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Abstract 

Abductive reasoning involves generating an explanation for a given set of observations about the 
world. Abduction provides a good reasoning framework for many A1 problems, including diagnosis, plan 
recognition and learning. This paper focuses on the use of abductive reasoning in diagnostic systems in 
which there may be more than one underlying cause for the observed symptoms. In exploring this topic, 
we will review and compare several different approaches, including Binary Choice Bayesian, Sequential 
Bayesian, Causal Model Based Abduction, Parsimonious Set Covering, and the use of First Order Logic. 
Throughout the paper we will use as an example a simple diagnostic problem involving automotive 
troubleshooting. 



1 INTRODUCTION 

Contents 1 Introduction 
1 Introduction The technologies of knowledge-based expert systems 

. . . .  1.1 Definition of Abductive Reasoning have been applied to many different types of prob- 
1.2 Other Applications of Abductive Reasoning 2 
1.3 A Running Example lems. Diagnosis has been one of the earliest appli- . . . . . . . . . . . .  

cations areas as well as being one of the most im- 
2 Five Different Approaches 3 

2.1 Binary-Choice Bayesian Abduction . . . .  3 
2.2 INTERNIST - A Sequential Bayesian Ap- 

. . . . . . . . . . . . . . . . . . .  proach.. 6 
2.3 ABEL - A Non-Bayesian, Causal Model 

. . . . . . . . . . . . . . . . . . .  Approach 8 
2.4 Parsimonious Set Covering-A Mathemat- 

. . . . . . . . . . . . . . . . .  ical Approach 12 
2.5 Diagnosis From First Principles - An A p  

proach Based on First Order Logic . . . . .  14 

3 Comparison of These Approaches 15 
3.1 Relaxing the Bayesian Assumptions . . .  15 
3.2 Reasoning About Intermediate States . . 17 
3.3 Sequential Sub-Problems vs. Multiple 

Fault Hypotheses . . . . . . . . . . . . . . .  18 
. . . . . . . .  3.4 The Meaning of Parsimony 18 

3.5 Quantified Symptoms . . . . . . . . . . .  19 
. . . . . . . . .  3.6 Equivalence of Formalisms 19 

4 Summary and an  Emerging Consensus 20 

- 
portant and interesting. One attempt to formal- 
ize diagnosis is as Abduction - reasoning from a 
set of observations about the world to a hypothe- 
sis that explains or accounts for the observations. 
This paper focuses on the use of abductive reasoning 
in diagnostic systems in which there may be more 
than one underlying cause for the observed symp- 
toms. In exploring this topic, we review and com- 
pare several different approaches, including Binary 
Choice Bayesian, Sequential Bayesian, Causal Model 
Based Abduction, Parsimonious Set Covering, and 
the use of First Order Logic. Throughout the paper 
we use, as an example, a simple diagnostic problem 
involving automotive troubleshooting adapted from 
(Weiss and Kulikowski 1984). 

Numerous expert systems have been developed for 
diagnostic reasoning, many of them in the medi- 
cal area. Some of the earliest successful systems 
were rule-based deductive programs, like MYCIN 
(Shortliffe 1976, Buchanan and ShortlifFe 1984). A 
common criticism of these pioneering efforts was their 
handling of situations where more than one disease 
was needed to explain correctly all the observed 
symptoms. Each of the systems we discuss in this 
paper held as a major design objective the correct 
handling of multiple faults in diagnostic problems. 
Collectively, they represent most of the current ap- 
proaches. 

In this section we introduce the concept of abduc- 
tive reasoning and present a simple problem to be 
used as a running example in the remainder of the pa- 
per. Section 2 describes the five systems objectively. 
Section 3 addresses the comparative merits of these 
approaches, including any theoretical weaknesses of 
the real-world implementations. Section 4 summa- 
rizes the major issues along which the approaches 
differ and describes an emerging consensus for the 
formalization of the diagnostic process. 

1.1 Definition of Abductive Reason- 
ing 

Although many diagnostic systems are not strongly 
tied to first-order logic, the diagnostic process is 
clearly an example of abductive reasoning. Pople 
(Pople 1973) defines abductive logic within the realm 
of first order logic with the following schema: 
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I. Major Premise (rule) Vx [P(x) J Q(x)] 
11. Minor Premise (case) 

111. Conclusion (fact) 
P(a) 
Q (a) 

Deductive logic involves reasoning from a rule (I) and 
a case (11) to a conclusion (111). If we know the rule 
and also that P(a) is true, we may conclude Q(a). A 
deductive conclusion is certain if its bases (I & 11) are 
sound. Inductive logic involves reasoning from a case 
and a conclusion toward a rule. If we see that P(a) is 
true and also observe that &(a) is true, we may hy- 
pothesize that "perhaps all things P are also Q." Ab- 
dudive logic is the third possibility-it involves rea- 
soning from a fact (111) and a rule (I) toward a case 
(11). If we observe that Q(a) is true, and we know 
the rule "all things P are Q," we may hypothesize 
that "perhaps a is P." Neither inductive nor abduc- 
tive reasoning leads to certainty; we must hypothe- 
size, and there may be several competing hypotheses 
that could be logically correct. This is the nature of 
most diagnostic tasks. 

Note that abduction is different from backward 
chaining, although both could be called "using a rule 
backwards." In backward chaining, the goal "prove 
that a is Q" gives rise to a sub-goal of "prove that a 
is P." If the sub-goal can be achieved, then one may 
deduce Q(a). In abductive reasoning, on the other 
hand, one formulates hypotheses to explain symp- 
toms which are not goals but observable facts. We 
already know that "a is a Q" and the task is to ab- 
duce why so that a can be cured of disorder Q. 

Another, more significant difference, between ab- 
duction and deductive "backward chaining" has to do 
with the causal nature of abductive rules. Although 
one could define abduction syntactically, as we have 
done above, this does not really capture the sense 
the word today, as it is used in the A1 community. 
Abduction requires that the "rules" capture causal 
relationships in order for the conclusions to be true 
explanations. For example, one might find the fol- 
lowing implication in expert system to troubleshoot 
an automotive engine: 

This rule might capture the diagnostic rule that en- 
gine knock is a symptom which implies that the en- 
gine's timing is bad. However, this rule can not be 
used to generate the fact Knock(car23) as an explana- 
tion for the observation BadTiming(car23). A more 
troubling example could be obtained from the logi- 
cally correct rule 

and(X, Y)  =S X 

which would lead to explaining any observation 0 
with the explanation and(2 + 2 = 4,O). 

Logical implication and the causal relation are not 
identical. The fact that they are closely related and 
that implications are a natural way to express causal- 
ity adds to the confusion. We must keep in mind 
that, in addition to our syntactic definition of abduc- 
tive reasoning, we will require that the "rules" over 
which it reasons must express causal relationships. 

1.2 Other Applications of Abductive 
Reasoning 

Abductive reasoning is a useful approach to many 
other A1 problems as well. Whenever we are pre- 
sented with a set of observations about the world 
and are charged with devising a hypothesis which 
will explain them, we are dealing with an abductive 
problem. This general scenario matches a number 
of standard problems, a few of which we will briefly 
mention. 

There has been a great deal of research in the last 
ten years aimed at providing cooperative interfaces to 
systems such as expert systems (Pollack et. al. 1982, 
Pollack 1986, Finin et. al. 1986)' database retrieval 
systems (Kaplan 1982, Carberry 1987), and in a more 
general question-answering context (Allen 1982). 
Truly cooperative systems need to be able to address 
their user's underlying goals in using the system. In 
order to do this, it is neccessary to recognize the user's 
previous queries and statements as forming a plan to 
achieve some appropriate domain goal. 

A similar problem arises in the context of pro- 
viding intelligent help and advice. In order to pro- 
vide the information a user needs, it is neccessary 
to have, among other things, a model of what he 
is trying to accomplish. Again, this involves fit- 
ting a user's recent actions into a coherent plan to 
accomplish some relevant domain goal. Examples 
of such intelligent help systems include The Mac- 
syma Advisor (Genesereth 1979) which helped a Mac- 
syma user recover from an error state and W2z- 
ard (Shrager and Finin 1982, Finin 1983), a system 
which volunteered advice on better ways to use the 
VAX/VMS operating system. 

Understanding some extended discourse involving 
the actions of people, such as a newspaper arti- 
cle or a story, is another problem which requires 
one to reason abductively from a set of actions be- 
ing performed to a hypothesis which would explain 
them. Schank and his colleagues at Yale Univer- 
sity have made an extensive study of this problem 
(Schank and Abelson 1977). Wilenski has studied 
the interplay between planning, plan recognition and 
behavior unserstanding in (Wilenski 1983). Kautz 
has proposed a new, richer approach to general plan 
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recognition which is directly based on abduction in 
(Kautz 1985). 

