
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

November 1989

Lambda Calculus,Conservative Extension and Structural Induction Lambda Calculus,Conservative Extension and Structural Induction

Val Tannen
University of Pennsylvania

Ramesh Subrahmanyam
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Val Tannen and Ramesh Subrahmanyam, "Lambda Calculus,Conservative Extension and Structural
Induction", . November 1989.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-89-64.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/856
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76362132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F856&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/856
mailto:repository@pobox.upenn.edu

Lambda Calculus,Conservative Extension and Structural Induction Lambda Calculus,Conservative Extension and Structural Induction

Abstract Abstract
The issue of whether embedding algebraic theories in higher-order theories such as the simply typed and
polymorphic lambda calculi is of interest in programming language design. The establishment of such a
conservative extension result permits modularity in the verification of the correctness of datatype and
function implementations. In earlier work [Breazu-Tannen & Meyer 1987a], [Breazu-Tannen & Meyer
1987b] and [Breazu-Tannen 1988], conservative extension results have been obtained for algebraic
theories. However, in modelling inductive datatypes, the principle of structural induction needs to be
admitted in the inference system, and the question of whether conservative extension holds in the
presence of the principle of structural induction needs to be addressed. In this paper we look at the
question of whether inductive algebraic theories are conservatively extended when embedded in the
simply typed lambda calculus.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-89-64.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/856

https://repository.upenn.edu/cis_reports/856

Lambda Calculus, Conservative Extension
And

Structural Induction

MS-CIS-89-64
LOGIC & COMPUTATION 16

Val-Breazu-Tannen
Ramesh Subrahmanyam

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

November 1989

Lambda Calculus,Conservat ive Extension and
Structural Induction

Val Breazu-Tannen Ramesh Subrahmanyam
Department of Computer and Information Science

Moore School of Electrical Engineering
University of Pennsylvania,Philadelphia,Pal9104

November 30, 1989

Abstract

The issue of whether embedding algebraic theories in higher-order theories such as the
simply typed and polymorphic lambda calculi is of interest in programming language
design. The establishment of such a conservative extension result permits modularity
in the verification of the correctness of datatype and function implementations. In
earlier work [Bream-Tannen & Meyer 1987a1, [Breazu-Tannen & Meyer 1987bl and
[Bream-Tannen 19881, conservative extension results have been obtained for alge-
braic theories. However, in modelling inductive datatypes, the principle of structural
induction needs to be admitted in the inference system, and the question of whether
conservative extension holds in the presence of the principle of structural induction
needs to be addressed. In this paper we look at the question of whether inductive
algebraic theories are conservatively extended when embedded in the simply typed
lambda calculus.

1 Introduction

The objective here is to establish the conservativity and extension of algebraic theories
with structural induction by the corresponding higher order theory obtained by adding
the pure simply typed lambda calculus and structural induction. The spirit of this
work is very much along the lines of the work reported in [Bream-Tannen & Meyer 1987a1
[Bream-Tannen & Meyer 1987bl and [Bream-Tannen 19881. Another objective is to
understand the scope and limits of higher order reasoning. Colson's result [L.Colson 19891
regarding the expressibility of a more efficient algorithm for computing the min of two
integers in a higher order calculus, than in an algebraic calculus raises the question
of the powerfulness of computations in strongly typed theories. Further, there is also

the issue of the interference of higher-order computation with first-order computa-
tion. Thus an important question that was answered in [Breazu-Tannen 19881 was
the following: if we embed the constants of an algebraic signature into a simply-typed
calculus, does the set of theorems expressible over the algebraic signature remain the
same? This question was answered in the affirmative.
The primary application of embedding algebraic theories in a lambda calculus arises
in reasoning with abstract datatypes. Usually, a finite set of algebraic rules are used
to define the datatype. However reasoning about programs requires a higher-order
theory , say a lambda calculus. Thus when we combine these two systems we would
like that the resultant system prove no more theorems expressible in these individual
languages than before. This requirement is the foundation for a modularization of
reasoning about correctness of data and program implement at ions. This requirement
is called " conservative extension".
However most datatypes are inductive datatypes, and the use of the rule of structural
induction in reasoning with them is presupposed. Further, as has been shown, the
set of theorems provable by structural induction are true in the initial model of the
datatype equations(which is the usually accepted semantics). Thus there is a need
to evaluate the question of whether the conservative extension by the simply typed
lambda calculus holds in the presence of structural induction.
In this paper,we will prove that indeed it is the case that the required conservative
extension result holds. We will assume formal knowledge of the notions of equa-
tional proofs, axioms of the simply typed lambda calculus, rules for typing lambda
expressions etc. However, we will discuss a few essential preliminaries. For more
details on the simply typed lambda calculus [Barendregt 19841 may be consulted.
[J.Goguen & J.Meseguer 19851 algebraic theories and structural induction

