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Logic and Learning* 

Daniel N. Osherson Michael Stob Scott Weinst ein 
M. I. T. Calvin College University of Pennsylvania 

September 11, 1990 

Abstract 

The theory of first-order logic - or "Model Theory" - appears in few studies of 
learning and scientific discovery. We speculate about the reasons for this omission, and 
then argue for the utility of Model Theory in the analysis and design of automated 
systems of scientific discovery. One scientific task is treated from this perspective in 
detail, namely, concept discovery. Two formal paradigms bearing on this probleni are 
presented and investigated using the tools of logical theory. One paradigm bears on 
PAC learning, the other on identification in the limit. 

1 Introduction 

The predicate calculus provides a convenient medium for expressing facts and hypotheses, 
and it is thus no suprise that numerous systems of machine learning are designed to discover 
predicate logic sentences that summarize or extend the data presented to them (e.g., [16]). 
Theoreticians of learning have also found the language of logic to be of central concern, as 
witnessed by influential studies that bear on the discovery of various kinds of formulas (e.g., 
[ll, 13, 24, 14, 11). In contrast, the theory of the predicate calculus - that is, contemporary 
Model Theory (see, e.g., [ 5 ] )  - rarely emerges in theoretical studies of learning, at least 
within the movement represented by [12, 22, 91. We may speculate about two reasons for 
this absence. First, other mathematical theories - notably, the theories of computation, 
complexity and probability - have yielded a rich harvest of results, so it is natural that 
researchers continue to focus on these tools in their analysis of learning. Second, deductive 
logic seems to be divorced from the inductive processes that lie at the heart of learning, since 
the inferences involved in empirical discovery are uncertain and subject to retraction, which 
is quite the opposite of deductive inference. 

'Research support was provided by the Office of Naval Research under contract No. N0001487-K-0401 to 
Osherson and Weinstein, and by a Siemens Corporation grant to Osherson. Correspondence to D. Osherson, 
E10-044, M .I.T., Cambridge, MA 02139; e-mail: dan@psyche.rnit.edu 

1 



The purpose of the present paper is to suggest that, appearances notwithstanding, Model 
Theory is a potentially valuable tool for understanding learning algorithms designed to dis- 
cover predicate logic sentences. As evidence for this suggestion, we consider the problem of 
producing necessary and sufficient conditions for a concept whose extension is available in 
part or in whole. Two model-theoretic perspectives are proposed; the first is related to PAC 
learning in the sense of [26, 31, the second to identification in the limit in the sense of [ lo ,  21. 
As a preliminary, we observe that Model Theory need not be viewed as bearing primarily on 
deductive implication. Rather, implication may be seen as derivative to the primary concern 
of the theory, namely, the conditions under which specified sentences are true in given situ- 
ations (or "models"). It is the concern for truth-in-a-situation that renders the theorems of 
Model Theory relevant to discovering a true description of one's environment.' 

Learning first-order concepts in the PAC framework 

The present section considers the following situation, studied within PAC learning (see [3, 71). 
A space of points is selected, along with a collection of its subsets (called "concepts"). One 
of the concepts, C, is arbitrarily selected, and points are sampled from the space according 
to an unknown probability distribution. Each sampled point is labeled as falling in or out 
of C. The learner must convert this information into a conjectured concept C' such that 
the probability of the symmetric difference of C and C' is low according to the unknown 
distribution that governs sampling. It is desired that regardless of the concept chosen, there 
is a high probability of drawing a small sample of points leading the learner to a successful 
conjecture. In this case, the concept-class is said to be "learnable" in the space. We assume 
familiarity with the quantitative version of this concept-learning paradigm, as presented, for 
example, in [3]. For simplicity in what follows, we allow learners to be any function from 
labeled samples to concepts, excluding coin tosses as further inputs. 

In a practical setting, the set of concepts cannot be arbitrary subsets of the given space. 
At the least, they must have finite descriptions in a well-behaved language since otherwise 
the learner could not communicate his findings to anyone else. First-order logic provides 
descriptions of the required character, and we now proceed to embed the foregoing paradigm 
in a model-theoretic context. Our discussion will be brief and relatively nontechnical. 

To begin, we fix an arbitrary, nonlogical vocabulary and denote the resulting predicate 
calculus (with identity) by L. For example, the nonlogical vocabulary might consist of a single 
binary relation symbol R. The sentences of L - i.e., the formulas without free variables - 
are also denoted by L. Let x denote a distinguished free variable of L. By L(x) we denote 
the set of formulas in which just the variable x occurs free. Thus, for the language based 
solely on R, the following formulas belong to L(x). 

(1) (a) VY(X = Y V RXY) 

(b) VY (x = Y V RY x) 

lFormulas of the predicate calculus are often called "first-order" to distinguish them from formulas with 
more complex kinds of quantification. We sometimes employ this terminology in what follows. 