In summary, the world presents us with with ab- 
ductive problems of many kinds. Sometimes we must 
understand the internal state of an artifact from a 
small set of symptoms it presents. We are constantly 
trying to understand the internal goal structure of 
other people based on their observed behavior. The 
state of some subset of the physical world (e.g the 
Amazon Rain Forest Ecology or the U.S. Economy) 
must be inferred from a set of observable indicators. 
All of these problems can be formalized as Abductive 
Reasoning problems. 

1.3 A Running Example 

To aid in understanding each of the diagnostic sys- 
tems described, a simple example diagnostic problem 
will be used throughout this paper. It  is taken from 
the domain of automobile troubleshooting, loosely af- 
ter (Weiss and Kulikowski 1984). The table in figure 
1 presents some imaginary facts about engine perfor- 
mance. 

In this table, S y m p t o m s  are behaviours that can 
be easily observed, and would probably be noticed 
by the auto owner. Disorders are the initial causes 
of the engine malfunctions. These are also the condi- 
tions that must be repaired. Intermediate s tates  are 
conditions inside the engine which are caused by the 
disorders, and in turn cause other intermediate states 
or symptoms. Typically, the intermediate states are 
difficult to observe directly. 

The general diagnostic problem in this domain 
could then be described as follows. We are given 
a set of inital or presenting symptoms, such as 
{bad-overheating) and {poor-milage) and desire to 
determine one or more hypotheses which could ac- 
count for all opf the observed symptoms. Each hy- 
pothesis is a set of disorders, such as {bad-thermostat}  
or {major-short ,  bed-battery).  Besides accounting for 
all of the known symptoms, a hypothesis may also 
predict other symptoms which have not yet been ob- 
served. Thses predictions provide a way to test the 
validity of a hypothesis by making the observation 
and seeing if the result is consistant with the predic- 
tion. 

2 Five Different Approaches 

This section presents, in some detail, five important 
approaches to diagnosis which employ abductive rea- 
soning. Three of them represent fully-implemented 
diagnostic tools which contain a mixture of pragmatic 
domain-inspired heuristics and domain-independent 

theoretical methods. Two are long-term studies, with 
several generations of refinement to their designs and 
their underlying formal models. To present each sys- 
tem i n  to to  would be interesting, but would involve 
many details and issues which distract from the focus 
on handling of multiple-fault diagnosis. Therefore, 
the following descriptions are restricted to the basic 
model or underlying theory and the specific methods 
used to address multiple faults. 

2.1 Binary-Choice Bayesian Abduc- 
tion 

Ben-Bassat et a1 have developed the MEDAS (Medi- 
cal Emergency Decision Assistance System) program 
which is based rather strictly on Bayesian statistics 
(Ben-Bassat et .  al.  1980). It is a medium-sized sys- 
tem, covering 50 high-level disorders using nearly 600 
symptoms. MEDAS is used for initial diagnosis and 
assessment of life-threatening potential in a hospital 
emergency room. 

The medical knowledge base is elicited and stored 
in a frame-like format organized by disorder (see fig- 
ure 2). The critical knowledge consists of the follow- 
ing estimates for each disorder Di and each symptom 
sj : 
P(Di)  - the prior probability of disorder Di 

P (S j  I D;) - the conditional probability of symptom 
Sj when disorder Di is present 

P(S- I Di) - the conditional probability of symptom 
J 
Sj when disorder Di is absent 

These parameters are estimated using an eight-level 
interval scale shown in figure 2. Pathognomonic 
symptoms (i.e. symptoms which are sure indica- 
tors of a specific disorder) are reflected as certainties. 
When a symptom is seen iff the disorder is present, 
then P(S j  I Di)  = 1 and P(S j  I B j )  = 0; when the 
symptom is a sure indicator, but may not always be 
present, then only P(S j  I Bi) = 0. 

Note that in MEDAS, a symptom is essentially 
a proposition that is either true (if the symptom is 
present) or false (if the symptom is absent). Symp- 
toms which refer to a value on a scale (e.g. the pa- 
t ient's pulse rate)  must be converted to range mem- 
berships (e.g. pulse < 110). Note that in Figure 2 
some of the symptoms are of the type "S/O" or "Set- 
ting of '  some other disorder. These "symptoms" ac- 
tually reflect the interactions of disorders; in this case 
a Bad Choke is frequently associated with coincident 
Bad Carburetor Chips. This mechanism allows in- 
termediate pathological states (such as "fuel mix too 
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Symptoms Intennediaie States 

overheating late-firing, knock, 
1 incom~lete combustion 

excess cooling system pressure, 

poor mileage excess translclutch wear 
excess brake pad wear, 
delayed braking loss 
late-firing, knock 

1 incom~lete combustion 
too rich/lean fuel mix 
too rich fuel (warm) 

I gas odor. fire hazard 
)( poor power 1 late-firing, knock, 

incomplete combustion 
too rich/lean fuel mix 
excess translclutch wear 
excess brake pad wear, 

I delayed braking loss 
stalls when cold I "cold idle" too slow 

I too lean fuel mix 
too lean fuel mix 
"cold idle" too slow 

1 stalls when hot ( unstable idle 
11 I too rich fuel at idle 

dead battery slow loss of charge 
slow loss of charge 

. . 
unable to recharge 

no headlights other lights OK 
rapid loss of charge 

Disorders 1 

bad thermostat 1 

bad timing II 
eas line leak n 
bad timing 

bad carburetor  chi^ 1 
trans/clutch slipping 
dragging brake ! 
bad carburetor chip II 

I bad alternator II , - - -  - - - - -  - -  

I bad volt regulator 
I 
I major short I1 
1 bad batterv n 
I short in lights 

Figure 1: Imaginary Knowledge Base for Auto Repair 
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Figure 2: A MEDAS-style Frame for the Auto Repair Knowledge Base 

L 

P 
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0.50 - 0.75 
0.25 - 0.50 
0.10 - 0.25 

0 - 0.10 
0 

Symbol 
M 

VP 
P 
F 
S 
R 

VR 
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1 
1 
2 
2 
2 

3 
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1 
2 
3 
4 
5 

12 
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S 
P 
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H/O Hard Starting 
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Absent 

S 
S 
R 
R 
S 
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lean" in this example) to be recognized and reasoned 
about. "H/On or "History of' symptoms refer to dis- 
orders noted in the car's (or patient's) history. For its 
emergency room setting, the MEDAS knowledge base 
also explicitly records the life-threatening potential of 
each disorder. 

MEDAS is a Binary-Choice system; that is, it 
calculates for each individual disorder the posterior 
probability of its presence or absence given the col- 
lection of symptoms which have been reported so far. 
No attempt is made to deal with combinations of dis- 
orders, per se .  For each disorder Di,  the conditional 
probability of its presence given the observation of 
n specific symptoms s l  . . .s, is given in Figure ref- 
fig:medaseq. 

By restricting each calculation to the binary choice 
between the presence or absence of a disorder, Ben- 
Bassat makes good on the Bayesian assumption that 
the list of possible disorders is mutually exclusive and 
exhaustive. The companion assumption - that all 
symptoms are independent - does not hold, but he 
deals with gross violations of the assumption in the 
following manner. A group of highly inter-dependent 
symptoms (e.g. "stalls when hot" and "stalls when 
cold") for any one disorder are marked, and obser- 
vation of the first symptom in the group results in 
augmentation of the disorder's probability. When 
other symptoms from the inter-dependent group are 
observed, they are noted as present but the probabil- 
ity of the disorder is not revised. 

One purely heuristic element of MEDAS is the 
identification of "primary" symptoms, those which 
are considered the hallmarks of a particular disorder. 
These are not pathognomonic symptoms, and hence 
have no special statistical significance. But they are 
so strongly associated with the disorder by physi- 
cians (and so easily confirmed) that physicians will 
not accept MEDAS' diagnosis unless the presence of 
all primary symptom has been confirmed - even if 
the probability of the disorder is already very high. 
Thus, MEDAS will not announce its diagnosis until 
all primary symptoms for an indicated disorder have 
been investigated. 

The diagnostic routine for MEDAS is very straight- 
forward. The initial group of reported symptom is 
used to identify candidate disorders. The disorder 
with the highest probability (or a less likely disor- 
der with large life-threatening potential) is chosen to 
guide a question-generation phase. A symptom which 
has not yet been reported is considered for investiga- 
tion based upon its cost (in dollars, delay and dis- 
comfort to the patient) and its potential contribution 
to eliminating or confirming this disorder. After each 
new batch of symptoms is reported, the probabilities 

of all disorders (not just candidates) are updated, and 
the cycle is repeated. 

