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A Universal Inductive Inference Machine* 

Daniel N. Osherson Michael Stob Scott Weinstein 
M. I. T. Calvin College University of Pennsylvania 

November 1, 1989 

Abstract 

A paradigm of scientific discovery is defined within a first-order logical framework. 
It is shown that within this paradigm there exists a formal scientist that is Turing 
computable and universal in the sense that it solves every problem that any scientist 
can solve. It is also shown that universal scientists exist for no regular logics that 
extend first order logic and satisfy the Lowenheim-Skolem condition. 

Introduction 

By a paradigm of inductive inference let us understand any specification of the concepts 
"scientist" and "inductive inference problem" along with a criterion that determines the 
conditions under which a given scientist is credited with solving a given problem. Hundreds 
of paradigms have been defined and investigated over the last twenty years. An excellent 
point of entry to this literature is Haussler & Pitt (1988) and Rivest & Haussler (1989). 

Building on seminal papers by Shapiro (1981) and Glymour (1984), several recent para- 
digms have been defined within a first-order logical framework (see Osherson & Weinstein, 
1989, and references cited there). The present paper discusses a paradigm of this character 
and shows it to contain a scientist that is simulable by Turing machine and universal in 
the following sense: Every problem that can be solved by some scientist in our paradigm 
(whether the scientist is machine simulable or not) can be solved by the universal one. The 
paradigm is defined in Section 2 and its universal scientist is exhibited in Section 3. An 
extension of our paradigm is introduced in Section 4. In Section 5 we characterize first- 
order logic by considering universal scientists for extensions of the predicate calculus. The 
remainder of this introduction attempts to motivate the ensuing definitions. 

Let a countable, first-order language L be fixed, suitable for expressing scientific theories 
and data in some field of empirical inquiry. Prior research in the field is conceived as verifying 

'Research support was provided by the Office of Naval Research under contract No. N00014-87-K-0401 
to Osherson and Weinstein, and by NSF grant DMS-88-00030 to Stob. Correspondence to D. Osherson, 
E10-044, M.I.T., Cambridge, MA 02139; e-mail: dan@psyche.mit.edu 



a set T of L-sentences, which constitute the axioms of a theory already known to be true. 
Each model of T thus represents a possible world consistent with background knowledge. 
Nature has chosen one of these models - say, structure S - to be actual; her choice is unknown 
to us. In the first paradigm that we define it is assumed that Nature's choice is limited to 
countable models of T. In the extended paradigm this assumption is lifted. For now, we 
suppose that S is countable. 

Scientists are conceived as attempting to divine the truth-value in S of specific sentences 
not decided by T. Suppose that scientist 9 wishes to determine the truth-value of 13 in S .  
At the start of inquiry, 9 knows no more about S than what is implied by T. As inquiry 
proceeds, more and more information about S becomes available. This information has the 
following character. We conceive of 9 as able to determine, for each atomic formula cp(2) 
of L and any given tuple li E IS1 whether or not li satisfies cp(5) in S. 9 receives all of IS1 
in piecemeal fashion and bases its conjecture at a given moment on the finite subset of IS1 
examined by that time. In reponse to each new datum, 9 emits a fresh conjecture about 
the truth of 0 in S, announcing either "true" or "false." To be counted as successful, 9's 
successive conjectures must stabilize to the correct one. 

We turn now to the definitions that formalize the foregoing conception of scientific in- 
quiry. 

Paradigm 

Let a countable first-order language C with identity be fixed. Until Section 4, all structures 
that arise in the discussion to follow are to be understood as countable structures interpreting 
L. The sentences and formulas of L are denoted SEN and FORM respectively. cp E FORM 
is called "basic" just in case cp is an atomic formula or the negation of an atomic formula. 
The basic subset of FORM is denoted BAS. In the context of an assignment of variables to 
the unknown structure S, members of BAS may be conceived as encoding facts of the form 
a E PS or a @ pS, for P E L as suggested in the last section. The set of all finite sequences 
over BAS is denoted SEQ. Given a E SEQ, the set of formulas appearing in a is denoted by 
range(a). Members of SEQ of length n may be conceived as potential "evidential positions" 
of a scientist at moment n of his inquiry. 

We rely in what follows on the standard account of consequence for open formulas, 
namely: Given sets I?, C of formulas, we write I? + C just in case for all structures S and 
assignments g to S, if S + r[g] then S + C[g]. By a complete assignment to a structure S is 
meant a mapping of the variables of C onto IS[. Given T E SEN, the class of all (countable) 
models of T is denoted MODc(T). N is the set of positive integers. 

We now consider the information available to a scientist working in an unknown structure. 
An environment is any w-sequence over BAS. Given an environment e ,  the set of formulas 
appearing in e is denoted by range(e) and the initial finite sequence of length n in e is 
denoted en. The following definition specifies the sense in which an environment can provide 
information about a structure. 



