
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

February 1993

The Software Design Laboratory The Software Design Laboratory

Jonathan M. Smith
University of Pennsylvania, jms@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Jonathan M. Smith, "The Software Design Laboratory", . February 1993.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-93-21.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/457
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76362134?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/457
mailto:repository@pobox.upenn.edu

The Software Design Laboratory The Software Design Laboratory

Abstract Abstract
Software Design Laboratory is an undergraduate practicum in software design, which focuses on
principles and practices of large-scale software design. Concepts and examples borrowed from
elsewhere in Computer Science are applied to the construction of a significant project, namely a
command interpreter resembling the Bourne shell. The course focus is on long-lived software systems of
a size requiring group effort. We therefore address maintenance, testing, documentation, code readability,
version control, and group dynamics.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-93-21.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/457

https://repository.upenn.edu/cis_reports/457

The Software Design Laboratory

MS-CIS-93-21
DISTRIBUTED SYSTEMS LAB 19

Jonathan M. Smith

University of Pennsylvania
Scl~ool of Engineering and Applied Science

Computer and Information Science Department

Philadelpliia, PA 19104-6389

February 1993

The Software Design Laboratory

Jonathan M. Smith

Distributed Systems Laboratory
Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19 104-6389

ABSTRACT

Software Design Laboratory is an undergraduate
practicum in software design, which focuses on principles
and practices of large-scale software design. Concepts
and examples borrowed from elsewhere in Computer Sci-
ence are applied to the construction of a significant pro-
ject, namely a command interpreter resembling the
Bourne shell. The course focus is on long-lived software
systems of a size requiring group effort. We therefore
address maintenance, testing, documentation, code reada-
bility, version control, and group dynamics.

1. INTRODUCTION
There is a transition in every Computer Science curriculum between
introductory courses which are suitable for non-majors and more
advanced courses. The former typically introduce one or more pro-
gramming languages (often Pascal, but sometimes Lisp, Scheme, or
some other language), touch upon basic data structures (e.g., trees
and queues), and introduce fundamental algorithms (e.g., sorting and
searching). The assignments are small: they either demonstrate
language features or build toy applications of algorithms and data
structures. They are, naturally, individual assignments. The latter
courses, designed for Junior and Senior Majors, are typically elec-
tives, and offer in-depth treatment of some topic in Computer Sci-
ence. These may range from Programming Languages, Operating
Systems, and Artificial Intelligence to Analysis of Algorithms, and
tend to reflect faculty interests more than introductory courses. The
more practically-oriented courses often use projects or case studies to
reinforce concepts discussed in class. The instructors may stimulate
the advanced undergraduate to participate in research efforts by
means of a project course or a directed independent study. Many of
these projects use the C programming language, or a derivative such
as C++, and expect a working knowledge of the UNIX@ operating

8 UNIX is a registered trademark of Unix System Laboratories.

system. The work in such courses may be done in groups, or it may
be done in collaboration with active researchers who have significant
software efforts. At a high level, this describes the situation at Penn
and many other schoolsf.

We have developed a course in software design which we
believe fits well at the point of the transition. We call this course a
"Laboratory" for its training in the application of principles. In
this, it is like laboratories offered by other disciplines such as Physics
and Chemistry. Unlike traditional laboratories, the focus is less on
the experimental method than on learning from a single extended
experiment. The learning is directed towards construction of
significant long-lived systems, as opposed to construction of throwa-
way examples.
A number of observations helped shape the course:
1. Significant software engineering tasks have a long lifetime,

characterized by a design phase, an implementation phase, and a
long "maintenance phase". In real systems, the "maintenance
phase" accounts for most of the money spent, and thus there is
typically significant effort spent in the design phase to ease
maintenance. One difficulty with long-lived systems is that
environments change and new features are required. Thus, one
must design for maintenance, coupled with the notion of software
re-use. A course should structure assignments in such a way that
previous work must be reused, as in an implementation done in
phases. At each phase, the previous code is used, or the intructor's
code is used (necessitating reading and understanding a system
which is more complex as time goes on), as a platform.

2. Testing strategies, and design strategies which enable and ease
testing must be introduced. In many cases, design activities are
essentially independent of an implementation, but all implementa-
tion phases demand testing. The choice of test cases, and the
choice of testers, is crucial to effective testing.