Suppose now that a model S of C is given. Such a model consists of a nonempty set (SI 
(called S's domain) along with interpretations of the nonlogical vocabulary in that set. For 
example, O = (w, <) is a model of the language based on R; the domain 101 of O is the 
set w = {0,1,2,. . .). Each model determines the truth value of every 19 E C; for example, 
3xVy(x = y V Rxy) is true in O and 3xVy(x = y V Ryx) is false. Similarly, each model assigns 
a subset of its domain to every cp E C(x), namely, the set of domain elements a such that 9 
is true in the model when x is interpreted as a. To illustrate, 8 assigns the sets { O ) ,  0, and 
{2,3,. . .) to (l)a,b,c, respectively. It may thus be seen that any pair (S, Qi) consisting of a 
model S for C and a subset Qi of C(x) determines a concept-learning problem of the PAC 
variety. For example, O and (1) determine the problem in which w is the underlying space 
of points, and the extensions of (l)a,b,c in O are the collection of concepts. 

Given a class K: of models and C_ C(x), is said to be learnable in K just in case 
is PAC-learnable in every S E IC. The principal problems that arise in this context are as 
follows. 

(2) (a) Given a set C(x), characterize the models in which Qi is learnable, and the 
models in which Qi is not learnable. 

(b) Given a collection IC of models, characterize the sets of formulas that can be 
learned in IC, and the sets of formulas that cannot be learned in K. 

A fundamental tool for addressing these problems is the work of Blumer, Haussler, Ehren- 
feucht and Warmuth [3] relating VC-dimension to learnability. Relying on their results, we 
have been able to prove several theorems bearing on (2)a,b. One finding of a positive charac- 
ter followed by one of a negative character may be described here; details, proofs, and further 
results are provided in [19]. The following standard terminology will be helpful. A set T C L 
is called a theory. Given theory T and model S, we write S + T just in case every member 
of T is true in S. 

First finding: A theory T is called strong just in case it meets the following 
conditions, for all models S, U :  

(a) if S /= T then IS1 is infinite; 

(b) if S T,  U T, and both S and U have denumerable domains, then S and 
U are isomorphic (in other words, T is "w-categorical"). 

For example, the theory of dense linear orders without end points is strong (see 
[5, Proposition 1.4.21). The following theorem says that the class of all first-order 
concepts can be learned in any model of a strong theory. 

(3) THEOREM: Suppose that T is a strong theory. Then L(x) is learnable in 
1s I S k TI. 



Second finding: Given a set C C(x), we say that a theory T expresses the 
learnability of just in case for all models S, is learnable in S iff S 1 T. 
Such theories are useful inasmuch as they provide a test for learnability in given 
situations. Unfortunately, no theory expresses the learnability of even relatively 
simple subsets of L(x). This is the content of the next theorem, stated with the 
following notation. The subset of C(x) of form 3 yVzcp(xyz), with cp quantifier-free 
is denoted by Cgv(x). 

(4) THEOREM: Suppose that C contains at  least one binary relation symbol. 
Then there is no theory that expresses the learnability of CgV(x). 

3 Discovering first-order intensions in the limit 

3.1 Overview 

The present section is devoted to a paradigm in which the entire extension of a target concept 
is revealed to the scientist in piecemeal fashion. In response to these data, the scientist 
advances a succession of first-order formulas in the hope of stabilizing on a necessary and 
sufficient condition for membership in the concept. For notational convenience we consider 
only unary concepts; extension to concepts of arbitrary arity is straightforward. The paradigm 
is formalized in the present section. Section 4 is devoted to theorems. A related paradigm is 
studied in [20], and several proofs below will refer to constructions appearing there. On the 
other hand, new techniques are used to prove the results of Sections 4.2 and 4.3, and they 
illustrate the use of model-theoretical constructions in the study of learning. 

3.2 Paradigm 

3.2.1 Language and models 

We fix a countable, first-order language L (with identity) that includes a distinguished, unary 
- - 

predicate C.' This predicate represents the target concept for which a first-order intension 
is sought. We also distinguish a variable x and denote by C(x) the set of all formulas of L 
in which just the variable x occurs free, and in which C does not occur. C(x) represents the 
set of potential intensions for the target concept; C is excluded from the vocabulary of L ( x )  
in order to rule out intensions that are accurate but trivial (e.g., the formula Cx). 

A formula cp of C is basic just in case cp is an atomic formula or the negation of such. The 
set of all basic formulas is denoted BAS. 

We conceive of Nature as choosing one member from a class K: of models of L. K: is 
conceived as representing the class of "possible worlds" known to the scientist to be theoretical 
alternatives prior to his inquiry. Attention is limited to models with countable domains. 

2The countability of L means that L's vocabulary is countable and that L includes denumerably many 
individual variables. 



Henceforth, by "model" we understand "countable model that interprets L." By a complete 
assignment to a model S is meant any mapping of the (countable) set of variables of L onto 
ISI. Thus, a complete assignment to S provides every member of its domain with at least 
one temporary name. 