The result of any one cycle is a ranked list of 
disorders and their (binary) probabilities of being 
present. No effort is made to determine how many 
disorders are present. All decisions are made by the 
user/physician, including the decision to stop the di- 
agnostic cycle. There is also provision for focusing of 
the diagnosis on one area or disorder - not neces- 
sarily highly-ranked by MEDAS - identified by the 
user as the most important. 

Consider our automobile troubleshooting example. 
Assume that only three symptoms are reported ini- 
tially, poor mileage, no headlights and stalls cold. 
Poor Mileage (pm) is associated with 6 disorders, per 
Figure 1, stalls cold (sc) with 3, and n o  headlights 
(nh) with 2. The posterior probability of each one of 
them, given the presence of these symptoms, is calcu- 
lated per the equation in figure 2.1. For the disorder 
bad choke (bc),' this calculation yields a conditional 
  rob ability .625 after round 1 as is shown in Fig- 
ure 2.1. 

Note that because headlight symptoms have no as- 
sociation with choke problems, that symptom has no 
impact on the probability of a bad choke. After all 
disorders have been updated, assume that bad carbu- 
retor  chip is the best looking hypothesis, with prob- 
ability .75, and bad choke is second with no other 
disorder seeming likely. Assume that, after looking 
at the ordered list of hypotheses, the user decided 
to instruct MEDAS to pursue the choke alternative 
rather then the carburetor. So MEDAS evaluates the 
potential contribution of each other symptom in Fig- 
ure 2 against the cost of acquiring information about 
it. P o o r  power has a cost of 1, but its presence is not 
a strong indicator of bad choke, so History of Hard 
Starting is chosen despite its cost of 2. The question 
is posed to the user, and the answer restarts the cycle. 

2.2 INTERNIST - A Sequential 
Bayesian Approach 

A landmark effort to diagnose multiple simultaneous 
disorders is the INTERNIST system created primar- 
ily by Pople and Myers (Pople 1982, Pople 1977). It, 
too, is based on the Bayesian formula for determining 
the posterior probability of a disorder given a group 
of symptoms. Like MEDAS, INTERNIST acknowl- 
edges that the diseases considered by it are not a 
mutually exclusive and exhaustive list. However, IN- 
TERNIST deals with this by using an alternative for- 
mulation of Bayes' Theorem (Charniak 1983), which 

'see Figure 2. The lower bound of probability ranges is used 
throughout this example. 
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, = { P(s j  I Di) if s j  is present 
1 - P(sj  I Di) if s j  is absent 

- 
fi(sj) = { P(sj  1 Bi)- if sj is present 

1 - P(sj  1 Di) if sj is absent 

Figure 3: The Conditional Probablility of a Disease Given a Set of Symptoms 

P(bc) a P(pm [ bc) P(sc ( bc) 
P(b~)~oundl  = 

P(bc) - P(pm I bc) P(sc I bc) + (1 - P(bc)) . P(pm [ bc) - P(sc I z) 

Figure 4: Probability of Bad Choke After Round One 

only assumes the independence of symptoms in gen- the set. INTERNIST then focuses upon differential 
eral and the independence of symptoms given the ex- diagnosis within that decision set i.e. it attempts to 
istence of some disease: rule out all disorders but one. This is done by re- 

questing symptom observations or laboratory test re- 
P(Di I sl .-.$,) = P(Di) ' 

I Di) ' . . P(sn I Di) sults from the user/physician. New information is 
q.1) a .  . p(%) requested based on its cost and its value in distin- 

INTERNIST records its medical knowledge base in 
the form of relations on diseases and symptoms. The 
Evokes relation records the evoking strength of the 
symptom for each disease; it is analogous to P ( D  ( 
s), but measured on a scale of 0-5. Similarly, the 
Manifests relation records P(s  I D) on a 1-5 scale. 
For example, the automobile data in Figure 1 would 
be recorded in INTERNIST as in Figure 5.2 

guishing among the disorders in the decision set. 
When the new information is obtained, it is used 

to update the probabilities of all disorders, not just 
members of the decision set. The highest-ranking dis- 
order is used to form a (perhaps new) decision set, 
and the cycle is repeated. Depending upon the size 
of the decision set, INTERNIST will choose one of 
the following strategies: 

Like MEDAS> INTERNIST the probabil- . The Ruleoul stratekl is used to pare down a list 
ity of each disorder based on the symptoms which are of more than disorders. It pursues informa- 
initially observed. Based upon the initial data, the tion which could rule out one or more candidate 
highest-ranked (single-disorder) hypothesis is used to disorders. 
form a "decision set." Each disorder which might ac- 
count for the same symptoms as the highest-ranked 

The Discriminate strategy is used when 2-4 can- disorder (or any subset of those symptoms), and 
didates remain. Information is sought which whose probability exceeds a threshold, is included in 
can best discriminate between the two tor, con- 

20nly the EVOKES and MANIFESTS relations are shown tenders. 
in our example. Other relations are defined on the set of dis- 
ease entities to record the causal, temporal, and other relations ~ h ,  N ~ , , ~ ~  strategy is identical to ~ i ~ ~ ~ i ~ i ~ ~ t ~ ,  
between diseases. INTERNIST would also show, for instance, 
the association between bad carburetor chips and bad chokes when invoked on more than 4 contenders. This 
which is recorded in Figure 2. is done when no helpful questions can be found 
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Figure 5: INTERNIST-style Representation of Imaginary Auto Repair Data 

to rule out a contender without resorting to in- 
trusive tests. 

The Pursuing strategy is used when a decision 
set has been resolved to a single disorder. It calls 
for confirmatory information until the separation 
of the leader from the next most likely contender 
exceeds double the threshold value. 

When this sub-diagnosis is completed, the win- 
ning candidate is recorded and all symptoms encom- 
passed by the decision set are marked "explained." 
The symptoms, and all disorders in the decision set, 
are removed from further consideration. However, to 
reflect the interactions of disorders, any hypotheses 
for the remaining symptoms which involve a disorder 
that is associated with the winning candidate will 
receive additional points in the hypothesis ranking. 
The cycle is repeated until all symptoms have been 
explained or there are no more candidate disorders. 
INTERNIST'S final product is a "most probable" set 
of disorders which explain all the observed symptoms. 

In the automobile example, again assume that 
three symptoms are reported initially: poor mileage, 
no headlights, and stalls when cold. According to 
Figure 5, poor mileage evokes both bad carburetor 
chap and bad t iming with an evoking strength of 3. 
It evokes t ransmission/clutch slapping and bad choke 
with strength 2. Assume that stalls when cold evokes 
bad choke with strength 2, bad carburetor chip and 
bad t empemture  sender  with strength 1 ,  and that n o  
headlights evokes bad fuse with strength 3 and short 
in  lights with strength 1 .  Evoking strengths in IN- 
TERNIST are on a base-2 log scale (e.g. strength 4 
is twice as strong as 3) so the combined effect of the 
symptoms is shown in figure 6. 

The highest-ranked hypothesis after initial input is 
bad carburetor chip and the top six disorders can ex- 
plain the same symptoms or a proper subset of them, 
so the initial decision set consists of those six disor- 

ders. Following the Ruleout strategy, INTERNIST 
seeks a question which can potentially eliminate one 
of the candidates. It asks the user whether there 
is any evidence of poor power, looking to eliminate 
(or strengthen) the low-ranked dmgging bmke and 
t m n s m i s s i o n / c h t c h  slippage candidates. The user re- 
sponds that power is normal. In light of this new 
information, those two candidates drop from con- 
tention, allowing INTERNIST to switch to a Dis-  
cr iminate  strategy which concentrates on the two 
top-ranked candidates. It now asks about a history of 
hard starting, and the affirmative answer makes bad 
choke the new top-ranked candidate. After confirm- 
ing that (partial) diagnosis, INTERNIST will record 
bad choke as the winner, and proceed to the remaining 
symptoms. If any possible cause of n o  headlights were 
related to bad choke, it would receive bonus points 
in the scoring of subsequent rounds. The final prod- 
uct of INTERNIST would be a twa-disorder diagnosis 
covering all the reported symptoms. 

2.3 ABEL - A Non-Bayesian, Causal 
Model Approach 

Patil has built a system for Acid-Base and Elec- 
trolyte Disorder diagnosis, ABEL, which does not use 
Bayesian statistics at all (Patil 1981). For our pur- 
poses, a key element of Patil's design is that disorder 
hypotheses are not considered sequentially. Rather, 
ABEL generates hypotheses which are sets of disor- 
ders so that each hypothesis can explain all of the 
observed symptoms. The general preference for par- 
simonious hypotheses is employed to favour a smaller 
hypothesis over a larger one. The mechanism for link- 
ing symptoms and disorders is not conditional proba- 
bilities but a causal model  which reflects the database 
of medical knowledge. 