3. Documentation is essential, because many involved in the design
and engineering of significant systems do not want to read the pre-
cise statement of problem solution embodied in the code in order
to obtain adequate understanding for their role. They want to
understand precisely only the interfaces required for performance
of their own tasks. The rest may be useful for the big picture. This
documentation can take many forms:

embedded commentary

t This course started at Columbia University and has continued to evolve at the
University of Pennsylvania.

associated files in a text-processing language such as trog or
TEX.
pointers to relevant literature embedded as comments in the pro-
gram text

a Roadmaps or meta-documents describing relationships between
modules

All of these things aid human understanding, because big systems
need more than a few people on the same wavelength.

4. Coding standards, even loose ones, help program readability. It is
important to read code, and code must be written in such a way as
to be read; style sheets help this.

The course has successfully accomplished these goals for a number
of semesters. The student leaves the course with a thorough under- -

standing of a tool-rich programming environment that many profes-
sional programmers consider an excellent one. More important, they
will have worked on a project of significant scope, built a significant
software artifact, and will understand the group nature of systems
building. Formal methods are addressed as a methodology, not a
known solution.

Software Design Laboratory ("Software Lab") is an undergra-
duate course, and thus differs significantly from graduate-level
software engineering training, e.g, Wang Institute's now-defunct
Ardis1987a* McKeeman1987a Master of Software Engineering (MSE)
program. For such courses a higher level of prerequisites and back-
ground could be expected, and sufficient attention paid to all aspects
of the software lifecycle. Such graduate courses presumably have
the advantage of prior student exposure to Computer Science, and
thus can direct more energy towards software engineering, and less
towards the "glue" connecting software design to other areas of
Computer Science. Some of these other courses, in particular the
"Software Hut" W0*man1987a, have addressed group
structure and interaction issues in a different fashion than Software
Lab, but for the thrust of our course these differences do not seem
appropriate. An interesting observation is made in the 1987 article
W0rtrnan1987a on the Toronto course, where Wortman states: "We
now feel that the emphasis on buying and selling software in the ori-
ginal software hut project gave the whole project the wrong orienta-
tion. The course we teach is about the design and implementation of
software, not about software marketing." Kant's Kant1981a course,
with students ranging from freshmen to graduate students covers dif-
ferent portions of the life cycle than Software Lab. Her article pro-
vides a course outline, with interjected textual comments. The feed-
back was similar; namely, the course required too much work for the
number of credits. Her group size was 5, versus our 3.

Software Lab is consistent with the survey results gathered by
Leventhal and Mynatt Leventha11987a in that it is offered to Junior and
Senior-level students, focuses on "Later-Life-Cycle" issues, is
project-oriented, the grade is heavily based on success with the pro-
ject, and the substantial project is intended for actual use. We differ
in that the requirements for written reports are lessened (this stems
partly from the project, an existing well-documented piece of
software) and no oral reports or examinations are required.

Bentley and Dallen's Bent1ey1987a setting is similar, although
their course offering appears to be slightly later in the West Point
curriculum than Software Lab is in ours. We note their approach of
using many smaller exercises to teach software engineering princi-
ples. This contrasts with Software Lab approach of using a single
large project, partitioned into development stages.

Morris's M0nis1988a course is very similar to Software Lab; he
recognizes many of the same needs, and took similar approaches.
The major difference we see was the choice of project, a mailer,
versus Software Lab's command interpreter (discussed in the second
section). Since the command interpreter is a programming language,
and its functionality is tightly integrated with the features of UNIX,
our exercise effectively bundled up learning experiences from
several domains. As we argued earlier, this effectively integrates a
software design practicum with other portions of our Computer Sci-
ence curriculum. Thus, it both builds upon and reinforces that curri-
culum, and gives the student knowledge of lasting value.

The remainder of the paper is organized beginning with a rather
detailed presentation of course material in the second section. The
course is summarized in Table I at the end of the section. The third
section discusses the course management issues and relates Software
Lab to laboratory exercises in classical scientific disciplines. The
fourth section concludes the paper and relates the course's accom-
plishments to its educational goals.

2. COURSE DETAILS
The course presentation is designed so that covered material would
not become obsolete upon completion of the course; there is develop-
ment of both a project and a general purpose toolbox, of both code
and techniques.

The following books comprise the course reading list:
"The UNIX Programming Environment" Kemighan1984a, chosen
because it illustrates use of the UNIX tools and libraries on a realis-
tic example, namely a small programming language.

