
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

May 1997

Querying an Object-Oriented Database Using CPL Querying an Object-Oriented Database Using CPL

Susan B. Davidson
University of Pennsylvania, susan@cis.upenn.edu

Carmem Hara
University of Pennsylvania

Lucian Popa
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Susan B. Davidson, Carmem Hara, and Lucian Popa, "Querying an Object-Oriented Database Using CPL", .
May 1997.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-97-07.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/121
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76362122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/121
mailto:repository@pobox.upenn.edu

Querying an Object-Oriented Database Using CPL Querying an Object-Oriented Database Using CPL

Abstract Abstract
The Collection Programming Language is based on a complex value model of data and has successfully
been used for querying transforming and integrating data from a wide variety of structured data sources -
relational, ACeDB, and ASN.1 among others. However, since there is no notion of objects and classes in
CPL, it cannot adequately model recursive types or inheritance, and hence cannot be used to query object-
oriented databases (OODBs). By adding a reference type and four operations to CPL - dereference,
method invocation, identity test and class type cast - it is possible to express a large class of interesting
"safe" queries against OODBs. As an example of how the extended CPL can be used to query an OODB,
we will describe how the extended language has been used as a query interface to Shore databases.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-97-07.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/121

https://repository.upenn.edu/cis_reports/121

Querying an Object�Oriented Database Using CPL �

Susan B� Davidson� Carmem Harayand Lucian Popa

Dept� of Computer and Information Science

University of Pennsylvania

Philadelphia� PA �����

Email� susan�central�cis�upenn�edu� fchara� lpopag�saul�cis�upenn�edu

May �� ����

Abstract

The Collection Programming Language �CPL	 is based on a complex value model of data� and has
successfully been used for querying� transforming and integrating data from a wide variety of structured
data sources
 relational� ACeDB� and ASN�� among others� However� since there is no notion of objects
and classes in CPL� it cannot adequately model recursive types or inheritance� and hence cannot be used
to query object�oriented databases �OODBs	� By adding a reference type and four operations to CPL

dereference� method invocation� identity test and class type cast
 it is possible to express a large class
of interesting �safe queries against OODBs� As an example of how the extended CPL can be used to
query an OODB� we will describe how the extended language has been used as a query interface to Shore
databases�

� Introduction

A vast amount of data currently exists in databases� �les formatted according to various data exchange
formats� and application programs� Although much of this data is logically inter�related and physically
connected over the internet� providing integrated access to such heterogeneous data sources remains elusive�
While several interfaces have been developed to provide browsing access to such data� it is a much more
challenging problem to provide e�cient �bulk� access� �Bulk� access entails the ability to extract� combine
and transform data across multiple data sources in one query� and to do so e�ciently� Although commercial
solutions exist for querying and transforming data across multiple relational databases� the techniques do
not extend beyond the �sets of records� type system of relational databases to the more complex types found
in data exchange formats� where arbitrary nesting of records� variants� sets� lists� and bags is common� It is
therefore di�cult� if not impossible� to use a single language or access mechanism to obtain� combine and
e�ciently transform data from multiple non�relational data sources�

The approach that has been taken by the Kleisli data integration project at the University of Pennsylvania
is to use a complex�value model of data� and develop a query language called the Collection Programming
Language 	CPL
 for manipulating such data� By looking at the operations that are naturally associated
with each of the data types � records� sets� lists� variants and bags � CPL is able to generalize languages

�This research was supported in part by DOE DE�FG������ER�����	 Sub �
 NSF BIR�������� PRIME
 ARO DAAH���
�	�G����
 and ARPA N����������������

yPartially supported by CNPq�Brazil
 and Universidade Federal do Parana�

�

for nested relations to a complex type system� Moreover� rewrite rules associated with these operations
naturally extend many of the algebraic optimization techniques for relational systems to this more complex
type system� providing the basis for a powerful query optimizer� Since the type system of CPL subsumes
many of those we have encountered in practice � relational databases as well as data exchange formats such
as ASN�� and ACeDB � data can be extracted from multiple heterogeneous data sources and represented
internally in Kleisli using the types in which they were stored rather than simplifying them into a �at�
type 	as it is done in Tsimmis ���� or Information Manifold ����
� Queries which integrate and combine data
across multiple data sources can then be optimized using this type information� dramatically improving the
performance of the Kleisli data integration system�

However� Kleisli has not been connected to object�oriented databases 	OODBs
 until now� since CPL does
not support classes� recursive values� methods and inheritance� In order to capture this behavior in CPL�
we therefore extend its type system with a class type� References are values of class types and they are
associated with a record of attributes and a record of methods� corresponding to the attributes and methods
de�ned for the class to which a reference belongs in the OODB� The class type supports only four operations�
dereference� method invocation� identity test� and class type cast� Through examples� we show that with these
simple constructs it is possible to express a large class of interesting queries against OODBs�

A nice side�e�ect of this extension to CPL is that it can be used as a high�level query language to OODBs that
currently provide low�level access in the form of library calls embedded in some host programming language
such as C�� or Smalltalk� As an example of this� we have connected Kleisli using the extended CPL
language with Shore ���� an OODB under development at the University of Wisconsin� The implementation
of a Shore application involves the de�nition of the schema� its translation to a language for which a binding
is o�ered 	currently only C��
� and implementation of the methods� From CPL� we associate each object
in the database with a reference� and access the attributes and methods from the object using the operations
de�ned on the new data type� The resulting language resembles other query languages proposed for OODBs�
such as OQL� the query language from the Object Database Standard 	ODMG
 �����

The rest of the paper is organized as follows� We start in Section � by describing the complex value model
used in CPL� and giving the avor of the language through examples� In Section � we describe the extended
�object� model� Extensions to CPL to support this new model and examples of queries expressible in
extended CPL are presented in Section �� Section � describes implementation aspects of how we connected
extended CPL to Shore using Kleisli� Section � compares our language to OQL and concludes the paper�

