQUENCY file
as output.

JEXEC IMUTILKS
(Command to run the load module corresponding to program UTIIKS.)

of
(Data card giving the maximum number of characters per word.

DELETE ADVERSE
DELETE AFFECT
DELETE AFFORD

DELETE AFOREMENTIONE
DELETE AFRAID

DELETE AFTERNOON
DELETE AGAIN

DELETE AGERPR

DELETE AGGRAVATE
DELETE AGREE

DELETE AHEAD

DELETE AHM

DELETE AHTI

DEIETE ATM

CHANGE ALLOCAT TO ALLOCATE
DELETE ALLOWE

DELETE ALLOW

DELETE ALIRCUND
DELETE ALL

CHANGE EDUCAT TO EDUCATION
DELETE EFFECTIVENES
DELETE EFFECTIVE
DELETE EFFORT
DELETE EGC

(Modification cards, "alphabetized" by the first word on each card.
Note that the word ALL comes after ALLROUND since the "blank" character
sorts after the "z" in Figure 2.22.)

/I:.OGOFF

-120-
(2) Sample Error Meesages:
¥¥¥¥ERROR**** THE FOLLOWING COMMAND IS NOT RECOGNIZABLE AND IS -

IGNORED:
(THE POINTER 'V' SHOWS WHERE PROCESSING STOPPED)

’..Vl..
'ERASE CPT TP CPU '
***¥ERROR**¥* KEY TERM/DOCUMENT NUMBER CANNOT BE FOUND ON FILE, -
- MODIFICATION CANNOT BE PERFORMED.
KEY TERM: DEBTL DOCUMERT NUMBER: -1
T™ME FOLLOWING COMMAND IS IGNORED:
'CHANGE DEBTI TO DEBRIS !
FXERROR¥¥*% COMMAND CARDS NOT PROPERLY SCRTED BY FIRST KEY -
THE KEY TERM ON CURRENT COMMAND CARD: DECQARAT
IS LESS THAN KEY TERM ON PREVIOUS COMMARD CARD: -
DECREE--SIGN
THE FOLLOWING COMMAND IS IGNCRED:
'CHANGE DECQARAT TO DECCRATE !
The above error messages show typlcal mistakes made in punching
the modification cards. (1) The word TO was misspelled on the
ERASE command. (2) The word to be modified was wmisspelled and
could not be found on the input file. Since every occarrenve of
the word DEBTI was to be changed, the DOCUMENT NUMBER prints as -1.
If the user would have indicated that DEBTI was to be chénged only
in specific documents (by punching a charscter in colusn 80 of the
CHANGE card and including a Document-Number Card--see ﬂé. 2.21--
that contained the documents to be modified) then the mumber of the
document being proceseed when the error w&p discovered will be
printed instead of "-1." (3) The modification cards ware not pro-
perly "alphabetized." The card: CHANGE DECORAT TO IBCCRATE ceme
after a card with the word TECREE--SIGN and was eut of order since
DECREE--SIGN should be before DECORAT.
The user should correct these errors for a later re-run of pro-

gram UTIIKS. The first two errors will camse new modification

cards to be punched:
ERASE CPT TO CHU

CHANGE DEBRI TO DEBRIS

-121-

-122-
STEP 1¢ - Sort by Document Number, Word

Purpose: To sort the words back into their re'?pective documents .
This step is identical to Step 2 (Section 2.5).

Input: MODIF IED-S ORTED-WORD/DOCUMENT-NUMBER /FREQUENCY file (FBISET).

Output: SORTED-DOCUMENT-NUMBER /W ORD/FREQUENCY file (FBIS#3).

Example: Deck setup and printout from the Spectra 70's standard sort
package used to sort the input file by document number, word: (the
user is responsible for providing the sort routine to sort the input
file. The document number mst be the major field.and characters of
the word must be the minor fields; see Figure 2.7.)

/LOGON

/ERASE FBIS@T,LINK=SORTIN,RECFORM=F ,RECSIZE=5@ ,BIKSIZE=4@#5@ , FCBTYPE=SAM, ~
/VOLUME=FBIS@T , DEVICE=TIN ,STA TB=FOREIGN , OPEN=INPUT

(Definition of the MODIFIED-SORTED-WORD/DOCUMENT-NUMBER/FREQUENCY file

as input.)