3.2.2 The data made available to  scientists 

An environment is any w-sequence over BAS.3 The set of formulas appearing in an environ- 
ment e is denoted by range(e). The initial finite sequence of length i E w in e is denoted 
- 
e;. A% E range(e) [respectively, -A? E range(e)] may be understood as a message from 
Nature of the form: "The objects assigned temporary names I fall [do not fall] into the set 
that interprets A." The following definition specifies the sense in which a model underlies an 
environment. 

(5) DEFINITION: Let environment e, model S, and complete assignment g to S be given. 
e is for S via g just in case range(e) = {p E BAS I S + P[g]). e is for S just in case e 
is for S via some complete assignment. 

To illustrate, suppose that the following environment e is for model S 

Then e may be construed as the following, endless message about S (where we write PS to 
denote the set that interprets the predicate P in S). 

The object given temporary name x3 belongs to TS. The object with temporary 
name x3 is such that the pair x3, x2 belongs to the complement of QS. The objects 
given temporary names 2 4  and x:, are identical. Object x4 (and hence object x5) 
belongs to TS . . . " 

Models are determined by their environments. This is the content of the following lemma, 
proved in [17]. 

(6) LEMMA: Let environment e and models S and U be given. If e is for both S and U 
then S and U are isomorphic. 

3.2.3 Scientists and success 

Scientists are conceived as working in an environment e for a model S by examining the e; 
in turn. The scientist announces at each stage some cp E L(x) to express the hypothesis that 
S Vx(Cx t, v ) . ~  Lemma (6) ensures that no ambiguity arises about the truth of such 
hypotheses. To proceed formally, let SEQ be the set of all finite sequences over BAS. (Thus, 

3An w-sequence over a set X may be conceived as an infinite list XI, 22,. . . of elements drawn from X 
4Recall that if cp E L(z) ,  then x is the only variable occurring free in cp. 



SEQ = {ei I i E w and e is an environment)). By a (formal) scientist is meant any function 
from BAS to L(x). Note that scientists can be computable or uncomputable, total or partial. 

To be successful in a given environment, we stipulate that a scientist's successive conjec- 
tures must eventually stabilize to a formula that gives an accurate necessary and sufficient 
condition for membership in the concept expressed by C. 

(7) DEFINITION: Let collection K of models, model S, environment e for S, and scientist 
Q be given. 

(a) Q solves e just in case there is cp E L(x) such that S Vx(Cx t, v), and 
Q(E;) = $9 for all but finitely many i E w. 

(b) Q solves S just in case Q solves every environment for S .  

(c) 8 solves K just in case Q solves every S E K. In this case, K is solvable. 

3.3 Examples 

We give an example of solvability followed by an example of unsolvability. 

3.3.1 Solvability 

(8) EXAMPLE: Suppose that L is limited to the binary relation symbol R plus the dis- 
tinguished predicate C. Let P be the set of positive integers, N the set of negative 
integers. The symbol < denotes the usual ordering on all integers. Let K: consist of 
all models of the either of the forms: 

(a) (P, <,X),  where < interprets R, and X is a finite or cofinite subset of 
P that interprets C; 

(b) (N, <, X),  where < interprets R, and X is a finite or cofinite subset of 
N that interprets C; 

Then IC: is solvable. 

Proof: We give an informal description of a scientist Q that solves K. 9 is equipped 
with an enumeration of triples (y, S, cp) such that y is a variable, S E K, and y E L(x). 
At each stage in the examination of the environment e, Q finds the first triple, ( y , S, y)  , 
in the enumeration consistent with the hypotheses: 

(a) e is for S, 

(b) y is the temporary name of 0 in S, and 

(c) s i= Vx(Cx * $9). 

Q then conjectures $9. It is clear that e will cause Q to abandon any triple (y, S, c p )  
such that e is not for S .  On the basis of this observation, it is easy to verify that Uj 
solves K. W 



3.3.2 Unsolvability 

Let S = ( S ,  rl, r2,. . . , X )  be a model for L, where X interprets C. If IS( is infinite then there 
are uncountably many choices for X .  On the other hand, there are only countably many 
formulas in L(x). Consequently, for fixed rl, rz, . . ., the collection K: = { ( S ,  rl, r2 , .  . . , X )  I 
X C S )  is trivially unsolvable inasmuchas necessary and sufficient conditions for membership 
in C cannot be expressed for some choices of X. A nontrivial example of unsolvability is given 
next. Its verification depends on the following lemma. The set of variables appearing in a 
given a E SEQ is denoted by var(a); the conjunction of the members of a is denoted by A a. 

(9) LEMMA: Let scientist @, and model S be given. Suppose that 9 solves S .  Then there 
is a E SEQ, p : var(a) + ISI, and cp E L(x) such that: 

(a) s I= Aabl ;  

(b) S /= Vx(Cx t, cp). 