"The Psychology of Computer Programming9 ' Weinberg1974a,
chosen because it focuses on the fact that programming (software
design) is a human activity, and that as the size and complexity of

the system increases, the nature of the proper support tools
changes from programmer support tools to group support tools.
Also stresses reading programs, and "egoless programming"
(groupthink). Batch programming discussion is unfortunately a bit
dated.
"The Mythical Man-Month" Br00ks1975a, was chosen for its read-
able and insightful discussion of the OSl360 software development
and lessons learned. While many points echo Weinberg, chief pro-
grammer teams are quite different than egoless programming.

In addition, the following books and articles are background reading:
"The UNIX Operating System" Ritchie1978a, "The UNIX Shell"
Boume1978a, "UNIX ~ ~ ~ l ~ ~ ~ ~ ~ ~ ~ i ~ ~ ~ Thompson1978a, and h he c
Programming Language" Kernighan1978a is also suggested for stu-
dents unfamiliar with C and UNIX:

In the next eight subsections, we present the assignments that
are given and their intended role. All assignments involving pro-
gramming are specified as a UNR manual page, a clear and concise
form of specification that the student is to be familiar with. An
example manual page for a programming assignment is included as
Appendix I.

2.1. Associative Memory
The first order of business is proficiency in writing, and especially in
reading the language used in the course, C. The students are advised
to consult Kernighan and Ritchie Kernigha"1978a and are given a
"Style Sheet for C" which suggests a stylistic convention for writing
C source and building well-documented multi-module programs.

A program implementing an "associative memory'' is distri-
buted to the class, in source form. The program prompts the user for
an input; the input is a new-line terminated string of characters. If
the input contains a '=' character, the characters to the left of the '='
are treated as a name and the characters to the right are treated as a
value, which is associated with that name. If there is no '=', and the
input contains a '$' character, the characters to the right of the '$ '
are treated as a name; the associated value is retrieved and printed if
there is one. If neither '=' or '$ ' are present, the program merely
prompts for another input. It accepts input lines until an end of file
condition is raised. The <name, value> pairs are stored as singly
linked lists of structured records.

Thus, reading the well-commented source code introduces the
students to strings, records, terminal U0, simple parsing, subroutines,
dynamic memory allocation, and pointers (always a source of trouble
to the student). The lecture material emphasizes the necessity of
reading source code. Using the conventions of the style sheet helps
to write readable source code.

The assignment is to modify the program so that it preserves
<name, value> pairs across invocations, i.e., it maintains them on
disk storage. This introduces the student to operations on named disk
files, and forces an understanding of the list maintenance code.

2.2. Env Command
Other than the file operations required to manipulate the <name,
value> pairs across invocations, the student has encountered little of
UNIX. The second assignment is the env(1) command, which is
available with System V UNIX, but not with most versions of 4.[X]
BSD, which is used for teaching. The environment is a set of
<name, value> pairs that are made available to subprocesses; it is a
subset of the <name, value> pairs accessible to the shell user. It
provides a method for users to pass information to subprocesses
without explicitly specifying options on a command line, e.g., the
terminal is specified with TERM=hp2 62 1; all screen-oriented pro-
grams examine this value to determine appropriate terminal control
sequences. The assigned env command has the invocation syntax:

env [-1 [name=valuel * [command [argument] * I

where containing brackets indicate that the contents are optional, and
C L * , , is the usual Kleene star, indicating zero or more repetitions.
The command argument specifies a UNIX command to execute.
With no command argument, the program prints the strings con-
tained in the current environment, otherwise the command is exe-
cuted with the specified string settings in its environment. The
name=value arguments specify new settings, and the "-", if
present, specifies that the current environment is to be ignored.
The program added the following to the students education:
1. Understanding of the UNIX command line argument handling dis-

cipline. Thus, simple parsing is covered.

2. Process management, since the mechanism for setting the environ-
ment values uses the exec() system call.

3. Further understanding of the file system, since command lookup
required search through several directories, specified through the
PATH environment variable.

In addition, the student is able to make use of whatever string
management utility routines they had developed for the first assign-
ment.

2.3. Design Document
The first two assignments are to be done individually; they are exer-
cises to ensure sufficient exposure for contributions in a group set-
ting. The students are assigned readings describing the command
interpreter Ritchie1978a7 B0ume1978a whose subset would be

implemented. Groups are formed; students are allowed to form 3-4
person groups with their acquaintances; groups of the remaining indi-
viduals are formed at random; the ideal size is 3.