/ERASE FBISO3

/FILE FBIS¢3,LINK=SORTOUT,RECFORM=F ,RECSIZE=5@ , BLKSIZE=b#5@ ,FCBTYPE=SAM, -
/VOLUME=FBIS@3, DEVICE=TSN , OPEN=CQUTPUT

(Definition of the SORTED-DOCUMENT-NUMBER/WORD/FREQUENCY file as output.)
/FILE PDISK,LINK=SORTWK,VOLUME=IANG@1,DEVICE=D59%,SPACE=(10000,1000)
(Definition of a private volume as work space for the sort. The user can
compute the amount of work space needed from the mumber of records on the
SORTED-WORD/DOCUMENT-NUMBER FREQUENCY file and the length of each record.)

/EXEC SORT
(Command to run the sort routine.)

SORT FIELDS=(L5,4,A,5,2,A,7,2,A,9,2,A,11,2,A,13,2,A,15,2,A,17,2,A,19,2,A,
2152’A)23)2,A)25’Q’A’27)2)A’29}2,A)31)2’A’33)2}A)35)2}A)37J2)A)39,2!A)1+l’
2,A,43,2,A) ,FORMAT=FI

(This command identifies the document number as the major sort field and

each character, from the lst to the 20th, of the word as the minor fields;
see Figure 2.7.)

END
(End of sort commands.)

-123-
(The following messages were printed by the sort routine:)
S1g1 TSOS SORT/MERGE DONE
5116 NUMBER OF GUTPUT RECORDS - 00000100158
5116 NUMBER OF INPUT RECORDS - 00000100158
S116 NUMBER OF SORTED RECORDS - 00000100158

/LOGOFF

-124-
STEP 3B - Run Program ELDID

Purpose: To eliminate duplicate words within each document. This
step is identical to Step 3A except that input option $ is speci-
fied in this case (Section 2.6).

Input: (1) SORTED-DOCUMENT-NUMBER/WORD/FREQUENCY file (FBISE3) -
must be assigned to FORTRAN unit 21.

(2) Input Parameter Card (specify input option @; see Figure
2.8) - read from FORTRAN unit 5.

Output: (1) UNIQUE-WORD/DOCUMENT-NUMBER/FREQUENCY file (FBISg:) -
mst be assigned FORTRAN unit 22,

(2) Listing of the mumbers of the documents that contained
more words than the user allows.

Example: (1) Sample deck setup for Spectra 7T0:

/LOGON

/ERASE FBIS@3

/FILE FBIS@3,LINK=DSETR1,RECFORM=F ,RECSIZE=5@,BLKSIZE=U#5@, -
FCBTYPE=BTM, VOLUME=FB1S{ 3, DEVICE=T9N ,STA TE=FOREIGN , OPEN=INFUT
(Definition of the SORTED-DOCUMENT-NUMBER/WORD/FREQUENCY file as input.)
/FILE FBISg4,LINK=DSET22,RECFORM=F ,RECSIZE=5@,BLKSIZE=4JS5@, -
/FCBTYPE=BTM, VOLUME=FBIS@\ , DEVICE=TSN , OPEN=CQUTFUT

(Definition of the UNIQUE-WORD/DOCUMENT-NUMBER/FREQUENCY file as output.)

/EXEC LMELDID ‘
(Command to run the load module corresponding to program ELDID)

1¢gegs
(Input Parameter Card specifying (1) the maximum number of words per
document is 100, (2) the maximum number of characters per word is 2f,
and (3) the input option is .
/LOGCFF
(2) Sample Printout
The printout is similar to the example given in Step 3A. There

were 96,999 records on the UNIQUE-WORD/DOCUMENT-NUMBER/FREQUENCY

-125-
file, and there were 297 documents with more than 100 words.

(The largest document, mmber 156, had 202 words.)

The user should continue the re-cycle process by proceeding
to Step L. Recycling may be done as many times as necessary to
produce & set of unique words that are relatively free from-errors

and contain mostly relevant keywords.