(c) for all y E SEQ, if 

i. a 2 y and 

ii. S + 3x1.. . xk y[p], where var(y) - var(a) = {xl . . . xk) 

then Q(7) = 9. 

The proof of Lemma (9) is easily adapted from a similar result proved in [20, Lemma 27].5 

(10) EXAMPLE: Suppose that L is limited to the binary relation symbol R plus the distin- 
guished predicate C. Let w + w represent two copies of the natural numbers ordered 
this way: 0,1,2,. . . ,0,1,2, .  . .. The symbol < denotes the usual ordering on w or 
w + w. Let K: consists of all models of the either of the forms: 

(a) (w, <, {i)), where < interprets R, and i E w. 

(b) (w + w, <, {Q)), where < interprets R, and Q is the second zero in w + w. 

Observe that for every S E K there is cp E L(x) such that S + Vx(Cx t, y) .  For 
example: 

(a) (w, <, (2)) Vx(Cx t, 3yz(Ryz A Rzx A Vw(Rwx t w = y V w = z))) 

(b) (w + w, <, {Q)) Vx(Cx t, 3y(Ryx A Vz(Rzx + 3w(Rzw A Rwx)))) 

Nonetheless, K is unsolvable. 

Proof: Let scientist @ solve 0 = (w + w, <, {Q)). We show that for some i E w, Q 
does not solve (w, <, {i)). By Lemma (9) there is a E SEQ, p : var(a) t w + w,  and 
cpo E L(x) such that: 

(11) (a) I= Aabl;  

5Both results are based on an idea found in [2]. 



(b) 0 I= Vx(Cx * yo). 
(c) for all y E SEQ, if 

i. a y and 
ii. O 3x1.. . xk l\y[p], where var(y) - var(a) = {xl.. . xk) 

then *(y) = yo. 

It is evident that: 

(12) For all but at most one i E w, (w, <, {i)) Vx(Cx * yo) 

It is also easy to verify that there are infinitely many l E w, complete assignments h 
to (w, <, {l)), and environments e for (w, <, {l)) via h such that: 

(13) (a) a C_ e 

(b) for all j > length(a), O + 3x1 . . . xk l\ ej[p], where var(ej) - var(a) = 

( ~ 1  - .  . xk) 

By ( l l )a ,c  and (13), Q(ej) = po for cofinitely many j E w. So by (12), \I! does not 
solve (w,  <, {l)) for some choice of &. H 

4 Theorems on the discovery of first-order intensions 

We present four theorems on the solvability of classes of models, in the sense of the paradigm 
just introduced. Of particular interest are classes that arise from theories in the following 
way. 

(a) Let T C L be given. The class {S I S T) is denoted by MOD(T). 

(b) Let collection K: of n~odels be given. If K: = MOD(T) for some T 2 L then X: is 
called elementary. If K: = MOD(T) for some recursively enumerable T C: L then 
K: is called recursively a~iomatizable.~ 

For simplicity we limit attention to recursively axiomatizable classes; extension to arbitrary 
elementary classes is straightforward (see [18, 201 for analogous developments). 

6A theorem due to Craig [6] shows that for every recursively enumerable T C_ C there is recursive T' C 
such that T and T' have the same deductive consequences. Consequently, X: is recursively axiomatizable iff 
K = MOD(T) for some recursive T C_ L. 



4.1 A universal scientist 

It is not difficult to specify recursively axiomatizable classes of models that can be solved 
neither by computable nor by uncomputable scientist (for example, any recursively axioma- 
tizable class containing the models of Example (10)). Consequently, no scientist is universal 
in the sense of solving all such classes. On the other hand, the following theorem shows 
that there is a mechanical, universal scientist in the weaker sense of solving all recursively 
axiomatizable classes that are solvable (by machine or nonmachine). To state the theorem, 
let Turing Machines be conceived as enumerating subsets of L, and let Ti  denote the set of 
sentences enumerated by the ith machine. 

(15) THEOREM: There is a computable function f : w x SEQ + L(x) such that for all 
i E w, if MOD(T;) is solvable (by either computable or noncomputable scientist), then 
Xa f (i, a) solves MOD (Ti). 

In the theorem, Xa f (i, a )  represents the computable scientist that results from parameterizing 
f with an index for theory Ti. 

Proof: The function f is computed by a simple modification to the algorithm M presented 
in [20, Section 31. Specifically, it suffices to: 

(a) set P in M's oracle equal to the class of all sentences of form Vx(Cx t, y )  where 
p E L(x), and 

(b) delete the first clause from the definition of T,P-potential in the description of M's 
behavior (thereby allowing M to stabilize on a theory that follows logically from Ti 
along with the data in the current environment). 