Unlike INTERNIST or MEDAS, ABEL uses scalar 
values of symptoms (like "air/fuel ratio = 500") and 
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Disorder  
bad choke 
bad timing 
bad carb chip 
trans/clutch 
bad sender 
dragging brake 
bad fuse 
short in lights 

Evoking Strength of 
p m  s c  nh combined 
2 2 -  3 
3 - -  3 
3 1 3 +  
2 - -  2 
- 1 -  1 
1 - -  1 

- 3 3  
- - 1 1  

Figure 6: INTERNIST-style Representation of the Sample Problem 

its causal model predicts the magnitudes of symp- 
toms (or manifestations) caused by any one disorder. 
This allows easy combination of the effects of different 
disorders. For example, the disorder bad temperature 
sender  can cause air/fuel ratio values to  remain nor- 
mal (say 600) when the engine is cold. The disorder 
bad carburetor chip could cause the ratio to ordinarily 
be 400. Thus, the combination of the two disorders is 
required to explain fully an observed ratio of 400 with 
cold engine. However, a third disorder with opposite 
effects could partially or wholly mask this symptom. 

The basic data structure of ABEL is a Patient- 
Specific Model (PSM), composed of relevant frag- 
ments of the complete causal model.  This model 
(Figure 7) predicts, for instance, that low air/fuel 
ratio may cause poor mileage, but that in turn must 
be caused by some other factor. Further, the model 
states that an air/fuel ratio up to 20% too high may 
be explained by s low choke release, but if the ratio is 
higher than that some other independent cause for it 
must be presumed in the PSM. To continue the au- 
tomobile example, assume again the symptoms poor 
mileage, n o  headlights, and stalls when cold have been 
reported. These are instantiated in a PSM (by giv- 
ing them instance numbers -see the circled nodes in 
Figure 8) and matched with the causal model. Any 
instance which can be explained in terms of other re- 
ported (or soundly inferred) findings is marked "ac- 
counted" ; otherwise it is "unaccounted." 

Note that ABEL's domain - acid-base and elec- 
trolyte imbalances - facilitates a detailed, quantified 
model of the operative principles; it is a relatively 
well-understood area of medicine. The basic diag- 
nostic cycle consists of the following steps: 

1. Presenting Complaints: The initial symp- 
toms are analyzed (serum analysis and the initial 
complaints in this domain). A small set of initial 
PSMs are created and added to the list of causal 
hypotheses (the CH-list). 

2. Rank Ordering Hypotheses: All PSMs in the 
CH-list are scored for the quality of explanation 
they provide for the patient's illness. The leading 
one or two of these PSMs are selected as possible 
explanations. 

3. Computing Diagnostic Closure: Diagnostic 
Closures [DCs] for the selected PSMs are com- 
puted and disease hypotheses in each DC are 
scored. 

4. Termination: If the diagnostic closures for all 
PSMs are null, or if some PSM provides a com- 
plete and coherent account for the patient's ill- 
ness, then the current phase of the diagnosis is 
complete. 

5. Diagnostic Information Gathering: Based 
on the number of DCs (i.e. the PSMs selected 
in Step 2), a top level confirm or differentiate 
goal is formulated. Using diagnostic strategies, 
this goal is successively decomposed into simpler 
sub-problems until individual questions are for- 
mulated. 

6. Re-Structuring the PSM: If Step 5 results in 
any new finding being known, then that finding 
is incorporated into each of the PSMs by extend- 
ing the structure of the PSMs to take the ob- 
served finding into account. Finally, this process 
is repeated starting at  Step 2. 

The algorithm in Step 2 for deciding which PSMs 
will be expanded into Diagnostic Closures is very 
simple. The PSM with the smallest total of unac- 
counted or partially-unaccounted states is deemed 
most promising. Once that is decided, the algorithm 
for deciding which hypothesis (set of disorders within 
that PSM) will be explored considers compatibility 
and testabili ty.  If a predicted manifestation of a hy- 
pothesized disorder seems incompatible with the re- 
ported symptoms, that lowers the score of that hy- 
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excess 
brake 
wear 

poor 
brake power 
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Figure 7: An ABEL-style Causal Model for the Auto Repair Knowledge Base 
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slow 
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Figure 8: A Patient-Specific Model (PSM) for the 3 initial symptoms 
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pothesis. If a predicted manifestation is compatible, 
and is easily tested, and is useful for differential di- 
agnosis, that increases the score of that hypothesis. 
Note that the hypothesis scoring mechanism mea- 
sures internal consistency and the usefulness of con- 
firmatory evidence, not likelihood; if a rare disorder 
meets these criteria, it will become the focus of the 
information-gat hering phase. 

To continue the example of Figure 8, note that 
according to the causal model, none of these three 
symptoms (bold-face nodes) may cause any of the 
others. So, in this simple example, there is only a 
single initial P S M . ~  The Diagnostic Closure consists 
of the projected manifestations of the reported symp- 
toms (none in this example), all the potential causes 
of the unaccounted symptoms, and all the projected 
manifestations of the potential causes (boxed nodes). 
In forming plausible hypotheses from this Diagnos- 
tic Closure, the incompatibility of low air/fuel ratio 
with hagh air/fuel ratio will eliminate any hypothe- 
sis that explains stalls when cold by no choke action 
but explains poor mileage with slow choke release. 
ABEL in this case gives top score to the hypothesis 
which explains poor mileage by dragging brake, stalls 
when cold by bad choke, and no headlights by bad fuse 
(not shown). Its high score is based on its internal 
consistency and the fact that three projected mani- 
festations of these causes-poor power, excess brake 
wear, and other lights OK-are easily tested. Af- 
ter these questions have been answered by the user, 
the new observations are added to the PSM, alter- 
native PSMs are generated as needed, and the cycle 
repeats. ABEL's final product will be the highest- 
ranked multiple-disorder hypothesis. 

2.4 Parsimonious Set Covering-A 
Mat hematical Approach 

A long-term research effort by Reggia, Nau, Peng 
and Wang has developed the Parsimonious (or 
General) set Covering model (GSC) of diagnosis 
(Reggia et. al. 1985b, Reggia et. al. 1985a). This 
model was motivated in part by the feeling that it 
was incorrect to deal with each disorder individually 
in a multiple-fault diagnosis, as INTERNIST does. 
Instead of probabilities, GSC employs a causal rela- 
tion which records all possible manifestations of each 
disorder and all possible causes of each symptom.4 A 

31n a more realistic problem, there are typically numerous 
alternative interpretations of the reported data. Each gives 
rise to a separate PSM. 

'The necessity of intermediate pathological states was rec- 
ognized early in this research, and they were included in the 
model. However, for clarity of exposition, we will present the 
earliest "bi-partite" version of GSC, which deals only with dis- 

diagnostic problem is defined as P = (D, M ,  C, M+) 
where D is the set of all disorders, M is the set of all 
manifestations, and C is the causal relation. A pair 
(di, mj) E C, where di E D and mj E M means 
"disorder i may cause manifestation j." M+ is the 
subset of M which contains all symptoms reported. 

In this setting, the term manifs(di) means the set 
of all manifestations of disorder di, and the term 
causes(mj) means the set of all disorders which can 
cause mj. An explanation E+ for M+ is a set of dis- 
orders where M+ c manifs(E+) and E+ is parsimo- 
nious in some sense. The principle of parsimony is, in 
effect, Occam's Razor. During most of the research 
into GSC theory, parsimony has been interpreted as 
"minimum cardinality." 

In this model, causes(M+) is the universe of all 
possible disorders which could cause at least one of 
the manifestations in M+. The diagnostic task is 
viewed as choosing a small number of candidates for 
E+ and then performing differential diagnosis in the 
traditional sense - identifying a few easily-obtained 
symptoms which can rule out all but one of the can- 
didates. Note that a candidate for E+ is a set of dis- 
orders which together explain all the symptoms, so a 
candidate is inherently a multiple-fault hypothesis.' 

Figure 9 reflects the example knowledge base as 
GSC would represent it via the Causal Relation. Ac- 
cording to that Figure, manifs(bad timing) is the set 
{poor mileage, poor power), and causes(stal1s when 
cold) is the set {bad carburetor chip, bad auto choke, 
bad temperature sender). 

The diagnostic algorithm uses three sets. 
MANIFS6 is the set of all manifestations reported 
so far. SCOPE is causes(MANIFS), and HYPOTH- 
ESIS is the set of all combinations of disorders which 
could explain MANIFS. The basic cycle is: 

1. Get the next manifestation mj and add it to 
MANIFS. 

2. Retrieve causes(mj) from the Causal Relation. 

3. Add causes(mj) to SCOPE. 

4. Adjust HYPOTHESIS to accommodate mj. 

5. Repeat until no further manifestations are re- 
ported. 

An important element of the GSC model is 
the compact representation of HYPOTHESIS as 

orders and symptoms. 
51f there is in fact a single disorder which can explain all 

symptoms, the singleton set containing that disorder as its sole 
member will, of course, be a candidate. will be a candidate. 