(1) DEFINITION: Let environment e, structure S, and assignment g to S be given. e is 
for S via g just in case range(e) = {p E BAS ( S + P[g]). 

Thus, when g is complete, an environment e for S via g provides basic information about 
every element of IS1, using variables as codes for elements. It is easy to see that structures 
sharing an environment are isomorphic. 

We take a scientist to be any function (partial or total, computable or uncomputable) 
from SEN x SEQ to {t, f).  Thus, a scientist Q may be conceived as a system that converts 
arbitrary 0 E SEN into a function Xa.Q(B, a) that conjectures a truth-value for 0 in whatever 
structure S has given rise to the data a. To be successful on 6 in S, Q must "detect" the 
truth-value of 0 in S, as specified by the following definition. 

(2) DEFINITION: Let 0 E SEN, structure S and scientist Q be given. 9 detects 6 in S 
just in case for every complete assignment g to S, and every environment e for S 
via g, if S 6 then Q(9, en) = t for cofinitely many n E N, and if S + 70 then 
Q(0, &) = f for cofinitely many n E N. 

Thus, we credit Q with detecting 0 in S just in case Q's successive conjectures about the 
truth-value of 9 in S eventually stabilize to the correct one in response to increasingly 
complete information about S. 

(3) DEFINITION: Let class K: of structures, 0 E SEN and scientist Q be given. Q detects 
0 in K: just in case for all S E K:, Q detects 0 in S. In this case 0 is detectable in K:. 

Pursuant to the conception of scientific inquiry described in Section 1, we shall be particularly 
concerned with detectability in elementary classes of structures. Given 0 E SEN and T C 
SEN we ask whether 0 is detectable in MODc(T). 

(4) EXAMPLE: For any T SEN and any existential 0 E SEN, 0 is detectable in 
MODc(T). Indeed, let scientist 9 be such that for all existential 0 E SEN and 
all a E SEQ, Q(0, a) = t if range(a) 0; = f otherwise. Then, for any existential 
0, Q detects 0 in h40Dc(0). A parallel argument shows that any universal 0 E SEN 
is detectable in MODc(0). It can similarly be shown that any sentence translating 
"there are exactly n things," "there are at least n things," or "there are no more than 
n things" is detectable in MODc(@). 

(5) EXAMPLE: Suppose that the vocabulary of L is limited to the sole binary relation 
symbol <. Let TI  be the axioms of the theory of strict linear orderings with a first 
but no last element. Let T2 be the axioms of the theory of strict linear orderings with 
a last but no first element. Let 0 = 3xVy(x # y + x < y). Then, 0 is detectable 
in MODc(TI) U MODc(T2) as witnessed by the following scientist 9. Let vl ,  vz, . . . 
list the variables of L. Given a E SEQ, let l ( a )  denote the least i such that for all j ,  
v j  < vj @ range(a). Let g(a) denote the least i such that for all j, v; < v j  @ range(a). 
Define Q such that for all a E SEQ: 



Q(0, a) = t if [(a) < g (a) 
f otherwise. 

It is easy to verify that 8's conjectures stabilize to the truth-value of 0 in any S E 
MODc(T1) U MODc(T2). 

(6) EXAMPLE: Suppose that T C_ SEN is model-complete. Then for all 0 E SEN, 0 is 
detectable in MODc(T). This is an easy consequence of the fact that the model- 
completeness of T implies that for all 0 € SEN, there is existential y E SEN such 
that TI- y t, 0. 

(7) EXAMPLE: Let T axiomatize the theory of strict linear orderings in a language with 
one binary relation symbol <. Then 0 = Vxy(x < y -+ 3 z ( x  < z A z < y)) is not 
detectable in MODc(T). Indeed, it is shown in Osherson & Weinstein (1989, Sec. 
3.2) that 0 is not detectable in K: = ((2, <'), (Q, <Q)}, where Z are the integers and 
Q are the rationals. Observe that K: & MODc(T). 

3 A universal scientist 
By an "oracle machine" is meant a Turing machine with oracle in the sense of Rogers (1967, 
Sec. 9.2). Given oracle machine M and T C SEN we use MT to denote the scientist computed 
by M equipped with an oracle for T. 

(8) THEOREM: There is an oracle machine M such that for all 0 E SEN and T SEN, 
if 0 is detectable in hlODc(T) then MT detects 0 in MODc(T). 

To prove the theorem it is convenient to introduce a weaker notion of scientific success. 