� CPL� A Query Language for Collection types

The language CPL 	Collection Programming Language
 is based on a type system that allows arbitrary
nesting of the collection types � set� bag and list � together with record and variant types� The types are
given by the syntax

� �� bool j int j string j unit j � � � j f�g j fj� jg j fjj� jjg j �a� � ��� � � � � an � �n� j �a� � ��� � � � � an � �n�

Here� bool j int j string j unit j � � � are the 	built�in
 base types� The other types are all constructors and
build new types from existing types� �a� � ��� � � � � an � �n� constructs record types from the types ��� � � � � �n�
�a� � ��� � � � � an � �n� constructs variant types from the types ��� � � � � �n� f�g� fj� jg� and fjj� jjg respectively
construct set� bag� and list types from the type � � An example of this type system is

Student � f�name� string�
id� int�
major� �cis� unit� ee� unit��
courses� fjj�number� int�

instructor� string�jjg�g

�

Note that a Student can have a major that is either cis or ee� and that their courses are organized as a list
of records�

The syntax for values in CPL is a subset of the language that constructs values� �l� � e�� � � � � ln � en�
for records� �l � e� for variants� fe� � � � eng for sets� and similarly for multisets and lists� For example� a
fragment of data conforming to the Student type is

f�name��Jane��
id������	
�
major ��cis�����
courses�fjj�number�����

instructor��Peter���
�number�����
instructor��Susan��jjg�� � �g

This example shows just one member of a set of student records� Since a relation is a set of records� it is also
straightforward to represent a relational database in this format� In fact� the type system of CPL 	which is
slightly larger than the description given here
 allows us to express most common data formats�

The language CPL� The syntax of CPL resembles� very roughly� that of relational calculus� However� there
are important di�erences that make it possible to deal with the richer variety of types we have mentioned and
to allow function de�nition within the language� The important syntactic unit of CPL is the comprehension�
which can be used with a variety of collection types�

As an example of a set comprehension� this is a simple CPL query that extracts the id and courses from a
database DB of the type Student

f�id � sid� courses � scourses�j ns �� DBg

Note the use of ns to introduce the variable s� The e�ect of ns �� DB is to bind s to each element of the
set DB� This form is called a generator� Each collection type in CPL has to be used with the correspondent
generator� �� for sets� ��� for bags� and �� �� for lists� The use of explicit variable binding is needed if
we are to use database queries in conjunction with function de�nition or pattern matching as in the example
below� which is equivalent to the one above� Note that the ellipsis �� � �� matches any remaining �elds in the
DB record�

f�id � i� courses � c�j �id � ni� courses � nc� � � �� �� DBg

Apart from the fact that the queries above return a nested structure� they can be readily expressed in
relational calculus� The following queries perform simple restructuring�

f�id � i� course � cnumber�j �id � ni� courses � ncc� � � �� �� DB� nc ��� � ccg

f�course � c� students � fxidj nx �� DB� �number � c� � � �� ��� � xcourses g�j
ny �� DB� �number � nc� � � �� �� �� ycourses g

Note the use of a list generator 	 ��� �
 for courses� When there is a generator inside a comprehension of
a di�erent type� the collection on which the generator iterates is converted to the type of the comprehension�
In this case� courses is converted to a set before the iteration� The �rst query �attens� the nested relation�
the second restructures it so that the database becomes a database of courses with associated students�
Operations such as these can be expressed in nested relational algebra and in certain object�oriented query
languages� The strength of CPL is that it has more general collection types� allows function de�nition and
can also exploit variants� which may be used in pattern matching�

f�id � i� name � n �j �id � ni� name � nn� major � �cis � ���� � � � � �� DB g

�

This gives us the id and name of students whose major is �cis��

The syntax of functions is given by nx�e� where e is an expression that may contain the variable x� We can
give this function 	or any other CPL expression
 a name with the syntax de�ne f �� e which causes f to
act as a synonym for the expression e� Thus� the number of courses in which a given student is enrolled in
can be expressed as the function

de�ne courses of �� nx �fcnumberj �name � x� courses � ncc� � � �� �� DB� c �� �� ccg

These examples illustrate part of the expressive power of CPL� A more detailed description of the language is
given in ���� see also ���� for a discussion of adding arrays� An important property of comprehension syntax
is that it is derived from a more powerful programming paradigm on collection types� that of structural
recursion ��� ��� This more general form of computation on collections allows the expression of aggregate
functions such as summation� as well as functions such as transitive closure� that cannot be expressed through
comprehensions alone� However� if a �xed number of aggregate operations are added to CPL as primitives�
then the language parallels the expressive power of SQL� since CPL restricted to input and output to be at
relation types expresses the relational algebra ���� The advantage of using comprehensions is that they have
a well�understood set of transformation rules ���� ��� ��� that generalize many of the known optimizations
of relational query languages to work for a complex value type system�

� A Data Model with Object Identities

In general� each object in a Object Oriented Data Base 	OODB
 has a unique identi�er 	OID
 which is
assigned by the Database Management System at the object creation time� The value of the OID usually
does not depend on the value of the properties of the object� but it is some number generated by the system�
Objects can refer to each other using OIDs� For example� student objects can �point� to course objects� and
vice�versa� This reference mechanism permits the de�nition of recursive data structures� which can not be
directly represented by CPL types as described in the previous section�

In order to query objects stored in a OODB from CPL� we extended its type system with a new type called
class� Values of this type correspond to OIDs in the OODB� In the following section we present our data
model� which is an extension of ���� with methods�

��� Types and schemas

A class has a name� and it is associated with a record type of attributes� a record type of methods� and a set
of superclasses� Attributes represent properties of a given class� In the record type of attributes� the type of
each �eld can be a class or any CPL type presented in Section �� For simplicity� in what follows only sets�
records� variants� and classes are treated� bags and lists can be handled similarly�

Let C be a �nite set of class names� ranged over by C�C�� � � �� and A be a �xed countable set of labels� ranged
over by a�� a�� � � � �m��m�� � � ��

We de�ne the data types 	TypesC
 and the method types 	MTypesC
 as follows�

� TypesC

� ��� bool j int j string j unit j � � � j f�g j �a� � ��� � � � � an � �n� j �a� � ��� � � � � an � �n� j C

� MTypesC

�

� ��� �m� � C � �� � � ��� � � � �mn � C � �n � � �n�

Base types 	b
� sets 	f�g
� records 	�a� � ��� � � � � an � �n�
� and variants 	�a� � ��� � � � � an � �n�
 were
introduced in Section �� C is the class type�

A method type is a record where each �eld is a function with two arguments� The �rst argument is a value
of the class type and corresponds to the object to which the method is applied� This is often called the
�self� parameter� The second argument corresponds to the parameters of the method�

We can now de�ne a database schema as a quadruple 	C�S�M��
� where

� C is a �nite set of classes

� S is a schema mapping S � C � TypesC� such that for any C � C� C
S
	� �C� where �C is a record type�

with �elds that correspond to the attributes of the class�

� M is a method mappingM � C �MTypesC

� � is a partial order on C� such that

� For each pair C�C� in C� if C � C� and

S	C�

 �a� � ��� � � � � am � �m�

M	C�

 �m� � C
� � �� � � ��� � � � �mk � C

� � �k � � �k�

then

S	C

 �a� � ��� � � � � am � �m� � � � � an � �n�

M	C

 �m� � C � �� � � ��� � � � �mk � C � �k � � �k� � � � �ml � C � �l � � �l�

where m � n� k � l� and a�� � � � � an� m�� � � � �ml are distinct label names�

� Let Label � C � A be a function that maps each class to the set of attribute and method labels
in S	C
� andM	C
� If C is a subclass of C� and C��� and Label	C�

T
Label	C��
 �� � then there

is a class C���� superclass of C� C�� and C��� such that Label	C���
 � Label	C�

T
Label	C��
�

Informally�� de�nes a class hierarchy where subclasses can only provide additional attributes and methods
to their superclasses� If C � C�� and C � C�� and an attribute or method l exists in both C�� and C�� then
there must exist C �� C� � C�� C� � C �� such that l is de�ned in C��

Example� Let us consider a school database with the set of classes given by

C
 fPerson� Student�Courseg

The schema mapping is given by

S	Person

 �name � string� age � int�mother � �none � unit� some � Person��

S	Student

 �name � string� age � int�mother � �none � unit� some � Person�� enrolled in � fCourseg�

S	Course

 �number � int�TA � �none � unit� some � Student�� enrolls � fStudentg�

The method mapping is given by

M	Person

 ��

M	Student

 �num of courses � Student � unit� int�

M	Course

 �num of students � Course� unit� int�

And the only subclass relationship we have is

Student � Person

�

��� Database Instances

Domain of database values� Values of class types are object identities� We de�ne an object�identity
assignment �C for a set of classes C as a mapping from C to a family of disjoint �nite sets of object identities�

I�e�� C
�C

	� �C � such that if C �� C� then �C
T
�C

�

� � Let us denote by Db the domain of the base type b�
for any b�

The domain of our model D	�C
 is de�ned as the least set satisfying the equation�

D	�C

 	
�
b

Db
 � 	
�
C�C

�C
 � 	A
�
�D	�C

 � 	A �D	�C

 � Pfin	D	�

C

�

	
�
C�C

	A
�
� 	�C �D	�C
�D	�C

where A� B denotes the set of all functions with domain A and codomain B� and A
�
� B denotes the set

of partial functions from A to B with �nite domains�

Denotations of types� Given a schema 	C�S�M��
� and an object identity assignment �C � the interpre�
tation of each type � in TypesC and MTypesC � ��� ���C� is de�ned by

��b���C
 Db

��C���C

�

C��C

�C
�

��f�g���C
 Pfin	��� ���
C

���a� � ��� � � � � an � �n����
C
 ff � A

�
�D	�C
 j dom	f
 � fa�� � � � � ang

and f	ai
 � ���i���
C� i � �� � � � � ng

���a� � ��� � � � � an � �n����
C
 	fa�g � �������

C
 � � � �� 	fang � ���n���
C

���m� � C � �� � � ��� � � � �mn � C � �n � � �n����
C

�
C�C

ff � A
�
� 	�C �D	�C
�D	�C

 j

dom	f
 � fm�� � � � �mng and

f	mi
 � 	�
C � ���i���

C
� ��� �i���
C� i � �� � � � � ng

Note that the domain of a class type includes the object identities of the class and all its subclasses� That
is� ��C���C � ��C����C whenever C � C�� This formalizes the fact that an object of a subclass C can be viewed
also as an object of a superclass C� of C�

Database instance� A database instance of a schema S is a quadruple I � 	�C � classOf� �C� �C
� where

� �C is an object identity assignment

� classOf �
S

C�C �
C � C� is a function that maps each object identity o to a class C such that o � �C �

� �C is a family of functions �C � �C � ��S	C
���C� and

� � is a function � � C �
S
C�C ��M	C
���C� such that �	C
 � ��M	C
���C�

The object identity assignment function associates disjoint sets of identities to each class� The function
classOf is its inverse� i�e�� from each object identity it returns its class� For each class C� �C associates
a record of attribute values to each object in �C � As opposed to the value assignment functions �C that

�

associates objects with values� �C associates classes with functions that implement their methods� In our
model� we assume that methods have no side e�ects� that is� methods do not update the database� Note
that the above de�nition allows method overloading� since it�s possible to assign a di�erent function to a
method inherited from a superclass�

Example� An instance of the school database introduced in the previous section follows�

Our object identities are�

�Person
 fjohnOidg

�Student
 fmaryOid� joeOid� saraOidg

�Course
 f���Oid� ���Oidg

and the classOf function is de�ned as

classOf	johnOid
 � Person

classOf	maryOid
 � classOf	joeOid
 � classOf	saraOid
 � Student

classOf	���Oid
 � classOf	���Oid
 � Course

The attribute value assignment are�

�Person	johnOid

 �name 	��� john��� age 	� ��mother 	� �some � saraOid��

�Student	maryOid

 �name 	��� mary��� age 	� 	��mother 	� �none � unit��enrolled in 	� f���Oid� ���Oidg�

�Student	joeOid

 �name 	��� joe��� age 	� 		�mother 	� �none � unit�� enrolled in 	� f���Oidg�

�Student	saraOid

 �name 	��� sara��� age 	� 	��mother 	� �none � unit�� enrolled in 	� f���Oidg�

�Course	���Oid

 �number 	� ����TA 	� �some � saraOid�� enrolls 	� fmaryOid� joeOidg�

�Course	���Oid

 �number 	� ����TA 	� �none � unit�� enrolls 	� fmaryOid� saraOidg�

In our model� the semantics of methods are given by external functions de�ned by the OODB that contains
the objects� Method assignments only make methods refer to such external functions� as in

�	Student

 �num of courses 	� a function that implements it�

� Extending CPL with Objects

In this section we extend CPL with operations for class types� References are values of class types and
correspond to OIDs in a OODB� Using examples� we will show that with only four new constructs for this
type� a number of interesting queries can be expressed in the language� The examples use the School database
de�ned in the previous section�

��� The Extended Language

The syntax and typing rules of the constructs for class types are illustrated in Figure �� The typing rules
for the constructs of the other types can be found in ���� and are given in Appendix A�

For each class C � C� we de�ne a constant ext C� corresponding to the set of object identities from class C
and all subclasses of C� This is usually called the extent of a class� For example� ext Person is the union of
OID�s from class Person and Student�

�

�extent�
ext C � fCg

�dereference�
e � C

�e � S	C

�method invocation�
e� � C e� � �i
e� � mi	e�
 � � �i

� where M	C
 � � m� � C � �� � � ��� � � � �
mn � C � �n � � �n�� � � i � n

�identity test�
e� � C e� � C
e� �C e� � Bool

�class type cast�
e � C C � C�

as C�e � C�

Figure �� The constructs for class types in CPL

The dereference operation returns a record with the attributes of an object� As an example� the following
query returns the name� age� and mother of all persons in ext Person�

f�xj nx �� ext Persong

To extract only some attributes of objects� we can combine the dereference operation with record projection�
as shown in the next query that returns only the name of all persons�

f�xnamej nx �� ext Persong

To call a function de�ned for a class we use the method invocation operation� The following query gets the
courses with more than �fteen students enrolled�

f�cnumber j nc �� ext Course� c�num of students��	 �� g

The identity test executed on objects o�� and o� returns true if both have the sameOID� Structural equality on
objects can be implemented by �rst dereferencing them and then testing equality on the resulting records�
This implements �shallow structural test�� because if the record contains a reference� then the test on
references is the identity test� The example below returns the courses in which both �mary� and �joe� are
enrolled� Note that if there are two courses with exactly the same value for all the attributes� and �mary�
is enrolled in one of them and �joe� in the other� this course is not part of the result since we are testing
equality on the identity of the objects�

f �maryCoursenumber j
nm �� ext Student� �mname � �mary�� nmaryCourse �� �menrolled in�
nj �� ext Student� �jname � �joe�� njoeCourse �� �jenrolled in�
maryCourse � joeCourse g

A class type cast operation� as C� is de�ned for each class C � C� When it is applied to an object e of the
class type C�� C� � C� it changes the type of e to C� As a consequence� attributes and methods de�ned in C�

which do not exist in C are hidden� Note that this operation is only well de�ned for an object of a subclass
to be transformed to an object of a superclass� The class type cast operation is the only form of subtyping
in the extended CPL� This is explicit subtyping as opposed to the implicit subtyping that is common in OO
languages like Java or C���

�

The following example gives the name of all persons who are not students� Note that it would not type
check without the application of the as Person operation� since the identity test� used to implement set
membership� is only well de�ned for objects from the same class�

f �pname j np �� ext Person� p not in fas Person�s� j ns �� ext Student gg

We also extend the language to use objects in pattern matching� Using the fact that CPL already supports
pattern matching on records� and that the result of a dereference operation is a record type� we interpret
the query

fe�j ref of C p �� e�g

as the set of elements e� such that the dereference of an element of the set e� of type fCg matches the record
pattern p�

This is illustrated in the example below� which returns the course numbers in ext Course that have a TA and
the name of the TA�

f�number�n� TA��sname� j ref of Course�number � nn� TA � �some � ns�� � � �� �� ext Course g

The following syntactic sugar was also added� the expression e � l means 	�e
�l 	dereference of e followed
by selection of l
� where l is a label of an attribute of e� This is convenient because we use the same piece of
syntax 	�
 both to invoke a method and to get the value of an attribute from an object� The query below
gets the numbers of courses in which there is at least one mother enrolled� It illustrates the syntactic sugar
described and also the use of layered patterns nx �P� If the entire pattern P matches� then the value that
matches P is also bound to the variable x� This value is viewed both through the pattern and as a whole�

fc � number j ns �ref of Student�enrolled in� nx� � � �� �� ext Student� nc �� x�
as Person�s� in fm j ref of Person�mother� �some� nm�� � � �� �� ext Person gg

Note that it is not possible to create objects in the language� since there is no constructor for class types�
Values of this type represent objects stored in a database that were brought into the system as a result of
function calls executed against the database� Also� there is no assignment on references�

��� The Semantics of the Language

This section de�nes the semantics of the constructs introduced in the previous section� We �rst present some
additional de�nitions�

� Coercion functions� For each pair of classes C�C� in C such that C� � C� we de�ne a coercion
function fC