'This set should not be confused with the function manifs 
described above. 
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n Disorder I Manifestation n 
- -- 

bad alternator 1 dead battery 
bad auto choke I ~ o o r  mileage. stalls when cold 

bad temperature sender I stalls when cold 
bad thermostat I overheating t 

bad battery 
bad carburetor chip 
bad carburetor chip 

bad fuse 

1 bad timing 1 poor mileage, poor power l,l 

dead battery 
poor mileage, stalls when cold 
poor power, stalls when hot 
no headlights 

1 bad voltage regulator I dead battery U 
II clogged radiator I overheating II 

H dragging brake ( poor mileage, poor power 
gas line leak 1 ~ o o r  mileage 

H major short I dead battery 
short in lights I no headlights 

1 trans/clutch slippage I poor mileage, poor power 1 

Figure 9: A GSC-style Causal Relation for the Auto Repair Knowledge Base 

a set of generators(Reggia et. al. 1985b). Instead 
of explicitly recording each combination of dis- 
orders that could account for (or "cover") M+, 
GSC records the sets of terms whose Carte- 
sian product is the set of all combinations in 
HYPOTHESIS. For example, the set G = 
{(dl, dz) , (d3, d4), (d5, d6)) would generate the set of 
disorder triples (dl, d3, d5), (d2, d3,d5), (dl, d4, d5), 
(d~,d4,d5),  (dlrd3jd6)r (dz,d3,d6), (dlrd4td6), and 
(d2, d4,d6). 

In addition to  its compactness, the generator repre- 
sentation parallels the manner in which human clini- 
cians think and talk about a multiple-fault hypothe- 
ses. Using the previous example, description (i) is 
preferred over (ii): 

(i) The patient has either dl or dz together 
with either d3 or d4 

(ii) The patient has either dl and d3 or d2 
and d3 or dl and d4 or d2 and d4 

It also makes possible an efficient way of manipulat- 
ing these sets, using generator davision and other spe- 
cial operations. Step 4 of the algorithm above uses 
generator division, dividing the old HYPOTHESIS 
by the set manifs(rnj) to produce a new HYPOTHE- 
SIS which accounts for the newly-reported symptom 
mj . 

In the automobile example, GSC would start with 
a blank slate and ask for the initial manifestation. 
Assume that poor mileage is first mentioned, and 
thus is the sole inhabitant of MANIFS. SCOPE 

retor chip, bad timing, gas line leak, dragging brake, 
trans/clutch slippage). HYPOTHESIS would be [ 
(bac, bcc, bt, gll, db, ts) that is, a single hypothesis 
which is represented as the generator "one of bac, bcc ,, .... 

In the second round, stalls when cold is volun- 
teered, and is added to MANIFS. SCOPE has bad 
tempemtare sender added, and becomes {bac, bcc, 
bt, bts, gll, db, ts}. HYPOTHESIS is updated by 
generator division-with-remainders as follows: 

(bac, bcc, bt, gll, db, ts) + (bac, bcc, bts) 

I (bac, bcc) 
- - and 1 

1 (bt, gll, db, ts) x (bts) 

The hypothesis represented by this generator is read 
as "either one of ( bac, bcc ), or one of ( bt, gll, db, 
ts ) combined with bts", which agrees with intuition. 

In the third round, when no headlaghts is reported, 
SCOPE is augmented by {bad fuse, short in lights) 
and HYPOTHESIS becomes 

(bat, bcc) x (b f ,  sil) 
and 

(bt, gll, db, ts) x (bts) x (bf, sil) I 
and so on. When the user ceases to volunteer infor- 
mation, HYPOTHESIS is analyzed to identify a dif- 

7where the disorders are abbreviated to their initials. 'bac' 
= bad auto choke, etc. 

'which has a cumbersome definition but greatly resembles 
set intersection followed bv a Cartesian ~roduct of the "re- 

would then be the set {bad auto choke, bad carbu- mainders" not included in ihe intersectioi. 
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ferential diagnosis problem which is parsimonious.g 
A manifestation is chosen which is not in MANIFS 
but is in manifs(d)  for some disorder d in the hy- 
pothesis, and a question generated concerning that 
symptom. In the example, the minimum cardinal- 
ity hypothesis will contain either bad choke or bad 
carburetor combined with either bad fuse or short in 
lights. Therefore, questions will be chosen to discrim- 
inate among those pairs of contenders. GSC's final 
product will be a single multiple-disorder hypothesis 
which covers all reported symptoms and is as simple 
(parsimonious) as possible. 

2.5 Diagnosis From First Principles 
- An Approach Based on First 
Order Logic 

A number of researchers have attempted to formalize 
the 
diagnostic process in first order logic (Reiter 1985, 
deKleer and Williams 1986b, Genesereth 1984). We 
will take Reiter's work as characteristic of this ap- 
proach, although significant differences exist among 
them. 

We could describe any system-the human body or 
an engine-as composed of COMPONENTS, a finite 
set of parts, sub-system, etc. and SD, a set of first or- 
der sentences which axiomatize a system description 
for normal operation. SD contains a distinguished 
unary predicate AB which means "abnormal." Thus, 
for a model of the electrical system in our example, 
COMPONENTS might be {battery, cable-pos, cable- 
neg, starter, . . .) and SD might contain such axioms 
as: 

A diagnostic problem is a properly defined system 
combined with a set of observations, OBS, which de- 
scribe the actual behavior of the system, or symp- 
toms, such that 

SD U OBS U v c  E COMPONENTS iAB(c)] 

is inconsistent. A diagnosis for this problem is a rnini- 
ma1 set F of faulty components; i.e. if we assume each 
member of F is abnormal and all other members of 
COMPONENTS are normal, we achieve consistency. 
However, computing this directly could be undecid- 
able or intractable. So two other types of sets are 

Parsimony is defined as ''minimum cardinality" in the 
early GSC work and has been more recently amended to "ir- 
redundancy!' This will be discussed in Section 3.4. 

introduced: conflict sets, due to deKleer, and hitting 
sets. 

A conflict set CS is a collection of components such 
that 

SD U OBS U [\dc E CS 7AB(c)] 

is inconsistent. A minimal conflict set has no proper 
subset which is a conflict set. Intuitively, a conflict 
set is a set of components such that at least one of 
them must be faulty. A minimal conflict set is a con- 
flict set in which every member participates in at least 
one possible fault. Unless the symptoms are so con- 
clusive that only one combination of disorders could 
possibly be correct, there will be many minimal con- 
flict sets for a diagnostic problem. If S is a collection 
of minimal conflict sets, then a hitting set for S is 
a set H which has a non-null intersection with each 
(minimal conflict) set in S. 

For example: if OBS were a logical representation 
of "the gas mileage is poor" and "it stalls when cold," 
then one minimal conflict set would be {auto  choke, 
temperature sender, carburetor chip). Another min- 
imal conflict set would be {auto  choke, carburetor 
chip, timing, gas line, brakes, transmission). Intu- 
itively, each of these is a conflict set because it rep- 
resents all the components whose failure could cause 
one of the symptoms - if we postulate yAB(c) for 
each member of the set, that is inconsistent with 
the observation that something must have caused the 
symptom. 

If the set of all conflict sets, S,  consisted of just 
the two mentioned above, then the set of mini- 
mal hitting sets, HS, would contain {auto  choke), 
{carburetor chip), { tempemture sender, timing), 
{temperature sender, gas line), { tempemture sender, 
transmission) and {iemperature sender, brakes). 

The end result is that a set A C COMPONENTS 
is a diagnosis iff A is a minimal hitting set for the 
set of conflict sets in the diagnostic problem. 

While acknowledging that, in general, the consis- 
tency of arbitrary collections of first order formulae is 
undecidable, Reiter claims that most diagnostic ex- 
pert systems operate in arenas where a general or 
special-purpose theorem prover can be used success- 
fully to test the consistency of subsets of a diagnos- 
tic problem. He offers an "algorithm" for computing 
the set of all diagnoses; it is expected to be compu- 
tationally tractable in most real-world situations. It 
requires computing the set of all minimal conflict sets 
for the problem (or at  least the first n minimal con- 
flict sets) and building a special structure called an 
HS-tree (for Hitting Set tree). 

In those cases where consistency is computable, 
a theorem prover which builds refutation proofs 
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of inconsistency may be used to generate counter- 
examples for 

SD U OBS U PC E COMPONENTS iAB(c) 

In each counter-example, the components dealing 
with AB will define a conflict set. Thus, Reiter pre- 
sumes that a function T P  ( implemented as some kind 
of theorem prover) can be defined in any given arena 
which will return a stream of conflict sets. 