(9) DEFINITION: Let 0 E SEN, structure S and scientist 9 be given. Q t-detects 0 in 
S just in case for every complete assignment g to S, and every environment e for S 
via g, S 0 if and only if 8(0,  en)  = t for cofinitely many n E N .  Let class K: of 
structures, 0 E SEN and scientist Q be given. Q t-detects 0 in K just in case for all 
S E K:, 9 t-detects 0 in S .  In this case 0 is t-detectable in K:. 

Thus, for scientist Q to t-detect 0 in U with U 10, Q's conjectures must not stabilize to t 
on any environment for 24 via g (where g is a complete assignment to 24). However, 9 need 
not stabilize to f on such environments. Theorem (8) follows from: 

(10) THEOREM: There is an oracle machine N such that for all 0 E SEN and T C SEN: 

(a) ~ ~ ( 0 ,  a) is defined for all a E SEQ; 

(b) if 6 is t-detectable in MODc(T) then NT t-detects 0 in MODc(T). 



PROOF OF THEOREM (8) FROM THEOREM (10): Let oracle machine N witness Theo- 
rem (10). We construct an oracle machine M to witness Theorem (8). Define start(T, 8, a) 
to be the least i 5 length(a) such that N ~ ( ~ , T )  = t for all T G a with i 5 length(r). Define 
oracle machine M as follows. For all T 2 SEN, 8 E SEN, and a E SEQ: 

MT(8, a) = 
t if start(T, 8, a) < start(T, 16,  a )  
f otherwise. 

By clause (a) of Theorem (10)) start can be computed by an oracle machine, so M is 
well defined. Now suppose that T C SEN and 8 E SEN are such that 8 is detectable 
in MODc(T). Then, it is trivial to verify that 8 is t-detectable in MODc(T) and 78 is 
t-detectable in MODc(T). Hence, NT t-detects 8 in MODc(T) and NT t-detects -8 in 
MODc(T). It is then easy to verify that M works as desired. . 

The remainder of this section is devoted to proving Theorem (10). The theorem is an 
immediate consequence of the next two lemmas, formulated with the help of the following 
definition. 

(11) DEFINITION: Let 6 E SEN and T 2 SEN be given. 8 is confirmable in T just in case 
for all S E MODc(T U (6)) there is existential-universal cp E SEN such that: 

(12) LEMMA: There is an oracle machine N such that for all 8 E SEN and T 5 SEN: 

(a) ~ ~ ( 8 ,  a) is defined for all a E SEQ; 

(b) if 6 is confirmable in T then NT t-detects 8 in MODc(T). 

(13) LEMMA: For all 8 E SEN and T C SEN, if 8 is t-detectable in MODc(T) then 8 is 
confirmable in T. 

The proof of Lemma (12) will be facilitated by the following. 

(14) LEMMA: Let 8 E SEN and T G SEN be given. If 8 is confirmable in T,  then for all 
S E MODc(Tu{O)) and all complete assignments g to S there is universal n E FORM 
such that: 

PROOF OF LEMMA (14): Let 8 and T be as specified by the lemma, and let S E 
MODc(T U (6)) and complete assignment g to S be given. We must show that there is 
universal n E FORM satisfying (14)a,b. Since 8 is confirmable in T, there is existential- 
universal sentence p = 3x1 . . . x,Vyl.. . y , ~ ,  where x is quantifier-free such that 



By (15)a there is a finite assignment p to S such that: 

(16) (a) domain(p) = {xl . . . x,}, and 

(b) S I= VYI - .  . ~ n ~ b 1 -  
Since g is complete, there are variables wl . . . w, such that: 

(17) p(xi) = g(w;) for 1 I i I m. 

Let vl . . . v, be distinct variables that are disjoint from the xi's, yj7s, and w;'s. Let X' be the 
result of simultaneously substituting the wils for the xi's and the v;'s for the yi3s in X. Let 
T = V y  . . . vnxl. By (16) and (17), S I= n[g], verifying (14)a. By (15)b, T U {T) 0, which 
verfies (14)b. 

PROOF OF LEMMA (12): The desired machine N is equipped with a device that pro- 
gressively enumerates all consequences of an input, finite set of formulas. For p E FORM 
and finite C C FORM we write C k j  c p  just in case c p  appears in the enumeration of C's 
consequences by the j th  step of computation. N is similarly equipped with a device that 
progressively queries its oracle about each sentence in turn. T j  denotes the finite set of 
sentences affirmed by the oracle T to be axioms by the j th step of this process. N relies 
as well on an internal enumeration of all universal formulas. Let n; be the ith formula in 
this enumeration. Given a E SEQ, we denote by a- the finite sequence that results from 
removing a's last member; if length(a) = 0 then a- = a .  