Given their readings, the students are requested to submit a
design document describing their approach to designing the program
described in the literature. This is done both to ensure that they had
read the literature and to create some group cohesion; there is no
intention to hold them to the design. They are expected to detail data
structures, algorithms, and user interface features. At this point, they
are introduced to several powerful UNIX tools for program construc-
tion, make, a dependency-specifying tool for recompilation; lex, a
lexical analyzer generator; and yacc, a parser generator. While they
are given appropriate readings, a more effective tool is to give them
an example. The example is the first assignment redone using the
tools; experience with the assignment helped the students to see the
value of these tools.

2.4. Command Execution a n d I/O Redirection
The first iteration of command interpreter development required that
the student provide an interactive facility for executing commands
with arguments and specified 110 redirections. These redirections
allow commands operating on the standard output and input files to
have the file values specified on the command line. The syntax pro-
vides mechanisms for reading, writing, and appending to named disk
files, as well as the ability to operate on previously opened files
specified by a small "file number". There is additional syntax for
interactive entry of files immediately previous to command execu-
tion.

The assignment allowed the students to use the mechanisms
developed in the env assignment to create an interactive command
interpreter. The new learning consisted mainly of the use of the
tools, which for a first-time user is non-trivial. Their understanding
of file manipulation technique is greatly expanded.

2.5. Metacharacters for$lenarne pattern-matching
The second version of the command interpreter added metacharacters
to the command line syntax. Metacharacters, e.g. the wild card char-
acter " * ' ' , are used to pattern match filenames so that lists of argu-
ments can be specified in a compact fashion. For example, "pr
* . [ch] " will print the C source files and headers in the current
directory. These patterns can be arbitrarily complicated; see Bourne
B0ume1978a for details. The design of these additions involved
several components, of which the most important are a pattern
matcher and an interface to the UNIX directory structure, so that
multi-directory patterns such as "/u* / f a c u l t y / j ? ? / t [1 2 I *"
could be properly evaluated.

Class time is spent on regular expressions and metacharacters,
e.g., the Kleene '*'. Once the regular expression notion is under-
stood, the construction of a pattern matcher became an exercise in
coding. The students are advised to first implement a single direc-
tory pattern expansion routine, which could then be recursively
applied to the multiple directory case. Thus, the students are exposed
to:
1. Regular expressions (which they had first encountered with lex),

and more significantly, their implementation.

2. Pattern matching algorithms.
3. Hierarchical file systems.
The effect of this exposure is very positive, in that the student sees
the advantage of such compact notations as regular expressions, and
the simplicity and power of the hierarchical file system in a practical
setting.

An important feature of the approach is the integration of new
features into an existing software framework. Thus, good design
decisions and engineering practice, e.g. documentation, pay off in
later assignments. Poor decisions make integration more difficult,
and may force substantial redesign. Thus the students are exposed to
the issues of software maintenance in a most practical fashion.

2.6. Multiprocess computations and symbol manipu-
lation

In the third iteration, there are two additions to the command inter-
preter. These are the addition of syntax and functionality for con-
necting processes via pipes, and inclusion of facilities for setting and
retrieving named string-valued variables.

This assignment posed particular conceptual problems for the
students; we attribute it to their first encounter with concurrency, vir-
tual or otherwise. Use of the fork() primitive in previous exercises
helped, but less than it might have since they are given a canonical
code segment containing the common fork()/exec() sequence. The
inclusion of facilities for variables drew on their earlier experiences
with the "associative memory"; many groups re-used the code.

2.7. New parsing and execution for "quotes"
The fourth and final additions to the command interpreter are the
three types of quotation marks employed by the UNIX Shell, single
quotes ('), back-quotes ('), and double quotes (") B0ume1978a. This
addition is chosen for the following two (major) reasons:
1. It forced a careful redesign of the lexical analysis routines and

their interface to the parser and interpreter. Other than to add "I",
the symbol for separating pipeline components, there had been no
changes necessary to the lexical analyzer since the initial

assignment.
2. The implementation of the back-quote, which specifies a string-

valued result to be obtained by executing the contained com-
mands, forced the students to glue things together carefully. In
particular, the easiest way of implementing this feature is with a
copy of the command interpreter invoked through a pipeline.

Attention is given to issues such as the order of evaluation applied to
the various features, and the demands this made on the implementa-
tion strategy, for example the command string "a= * ; echo $a".
Progress through the programming assignments towards the com-
plete project is illustrated in Figure 1.