The function T P  can be used to build an HS-tree, 
as follows (see Figure 10): 

1. Label the root node (node 0) with any arbitrary 
conflict set returned by TP(SD, OBS, COMPO- 
NENTS). 

2. For each element in the set which labels this 
node, create a child node and label the arc to 
the child node with that element. 

3. For each unlabeled node, do: 

(a) Let H ( n )  be the set of elements found on 
arc labels on the path from this node n to 
the root. 

(b) If any other node in the tree has a label 
L such that L n H(n) = 0, then label this 
node with L. If not, then call TP(SD, OBS, 
COMPONENTS -H(n) ); if it returns a 
non-null conflict set, label this node with 
that set. Otherwise, label this node with 0. 

(c )  If this node n is labeled with 0, and there is 
another node in the tree v such that H ( n )  
H(v), then mark node v "closed." Do not 
create a label or children of v. 

(d) If this node is not labeled with 0 then create 
child nodes as in Step 2 above. 

4. If all leaf nodes are labeled with 0, then termi- 
nate tree-building. Otherwise, repeat the above 
step. 

When the HS-tree is finished, the set of all diag- 
noses is {H(n) ( n is labeled with 0 } i.e. the set of 
all minimal hitting sets for conflict sets of the prob- 
lem. Note that the path to each leaf node in Figure 10 
defines a minimal hitting set which belongs to the set 
of potential diagnoses for our example problem. 

3 Comparison of These Ap- 
proaches 

In this section we discuss the strengths and weak- 
nesses of these five approaches in handling multi- 
ple fault diagnoses. We will examine in particu- 
lar their Problem Formulation mechanisms - the 

manner in which each system constructs a manage- 
ably small subproblem out of a potentially enormous 
search space. We recognize that each of the imple- 
mented systems (INTERNIST, GSC (many times), 
and MEDAS) was built to operate in a very narrow 
but real domain. That domain's influence on system 
design cannot always be separated fully from the the- 
oretical underpinnings, but we shall try. 

3.1 Relaxing the Bayesian Assump- 
tions 

The standard version of Bayes Theorem requires 
three assumptions: (1) the set of disorders must be 
mutually exclusive and exhaustive; (2) the set of 
symptoms must be independent of one another in 
general; and (3) the set of symptoms associated with 
a particular disorder must be independent given the 
presence of that disorder. A practical diagnostic sys- 
tem must relax these assumptions in some way in 
order to reduce the statistical data required and to 
simplify the computations involved. The two Bay- 
sean systems we have discussed, MEDAS and IN- 
TERNIST, differ in how they address this problem. 

MEDAS takes the first assumption very seriously, 
and treats a diagnostic problem as a series of binary 
choices: "is disorder x present or not?" By restricting 
the probabilistic decision to x or l x ,  it meets the first 
condition, but at a price. The Binary Choice strategy 
always looks at a collection of small decisions, never 
at the whole diagnostic problem. 

This can lead to inefficiency. The MEDAS diag- 
nostic cycle is driven by the goal "if any disorder has 
partial supportive evidence, and little disconfirming 
evidence, seek more evidence until the disorder's exis- 
tence is either reasonably established or substantially 
disconfirmed." This is not a differential diagnosis ap- 
proach - there is no attempt to find the evidence 
which can best decide between two likely disorders. 
If many alternative explanations for the same set of 
symptoms are possible (i.e. a family of disorders) 
the system may devote effort to strengthening the 
already-strong hypothesis that "one member of this 
family is present" instead of focusing on the differ- 
ential question "which member of the family is it?" 
The problem of differential diagnosis - which many 
feel is the crux of the problem (Pople 1982, p. 120) - 
is thus off-loaded largely to the physician. 

Partially to compensate for this restriction, 
MEDAS relies heavily upon the user/physician for 
(heuristic) guidance. At the end of each round, the 
system displays a list of the top ten symptoms or 
tests and asks the physician to decide upon the one 
to pursue. The (ranked) list of disorders under con- 
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brake, gas line, 
timing, choke, carb 7 

carb carb 

Figure 10: An HS-tree for the Auto Repair Example, Assuming Poor  Mileage, Stalls When Cold, and No 
Headlights. 

sideration is frequently displayed, but the physician 
is asked to prune or supplement it based upon pro- 
fessional judgement (Ben-Bassat et. aI. 1980, p. 154). 
To the extent that the list of disorders - and their 
rankings - rapidly provides useful information to the 
physician, MEDAS achieves its goal. But we would 
argue that to the extent the physician is influenced by 
the comparison of ranks, MEDAS departs from pure 
binary choice. If the physician is invited, implicitly, 
to compare the computed probabilities, then the sys- 
tem has allowed a violation of Bayesian assumption 
#1 without taking advantage, in its internal calcula- 
tions, of the removal of that restraint. 

Although Binary Choice does deal with multiple 
disorders, it does not deal directly with formula- 
tion and resolution of differential diagnosis problems. 
This seems a critical deficiency, in general. The 
MEDAS system is not, however, offered as a gen- 
eral approach to machine-directed abductive reason- 
ing problems, but as a system designed for swift, 
large-grain decision-making in an emergency room. 
MEDAS does seem well suited for this class of appli- 
cations. 

MEDAS adheres to Bayesian Assumption #1, 
while readily admitting that the second and third as- 
sumptions are violated "in most realistic cases." Ben- 
Bassat argues that the practical difficulties in obtain- 
ing estimates of the conditional probabilities for clus- 
ters of symptoms are considerable - and would intro- 
duce more error into the system than allowing the vi- 
olations to  go uncorrected (Ben-Bassat et. al. 1980, 

p. 153). 

INTERNIST deals with Assumption #1 by us- 
ing an alternate form of Bayes' Theorem (see Equa- 
tion ?? in section 2.2), but likewise accepts whole- 
sale violation of the other two assumptions. The 
practical necessity of assuming (unrealistic) statisti- 
cal independence of symptoms caused some to reject 
Bayesian statistics as a basis for abductive reasoning 
systems. But Charniak (Charniak 1983) has pointed 
out that violation of Assumption #2 introduces an 
error in the denominator of Equation ??. This af- 
fects the absolute magnitudes of the probabilities cal- 
culated, but not the relative magnitudes. Thus, in 
any differential diagnosis problem where magnitudes 
of competing disorders are being compared, the com- 
parisons are unaffected by violation of the second as- 
sumption. 

Charniak also points out that violations of As- 
sumption #3 can be dealt with inside the Bayesian 
framework. In the automobile example (see Fig- 
ure l ) ,  assume a short in the lighting circuit - if 
it is severe - can disable the entire electrical s y s  
tem, bringing about a large collection of symptoms. 
A mechanic who suspects a severe short will check 
one of those symptoms, perhaps the radio, confident 
that all or none of the symptoms will appear. This 
completely violates Assumption #3. The mechanic 
reasons about the situation via intermediate path* 
logical states, or syndromes. By introducing such an 
intermediate state (e.g. system short out) explicitly 
and computing the conditional probability of symp- 
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toms given the presence of the intermediate state, 
statistical soundness is restored. Only two assump- 
tions are required for this approach to hold: 

1. the symptoms (e.g. no horn, no radio) are re- 
lated to the ultimate disorder (short in lights) 
only via the intermediate state (system short 
out). 

2. The symptom and the ultimate disorder must be 
independent given the presence of the interme- 
diate state. 

These are far less stringent restrictions, and are rea- 
sonable in many cases (Charniak 1983). 

Thus, the criticisms of the Bayesian approach are 
largely without effect.'' They do not impeach its 
usefulness in identifying the most probable disorder 
hypotheses, which is a central step in the formula- 
tion of differential diagnosis problems. Of course, 
the Bayesian approach does not offer any direct as- 
sistance in finding the correct (or most reasonable) 
combination of disorders in a multiple-fault diagno- 
sis. In models such as INTERNIST, heuristics take 
control of the search once a manageably small prob- 
lem (or series of problems) has been formulated. 

3.2 Reasoning About Intermediate 
States 

Constructing an accurate, rich causal model of a dig- 
nostic domain requires the use of intermediate states 
which lie between the root hypotheses and the symp- 
toms. This is obviously crucial for generating good 
explanations (Swartout 1983), but it also has a major 
impact on the diagnostic process itself. 

Patil's primary goal with ABEL was to  investi- 
gate the power of a deep causal model for guid- 
ing abductive reasoning (Patil 1981). On purely 
statistical grounds, Charniak argued that interme- 
diate pathological states must be explicitly treated 
(Charniak 1983). Pople originally rejected interme- 
diate states and causal models for INTERNIST-I, 
based primarily on the poor performance of the ear- 
liest INTERNIST version, which employed such a 
model (Pople 1977, p. 1031). He still argues that 
a causal model per se is insufficient, but now be- 
lieves a robust system should incorporate both a 
causal model and an n-dimensional nosological hier- 
archy, with planning links between them (Pople 1982, 
p. 161). Reggia e t  a1 enhanced their bi-partite model 

'OINTERNIST-I, whose Bayesian basis is essentially vindi- 
cated by Charniak's analysis, did not use intermediate patho- 
logical states and was therefore statistically unsound in that 
respect. 

of GSC early on to accommodate intermediate states 
(Reggia and Peng 1986, p. 21). And all efforts under 
the banner of "diagnosis from first principles" rely 
upon a complete model of the processes going on in 
the system being diagnosed. 