-126-

STEP 11 - Run Program UNWRDS
Purpose: To eliminate duplicate words within the entire document
collection, and to assign a code number to each unique word
(Section 2.8).
Input: (1) SORTED-WORD/DOCUMENT-NUMBER/FREQUENCY file (FBISg5) -
mist be assigned FORTRAN unit mumber 21.
(2) Input Parameter Card (Specify output option 1-
see Figure 2.13)
Output: (1) SORTED-WORD/DOCUMENT-NUMBER/CODE file (FBIS@B) -
must be assigned FORTRAN unit number 23.
(2) UNIQUE-WORD/CODE file (FBIS@9) - must be assigned
FORTRAN unit number 22,
Example: (1) Deck setup from Spectra TO:
/LOGON
/ERASE FBIS®5
/FILE FBIS@5, LINK=DSETRl,RECFORM=F,RECSIZE=5@,BLKSIZE=4050,FCBTYPE-
BTAM, - /VOLUME=FBIS@5 , DEVICE=T9N, STATE=FOREIGN , OPEN=INPUT
(Definition of SORTED-WORD/DOCUMENT-NUMBER/FREQUENCY file as input.)
/FILE FBIS@S,LINK=DSET23,RECFORM=RECSIZE=5@ ,BLKSIZE=4@5@ ,FCBTYPE=
BTAM, - /VOLUME=FBIS@8 , IEVICE=T9N , OPEN=0UTPU T
(Definition of the SORTED-WORD/DOCUMENT-NUMBER/CODE file as output.)
/FILE FBIS$9,LINK=DSETE2,RECFORM=F,RECSIZE=46,BLKSIZE=4094 ,FCBTYPE=
BTAM, - /VOLUME=FBIS@9, DEVICE=T9N, OPEN=CUTFUT
(Definition of the UNIQUE-WORD/CODE file as output.)

/EXEC IMUNWRDS
(Command to run the load module corresponding to program UNWRDS.)

12¢
(Input Parameter Card specifying (1) that output option 1 is to be
taken and (2) the maximum number of characters per word is 2¢.)

(2) Sample output from .program UNWRDS:

-127-
PROGRAM UNWRDS STARTED
OUTPUT OPTION PARAMETER: 1
MAXIMUM CHARACTERS PER WORD: 2¢
UNIQUE-WORD/CODE AND SORTED-WORD/DOC#/CODE FILES BEING CREATED
NUMBER OF RECORDS ON SORTED-WORD/DOC#/CODE FILE: 96999

PROCESSING FINISHED FOR PROGRAM UNWRDS.

-128-

STEP 12 - Sort by Document Number, Code
Purpose: To sort the words back into their respective documents in
order to create a surrogate for each document (Section 2.1f).
Input: SORTED-WORD/DOCUMENT-NUMBER/CODE file (FBIS@S).
Output: DOCUMENT-NUMBER/CODE/WORD file (FBIS1f).
Example: The following is the deck sebup and corresponding printout
from the Spectra 70 standard sort package:
/LOGON
/ERASE FBIS@S
/FIIE FBIS@S,LINK=SORTIN,RECFCORM=F ,RECSIZE=5@,BLKSIZE=4#5@ ,FCBTYPE=SAM, -
/VOLUME=FBIS@8, DEVICE=TON ,STATE=F OREIGN , OPEN=INFUT
(Definition of SORTED-WORD/DOCUMENT-NUMBER/CODE file as input.)
/FILE FBIS1#,LINK=SORTCUT,RECFQORM=F ,RECSIZE=5@ ,BLKSIZE=b{#5@, -
/FCBTYPE=SAM, VOLUME=FBIS1{ , DEVICE=TON , OPEN=OUTPUT
(Definition of DOCUMENT-NUMBER/CCDE/WORD file as output.)

/FILE PDISK,LINK=SORTWK, VCLUME=LANGP1,DEVICE=D59¢,SPACE=(10000,1000)
(Definition of a privete disk volume as work space for the sort.)

/EXEC SORT
(Command to run the sort routine.)