��C such that
fC

��C � ��S	C�
���C � ��S	C
���C

Given x in ��S	C�
���C� such that dom	x
 � fa�� � � � � ak� ak��� � � � � ak�lg� dom	f
C��C	x

 � fa�� � � � � ak�lg�

and fC
��C	x
 � xjfa������akg�

That is� given a record x with the attributes of an object o� o � �C
�

� fC
��C	x
 hides the additional

attributes de�ned for C�� which are not de�ned for C� resulting in a record with only the attributes
de�ned for C� Note that this is a semantic function� de�ned to give the interpretation of the operations
in our query language� It is not an operation in the query language�

As an example of the use of the coercion function we have

�

V ��ext C��I

S

C��C �C
�

V ��as C e��I
 V ��e��I� where e � C�

V ���e��I
 fC
��C	�C

�

	V ��e��I

� where C� � classOf	V ��e��I
� and e � C�

V ��e� � ai	e�
��I
 	
C�

ai
	�	C�

	V ��e���I� V ��e���I
� where C

� � classOf	V ��e���I
� and e� � C�

V ��e� �C e���I

�
T� if V ��e���I � V ��e���I
F� otherwise

Figure �� Semantics of class types constructs

fStudent�Person	�name 	��� joe��� age 	� ���mother 	� �none � unit�� enrolled in 	� f���Oidg�

� �name 	��� joe��� age 	� ���mother 	� �none � unit��

� Method selection� Assume for each C � C the following mappings for method selection�

 C
mi
� ��M	C
���C � 	�C � ���i���

C � ��� �i���
C

where M	C
 � �m� � C � �� � � ��� � � � �mn � C � �n � � �n�� i � �� � � � � n�

Given a database instance I � 	�C � classOf� �C� �C
� the semantic function V �����I maps expressions of the
language to D	�C
� The interpretation of class types constructs is de�ned in Figure �� The semantic
function on the operations of the other types in the language is de�ned in Appendix A�

The interpretation of ext C� tells us that an object o from class C� 	that is� o � �C
�

 is not only an element
of ext C�� but also an element of ext C� for all C that are superclasses of C�� Therefore� o can have di�erent
types� depending on which extent it is extracted from� Note� however� that a given expression in the language
has always a unique type� since the type system does not have a subsumption rule� The extent inclusion is
what captures the hierarchy of classes in our data model�

If an object has type C and we want it to be �seen� as an instance of one of its superclasses� then this has
to be explicitly de�ned using the cast operation� This operation does not change the interpretation of the
object� as de�ned in Figure �� In another words� the interpretation of an object is always its OID� which is
an element of only one set �C � since the object�identity assignment �C maps classes to disjoint sets of OIDs�
Changing the type of an object using the cast operation a�ects the interpretation of other operations that
can be applied to it�

The meaning of applying the dereference operation on an object o� o � �C
�

� involves getting all the attributes
de�ned for object o using the �C

�

function� then� if the type of o in the context is C� and C is a superclass
of C�� we use the coercion function fC

��C to hide those attributes not de�ned for class C�

For method invocation� given an object o� o � �C � we obtain the function associated with the method by
applying � on C� which gets a record of functions� and then select the desired method� Note that the
function � returns the methods associated with class C� Therefore� even if o is statically typed as of type
C�� C � C�� the resolution of the method is dynamic� That is� the function that implements the method to
be called is determined by the �most speci�c class� of the object�

The interpretation of the identity test shows that the equality test on values of a class type is de�ned on
OIDs� instead of structural equality�

��

��� Optimizations

This section presents some initial thoughts on optimizations for reference operations� Since queries in OODBs
often involve navigation of the database expressed by path expresssions� a main concern of optimizations
proposed in the literature is to minimize the amount of I!O performed by these expressions� In our language�
a path expression is de�ned by a sequence of dereference and method invocation operations� and many of
the results should follow through to this environment�

Factorization of common subexpressions� It is common for an object to be dereferenced more than once
as di�erent �elds are selected in an expression� Since by dereferencing an object all its �elds are extracted�
it�s desirable that the query optimizer executes common subexpression factorization� This optimization
would avoid not only dereferencing an object multiple times� but it would also avoid invoking a method or
extracting the extent of a class more than once in the same query��

Type Cast� A simple optimization on the class type cast is to reduce two applications of the operation
to one� That is� we can rewrite as C	as C�e
 to as Ce� where C� is a subclass of C� The cast operation is
very cheap and therefore this optimization does not produce a great impact in terms of performance� The
identity test operation is also very simple because it does not require any access to the database�

Extents� If the notion of extents is supported by the underlying database 	as� for example� in O� ����
� and
all classes have an associated extent� the constants ext C simply require an access to their values� On the
other hand� if extents are not maintained by the database 	as is the case in Shore ���
� creating them incurs
an enormous cost in scanning the database� A possible optimization would be to keep a local copy of the
extents in the system in order to avoid scanning the database multiple times in the same session� However�
this approach could result in an inconsistent state since the extent is not automatically updated� The local
copy also cannot be considered a materialized view of the database� since only OIDs are maintained� The
associated values of objects are always accessed from the database� and this can cause problems when it is
updated� For example� if a new object o� is created and a pre�existing object o� is updated to refer to it�
o� is accessible through o� in CPL� but it is not in the extent of o��s class� It is then unsafe to use such
optimization� unless an update mechanism on the local extent copy is implemented�

Indexes and inverse relationships� Other optimization technique that consider inverse relationships and
indexes can be performed if this typed information is known to the system� Consider the following example
that returns the name of all students of course number ����

f �sname j ns �� ext Student� nc �� �senrolled in� �cnumber � ��� g

If the system knows that there is an index over number on ext Course and also that enrolls is the inverse of
enrolled in� the query could be rewritten as

f �sname j nc �� ext Course� �cnumber � ���� ns �� �cenrolls g

Another possible optimization involve rewriting queries based on the physical organization of objects in �les�
A general framework for algebraic optimizations and �type�based� optimizations as is the above is described
in ����� algebraic optimizations that exploit access paths can be found in ����

�We consider that each query is executed within a single transaction to guarantee that if a query accesses an object multiple
times
 the value returned by these operations coincide�

��

� The CPL�Shore Interface

CPL is implemented on top of Kleisli� an extensible query system written entirely in ML ����� Routines within
Kleisli manage optimization� query evaluation� and I!O from remote and local data sources� It emphasizes
openness� new primitives� optimization rules� data scanners� and data writers can be dynamically introduced
into the system�

This openness allowed the integration of a number of data sources to the system ���� including conventional
databases� like Sybase� and structured �les� like ASN��� and AceDB� The interface between Kleisli and these
data sources is performed by data drivers� Once they are registered in Kleisli� they can be used as primitives
in CPL to access the data sources� They perform the task of logging into a speci�c data source� sending
queries in the native form for that source� returning results to Kleisli in internal Kleisli value syntax� and
logging out from the data source when the CPL session terminates� The overall architecture of the system
is shown in Figure ��

SHORE

(schema definition)

SDL file

Shore C++

Application

AceDB

BLAST
Shore_C/C++

Interface

Ref Complex

Object

Generator

Key

Open Socket

Not Implemented

Stream (pipe)

Shore Access Functions

NCBI

Shore Interface

I/O

CPL

Kleisli

Library

NetExternal Servers
ML

BLAST

AceDB

Sybase

ASN.1

<- Queris Data ->

Data Drivers

GenBank

ASN.1

GDB

Sybase

Local Data

SHORE

input

generate

generate

Figure �� Architecture of the system

To connect to Shore ���� an object�oriented database under development at the University of Wisconsin� a
di�erent interface had to be developed since Shore does not support a high�level query language� The resulting
interface is more tightly connected to the data source� Each object in a Shore database corresponds to a
reference 	a value of type class
 in Kleisli� with associated functions to access its attributes and methods�
These functions are represented in Figure � by the Shore Access Functions� and Shore C�C�� interface
components�

A Shore application is composed of a schema de�nition� using the Shore Data Language 	SDL
� and the
implementation of the methods in a language for which a binding is o�ered 	currently only C��
� To
call a method or access an attribute from an object from Kleisli� the corresponding ML function in Shore
Access Function is called� which in turn calls a C!C�� function in Shore C�C��� this �nally calls the
corresponding method implemented by a Shore C�� application� Note that the access functions in both
components described above depend on the schema of the database� and must be generated for each Shore
database to be integrated to Kleisli� This is performed by the Shore Interface Generator that takes as input
the schema de�nition of a Shore database 	an SDL �le
�

��

Kleisli has two interfaces� the application programming interface and the compiler interface� The application
programming interface consists of ML modules implementing the data types supported in the model described
in Section �� Therefore� extending the system with a new data type requires basically the implementation
of a new ML module� We extended Kleisli with a module for the reference complex object� The compiler
interface supports the rapid constructions of query languages� as we have done for CPL in the present
prototype� and contains modules which provide support for compiler!interpreter construction activities� In
this part� the type inference mechanism were modi�ed to handle recursive values that can be introduced in
the presence of references�

The extension of CPL and Kleisli with the class type has been implemented� but the Shore Interface Generator
has not been implemented yet� To test the feasibility of our approach a Shore School database used in the
examples was connected to the system and is fully operational�

� Conclusion

We have shown how CPL� a functional query language based on a complex value model� can be extended
to query OODBs by the addition of a reference type and four operations� dereference� method invocation�
identity test and class type cast� The extended language was shown to express a number of interesting
queries� and has been implemented as a query interface to Shore databases� a bare�bones OODB developed
at the University of Wisconsin� However� the question remains of how our model and language compares to
the �industry standard� speci�ed by ODMG �����

The Object Model 	OM
 speci�ed by ODMG using the Object De�nition Language 	ODL
 is slightly richer
than the model we presented in Section �� Both models make a distinction between literals and objects� and
both models support a rich set of collection types � sets� bags� lists� and arrays 	see ���� for a discussion of
arrays in CPL
� However� ODL allows a richer set of base types than is currently supported in CPL 	although
such additions are not di�cult to make
� and it also supports null values for every literal type� In ODL�
the type of values associated to objects is also de�ned by a class interface� composed of a set of attributes�
relationships� and methods� or it can be a collection type� That is� collections can be objects�

OM allows multiple inheritance� however� little is said about how name conicts between superclasses are
resolved� In contrast� in our model conicts must be explicitly resolved within a common superclass� Our
model also requires the existence of class extents while they are optional within OM� If a class has an extent
within OM� it can also de�ne keys� which uniquely identify objects by the values they carry for some property
or set of properties� It is also important to note that OM supports exceptions�

Turning to the languages� OQL and extended CPL are based on similar principles� both provide high�level
primitives to deal with various collection types� and both are functional languages in which operators can be
freely composed as long as the operands respect the type system� Many of the examples presented in Section
� involving complex types are expressible in OQL by allowing a select�from�where clause in the select part�

In contrast� CPL uses comprehension syntax to manipulate sets� bags� and lists� and explicitly allows the
programmer to convert between them� Moreover� since CPL includes primitive functions for comparing
complex objects� it is possible to de�ne precisely the result of converting list to sets or bags� For example�
the expression fjje� j nx �� e� jjg stands for the list fjje��o�
x�� � � � � e��on
x� jjg� where o�� � � � on are the distinct
elements in the set e� and o� � � � � � on� As a consequence� the result of attening a collection of collections
of any type is well�de�ned and can be determined by looking at the type of the comprehension and the type
of generators� On the other hand� in OQL attening a list of sets� or a set of lists� always results in a set�
Also� the result of a select�from�where clause can only be of type set or bag�

OQL supports operators to get elements from a collection� For example� it is possible to extract the element
of a singleton� or the �rst and last elements of a list� CPL does not support such operations since they can

��

raise an exception� For instance� trying to extract the element of an empty set or a set with more than one
element raises an exception� OQL also allows the creation of both complex values and objects� whereas in
extended CPL only complex values can currently be created� Extended CPL also assumes that methods
have no side e�ects� Although OQL allows the invocation of update methods� it does not include a formal
speci�cation of the semantics of these operations�

The languages also di�er in how they support the movement of objects within the type hierarchy� In OQL�
an object statically typed as of class C is allowed to go �up� in the hierarchy 	i�e� typed as of a class C�� C�

superclass of C
 as well as �down� 	i�e� typed as of class C��� C�� subclass of C
� The �rst conversion is always
safe and it is done implicitly by OQL� however the second conversion can raise an exception� Therefore�
extended CPL only allows movement �up� in the hierarchy� and requires that the user de�nes the conversion
explicitly by using the operator as C� This considerably simpli�es type inference� and has been adopted in
other systems such as Object ML �����

Finally� in OQL any named object is an entry�point to a query� whereas in our approach only extents can
be entry�points� OQL supports path expressions with any number of levels� For example� given an object p
of class Person� one can obtain the age of p�s mother as pmotherage� where mother is also an object of class
Person� If the value of p�s mother is null� OQL raises an exception� To avoid this� a query may test explicitly
if pmother is not equal to null� Since CPL does not support nullable types� a class type is always de�ned as
a variant� which always requires a test to extract its value�

From the discussion above� extended CPL can be thought of as a �safe� version of OQL since most of the
di�erences between the two languages result from the avoidance of exceptions within extended CPL� The
main drawback of our approach is the requirement for explicit subtyping using the as C operation� on the
other hand� the support within CPL for pattern matching is a very convenient mechanism to formulate
queries and the language itself is simple and easy to use�

We have found extended CPL to provide an elegant query interface to OODBs with �programming� interfaces
like Shore� As described in ���� it is possible to express in CPL most of the collection expressions found
in other query languages� universal and existential quanti�cation� membership testing� operations from the
relational algebra 	union� di�erence� product� selection� and projection
� as well as the group�by construct
of SQL� The extensions proposed in this paper additionally provide operations on object identity 	equality
and as C
� path expressions� method invocation� and late binding�

Implementing these extensions within the Kleisli system has also been remarkably easy� Since Kleisli is
intended as a transformation and integration system for multiple heterogeneous data sources� it has been
designed to facilitate the addition of external functions representing the query capabilities of data sources�
Kleisli also supports an extensible query optimizer� which will also make it easy to add the optimizations
sketched in Section ���� However� a complete treatment of optimizations for the extensions to CPL proposed
in this paper remains an area of future research�

Acknowledgements

The authors thank Peter Buneman and Val Tannen for numerous fruitful discussions and suggestions during
the development of this work�

References

��� Abiteboul� S�� Hull� R�� Vianu� V�� Foundations of Databases� Addison�Wesley Publishing Company� ����

��� Beeri� C�� Kornatzky� Y�� �Algebraic optimization of object oriented query languages� Theorical Computer
Science� �����	������� August ����

��

��� Breazu�Tannen� V�� Buneman� P� Wong� L� �Naturally embedded query languages� LNCS ���� Proceedings of
�th International Conference on Database Theory� Berlin� Germany� October ����� J� Biskup and R� Hull� Eds��
Springer�Verlag� pp� �������� Available as UPenn Techinical Report MS�CIS������

��� Breazu�Tannen� V�� Buneman� P�� Naqvi� S�� �Structural recursion as a query language� Proceedings of �rd In	
ternational Workshop on Database Programming Language� Naphlion� Greece� August ����� Morgan Kaufmann�
pp� ����� Also available as UPenn Technical Report MS�CIS������

��� Buneman� P�� Naqvi� S�� Tannen� V�� Wong� L�� �Principles of Programming with Complex Objects and Collection
Types� Theoretical Computer Science ��� �����	� pp �����

��� Buneman� P�� Libkin� L�� Suciu� D�� Breazu�Tannen� V�� Wong� L� �Comprehension Syntax� SIGMOD Record�
����	������� March ����

��� Buneman� P�� Davidson S�B�� Hart� K�� Overton� C�� Wong� L� �A Data Transformation System for Biological
Data Sources� Proceedings of the
�st VLDB Conference� Zurich� Switzerland� ����

��� Buneman� P�� Ohori� A�� �A Type System that Reconciles Classes and Extents� Proceedings of �rd International
Conference on Database Programming Languages� Nafplion� Greece� pp� �������� Morgan Kaufmann

��� Carey� M�� DeWitt� D�� Naughton� J�� Solomon� M�� et al� �Shoring Up Persistent Applications� Proceedings of
the ���� ACM SIGMOD Conference� Minneapolis� MN� pp� �������� May ����

���� Cattell� R�G�G� The Object Database Standard� ODMG	��� Morgan Kaufmann Publishers� San Francisco� CA�
����

���� Chawathe� S�� Garcia� H�� Hammer� J�� Ireland� K�� Papakonstantinou� Y�� Ullman� J�� Widom� J�� �The TSIM�
MMIS Project� Integration of Heterogeneous Information Sources� Proceedings of IPSJ Conference� pp� �����
Tokyo� Japan� October �����

���� Cluet� S�� Delobel� C�� �A General Framework for the Optimization of Object�Oriented Queries� Proceedings of
the ���
 ACM SIGMOD Conference� ����

���� Deux� O�� et al�� �The Story of O�� IEEE Transaction on Knowledge and Data Engineering� ���	� March ����

���� Kosky� A� Transforming Databases with Recursive Data Structures� Ph�D� Thesis� University of Pennsylvania�
����

���� Levy� A�� Srivastava� D�� Kirk� T�� �Data Model and Query Evaluation in Global Information Systems� Journal
of Intelligent Information Systems� ����� Special Issue on Networked Information Discovery and Retrieval� ���	�
September ����

���� Libkin� L� Machlin� R�� Wong� L� �A Query Language for Multidimensional Arrays� Design� Implementation�
and Optimization Techniques� Proceedings of the ���� ACM SIGMOD Conference

���� Milner� R�� Tofte� M�� Harper� R� The Denition of Standard ML� MIT Press� ����

���� Reppy� J�� Riecke� J�� �Simple objects for Standard ML� SIGPLAN���� Conference on Programming Languages�
Design� and Implementation �PLDI�� ����	� May ����

���� Trinder� P�W�� Wadler� P� L� �Improving list comprehension database queries� Proceedings of TENCON����
Bombay� India� November ����� pp� �������

���� Trinder� P�W� �Comprehensions� a query notation for DBPLs� Proceedings of �rd International Workshop on
Database Programming Languages� Nahplion� Greece� August ����� pp� �����

���� Wadler� P�� �Comprehending monads� Mathematical Structures in Computer Science
� ����� �������

���� Wong� L�� Querying Nested Collections� PhD thesis� Department of Computer and Information Science� Univer�
sity of Pennsylvania� Philadelphia� PA ������ August ����� Available as UPenn IRCS Report �����

A NRC� A Language based on the Set Monad

CPL is implemented based on the abstract language NRC� Details of the language can be found in ���
and ����� NRC is very similar to CPL� except that it does not use pattern matching and uses the restricted
form of structural recursion

S
fe� j x � e�g instead of the comprehension construct of CPL� The meaning

��

of
S
fe� j x � e�g is the set formed by taking the union of the sets e��o�
x�� � � � � e��on
x� where fo�� � � � � ong

is the set e�� Comprehensions in CPL can be translated into this construct of NRC using three simple
identites due to Wadler ���� as follows� translate fe j g to feg� fe j nx �� e���g to

S
ffe j �g j x � e�g� and

fe j e���g to if e� then fe j �g else fg� The last case occurs when e� is not of the form nx �� e��� i�e� it�s a
boolean expression� The syntax and typing rules of NRC are given in Figure ��

x� � � 	
 � unit
c �Db

c � b
e� � b e� � b

e� �b e� � Bool

true � Bool false � Bool
e� � Bool e� � � e� � �
if e� then e� else e� � �

e � ��
�x�� �e � �� � ��

e� � �� � �� e� � ��
e�e� � ��

e � �a� � ��� � � � � ak � �k�
�aie � �i

e� � �� � � � ek � �k
�a� � e�� � � � � ak � ek� � �a� � ��� � � � � ak � �k�

e � �i
ins�a���������ak��k�ai

e � �a� � ��� � � � � ak � �k�
e � �a� � ��� � � � � ak � �k� e� � � � � � ek � �
case e of a�	x

��
�
� e�� � � � � ak	x

�k
k
� ek � �

� � f�g
e � �

feg � f�g
e� � f�g e� � f�g
union	e�� e�
 � f�g

e� � f��g e� � f��gS
fe� j x�� � e�g � f��g

Figure �� Typing rules for NRC

An Example� Get the course numbers in which �mary� is enrolled in�

� In CPL�

f �cnumber j ns �� ext Student� �sname � �mary�� nc �� �senrolled in g

� In NRC�

S
f if �x�name ��� mary�� then

S
ff�c�numberg j c ��x�enrolled ing else fg

j x � ext Studentg

Semantics of the Language� Let Var be a set of variables� An environment for database instance I is a
mapping � Var

�
�D	I
 � such that 	x�
 � ��� ��I for each variable x� of type � �

If is an environment� x� is a variable� and v � ��� ��I is a value then �x� 	� v� denotes an environment such
that dom	�x� 	� v�
 � dom	

S
fx�g and

	�x� 	� v�
	y

�
v if y � x�

	y
 if y � dom	
 � fx�g

We de�ne the semantic function V �����I from expressions of NRC and I�environments to D	I
 in Figure ��
When an expression e does not have free variables� V ��e��I is used as a shorthand for V ��e��I�

�Given an instance I � ��C � classOf� �C � �C�
 we also writeD�I� forD��C�
 and ��� ��I for ��� ���C�

��

V ��x��I
 	x

V ��	
��I
 �
V ��c��I
 c� where c �Db

V ��e� �b e���I

�
T if V ��e���I � V ��e���I
F otherwise

V ��true��I
 T

V ��false��I
 F

V ��if e� then e� else e���I

�
V ��e���I if V ��e���I � T

V ��e���I otherwise
V ���x�e��I
 	u 	� V ��e��I	�x 	� u�

V ��e�e���I
 	V ��e���I
	V ��e���I

V ���ae��I
 	V ��e��I
	a

V ���a� � e�� � � � � ak � ek���I
 	a� 	� V ��e���I� � � � � ak 	� V ��ek��I

V ��insae��I
 	a� V ��e��I

V ��case e of a�	x�
� e�� � � � � ak	xk
� ek��I

���
��

V ��e���I	�x� 	� u�
 if V ��e��I� 	a�� u

���

V ��ek��I	�xk 	� u�
 if V ��e��I� 	ak� u

V ����I
 fg
V ��feg��I
 fV ��e��Ig
V ��union	e�� e�
��I
 V ��e���I

S
V ��e���I

V ��
S
fe� j x � e�g��I
 V ��e���I	�x 	� u��

S
� � �
S
V ��e���I	�x 	� um�
� where V ��e���I � fu�� � � � � umg

Figure �� Semantics of NRC

��

	Querying an Object-Oriented Database Using CPL
	Recommended Citation

	Querying an Object-Oriented Database Using CPL
	Abstract
	Comments

	shoreCpl.dvi