Verification of the universality of the resulting algorithm follows essentially the same proof 
as that given in [20, Theorem 181. H 

Theorem (15) shows that noncomputable scientists have no advantage over their com- 
putable counterparts when it comes to solving recursively axiomatizable classes of models. 
This fact may be expressed as follows. 

(16) COROLLARY: Let IC be a recursively axiomatizable class of models. If K: is solvable 
then some computable scientist solves IC. 

Corollary (16) has the following practical consequence. Suppose that a software engineer is 
thinking of writing a program to solve a certain, recursively axiomatizable class IC of models. 
Before proceeding, she wishes to confirm that the task is possible in principle. For this 
purpose it is sufficient to conceive of an arbitrary scientist (not necessary computable) that 
solves K:. This guarantees that a program can ultimately be found to solve IC. 

4.2 Nonuniversality for nonelementary classes 

The validity of Theorem (15) hinges on the elementary character of the model-classes in 
question. Indeed, the next theorem shows that for nonelementary classes, mechanical sci- 
entists are neither universal nor in general equivalent to nonmechanical scientists. To state 



the theorem, we fix the nonlogical vocabulary of L to be the binary relation symbol R, the 
constant symbol a ,  the constant symbol Q, and the unary function symbol S, along with the 
distinguished predicate C. We also define a collection KO of models as follows. Given r C w2, 
we let pl(r) denote the first projection of r. 

(17) DEFINITION: Choose Z c w to be nonarithmetical.' KO is the class of all models of 
either of the following forms (where the nonlogical vocabulary of & is interpreted in 
the order R,a,Q,S,C). 

(a) (w, r, i,O, s,pl(r)), where i E Z, s is successor, and r is an arbitrary subset of w 

(b) (w, r ,  i, 0, s, f) ,  where i @ Z, s is successor, r is an arbitrary subset of w ,  and f is 
an arbitrary, finite subset of w. 

(a) KO is solvable, but not by computable scientist. 

(b) For every computable scientist 8 there is a computable scientist @ such that 
{S E KO ( Q, solves S) > {S E KO 1 8 solves S) 

Proof: Some notations will be helpful. For the first notation, we observe that for every 
model in KO, the interpretation of Q and S is 0 and successor, respectively. Consequently, for 
every finite f w we may choose C-free 4f E &(x) such that 4f defines f in every S E KO. 
As a second notation, we use Y to denote the term S . . . SQ (i occurrences of S). Finally, for 
a E SEQ, range(a) denotes the set of formulas appearing in a .  

Proof of part (a). We define a (noncomputable) scientist r that solves KO. Let a E SEQ 
be given. If range(a) does not contain exactly one formula of form a = i then r(a) = (x # x). 
Otherwise, if a contains one formula of form a = i then: 

(a) if i E Z, r(a) = 3yRxy; 

(b) if i $ 2 ,  r ( u )  = 4f, where f = {n E w I a contains a formula of form Cn). 

It is easy to verify that r solves KO. 
To show that no computable scientist solves KO, we rely on the following definitions and 

lemmas. Let VAR = {v; I i E w) be the variables of L, and let go : VAR -, w be such that 
go(v;) = i for all i E w. Given i E w and y E SEQ, y  is called "i-good" just in case there is 
a model S of form (w, r, i ,  0, s, pl(r)) such that S A y [go]. The following facts are easy to 
prove. 

(19) (a) The set {(i, y) I i E w and y  is i-good) is recursive. 

(b) For all i E w, y  E SEQ, and atomic formulas a of L, if y is i-good then either y a  
or y l a  is i-good (where juxtaposition denotes concatentation). 

7For a definition of nonarithmetical sets along with discussion of other technical material figuring in the 
proofs of this section, see [23]. 



(20) LEMMA: Suppose that scientist Q solves KO. Then for all i E Z there is a E SEQ 
such that: 

(a) a is i-good; 

(b) for every i-good y E SEQ, if y > a, then 9 (y )  = Q(a). 

Proof of the lemma: Suppose that scientist 9 solves KO, and let io E Z be given. We 
prove a contradiction from the hypothesis that the lemma fails for this 9 and io. Falsity of 
the lemma implies: 

(21) For all a E SEQ, if a is io-good then for some io-good y E SEQ, y > a and 9 (y )  # 
Q(4. 

We shall exhibit an environment for some model in KO of form (w, r, io, 0, s,pl(r)) that 9 
does not solve, contradicting our choice of Q. The environment to be constructed will be 
called e, and the model in question will be called S. e will be for S via go. We construct e in 
stages, the mth stage devoted to em E SEQ. It will be the case that e0 2 el - .. We take 
e = UmEw em. S will be defined from e. The construction will ensure that for every rn > 0, 
for at least m many i < length(em), Q(E;) # @(E;+i). Consequently, Q does not solve e. For 
the construction, let {a; I i E w) enumerate the atomic formulas of L. 