SORT FIFLDS=(45,4,A,49,2,A) ,FORMAT=FI

(This command identifies the document number, which begins with the L5th
byte of each record and is 4 bytes long, as the major sort field and
the code number, which begins with the L9th byte and is 2 bytes long, as
the minor field; see Figure 2.23.)

END
(End of sort commands.)

(The following messages were printed by the sort routine;)
S1g1 TSO0S SORT/MERGE DONE

S116 NUMBER OF QUTPUT RECCRDS - 00000096999

S116 NUMBER OF INPUT RECORDS - 00000096999

S116 NUMBER OF SORTED RECORDS - 00000096999

/LOGOFF

-129-

STEP 13 - Run Program DOCSUR
ose: To create a surrogate for each document. Each surrogate
will consist of a record containing the document!s mmber and the
code mmbers assigned to the words extracted from the document
(Section 2.1f).
Input: (1) DOCUMENT-NUMBER/CODE/WORD file (FBIS1§) - must be
assigned to FORTRAN unit 21.
(2) Input Parameter Card (see Figure 2.24) - read from
FORTRAN unit 5.
Output: SURROG file - must be assigned to FORTRAN unit 22.
Exemple: (1) Sample deck setup from Spectra 70:
/LOGON
/ERASE FBIS1g
/FILE FBIS1{,LINK=DSET21,RECFORM=F ,RECSIZE=5@,BLKSIZE=U¢5¢ ,FCBTYPE=BTAM, -
/VOLUME=FBIS1#, DEVICE=T9N ,STATE=FCREIGN , OPEN=INPUT
(Definition of DOCUMENT-NUMBER/CODE/WORD file as input)
/FILE SURROG,LINK=DSET22,RECFORM=F ,RECSIZE=52¢ ,BIKSIZE=364¢g, -
/FCBTYPE=BTAM, VOLUME=SURROG , DEVICE=T9N , OPEN=CU'TPUT
(Definition of the document surrogate, SURROG, as output.)

/EXEC LMDOCSUR
(Command to run the load module carresponding to program DOCSUR.)

gg16692¢22@

(This data card specifies (1) there are 1669 documents in the collection,
(2) the maximum number of words per document is 202, This value was ob-
tained from the listing output from Step 3B. The largest document is
mumber 156 with 202 words. If a value smaller than 202 is input, then
any document with more will have some words truncated from its surrogate.
These words, however, will be printed on an ocutput listing. Finally

(3) the last field on the input card specifies 2¢ characters per word.)

/LOGOFF

(2) Sample printout from DOCSUR:

PROGRAM DOCSUR STRARTED.

)

-130-
NUMBER OF DOCUMENTS IN COLLECTION (READ FROM INPUT CARD): 1669

MAXIMUM NUMBER OF KEY WORDS PER DOCUMENT: 22
MAXIMUM NUMBER OF CHARACTERS PER WORD: 2¢
NUMBER OF RECORDS ON DOCUMENT SURROGATE FILE: 1669
PROCESSING FINISHED FOR PROGRAM DOCSUR.
File DOCSUR may now be input to the Automatic Clasgification Routines.
The number of documents value punched on the input card must be the
actual number of documents in the collection. (This value 1s printed
on the listing from Step 3B.) If this value does not match the number
of records on the document surrogate file, a warning message is printed.
The user should refer to Section 2.10.4 to determine the proper pro-

cedure to be taken if this message is printed.

-131-
STEP 14 - Run Program PRTFIL
Purpose: To produce an "alphabetical' 1ist of the unique
words in the document collection and their respective codes
(Section 2.9).
Input: (1) UNIQUE-WORD/CODE file (FBISP9) - must be assigned
FORTRAN unit 12.
(2) Input Parameter Card (specify input option 4) -
read from FORTRAN unit 5.
Qutput: "Alphabetical" listing of the unique words in the
document collection and their respective codes.
Example: (1) Deck setup from Spectra TO0:
/LOGON
/FILE FBIS@9,LINK=DSET12,RECFORM=F ,RECSIZE=46,BLKSIZE=LOGk,
/FCBTYPE=BTAM, DEVICE=T9N, OPEN=INPUT
(Definition of the UNIQUE*WORD/CODE file as input.)