It seems clear that there is a set of core arguments 
in support of causal reasoning in abductive systems: 

When manifestations are linked directly to ul- 
timate causes (disorders), we are discarding in- 
formation about the mechanisms by which those 
disorders produce the manifestations. Discarded 
information cannot be exploited. 

Many intermediate states (syndromes) are 
easily-recognized clinical phenomena. Some are 
associated with pathognomonic symptoms, and 
testing for them can quickly narrow the scope of 
the differential diagnostic problem. 

Causal reasoning seems to mimic experienced 
clinicians, who use whatever is known about the 
suspected disease process to test their diagnostic 
hypotheses (Kassirer and Gorry 1978). 

Yet despite this consensus on the value of causal 
models, there are practical difficulties. The primary 
difficulty is that a rich causal model is much more 
difficult to  construct. The power of causal models 
is limited by the depth and accuracy of the knowl- 
edge they contain. That varies greatly from domain 
to domain and even within a well-studied field like 
medicine. In particular, the diagnosis of artifacts 
such as electronic circuits offers greater opportunities 
for causal modelling (deKleer and Williams 1986a, 
deKleer and Williams 1986b). In a Bayesian-based 
system, one way the complexity of introducing in- 
termediate states manifests itself is in the many-fold 
increase in the number of prior probabilities to be 
gathered or estimated. 

Intermediate pathological states provide local foci 
for differential problem formulation and  milestone^'^ 
in the diagnostic process. But the introduction of 
many small, intermediate steps may prevent the large 
logical leaps which expert clinicians exhibit. To avoid 
that loss requires more sophisticated control strate- 
gies. 

A fully implemented CADUCEUS, as the evolv- 
ing system is now called, may provide more insights 
into the costs and benefits of exploiting causal mod- 
els. Hopefully, it will also explore the control issues 
involved in integrating causal reasoning with noso- 
logical, statistical, and other forms of knowledge. We 
must await clinical evaluation of CADUCEUS, how- 
ever, to learn how much of a performance improve- 
ment can be attributed to causal reasoning. 
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3.3 Sequential Sub-Problems VS. must deal with the combinatorics that INTERNIST'S 
Multiple Fault Hypotheses heuristic avoids. In fact, GSC's use of generators to 

represent the sets of possible diagnoses is motivated 
A major difference between the Bayesian approaches in part by the large numbers of combinations that 
and the others is that conditional probability offers no may be at any one time. so, heuristics 
mechanism for developing and evaluating multiple- are still used to select the hypotheses to be explored 
fault hypotheses. Bayesian systems rely upon heuris- in each round of their diagnostic cycles. In basic GSC 
tics for that. INTERNIST-I groups symptom ac- and approaches based on first-order logic, the num- 
cording to major organ involvement (electrical prob- ber of disorders contained in a hypothesis is used- 
lems or fuel system problems, in our and the principle of parsimony is invoked. In ABEL, the 
then forms differential diagnosis sub-problems (by or- number (and perhaps magnitude) of "loose ends" 12 
gan group) one at a time. The heuristic is to identify is used to identify the best multiple-disorder hypoth- 
the most probable single disorder and form a differen- cis. 
tial problem around it, including all other disorders B~~~~~~ GSC uses the principle of parsimony for 
which might explain essentially the same symptoms selecting hypotlleses, it encounters the "Rare Disease 
as  the top-ranked candidate. After identifying a clear problem: A~~~~~ that there is a rare engine disor- 
winner, the process is repeated for andher group of der in our example which causes poor mileage, poor 
symptom, but now points" are awarded to power, cold stalling, and battery failure. By the prin- 
any hypothesis that is associated with a previous win- ciple of parsimony, that rare disorder should be in- 
ner. voked whenever all those symptoms are present. It is 

  he major drawback of this sequential sub-problem a parsimonious diagnosis, but not a very useful one. 
approach is that the interaction of disorders cannot similarly, in ABEL it is possible that this rare engine 
be fully considered. The '%onus point" scheme al- disorder might seem to tie up all the loose ends, and 
leviates this somewhat, after some of the diagnostic it could be chosen for exploration, despite its improb- 
sub-problems have been solved. But this approach ability. 
misses most of the power available from reasoning ~ h ,  point is this: all of these approaches go as far 
about disorder interaction. as their underlying theory will take them, and then 

Another disadvantage of this heuristic is that some- use heuristics to carry on with differential diagnosis. 
times a symptom could contribute to the probabilities ~h~~~ heuristics have s~ortcomings, as outlined here. 
of disorders in several different differential groups. In we believe it is clearly better to have a sound thee- 
the automobile example, warm stalling could be a ,,tical basis for formulating the multiple-disorder hy- 
symptom of fuel system problems (bad choke or bad potheses. The ideal would be to go one more step-to 
carburetor chip) or, in rare cases, a symptom of very evaluate the alternative multiple-disorder hypotheses 
low alternator output or a short just severe enough in a theoretically sound way. A recent extension of 
to cancel out the alternator's output. The sequen- GSC would seem to accomplish this; it is discussed 
tial sub-problem approach, if it focused first on the in section 4 below. 
electrical problems, might explain warm stalling as an . - 

electrical manifestation, and thus deprive the fuel sys- 
tem sub-problem of a valuable clue. We repeat that 3.4 The Meaning of Parsimony 
this is not a failure of the Bayesian approach, but a 
criticism of the heuristics used in INTERNIST-I to 
extend it to multiple-fault situations. 

The other approaches, by contrast, construct mul- 
tiple disorder hypotheses which account for all the 
symptoms observed to date. This enables them to 
reason about the interactions of those disorders en- 
compassed by the hypothesis1' and neatly avoids the 
question of which disorder "owns" any one symp- 
tom. Formation of the multiple-disorder hypothesis is 
grounded in the underlying theory of that approach; 
it is not heuristic. 

This is clearly desirable, but immediately gives rise 
to some difficulties. Potentially, ABEL and GSC both 

llwhether or not they do so, and how, is a separate issue 

Almost all diagnostic approaches invoke some form 
of Occam's Razor or the principle of parsimony to 
chose between competitive hypotheses. They differ, 
however, in how parsimony is defined. 

In the GSC approach, a diagnosis has been de- 
fined as a parsimonious cover for the set of man- 
ifestations M+. Parsimony, in turn, has been de- 
fined as "containing the smallest number of disor- 
ders". This definition has been implemented in a 
number of prototype systems, and performed reason- 
ably well in real-world settings. But it is vulnerable 
to the "Rare Disease Problem." Reiter (Reiter 1985) 
and de Kleer (deKleer and Williams 1986a) employ 

]'intermediate pathological states or parameters still unex- 
plained or only partially accounted for 
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a less severe form of Occam's Razor and view par- 
simony as irredundancy. In their approaches, a di- 
agnosis is be defined as "the set of irredundant cov- 
ers of M+." An irredundant cover is one that has 
no proper subset which is a cover. It is interesting 
that Reggia et a1 reached the same conclusion con- 
currently, but independently, by a different line of 
reasoning (Reggia and Peng 1986, p. 22). 

3.5 Quantified Symptoms 

Most diagnostic systems view symptoms as propo- 
sitions. They are either present or absent or, per- 
haps, present to some degree. Pati17s ABEL has 
the unique feature of quantified symptoms and pro- 
vision for quantitative relationships within the causal 
model. For example, the causal relations of the other 
approaches contain information like "a bad automatic 
choke may cause cold stalling." ABEL's causal model 
can contain information like "a bad automatic choke 
may cause the air/fuel ratio not to be elevated by 20% 
when the COLD signal is ON" and "not elevating the 
air/fuel ratio 15-25% when the engine is cold may 
cause poor starting or stalling." The claimed benefit 
of causal model reasoning is that knowledge about 
the intermediate states (e.g. air/fuel ratio) can gen- 
erate predictions about the manifestations of those 
intermediate states, and those predictions are a valu- 
able source of confirmatory evidence. But we believe 
an additional source of power in ABEL's approach 
is the quantitative nature of some of that reasoning, 
e.g. "elevated by 20%." This enables efficient "net- 
ting out" of the effects of arbitrarily many comple- 
mentary or offsetting causes. It also allows for "shar- 
ing" of a symptom by two unrelated disorders and for 
reasoning about the unique combined effects of some 
disorders. 