Stage 0: Set e0 = 0. 
Stage m+l: Suppose that em has been defined, and that em is iO-good. By (21) choose 

io-good y E SEQ such that y > a and Q(y) # Q(a). Let j E w be least such that {aj, la j )  n 
range(7) = 0. If y a j  is io-good, let em+' = yaj; otherwise, let em+' = -ylaj. By (19)b, em+' 
is well-defined (and io-good). 

Let S = (w, r, io, 0, s,pl(r)), where r = {(i, j) E w2 I R k  E e). The construction implies 
that e is for S via go, and that Q(e;) # Q(E;+') for infinitely many i E w. However, S E KO. 

(22) LEMMA: Suppose that scientist 9 solves KO, and let i $! Z be given. Then there is no 
a E SEQ such that: 

(a) a is i-good; 

(b) for every i-good y E SEQ, if y > a, then Q(y) = Q(a). 

Proof of the lemma: Suppose that scientist Q solves KO, and let io $! Z be given. We 
prove a contradiction from the hypothesis that the lemma fails for this Q and io. Falsity of 
the lemma implies: 

(23) There is a E SEQ such that: 

(a) a is io-good; 

(b) for every io-good y E SEQ if y 2 a then *(y) = Q(a). 



Let a 0  be as specified by (23). Let S = (w, r , io,  0, s ,pl(r)) ,  where r = {(i, j) E w 2  I Rij E 

range(a0)). pl(r) is finite, so (since io 6 Z) S E KO. Choose k t w - pl(r) ,  andle t  
24 = (w,r , i~ ,O,s ,pl( r )  U {k}). U E KO. Then: 

(24) No c p  E L ( x )  defines both pl(r)  in S and pl(r) U {k) in 24. 

Let t be an environment for S via go such that a 0  c t. Let u be an environment for U via go 
such that a. c u. It is easy to verify the following: 

(25) For all j E w, both fj and iij are io-good. 

From (25) and (23) it follows that for all but finitely many j E w, Q(6) = Q(uj) = *(ao). 
Since S , U  E KO, (24) implies that Q does not solve {S,U} C KO, contradicting our choice of 
Q. . 

Returning to the   roof of part (a) of Theorem (18), suppose for a contradiction that 
computable scientist Q solved KO. Then, by lemmas (20) and (22): 

(26) For all i E w,  i E Z if and only if there is a E SEQ such that: 

(a) a is i-good; 

(b) for every i-good y E SEQ, if y > a, then Q(y) = Q(a). 

I-Iowever, (26), (19)a, and the computability of Q exhibit Z as arithmetical, contradicting 
our choice in Definition (17). . 

Proof of part (b). Let computable scientist Q be given. By part (a) of the theorem, either 
there is io E Z such that Q does not solve some model of form (w, r, io, 0, s,pl(r)) ,  where r 
is an arbitrary subsets of w2, or there is i 6 Z such that Q does not solve some model of 
form (w, r, io, 0, s, f )  where r is an arbitrary subset of w2, and f is an arbitrary, finite subset 
of w. Suppose the first case, the second being parallel. Define scientist @ as follows. For all 
a E SEQ: 

@(a) = { if a = io 6 range(a); 
3yRxy otherwise. 

It is easy to verify that solves all models of form (w, r, io, 0, s ,  pl(r)), where r is an arbitrary 
subset of w2, and that {S E KO I solves S} > {S E KO ( Q solves S}. H 

4.3 Weak solvability 

Let environment e for model S be given, and suppose that scientist Q solves e. An external 
observer cannot determine with certainty whether Q has reached the convergent st age of its 
investigation of e, ceasing henceforth to change conjectures. However, evidence in favor of 
Q7s convergence might be available in the form of a long succession of repeated conjectures. 
We now introduce a criterion of inductive success that further limits the information available 
to an external observer about convergence. Our definition relies on the following, standard 



notation. Given a collection K of models, T(K) denotes the set of sentences true in every 
member of K. T(K) may thus be conceived as representing the background theory known to 
a scientist about the class of possible realities. In the event that K: is axiomatizable, say by 
theory To, then T(K) = (0  E L 1 To k 0). 

(27) DEFINITION: Let collection K of models, model S, environment e for S, and scientist 
Q be given. 

(a) Q weakly solves e just in case there is cp E L(x) such that S Vx(Cx +-+ y), and 
T(K) /= Vx(Q(ei) * cp) for all but finitely many i E w. 

(b) Q weakly solves S just in case 9 weakly solves every environment for S .  

(c) Q weakly solves K just in case Q weakly solves every S E K. In this case, K is 
weakly solvable. 

Thus, to weakly solve e, cofinitely many of 9 's  conjectures must be equivalent (over T(K)) 
to some one formula that is coextensive with C in the underlying model. Plainly, solvability 
implies weak solvability. For recursively axiomatizable classes, the converse also holds. This 
is shown by the corollary to the following theorem. 

(28) THEOREM: Every weakly solvable class of models is solvable. 