Algebraic Theories and Structural Induction
Consider a fixed many sorted algebraic signature C , and set of equations E. Further
,also consider a sort-indexed collection of countable sets of variables X. The set of
algebraic terms over this signature, Tc(X) is the smallest set containing X, such that
if f is an n-ary constant symbol of sort (sl..sn,s) in the signature, tl,..,t, are contained
in the set and ti is of sort si, then so is ftl..tn.
We use the metavariable I? to denote a finite functional set of variable-sort ordered
pairs. Further given the following two sort inference rules:

where the symbol f has arity (sl..s,,s).
If there is a proof tree with t:s for some sort s, then we say that that (I',t) type-
checks.
We are going to be concerned only with one-sorted algebraic theories in the sequel.
The result extends to the many sorted case as well. For simplicity of concept, we
confine ourselves to one- sorted theories.
Let (C,E) be a given algebraic theory. We, then, define a (C,E)-proof tree as follows:
(a) (I', A) t- t = t , the one node tree is a (C,E)-proof tree.
(b) (I', A) t- t1 = t2, where (tl = t2) E E UA, is a (EYE)-proof tree.

(4 If

is a (C,E)-proof tree, then so is

Tl T2
(d) If (r , A) I- t1 = t2 , and (I', A) t t2 = t3 are (C,E)-proof trees, then so is

Tl
(e) If (F, A) I- t, = t2 is a (C,E)-proof tree, then so is

Tl
(f) If (r , A) k t1 = t2 is a proof tree, then so is

where C is a context.
A proof by induction uses one more rule ,the rule of Structural Induction, which
is stated below. Since structural induction is done on a constructor signature, a
constructor signature needs to be specified in addition to C and E. We will notate
the constructor signature by R. Thus the Structural Induction rule is:

Here the ai are the nullary constants in the constructor signature, and the fk are the
other constants in R. A A' Ind(C,E)-prooftree is constructed using the same rules
as a (C,E)-Ind proof tree , except that the following axiom gives rise to an additional
one-node proof tree.
(P) (A X. M)N = N[N/x] provided N is free for x in M.

Further, at every node in the proof tree the terms must be typeable by the type
assigning function r.

Adding Algebraic Rules to A'

When we add the algebraic terms to the simply-typed terms, we consider all unary
constants and algebraic variables to be of a constant base type,say o. in the resultant
system; a function of arity n is thought of as a constant of type on + o. It is easy to
see that the typing rules of A' will infer the type o for any algebraic term.

Lemma 1 Let (r , A) t- tl = t2 be at the root of a A' proof tree T. Let w be any
free variable in tl or t2, which is not of base type, and hence has a type of the form
g1 -+ (0 2 + - . (on -+ 0). -), for simple types g;. Let 1 be a fresh variable (we also as-
sume that the sets of free and bound variables are disjoint). Then , let T' be the result
of replacing every occurence of w by the A' term X xl:al..Ax,: an.l in the formulae in
T, and adding 1:o to every type assignment in T. Then, T is a A'-Ind(C,E) proof tree.

Proof We look at every possible instance of the mutated inference rules and axioms,
and show that they are valid instances. The proof is by induction, and the base case
is the empty tree, for which the claim clearly holds. Assume that it holds for all
trees of depth 5 n. Consider a tree of depth (n+l). The various cases corrrespond
to various deductions at the root.

Case(i) (I', A) I- t = t , where I' I- t : T . Then,
T I = r u { Z : 01 I- ~ [X X ~ . . X X , . Z \ W I = ~ [X X ~ . . X X , . Z \ W]

is clearly a valid one node proof tree.