1. Associative Memory

J.
2. Env Command

3. Design Document J
J.

4. Command Execution & I/O Redirection

J.
5. Metacharacters

J.
6. Pipelines and Variables

J.
7. Quotes (Final Programming)

8. Lessons Learned

Figure 1: Steps towards final project

2.8. ' Zessons Learned"
Mistakes (and triumphs), in retrospect, are among the most valuable
learning experiences. Accordingly, the students submit a "Lessons
Learned' ' document, summarizing their positive and negative experi-
ences with tools and methodologies. In order that they understand
what such a document is to contain, a realistic example is given
based on the instructor's problems in constructing the command
interpreter. As always, there is a wide separation between the best
and worst of these documents; the best are remarkably frank and
insigthful, while the worst are obvious or mere restatements of the
distributed example.

What is most exciting is that many students discover and formulate
principles of good design and debugging methodologies for them-
selves, with examples they have taken to heart because they had built
them.

Table I gives a summary of the course phases shown in Figure
1. Phases 1-2 are individual effort, and Phases 3-8 are group effort.
The final project is complete by Phase 7, and Phases 3 and 8 are
external documentation steps. Project construction is from Phases 3
through 7. Phases 1,2,3,5 and 8 are allowed one week for comple-
tion; Phases 4, 6 and 7 are allowed two weeks. In practice, the
course schedule may slide a bit during the semester, but adjustments
are easily made.

named string variables

I & successes in document I examples

Table I: Summary of Course Phases

Figure 2 illustrates the major reuses of code by relating reuse to the
implementation phases of Table I. The relationship is illustrated by
enclosure; if Box N encloses Box M, Phase M's code was used in
Phase N.

Figure 2: Re-use between implementation phases

3. DISCUSSION OF THE COURSE
There are several important components we see in a laboratory set-
ting, namely (1) experiments; (2) replication of experiments; (3)
observation and deduction; and (4) "classical" laboratory tech-
niques, such as maintaining laboratory notebooks or logs.

The course met for two sessions per week. The first session is
interactive, and the second is in a lecture format. This ordering can
take advantage of an intervening weekend to stimulate questions; stu-
dents experimented with the material presented in the second day's
lecture. The lecture material emphasized testing and observation of
the results; a terminal in the classroom is used often. Office hours
and help sessions were held in areas with terminals. Student experi-
mentation is of two types. First, given that the students were imple-
menting a shell-subset command interpreter, they could resolve ques-
tions about the intended functionality of their software in a simple
fashion. In their "reverse-engineering", they could experiment with
the standard shell to test the behavior of redirection and quotation
marks. The deductions drawn from these experiments were incor-
porated into the design of the student projects. Students were
enthusiastic about experimenting; their experiments detected mis-
takes in preceding lectures! Second, the students experimented with
new concepts by writing small programs. For example a trivial mul-
tiprocess pipeline was implemented to understand synchronization
and data movement. This method of experimentation is the basis for
prototyping.

Experiments were replicated by the students for several reasons.
First, in debugging, a failure must be repeatable to be isolated and
diagnosed. Second, many groups performed experiments suggested
in class to increase their grasp of the material. Discussion between
students led to many unexplained phenomena arising as questions in
the next interactive class session.

Observation is dealt with in three ways. First, several lectures
and interactions dealt with the experimental methods necessary for
reverse-engineering a large program. Second, the process of debug-
ging software was discussed. Some general principles of observa-
tion, fault-detection, and fault-refinement were given. Third, a
detailed lecture on performance measurement and analysis was
given. This took a paper from the scientific literature, explained the
results and procedures, and then examined the conclusions. The lec-
ture emphasized measurement, presentation, and the validity of con-
clusions.

"Classical" lab techniques were not always applied, as the set-
ting is not the physical sciences. One technique deserving attention
is record maintenance. Suggested documentation included source-
code comments describing methods, and measurements justifying
design decisions, e.g., use of a certain method. Thus, the comments
existed as a record of the design decisions and motivations. The
"Lessons Learned" document served as a summary record of the
student's observations; some of these were surprisingly detailed.