Now let finite C SEN, 0 E SEN and a E SEQ be given. We define f (C, 0, a) to be the 
least i < length(a) such that: 

(a) range(0) klength(o)  -'Ti; 

f (C, 0, a) = 0 if no such i exists. Obviously, f is a computable function. Finally, given T C 
SEN, 0 E SEN, and a E SEQ, NT(o, 0) = t if f (TleWth(a), 0, a) = f (Tlength(o-), o,a-) # 0; 
= f otherwise. It is clear that N satisfies (a) of the lemma. 

To grasp the idea behind N's definition, imagine that N is examining environment e for 
S via g, where g is a complete assignment for S. Then, N may be conceived as searching 
for the first universal formula in its internal enumeration that appears to witness (a) and 
(b) of Lemma (14). If no such candidate witness is found, then N responds with f; likewise, 
N responds with f each time it is forced to change candidates (either because the current 
candidate is shown to be inconsistent with range(e) or because an earlier candidate is found). 
In contrast, N responds with t whenever its current candidate survives a subsequent test of 
primacy and consistency with range(e). 



To verify that N satisfies (b) of the lemma, let T C_ SEN and 0 E SEN be given, and 
suppose that 0 is confirmable in T. It must be shown that for all S E MODc(T), all complete 
assigments g to S, and all environments e for S via g, S b 0 iff NT(O, ej) = t for cofinitely 
many j E N. We first show that: 

(18) If a E FORM is universal then S a[g] iff range(e) F i n .  

To prove (18) suppose first that a is universal and S + n[g]. Since the assignment g to S 
satisfies range(e) U {n), it follows immediately that range(e) l a .  For the other direction 
of (18) suppose that a is universal and S + -a[g]. Let p(5, y) be quantifier-free and such 
that a = VJ:~(Z ,  y). Then: 

Since g is complete, (19) implies: 

for some choice of variables 2. But (20) shows that range(e) + l a .  
To complete the proof, we consider two cases corresponding to S E MODc(T U (0)) and 

S E MODc(T U (-0). 
Case 1: S E MODc(T U (0)). Since 0 is confirmable in T,  By Lemma (14) let i be least 

such that n; satisfies (14)a,b. By the compactness and monotonicity of and by (IS), for 
all k < i we have: 

(21) (a) range(ej) k j  ink  for cofinitely many j E N, or 

(b) T j  U {ak) Fj 0 for all j E N. 

(21) implies that for all k < i, f (Tj, 0, ej) = k for only finitely many j. On the other hand, 
since ni satisfies (14)a,b, we have: 

(22) (a) range(e) Fj l n i  for all j E N, and 

(b) T j  U {n;) k j  0 for cofinitely many j E N. 

Hence, (21) and (22) imply that f (Tj, 0, ej) = i for cofinitely many j E N. It follows that 
Xa.NT(0,ej) = t for cofinitely many j E N. 

Case 2: S E MODc(T U (18)). By Lemma (14), it suffices to show: 

(23) For all universal a E FORM, n does not satisfy (14)a,b. 

For, (23) implies (via (18) and the monotonicity and compactness of +) that for all k E N 
(21) holds. By the definition of f ,  this implies that for all k E N, f (Tj, 0, ej) = k for only 
finitely many j E N. It follows that NT(O, ej) = f for infinitely many j E N, as desired. 

To prove (23) suppose that universal 7r satisfies (14)b. Then T U (-0) + i n  and thus 
S + ln[g]. Thus n does not satisfy (14)a. 

The proof of Lemma (13) relies on two additional lemmas. These are now stated and 
proved. The following notation is used. Given a E SEQ, the set of variables occurring in a 
is denoted by var(a). Also, the conjunction of range(a) is denoted by A a .  



(24) LEMMA: Let scientist 9, 0 E SEN and structure S be given with S ,!= 0. Suppose 
that 9 t-detects 0 in S. Then there is a E SEQ and p : var(a) + IS1 such that: 

(4 s I= Aabl;  
(b) for all y E SEQ, if 

i. a C y and 
ii. S ,!= 3x1.. .xk Arb], where var(y) - var(a) = (21.. . xk} 

then Q(0, y) = t. 

PROOF: Let Q, 0, and S be as specified by the hypothesis of the lemma. Suppose for a 
contradiction that the consequent is false. Then: 

(25) For all a E SEQ and p : var(a) + IS[, if S ,!= h u b ]  then there is y E SEQ such that: 

(b) S I= 3x1. . . xk A+y[p], where var(y) - var(a) = {xl . . . xk); and 

(4 Q(O> 7) # t-  

Using (25) we construct a complete assignment g to S and an environment e for S via g 
such that Q(0, E ; )  # t for infinitely many i E N .  This contradicts the assumption that 9 
t-detects 0 in S. For the construction, let {ai I i E N )  = (SI, let {pi I i E N} = BAS, and 
let {v; I i E N )  be the variables of L. 