Case(ii) T - (r,A) I- P[(Xx.M)N\y] = P[M[N\x]\y]
T' G (F u (1 : o) , A) t- P[(Xx-M)N\y][Xxl --Xx,.l\w] = PIMIN\x]\y][Xxl --Xx,.l\w]

Note that I' U { I : o) typechecks both terms P[(Xx M)N\y][Xxl . .Ax, - l\w] and
P[M[N\x]\y][Xx1 . -Ax, - l\w]

Note also that P[(Xx - M) N \y][Xxl- -Ax, - l\w] = P1[Xxl - .A x , I\w][(X x.M1)N'\y],
where M' = MIXxl - - x , . l\w], and N' z NIXxl . ex, - l\w]

Thus (I?, A') I- P[(Ax M)N\y][Xxl . -Ax,. l\w] = PIMIN\x]\y][Xxl - -Ax, l\w]
(i.e.) (I ' , A') I- P1[(XxM')N'\y] = P1[M'[N'\x]\y], which is an instance of the p-rule,
and hence T' is a valid proof tree.

Case(iii) T (T',A) I- t l = t2 , where (tl=t2) E A Clearly if (t l = t2) E A,
then (t i = t',) E A' .
Hence, T' = (I?, A') t- t i = t', is a valid proof tree.

then T', the transformed tree is

where, ti G tl[Xxl - .Ax,. I\w, and t', = tz[Xxl . -Ax, dotl\w, and Ti is Tl transformed.
Further we use the symbol I'+ to stand for I' U {I : 01. Clearly by induction

is a valid proof tree, and

(r + , A 1) t t; = t',
(r+, al) I- ti = t;

is an instance of the symmetry inference rule. Thus TI is a valid proof tree.

Case(v) We handle the case where the inference at the root is transitive likewise.

Case(vi) This is the case where the rule at the root of the tree is the substitutivity
rule.

transforms to

By the induction hypothesis, Ti is a valid proof tree. Note that (tiO1) = (tlO1), for
i=1,2, where O1(x) = O (x) [X x l . - A x , E\w].
Therefore, the transformed tree is a valid proof tree.
Case(vii)

transforms to

It is easily seen that the transformed tree is a valid proof tree.
Case(viii) The rule at the root is the rule of replacement.

where e; = (ti = s;)

(P, A') I- ei (I", A') I- ek

(r+, A') f t l - . t n [A ~ l . . ~ n \ ~] = f s ~ . . s ~ [X X ~ . . X ~ \ W]
I I But, ftl..tn[Xxl . -Axn . I\ w] = fti..tk, and fsl..sn[Xxl - .Axn. I\ w] = fsl..sn.

Thus the transformed tree is a valid proof tree.
Case(ix) The rule of struictural induction occurs at the root.

where, Lj is the proof tree for A I-e[aj\x] , a j being the j'th nullary constant, and Mi
is the proof tree for A7e[ul\x],..,e[un\x] I- e[fiul..un\x], f; being the i'th non-nullary
constant and n being its arity.

transforms to

T;'
(r', At) u (et[xj\x] I 1 < j < k;) l- el[f~(xl. .xn)\x]
Clearly TI is a valid proof tree.

Lemma 2 Let C be a context with one hole u. Let T be a proof tree for (I?, A) l-
s=t. Then there is a proof T' for (r+, C(A)) l- C[u t s] = C[u t t] , provided
(I?+, C[u t s] typechecks, and r and I?+ assign the same type to s (and t)(Notation:

the set C(A) is defined as C(l) = C(r) 1 (1 = r) E A).

Proof. Consider the following transformation.

Tl Tz
(I?, A) I- t 1 = t 2 (I?,A) t- t 2 = t3

(I?, A) I- t , = t ,

transforms to

(I?, C(A)) t- C[u t t l] = C[u + t2] (I?, C(A)) l- C[u + t2] = C[u + t3]
(r, c(A)) I- C[U + t l] = C[U t3]

Further,

where,

When the root inference is using tyhe rule of replacement,

When the root inference is substitution we need to ensure that the free variables in the
root equation are distinct from the free variables in the context in which everything
is to be placed. We tus use a renaming substitution a.

where, sl = sa, tl = ta,and (fv(sl) U fv(tl)) are new and a is a renaming substitution,
and T' = T a (i.e.) all free-variables are renamed using a.
It is easy to see that C[slO] = C[sl]O, and C[tle] = C[tl]O. Looking at the case where
the root inference uses structural induction,

transforms to

Clearly, since C[e[ci\xa]] = C[e](ci\xa), the form of the induction rule is preserved.
That the transformation t + C[t] preserves the structure of axioms is easy to see.
Further it is easy to see that the transformations presented do not increase the depth
of the tree. This fact will be used in applications of the present lemma.