/EXEC IMPRTFIL
(Command to run the load module corresponding to program PRTFIL.)

4 gg5¢53

(Data card specifying input option 4 and 5053 records (words)
to be printed. The number of records on the UNIQUE-WORD/CODE
file may be obtained from the printout from program UNWRDS,
i.e., Step 11.)

/LOGOFF
(2) sample printout from PRTFIL.

The reader should refer to the Appendix for a list of the
unique words extracted from the FBIS data base.

-132-
CHAPTER 3

AUTOMATIC CLASSIFICATION

3.1 Imntroduction

The purpose of the group of routines described in this chapter,
is to take the indexed document surrogate file, create a classified
file complete with document text, document index terms, and category
or cell to which the document belongs. Also, two dictionary files
are created which will be used in making retrievals on the classified
file. Table 3.1 is a list of the steps involved in the classification

of the file. Figure 3.1 is a general system flow chart of the classi-

B

R e, s oo

fication procedure indicating input and output from the programs at
each step. Each of the programs involved will be described in this
chapter. Five of the 9 programs are written in Fortran, and are
machine independent. The other 4, are merely sorts and may be
executed using the system sorting features of the computer

performing the classification,

Step

Step

Step

Step

Step

Step

Step

Step

Step

-133-
Program Name: CLASFY
Classification of the document surrogate file.
Program Name: Sort-One
Sort of the Final Keyword File, which is output from the
classification. Sort is in descending node number sequence
for input to the tree program. (Step 3)

Program Name: Tree

Creation of the classification Tree

Program Name: Sort-Iwo

Sort of the classification tree in ascending node number
sequence.

Program Name ~ NOTORY

Creation of Nede to Key Dictienary, printing of Nede te
key Table, and creatfon of tHe Alphiahetic Rey<Noda Pile,

Program Name - Sort-Three

Sorting of the Alphabetic key Node File in ascending
alphabetic key sequence

Program Name: KYTOND

Creation of Key to Node Dictionary and Printing of
Key~to-Node Table

Program Name: Sort-Four

Sorting of Document Node File (which is output from CLASFY)
for input to MRGCLY (Step 9)

Program Name: MRGCLY

Creation of final classified file containing text,
alphabetic keys and cell number.

Table 3.1 -~ Steps in Classification

m— e .

i Surrogate (" Iopat i
. \ File \ { Paremeters
i
- Intermediate T
Ky €=--).
* File \ \
S rwﬂgm,»., et
* & ;\ CIASFY Ceen gocmentt
Intermediate « | Flle

b e o

N i Classification / Docunent
ginn.l Report ! Node File
oy .
(\ File P P \/

Intermediate
Interssctlon TREE ., > Intersection
{\‘\ e R \I";ilu .
—— M
4 A, ——
N
Classification Control

| - e
|
4
Sorted ™
Classiffication
N Figure 3.1
/’l General System Flowchart

-135-

ﬁ/

' — J/
a
i

Alphabe’b ode-t o_
Keyword- r

%e @nary

Node-to-Key
Table

@y-to_ \ ’Key-to-Node l

ctionary }

Figure 3.1, continued

-£136-
3.2 CLASFY Description

This program takes the indexed document surrogate file, and
classifies it using an algorithm called CLASFY, conceived by
Dr. D. Lefkovitz [3]. The method of this algorithm is to start with
the complete file and partition it into N groups. Then each of the
N groups 1s subdivided into another set of N groups. This partition-
ing continues on each group until each group meets some maximum size
criterion. That is, no group should contain more than the maximum
number of documents allowed in each final group. Each group or node
is treated independently of every other node and at any point in the
classification, a node may be declared terminal with respect to size
criteria. The final result is to obtain some number of mutually
exclusive groups of documents.

In the process of creating the final groups, a tree is created
(see fig. 3.2) with each group partition representing a node in the
tree. This tree will be modified further on in the classification
process (in Step 3) so it is here referred to as the intermediate
classification tree. The final or terminal nodes (those which are
not repartitioned) in the tree are referred to as cells.

In Fi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>