We construct g and e in stages. At the mth stage we construct em E SEQ and gm : 
var(em) + (SI. It will be the case that e0 G el c . - - and g1 . - .. We take e = U em 

mEN 

and g = U gm. The construction ensures that for every m 2 0 the following conditions 
mEN 

hold: 

(26) (a) {a1 . am} G range(gm) G ISI; 

(b) {vl . . . vm} domain(gm) = var(em); 

(c) for all i 5 m, if var(pi) c domain(gm) and S 'i= pi[gm], then pi E range(em); 

(d) S 'I= A em [gm1; 
(e) Q(0,r)  # t for at least m many r C em. 

If the construction succeeds, then (26)a,b ensure that g is a complete assignment to S, 
(26)c)d ensure that e is for S via g, and (26)e ensures that Q(0,e;) # t for infinitely many 
i E N.  

Stage 0: Set e0 = = 0. 
Stage m+l: Suppose that em and gm have been defined and satisfy (26)a-e. By (25) and 

(26)b)d choose y E SEQ such that: 



(27) (a) em C 7; 

(b) S 3x1.. . xk l\ y[gm], where var(y) - var(em) = {xl . . . xk); and 

(4 Q(017) # t. 
Observe that {xl . . . xk) n domain(gm) = 8. By (27)b, choose bl . . . bk E IS( such that 
S Ay[gm; xl(bl . .  . xklbk]. Let q E N be least such that v, f! domain(gm) U {xl . . . xk). Let 
r be least such that a, f! range(gm) U {bl . . . bk) (if range(gm) U {bl . . . bk) = IS], then choose 
a, E IS1 arbitrarily). Let gm+l = gm U {(xi, bi) I i 5 b )  U {(v,, a,)). Let B be the set of all 
pi E BAS such that: 

(a) i 5 m + 1; 

Let T E SEQ be such that range(r) = B U {v, = v,). Let em+' be the result of concatenating 
T to the end of y. It may be seen that, with m + 1 in place of m, gm+l and em+' satisfy 
(26)a-e. . 

To formulate Lemma (28) we rely on the following definition. Given finite assignment p 
to structure S, V-iype(p,S) = {T E FORM ( T is universal, v a r ( ~ )  C domain(p), and S 
r b l l .  

(28) LEMMA: Let 0 E SEN and T C SEN be given. If 8 is not confirmable in T then 
there is S E MODc(T U (0)) such that for every finite assignment p to S there is 
U E MODc(T U (18)) and assignment q to U with domain(q) = domain(p) and 
V - ~ Y P ~  (P,S) c V-type(q,U). 

PROOF: Suppose that 0 is not confirmable in T. Then by Definition (11) there is 
S E MODc(T U ( 8 ) )  such that: 

(29) For every existential-universal y E SEN, if S + y then T U (18, y )  is satisfiable. 

Let p be a finite assignment to S, and let domain(p) = {xl . . . x,). By (29), for every finite 
( ~ 1 . .  . T,) V-type(p,S), T U (-8, 3x1.. . xn(nl&. . . &T,)) is satisfiable. Hence, by the 
compactness and Lijwenheim-Skolem theorems, there is U E MODc(T U (18)) and finite 
assignment q to U with domain(q) = domain(p) such that U 1 V-type(p,S)[q]. H 

PROOF OF LEMMA (13): Let 0 E SEN and T 5 SEN be such that: 

(30) 0 is t-detectable in MODc(T). 

We deduce a contradiction from the reductio assumption that: 

(31) 8 is not confirmable in T. 



By (31) and Lemma (28) choose structure S such that: 

(32) (a) S E MODc(T U (0))) and 

(b) for every finite assignment p to S there is U E MODc(T u (10)) and assignment 
q to U with domain(q) = domain(p) and V-type(p,S) G V-type(q,U). 

By (30) and Lemma (24) choose scientist Q, a E SEQ, and p : var(a) + JSI such that: 

(33) (a) Q t-detects 0 in MODc(T); 

(b) S I= A+]; 
(c) for all y E SEQ if 

i. a C y, 
ii. S + 3x1.. .xkAyb],  where var(y) - var(a) = {xl . .  .xk)  

then Q(0,y) = t. 

By (32)b there is structure U and finite assignment q to U with domain(q) = var(a) such 
that: 

(34) (a) U E MODc(T U {TO)), and 

(b) V-type(p,S) C V-type(q,U). 

Let f be a complete assignment to U that extends q, and let environment e be such that: 

(35) (a) a C_ e; 

(b) e is for U via f .  

Such an e may be chosen by (33)b and (34)b, since A a  is universal. We shall show: 

(36) Q(0, em) = t for cofinitely many m E N. 