Lemma 3. Let T be a proof of A te:o. Then we can effectively transform it
into a proof T' of A !- e , where every equation is of base type.
Proof. If T is a one node tree , then the theorem holds trivially. If T is of the form

then, by induction 3Ti3T2.

When the root inference is either symmetry or induction, the argument is similar.
If T is of the form

by the previous lemma the tree

can be transformed into a proof tree T2 for r [u t s] = r[u t t] of depth atmost equal
to that of T. By the induction hypothesis, there exists a prooftree Ti corresponding
to T2 all of whose nodes only contain equations of base type. This is the required
transform of T.

If T is of the form

then

is the requird proof, where T: is the transform of TI .

Lemma 4 Consider the following transformation on each node of a proof,every equa-
tion in which is of base type and has no variables of higher type free variables.
A k e + n f (A) k n f (e), where nf(A) = {n f (1) = n f (r) 1 (1 = r) E A), and e= (1 =
r) +- nf(e) = nf(1) = nf(r). This transformation transforms a valid proof into another
valid proof.
Proof.

n f (A) k n f (e[c;\xi]) n f (A), n f (e[x;\x]) I- n f (e[fxl..x,\x])
n f (A) I- n f (el

are valid inference rule instances.
Note that s and t have no higher type free-variables. We require that the free variables
in the range og B(restricted to the free variables of s and t) should be disjoint from
bound variables in s and t. Thus nf(s9) = nf(s)[nf(B)]. The rule,now, has the form

which is a substitutivity instance.
Thus given any proof tree of an equation in X'E with structural induction, we
first transform it into a proof with no free variables of higher type(1emma 1). We
then rewrite it into a proof each of whose nodes is labelled by an equation of base
type(1ernma 3). We then normalize each node to give a proof tree each of whose nodes
is labelled by an algebraic equation (lemma 4).

4 Conclusion

We have demonstrated a set of proof tree transformations that can be used to translate
any proof in X'E with structural induction into an algebraic proof with structural
induction. This extends the earlier results of [Bre 871 for the case without structural
induction.

References

[Barendregt 19841 H. P. Barendregt. The Lambda Calculus: Its Syntax
and Semantics. Volume 103 of Studies in Logic and

the Foundations of Mathematics, North-Holland,
Amsterdam, second edition, 1984.

[Breazu-Tannen & Meyer 1987al V. Breazu-Tannen and A. R. Meyer. Computable
values can be classical. In Proceedings of the 14th
Symposium on Principles of Programming Lan-
guages, pages 238-245, ACM, January 1987.

[Breazu-Tannen & Meyer 1987bl V. Breazu-Tannen and A. R. Meyer. Polymorphism
is conservative over simple types. In Proceedings
of the Symposium on Logic in Computer Science,
pages 7-17, IEEE, June 1987.

[Breazu-Tannen 19881 V. Breazu-Tannen. Combining algebra and higher-
order types. In Proceedings of the Symposium on
Logic in Computer Science, pages 82-90, IEEE,
July 1988.

[J.Goguen & J.Meseguer 19851 J . Goguen and J.Meseguer. Initiality, induction and
computability. In M.Nivat and J.C.Reynolds, ed-
itors, Algebraic Methods in Semantics, pages 459-
543, Cambridge University Press, Cambridge, 1985.

L.Colson. On primitive recursive algorithms.
In M.Dezani-Ciancaglini G.Ausiello and S.R.Della
Rocca, editors, International Colloquium on Au-
tomata, Languages, and Programming, pages 194-
206, European Association for Theoretical Com-
puter Science, Springer-Verlag, Berlin, July 1989.

	Lambda Calculus,Conservative Extension and Structural Induction
	Recommended Citation

	Lambda Calculus,Conservative Extension and Structural Induction
	Abstract
	Comments

	tmp.1201536246.pdf._aCCc