Proof: Suppose that scientist Q weakly solves class K of models. Given a E SEQ, let a- 
be the result of removing the last member of a if length(a) > 0; otherwise, a- = a .  Now 
define scientist Q, as follows. For all a E SEQ, @(a) = @(a) if length(a) = 0; otherwise: 

It is easy to see that Q, solves K. . 
(29) COROLLARY: Let K: be a recursively axiomatizable class of models. If K is weakly 

solvable, then some computable scientist solves K. 

Proof: Let K be a recursively axiomatizable class of models, and let io E w be such that 
IC = MOD(Ti0). Suppose that K is weakly solvable. Then by Theorem (28), IC is solvable. 
Let f be the computable function given by Theorem (15). Then the computable scientist 
ha f (io, a) solves MOD (Tio) = K. . 

Theorem (18)a shows that Corollary (29) does not hold if K: is allowed to be nonelementary. 
The next theorem strengthens this result, and in fact implies the essential content of (18)a. 
As a preliminary, we fix the nonlogical vocabulary of L for the remainder of this section 
to be the three constant symbols Q, 1, a,  the two binary functions symbols @, €9, and the 
distinguished predicate C. The term 0 + 1 + . . . + 1 (n I's) is denoted by n. 

(30) THEOREM: There is a collection K of models such that: 

(a) some computable scientist weakly solves K; 



(b) no computable scientist solves K. 

Proof: Let (8; 1 i E w) be any acceptable indexing of the computable scientists.' For each 
i E w we shall define a subcollection IC; of models. K; will have either one or two members. 
It will be the case that Pi does not solve IC;. The needed witness K: for the theorem will be 
defined as the union of the K;. It follows immediately that no computable scientist solves 1C. 
Finally, a computable scientist that weakly solves K will be exhibited. 

The following definitions and notation will facilitate the construction. Given i E w and x C 
w ,  define S(i ,  x) to be the model (w, O , 1 ,  +, x , i, x), interpreting Q, 1, $, @I, a, C respectively. 
Let go : VAR -, w be such that for all i E w, go(vi) = i ,  and let {ai I i E w) recursively 
enumerate the atomic formulas of L. Given i E w and x C w, the canonical environment for 
S(i ,  x) is the environment e for S(i ,  x) via go such that for all j E w, the j th member of e is 
either aj or l a j .  We note: 

(31) There is a mechanical procedure that inputs i E w and finite x C w and outputs the 
canonical environment for S(i ,  x) . 

Now let io E w be given, corresponding to scientist Q; We define Kio by constructing 
in stages a canonical environment a and a set A C w. ~ g e  result of the mth stage in the 
construction of a and A will be denoted by am and Am, respectively. If the construction 
proceeds through infinitely many stages, then Xi, = {S(io,A)), where A = {j I C j  - E 

range(a)) (A may be infinite in this case). If the construction proceeds through only m 
stages, then Kio = {S(io, Am), S(io, Am U {j,))), where jm E w - Am. 

Construction for io - 

Stage 0: a0 = 0. A0 = 0. 
Stage m + 1: Suppose that am and Am have been constructed, that A" = 
{j I Cj_ E range(am)), and that am is an initial segment of the canonical en- 
vironment for S(io,Am). Let j, E w be least such that j, $ A". Let b be 
the canonical environment for S(io, Am), and let c be the canonical environ- 
ment for S(io, Am U {j,)) (thus, both b and c begin with am). Observe that 
if Pio(bj) = QiO(ej) = Pio(am) for all j > length(am), then Qio fails to solve at 
least one of {S(io, Am), S(io, A" U {j,)). In this case the construction remains 
at the present stage and Kio is defined to be {S(io, Am), S(io, Am U {j,)). Let 
q E w be least such that q > Zength(am) and either: 

In case (a), set am+l = bq;  otherwise, set am+l = cq. In either case set Am+' = 
{j I Cj_ E range(am+l)}. 

"or discussion of acceptable indexings, see [15]. 



Observe that for every m E w, if am+' exists, then Bio changes its conjecture at least m times 
before reaching the end of am+'. 

In case the construction completes infinitely many stages, we define environment a to 
be Umc,,am. In this case, define A = {j I C j  - E range(a)}, and take Kio to be {S(io, A)}. 
It is easy to see that in this case a is the canonical environment for S(io,  A), and that 
Qio(iij) # Bio(iij+l) for infinitely many j E w .  So in this case Qio does not solve Xio. On the 
other hand, suppose that the construction completes only finitely many stages, and let b, c 
be the environments created during the last stage entered (say, m). Then b is the canonical 
environment for S(io, Am) and c is the canonical environment for S(io, Am U {j,)). Take 
Xio = {S(io, Am), S(io, Am U {j,}). As noted in the construction, Qio converges on b and c 
to the same formula, and hence fails to solve at least one of them. So in this case too, Via 
does not solve Kio. 