(36), (34)a, and (33)a yield the desired contradiction, completing the proof. 
To prove (36)) let m 2 length(a) be given. Let y = &, so by (35)a a C y. By (33)c it 

suffices to show: 

(37) S 3x1.. . xk Ayb],  where var(y) - var(a) = {xl . . . xk) 

We demonstrate (37) by contradiction. The falsity of (37) implies: 

(38) S + Vxl . . . xk- y [ p ] ,  where var(y) - var(a) = {xl . . . xk) 

Hence by (34)b: 

(39) U Vx1. . . X ~ T  A y[q], where var(y) - var(a) = {xl . . . xk) 

However, since y C_ e and q C_ f ,  (35)b implies: 



(40) U 3xl . .  . xr, l\ y[q], where var(y) - var(a) = {xl . . . xk} 

which contradicts (39). 
This completes the proof of Theorem (lo) ,  hence of Theorem (8). It is worth noting that 

the witness provided to Theorem (8) computes a total function in both its arguments for 
any oracle. 

Lemmas (12) and (13) yield the following characterization of detectability in elementary 
classes of structures. 

(41) COROLLARY: Let 0 E SEN and T C SEN be given. Then 0 is detectable in MODc(T) 
iff both 0 and 16 are confirmable in T. 

4 Detection in uncountable structures 

Within the paradigm defined in Section 2, scientists are conceived as examining every element 
of the structure giving rise to their environment. This conception must be modified in 
order to extend our paradigm to uncountable structures. In the present section we use the 
term "structure" without cardinality restrictions. Generalizing from the count able case, our 
intention is to show the scientist a representative sample of an unknown structure S. Samples 
of this kind are provided by S's elementary substructures, defined as follows. 

(42) DEFINITION: (Robinson, 1956) Let structure S be given. Substructure 7 & S is 
elementayjust in casefor all p ( ~ )  E FORM and a E (71, 7 k cp(z)[a] iff S i= cp(~)[~i]. 
We write 7 5 S in case 7 is an elementary substructure of S. 

Similarly to the countable case, samples from a domain will be coded as variables. Since 
there are only count ably many variables, the following version of the Lowenheim-Skolem 
theorem is central to our paradigm (recall that L has been assumed to be countable). 

(43) LEMMA: Let structure S be given. Then there is countable 7 5 S. 

PROOF: Chang & Keisler (1973, Theorem 3.1.6). W 
An assignment g to a structure S will be called "elementary" just in case range(g) induces 

an elementary substructure of S .  By the lemma, elementary assignments exist for every 
structure. Our extended paradigm may now be defined as follows. 

(44) DEFINITION: Let 6 E SEN, structure S ,  and scientist Q be given. strongly detects 
0 in S just in case for every elementary assignment g to S, and every environment e 
for S via g, if S 6 then Q(0, E,) = t for cofinitely many n E N, and if S 1 0  then 
Q(0, E,) = f for cofinitely many n E N. Let collection K of structures be given. 9 
strongly detects 0 in IC just in case for all S E IC, strongly detects 0 in S .  In this 
case, 8 is strongly detectable in IC. 

Old and new paradigms are related by the following proposition, which follows immediately 
from Definition (44). 



(45) PROPOSITION: Let 8 E SEN, collection K: of structures, and scientist Q be given. 
Then Q strongly detects 8 in K iff for every S E K: and every countable 7 5 S, 8 
detects 8 in 7. 

The new paradigm offers a stronger criterion of success than the original paradigm, even 
with respect to countable structures. This is the content of the following proposition. 

(46) PROPOSITION: Suppose that C contains the one-place predicate P, the unary function 
symbol S, and the two-place relation symbol <. Then there is 8 E SEN and collection 
K: of countable structures such that 8 is detectable in ii: but 8 is not strongly detectable 
in IC. 

PROOF: Let Z1, Z2, Z3 be three copies of the integers. Let Q be the rationals. Let 
S = (Z1 + Z3, Ps, SS, <') where PS = Z1, SS is successor, and <' is the natural order on 
Z1 + Z3. Let 24 = (Z1 + Z2 + Q, PU, SU, <') where PU = Z1 U Z2, SU is successor on Zl + Z2 
and identity on Q, and <U is the natural order on Z1+ Z2 + Q. Let 8 = V X ~ ( ~ P X  A T P ~ A X  < 
y -+ 3z(x < z A z < y)). We claim that 8, K = {S, U) witness the proposition. 