We used electronic communication extensively; this allowed
the student to obtain answers across the week, rather than a few
preset times. An on-line bulletin board mechanism allowed posting
of sources, interesting questions, interesting answers, and details of
the assignments. This saved class time for more appropriate interac-
tions.
The choice of an existing software system had a number of positive
effects, including:
1. The command interpreter they were constructing is completely

documented B0ume197ga. Such command interpreters are (1)
interactive, (2) programming languages, and (3) interfaces to an
underlying operating system, which provides a virtual machine. In
addition, the shell is an exemplary piece of software design.

2. The full interpreter they were working towards is the student's
interface to the system. Thus, they become familiar with its func-
tioning through use as well as instruction. Questions about
obscure functional details could be answered by typing in one or
more well-chosen examples. Experimentation was a very
worthwhile tool, as it should be in a laboratory course. Several
groups of students corrected the instructor on interpreter details
based on their independent experiments (sometimes success can be
embarrassing!).

The instructor completed all assignments, and generally made the
results available on-line. This (1) gave feedback on the complexity
of the assignments; and (2) gave enough insight and mastery of detail
to aid the student in all phases of the design process.

Grading of all programming assignments previous to the project
completion relied on an even split between code quality and execu-
tion testing. The execution testing was done based on the manual
page used to specify the assignment, and the evaluation of code qual-
ity had both an objective portion, consisting of adherence to a style
sheet, and a subjective component, based on the grader's judgment.
The effect of the subjectivity was reduced by dividing the assign-
ments between the instructor and the teaching assistants, with the
division occurring randomly on any given assignment. The final pro-
ject was graded wholly by success or failure on a set of 30 tests
designed to exercise the features specified in the manual pages.
Thus, the quality of the student's results were reviewed. Subjective
performance measures, such as effort expended, or document format-
ting skill, were not involved. This is as it should be. One difficulty
which seems to always occur in group work is unequal contributions.
This was resolved by assigning all group members the same grade
unless there was a complaint. If there was a complaint, the entire
group was required to be present to discuss reassignment of credit.
Those not present at the discussion were assumed to be in agreement
with whatever conclusion was reached. This resolved all complaints
in a satisfactory manner.

4. CONCLUSIONS
Aside from introducing the students to C and the UNIX programming
environment, the course structure has several strong points:

The student develops a non-trivial toolkit, consisting of both tech-
niques and developed skills with software tools.
The focus on one significant project brings out the point of
software engineering, which is only apparent with scale and re-use
(much like civil engineering versus home carpentry).
The process of building the project is used both to get across the
introductory material (in the individual assignments) and to bring
in classical software engineering issues, such as documentation,
tool usage, maintenance, reusability, et cetera. In particular, forc-
ing integration of new features with previous work demands that
attention be paid to design. Of course, building on previous work
shows the value of re-use, as illustrated in Figure 2.

The course is a lab course, and thus is exceedingly practical in
orientation; discussion of issues such as the communication prob-
lems and solutions of Brooks Br00ks1975a are postponed until the
student has encountered them, and can appreciate the solutions.

Discussions with faculty colleagues reinforce the belief that the
toolkit approach has value in this setting; a discussion of lexical
analysis and parsing certainly makes more sense when the student
has already encountered these topics in practice; with some practical

exposure, history, current approaches and theory not only become
more accessible but more relevant.
The results have been encouraging in many ways, but work remains
to be done. The graduates of the course have, on the one hand, been
well-prepared for project courses and work on faculty research pro-
jects, as well as for jobs. On the other hand, there is a real risk that a
practical course can acquire a "trade school" orientation, and the
instructor must ensure that material of lasting value is taught. It is
too easy to focus on technological details, and often hard to discern
true principles from folklore. It takes time, and we are still learning.

5. NOTES AND ACKNOWLEDGMENTS
Rodney Farrow, Steve Feiner, John Ioannidis, Gerald Leitner, Gerald
Q. Maguire, Jr., and Peter Sweeney helped develop and refine
Software Lab with the generosity of their ideas and time. The stu-
dents and teaching assistants of Software Lab fed back many learning
experiences into the current course.
AT&T donated many copies of the "UNIX" Issue (July-August,
1978) of the Bell System Technical Journal used in several editions
of Software Lab, and equipment donations from AT&T, Hewlett-
Packard, and IBM have supported the computing needs.
A number of anonymous referees provided useful suggestions.
The complete materials for the course (which changes slightly every
year) are available via anonymous FTP from
dsl.cis.upenn.edu,inthefile -ftp/pub/sdl.tar.Z.