Define K = Uic,K;. Then no computable scientist solves K. It remains to exhibit 
computable scientist @ that weakly solves K. 

For i E w, let A; be the set defined by the construction for i. This set may be infinite in 
case the construction completes every stage; otherwise it is finite. In view of (31) it is easy 
to verify the following about the sets A;. 

(32) There is a computer program P with the following property. For all input i E w, P 
returns cp E L(x) such that: 

(a) cp contains only the vocabulary Q, 1, $, @; 

(b) for every S E K and n E w, n E A; iff S + (~(24). 

Given i E w, let cp; be as specified in (32). By our definition of K we have the following fact. 

(33) Let Af be the standard model of a r i thmet i~ .~  Then for all 8 E L over the vocabulary 
Q,.L,$,@, Af + 0 iffT(K) 0. 

The desired scientist @ may now be defined. Given a E SEQ, let I'(o) E L(x) be the 
disjunction of {x = 1 Ca f range(u)}. For all o E SEQ, @(a) is defined to be x # x 
if range(a) does not include exactly one sentence of the form a = i. Otherwise, @(a) is 
cpi V r ( a ) ,  where (a = i) E range(u). 

By (32)) @ is computable. To verify that @ weakly solves K, let i E w be given and 
suppose that e is an environment for S(i, x) E K. Then for all but finitely many j E w, 

S( i ,x)  Vx(Cx t, (cp; V I'(o)). Moreover, using (33)) it is easy to verify that for all but 
finitely many j, k E w, T(K) + Vx((cp; V I'(ej)) - (pi V I'(ek))). . 

'For background discussion of the model-theory of arithmetic, see [8, Chapter 31. 



5 Concluding remarks 

The foregoing paradigms and theorems suggest the potential role of contemporary logical 
theory in the analysis of machine learning. It is evident that research within this perspective is 
still in its infancy, and would profit greatly from interaction with more established theoretical 
traditions. New techniques from Model Theory may also be required to settle questions that 
emerge from the framework we have presented. One such question is formulated as follows. 

(34) DEFINITION: Let collection X: of models, model S, environment e for S ,  and scientist 
Q be given. 

(a) Q BC-solves e just in case for all but finitely many i E w there is cp E L ( x )  such 
that S i= Vx(Cx * cp), and Q ( E ; )  = cp. 10 

(b) Q BC-solves S just in case !P BC-solves every environment for S 

(c) Q BC-solves X: just in case !P BBColves every S E K .  In this case, K is BC- 
solvable. 

(a) What is the relation between solvability and BC-solvability among elementary 
and nonelementary collections of models? 

(b) Under what circumstances does BC-solvability imply BC-solvability by com- 
putable scientist? 

We conclude on a speculative note. Interaction may well be desirable between a model- 
theoretic approach to learning, on the one hand, and issues in knowledge representation, 
on the other. To see what is at stake, consider a sophisticated data-base, DB. Part of the 
knowledge stored in DB may consist of well-confirmed statements that serve as the axioms of 
a class of models. To augment its knowledge, DB can wait for external assistance to augment 
the axiom set, or it can launch its own investigation via an automated system of scientific 
discovery. In the latter case, DB would be wise to reflect on the prospects for successful 
inquiry. What guarantee is there that DB will succeed in any, arbitrary model of its axioms, 
that is, in any situation consistent with what DB knows so far? If DB elects to adopt some 
version of the "closed world assumption," what guarantee exists that DB's empirical inquiry 
will succeed even in just the minimal models, those it relies on to extrapolate its data to 
new, plausible claims? If there is no guarantee of success, can DB at least be certain that 
it will not stabilize on a false theory, but rather continue endlessly to advance theories, each 
ultimately perceived to be inaccurate? And suppose that DB's scientific discovery routine 
asks for an opinion about some sentence that does not follow from the available data, but 
does follow from some nonmonotone rule of inference. To what extent is the reliability of the 
routine compromised by supplying it with information of this sort? 

l0BC stands for "behaviorally correct." See [4] for an analogous definition in the recursion-theoretic context. 



Such questions, and many more like them, are crucial to the confidence that DB can place 
in the results of an empirical investigation that it carries out to some - always incomplete 
- point. So we would like to equip DB with the mathematical means necessary to determine 
in advance the feasibility of the empirical inquiry that it contemplates. 

Answers to feasibility questions depend on the kind of axioms that DB takes as a sci- 
entific starting point - whether they involve more than monadic predicates, second-order 
quantification, etc. The answers depend as well on the kind of data available to DB, and the 
criterion of success to which DB aspires. It is not unlikely that progress along these lines 
would be facilitated by deploying the considerable understanding that has accumulated about 
logical theory over the last century. This knowledge figures promiently in theoretical studies 
of knowledge representation.'' Perhaps it can be deployed, as well, in learning, and used as 
bridge between the two disciplines. 
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