First we informally describe a scientist 8 that detects 8 in K:. By an "S-chain" from 
variable v; to variable vj is meant a set {Sv; = v;, , Sv;, = v,, . . . , Sv;, = vj) s BAS. 
Suppose that Q is working in an environment e either for S via g or for U via f (where g 
and f are complete assignments to S and U, respectively). 8 begins by searching in e for 
variables v;, v j  of lowest index with {Pv;, P v j ,  v; < vj} range(e). For as long as no S-chain 
from v; to v j  appears in e, 8 conjectures "true" (since it appears that v; E Z1 and v j  E Z2, 
and thus represent elements of 1241). If 8 finds an S-chain from v; to v j  in e then 8 searches 
for variables up, v, of lowest index with {7Pvp, ~ P v , ,  vp < v,) & range(e). For as long as no 
v, is found with {~Pv, ,  up < v,, v, < v,) range(e), 8 conjectures "false" (since it appears 
that up, v, E 5 = F). If 9 finds such a v, in e, 8 searches for new variables v;, vj of next 
lowest index with {Pv;, P v j ,  v; < vj} C_ range(e) and proceeds as before. It is easy to see 
that 9 's  conjectures stabilize to the correct truth-value for 8. 

It remains to show that 0 is not strongly detectable in K:. Define 7 = (Z1+Q, p7, s7, <I) 

where p7 = Z1, is successor on Z1 and identity on Q, and <I is the natural order on 
Z1 + Q. Then 7 5 24. We shall show that 8 is not detectable in {S ,7 ) .  By Proposition 
(45) this suffices to prove that 8 is not strongly detectable in {S,U), completing the proof. 
Let scientist Q detect 8 in 7. Let a E SEQ and p : var(a) + 171 be as specified in Lemma 
(24) (with 7 in place of S) .  Then Q(0, y) = t for all y > cr such that 7 Ay[h], where 
h > p. It is clear that S /= Aa[g] for some complete assignment g to S .  So we may choose 
environment e for S via g such that a C e. It is easy to verify that for all i 2 length(a), 
7 + A E ; [ ~ ]  for some h > p. Thus, for all i > length(a), Q(8, E ; )  = t. Since S 78, 8 does 
not detect 8 in S. . 

In view of Proposition (45) it is easy to modify the proof of Theorem (8) to demonstrate 
the existence of a universal learner for the present paradigm. For T C_ SEN, let MOD(T) be 
the class of structures (of arbitrary cardinality) that satisfy T. We have: 



(47) THEOREM: There is an oracle machine M such that for all 0 E SEN and T SEN, 
if 0 is strongly detectable in MOD(T) then MT strongly detects 0 in MOD(T). 

5 A characterization of first-order logic 

The present section is devoted to characterizing first-order logic within the framework es- 
tablished in the preceding discussion. To extend our paradigm of inductive inference beyond 
first-order logic it will be helpful to restrict attention to logics of a finitary character. We 
proceed as follows. Let HF be the set of hereditarily finite sets. We fix a countably infinite 
subset VAR of HF, called "variables." By a vocabulary is meant a countable set of constants, 
finitary relation symbols, and finitary function symbols, all drawn from HF and disjoint from 
VAR. Relative to a choice of vocabulary, the definition of an environment for a countable 
structure carries over from Section 2 virtually without modification. Specifically: 

(48) DEFINITION: Let vocabulary V and countable structure S for V be given. 

(a) BASv denotes the set of first-order, basic formulas over V and VAR. 

(b) The set of finite sequences over BASv is denoted by SEQV. 

(c) A V-environment is an w-sequence over BASV. 

(d) A complete assignment to S is a mapping of VAR onto ISI. 

(e) Given complete assignment g to S, and V-environment el e is for S via g just 
in case range(,) = { p  E BASv I S b P [ g ] }  (where is first-order satisfaction). 

As before, structures for V that share a V-environment are isomorphic. 
By a logic we mean a pair (L, bL) of mappings defined on the set of vocabularies and 

meeting the following conditions for each vocabulary V: 

(a) L(V) C_ HF; 

(b) +qV) is a relation between the class of structures for V, and L(V). 

In studies of comparative logic discussion is typically limited to logics possessing certain 
properties familiar from the predicate calculus, for example, that isomorphic structures sat- 
isfy the same sentences. These properties are brought together in Definitions 1.1.1, 1.2.1 - 
1.2.3 of Ebbinghaus (1985) under the term "regular." Henceforth we use the expression "reg- 
ular logic" in the sense of Ebbinghaus. First- and second-order logic - denoted L1 = (L1, k) 
and L2 = (L2, b L z ) ,  respectively - are regular. 

We now generalize the definitions of Section 2 in order to define an inductive inference 
paradigm corresponding to an arbitrary logic. For simplicity, only countable structures will 
be considered. 

(49) DEFINITION: Let logic L = (L, b L )  and vocabulary V be given. 



(a) A scientist for L and V is any function from L(V) x SEQ to {t, f ). 

(b) Let 0 E L(V), countable structure S and scientist Q for L be given. Q L-detects 
0 in S just in case for every complete assignment g to S, and every environment 
e for S via g, if S FL(v) 0 then 9(0,  en) = t for cofinitely many n E N, and if 
S F L ( ~ )  6 then Q(0, E,)  = f for cofinitely many n E N. 