6. REFERENCES

References

Ardis 1987a.
M. A. Ardis, "The Evolution of Wang Institute's Master of
Software Engineering Program," IEEE Transactions on
Software Engineering, vol. SE-13, no. 11, pp. 1149-1 155,
November 1987. Special Issue on Software Engineering Educa-
tion

Bentley1987a.
J. L. Bentley and J. A. Dallen, "Exercises in Software Design,"
IEEE Transactions on Software Engineering, vol. SE-13, no.
11, pp. 1164-1 169, November 1987. Special Issue on Software
Engineering Education

Bourne1 978a.
S.R. Bourne, "The UNIX Shell," The Bell System Technical
Journal, vol. 57, no. 6, Part 2, pp. 1971-1990, July-August
1978.

Brooks l975a.
F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley,
Reading, Mass., 1975.

Horning l977a.
J. J. Homing and D. B. Wortman, "Software Hut: A computer
program engineering project in the form of a game," IEEE
Transactions on Software Engineering, vol. SE-3, pp. 325-330,
July 1977.

Kant1981a.
E. Kant, "A Semester Course in Software Engineering," ACM
SIGSOFT Somare Engineering Notes, vol. 6, no. 4, pp. 52-76,
August, 198 1.

Kernighan1978a.
B.W. Kernighan and D.M. Ritchie, The C Programming
Language, Prentice-Hall, 1978.

Kernighan 1984a.
B. W. Kernighan and R. Pike, The UNIX Programming
Environment, Prentice-Hall, 1984.

Leventhal1987a.
L. M. Leventhal and B. T. Mynatt, "Components of Typical
Undergraduate Software Engineering Courses: Results from a
Survey," IEEE Transactions on Software Engineering, vol.
SE-13, no. 11, pp. 1193-1 198, November 1987. Special Issue
on Software Engineering Education

McKeeman19 87a.
W. M. McKeeman, "Experience with a Software Engineering
Project Course," IEEE Transactions on SofhYare Engineering,
vol. SE-13, no. 11, pp. 1182-1 192, November 1987. Special
Issue on Software Engineering Education

Morris1 988a.
Robert A. Morris, "An Unorthodox Approach to Undergraduate
Software Engineering Instruction," Computing Systems, vol. 1,
no. 4, pp. 405-419, 1988.

Ritchie 197 8a.
D.M. Ritchie and K.L. Thompson, "The UNIX Time-Sharing
System," Bell System Technical Journal, vol. 57, no. 6, pp.
1905-1 930, July-August 1978.

Thompson1 978a.
K.L. Thompson, "UNIX Implementation," The Bell System
Technical Journal, vol. 57, no. 6, Part 2, pp. 1931-1946, July-
August 1978.

Weinbergl974a.
Gerald Weinberg, The Psychology of Computer Programming,
Van Nostrand, 1974.

Wortmanl987a.
D. B. Wortman, "Software Projects in an Academic Environ-
ment," IEEE Transactions on Software Engineering, vol. SE-
13, no. 1 1, pp. 1 176- 1 18 1, November 1987. Special Issue on
Software Engineering Education

EXPAND(3) Appendix I

NAME
expand() - file name generation routine

SYNOPSIS
char **expand(word)
char*word;

DESCRIPTION
expand is used to provide the file name generation facilities
described in sh(1). The argument word is a null-terminated
string of characters. If any of the three characters *, ?, or [is
contained in word, word is regarded as a pattern. expand()
returns a list of pointers to alphabetically sorted file names that
match the pattern; the list is terminated by a NULL character
pointer. If no file name is found which matches the pattern,
expand() returns the list consisting of a pointer to word and the
NULL pointer. The character . at the start of a file name or
immediately following a 1, as well as the character 1 itself, must
be matched explicitly. * Matches any string, including the null
string. ? Matches any single character. [...I Matches any one
of the enclosed characters. A pair of characters separated by -
matches any character lexically between the pair, inclusive.

EXAMPLES
expand("*. [ch]");
expand("/usr/faculty/jms/*.d/[a-z] * . ?");

USAGE
expand() should be incorporated into your previous assignment,
io(l), so that input lines containing patterns should be executed
correctly, e.g.
$ echo * >file1 >file2
should create an empty file1 and an alphabetically sorted list of
file names from the current directory should appear in file2.

	The Software Design Laboratory
	Recommended Citation

	The Software Design Laboratory
	Abstract
	Comments

	tmp.1187188517.pdf.Z_cpD