(c) Let class K: of countable structures, 0 E L(V) and scientist Q for L be given. Q 
L-detects 6 in K just in case for all S E K, 9 L-detects 0 in S. In this case, 0 is 
L-detectable in K. 

As before, we shall be particularly concerned with L-detection within the elementary classes 
of structures determined by subsets of L(V). Given logic (L, bL) and T C L(V), we denote 
by MOD(L,V,T) the class of all countable structures S for V such that S kL(v)  T. 

In contrast to Theorem (8) there are regular logics for which no universal inference 
machine exists. For example, there is no such machine for L2. Indeed: 

(50) PROPOSITION: There is vocabulary V and T C L2(V) such that for all oracle ma- 
chines M there is 0 E L2(v)  such that 

(a) 0 is detectable in MOD(L2,V,T), but 

(b) M T  does not detect 0 in MOD(L~,V,T). 

PROOF: Let JV be the standard model of arithmetic. Let V contain just the vocabulary of 
arithmetic, and let sentence T E L2(V) characterize JV up to isomorphism. Choose complete 
assignment g to n/ and environment e for n/ via g such that {a E SEQv ( a C e) is recursive. 
It is easy to see that such g and e exist. For a contradiction, suppose that M is an oracle 
machine such that for all 0 E L1(V) C L2(V), M T  detects 0 in MOD(L~,V,T) = {S I S 
N} .  Since T is a single sentence there is Turing machine M' without oracle that behaves 
like M ~ .  Hence, given 0 E L1(V), n/ 0 iff M'(0, E;) = t for cofinitely many i E N. But 
this exhibits (0 E L1(V) I JV b 0) as arithmetic, which is impossible. 

The reasoning used to establish Proposition (50) points to a characterization of L1. 
Toward this end we formulate a strengthened sense of universal scientist, applicable to an 
arbitrary logic. Given logic L = (L, bL), vocabulary V, and 0 E L(V), we denote by V(0) 
the intersection of V and the transitive closure of 0 (i.e., V(0) is the vocabulary occurring 
in 6). Also, given T C L(V), MOD'(L,V,T) denotes {S[V(0) I S E MOD(L,V,T)) (that is, 
U E MOD'(L,V,T) iff U is the reduct to V(0) of some countable S with S kL(v)  T). 

(51) DEFINITION: Let logic L = (L, k L ) ,  vocabulary V, and oracle machine M be given. 

(a) M is PC-universal for L and V just in case for every T C L(V) and ev- 
ery 0 e L(V) if 0 is L-detectable in MOD'(L,V,T) then M T  L-detects 0 in 
MOD'(L,V,T). 

(b) L has the P C  universal property just in case for every vocabulary V there is an 
oracle machine M that is PC-universal for L and V. 



Minor modifications to the proof of Theorem (8) yield the following. 

(52) THEOREM: L1 has the PC-universal property. 

Our characterization of L1 also relies on the Lowenheim-Skolem property. A logic (L, kL) 
has this property just in case for every vocabulary V and every 0 E L(V), if S kL(v) 8 for 
some structure S, then 24 t=L(v) 0 for some countable structure U .  Finally, given logics 
L = (L, kL) and L' = (L', bLl), we say that Lt efectively extends L just in case 

(a) for all vocabularies V there is computable h : L(V) + Lt(V) such that for all 0 E L(V) ,  
MOD(L,V,O) = MOD(Lt,V,h(0)); and 

(b) there is a vocabulary V and 0' E Lt(V) such that for every 0 E L(V), MOD(L,V,B) # 
MOD(Lt,V,O'). 

(53) THEOREM: Let regular logic L be given. If L has the Lowenheim-Skolem property 
and L effectively extends L1 then L does not have the PC-universal property. 

Thus, L1 is a maximal logic with the Lowenheim-Skolem and PC-universal properties. 
PROOF: Let logic L = (L, kL) be given such that L is regular, L has the Lowenheim- 

Skolem property, and L effectively extends L1. By Flum (1985, Corollary 2.1.3), (w,  <) is PC 
in L. By the regularity of L and the fact that L effectively extends L1, there is vocabulary 
V > {<, +, .) and A E L(V) such that S E MOD(L,V,A) iff S [{<, +, .) E (w,  <, +, .). 
Hence, every 0 E L({<, +, .)) is L-detectable in MOD'(C,V,A). On the other hand, minor 
modification to the proof of (50) shows that there is no oracle machine M such that MA 
L-detects 6 in MOD'(C,V,A), for every 0 E L({<, +, -1). Hence no oracle machine is PC- 
universal for L and V. . 
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