Note that this quantitative reasoning is simulated 
to some extent in those systems that distinguish 
among trace, mild, moderate, strong, and severe lev- 
els of a symptom or intermediate state (e.g. x may 
cause mild hypertension). But combining or netting 
effects is more difficult and less precise when qualita- 
tive descriptors are used. 

Causal relations, etc. could be structured to ac- 
commodate this. For instance, INTERNIST'S MAN- 
IFESTS relation (see Figure 5 in section 2.2), if it rec- 
ognized intermediate states, could record for symp- 
tom = "air/fuel ratio too low when engine cold" a 
strength = 4 and an amount = 17%. Thus, quanti- 
tative reasoning is not limited to systems employing 
causal models, and it need not always involve inter- 
mediate states-it could quantify the symptom of a 
disorder. However, the particular domain for which 

ABEL is designed lends itself to quantification; most 
symptoms are laboratory measurements of ratios, and 
most knowledge about causation is in terms of in- 
creases or decreases from stable, normal levels. Other 
domains may not lend themselves to such precision. 

3.6 Equivalence of Formalisms 
Reiter has shown (Reiter 1985, p.33) that the GSC 
formulation of a diagnostic problem can be trans- 
formed in a straightforward manner to his formal- 
ism. Of course, the GSC formalism is more restricted 
than full first order logic, with less expressive power. 
To see how to transform a diagnostic problem in Re- 
iter's formalism into an equivalent GSC formulation 
we first note that the sentences in the System De- 
scription SD are of two types: normative descriptions 
of operation, such as 

and descriptions of causation, such as 

The normal operating values are always either a sin- 
gle value, a range of values, or a (disjunction of) pred- 
icate(~). 

A procedure for transforming such a first order di- 
agnostic problem into GSC form would obviously con- 
vert all sentences of the causation type directly into 
pairs in the Causal Relation, i.e. ( d l ,  m), . . . , (dj, m). 
Sentences of the normative type would first be turned 
into the converse, e.g. 

Then each term on the LHS of the converse is trans- 
lated (if necessary) into the proper terminology for 
symptom description (e.g . low-voltage) . Finally, each 
combination of LHS and RHS terms produces a pair 
in the Causal Relation. The rest of the transforma- 
tion is straightforward. 

So long as  parsimony is defined as irredundancy in 
the GSC problem, equivalent results will be achieved 
from either formulation of a problem. It is difficult 
to say which formalism might be the more tractable. 
The algorithm used in GSC is nearly exponential in 
the worst case, but Reggia et a1 report that in all 
problem domains studied so far, computational effi- 
ciency has not been a problem. Reiter's "algorithm" 
depends upon a theorem prover component proving 
the consistency of a collection of first order sentences, 
which in general is undecidable. By that analysis, 
GSC is the lesser of two evils. The expected perfor- 
mance of each algorithm depends on such things as 
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the average size of c a u s e s ( ~ + )  in GSC or the average 
cost of a refutation proof in Reiter's formalism. This 
would seem to be a fruitful area for further research. 

4 Summary and an Emerging 
Consensus 

We will begin this section by trying to summarize the 
issues discussed in comparing the approaches in the 
previous section. This will lead to an emerging con- 
sensus for a formalization of the diagnostic process. 

Sumarizing the Comparisons 

The Binary Choice strategy of Ben-Bassat et a1 is one 
way of living with the strict assumptions of statisti- 
cal independence required with Bayesian statistics. 
However, there are other ways to deal with this (e.g. 
INTERNIST'S alternate formulation of Bayes' Theo- 
rem) which preserve the ability to compare posterior 
probabilities of different disorders. Therefore, the Bi- 
nary Choice strategy is not a good general model for 
diagnostic systems. 

All of the independence assumptions required in 
Bayesian statistics are unrealistic in most diagnostic 
settings. This has led some to reject all Bayesian 
approaches as unsound. However, Charniak has 
successfully answered most of the charges levelled 
against the Bayesian model, showing that: 

The requirement that the set of disorders is mu- 
tually exclusive and exhaustive can be avoided 
by using an alternative formulation of Bayes' 
Theorem. 

The requirement that all symptoms be indepen- 
dent can be safely ignored so long as the absolute 
magnitudes of the posterior probabilities are not 
used, only the relative magnitudes. 

they introduce so much detail that they some- 
times can make it hard for the diagnostic system 
to "see the forest for all the trees"; thus they 
often require more complex control strategies. 

The requirement that all symptoms of a particu- 
lar disorder be independent given the presence of 
that disorder can be dealt with successfully via 
intermediate pathological states. 

Nearly all the researchers agree that intermediate 
states are useful for encoding knowledge about how 
a disorder causes a manifestation, and as focal points 
early in a diagnosis, especially when they have unique 
pathognomonic symptoms. There are drawbacks: 

there is insufficient understanding, in some do- 
mains, to build an accurate causal model. 

they require gathering or estimation of even 
more statistics in Bayesian systems. 

It remains to be seen whether the incorporation of 
detailed causal reasoning in an otherwise complete 
system will provide a performance improvement com- 
mensurate with the additional costs. Field trials of 
CADUCEUS seem the best hope for gathering solid 
evidence on this issue. 

The Bayesian approach provides a sound mecha- 
nism for identifying likely disorders to explain clus- 
ters of symptoms, but no mechanism to formulate 
a multiple-disorder hypothesis which explains all the 
observed symptoms. INTERNIST has a very work- 
able heuristic for that purpose. The GSC and for- 
mal logic approaches have a sound mechanism for 
formulating multiple-disorder hypotheses, but not for 
choosing one of those to pursue. The latter is a better 
position to be in, simply because it allows us to get 
further along in the diagnostic process before resort- 
ing to heuristics. A recent development which takes 
us further still is discussed below. 

Although the GSC model has long used minimum 
cardinality as the definition of parsimony - and 
hence as the criterion for a "best diagnosisy'-both 
b g g i a  et a1 and b i t e r  have concluded that irredun- 
dancy is the proper meaning of parsimony. 

ABEL uses quantified symptoms, and a quantified 
causal model, to considerable advantage. This facili- 
tates several desirable traits for diagnostic systems: 

a symptom which is partially explained by sev- 
eral disorders can be "allocated" mathematically 
among them; 

a symptom can be viewed as fully or partially 
masked by the offsetting effects of several disor- 
ders; 

combination or offestting of effects can be done 
more precisely than in a qualitative system. 

Quantified symptoms are not restricted to detailed 
causal models, although they fit well with that ap- 
proach. 

Reiter has shown that the GSC formulation of a di- 
agnostic problem can be transformed easily into his 
own first order logic formalism. We show that with 
one constraining assumption, the reverse transforma- 
tion can be done also. It is not clear whether ei- 
ther approach is computationally more tractable in 
all cases; both have worst case costs that are intimi- 
dating. 
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On a more pragmatic note, Ramsay et  a1 
(Ramsay et .  al. 1986) surveyed the results of six 
comparisons, conducted 1971-1980, of Bayesian, 
GSC, and rule-based diagnostic systems-all in med- 
ical settings. They concluded hat no method was sig- 
nificantly superior to the others in accuracy, relative 
ease of use and ease of construction. The differences 
they did encounter were attributed to differences in 
the problem-specific information in the knowledge 
bases as opposed to fundamental differences in the 
methods being used(Ramsay et .  al. 1986, p. 482). 

An Emerging Consensus 

It was pointed out above that GSC can be trans- 
formed into Reiter's first order logical formalism and 
vice versa.  From here on we will treat them as equiva- 
lent and call them GSC. It was also pointed out that, 
in theory at least, all the researchers agree on the 
value of intermediate pathological states and hence, 
causal models. Indeed, except for the fundamental 
difference between the Bayesian and GSC models, it 
could be said that the CADUCEUS design represents 
a consensus on the various types of reasoning needed 
for truly expert performance in a diagnostic system: 

Bayesian posterior probabilities freed of most re- 
strictions regarding independence; 

causal reasoning based upon a detailed model; 

"taxonomic reasoning" based upon numerous 
nosological models13. 

Some very recent results appear to bridge that funda- 
mental difference, making a complete consensus pos- 
sible. 

Peng and Reggia (Peng and Reggia 1987a) report 
a method for developing a set of parsimonious cov- 
ers for the symptoms (using the GSC formalism) and 
guaranteeing that the probability of the correct diag- 
nosis being in the set is not less than any Cornfor2 
Measure (CM) we wish to establish. Their method 
does not require any stronger assumptions of statisti- 
cal independence than INTERNIST, and it uses only 
the prior probabilities of each disorder and the causal 
strength14 of each disorder for each of its manifesta- 
tions. Furthermore, it preserves a measure of the rel- 
ative likelihood of each cover in the set, so that the 

13hierarchies of disorders, based on various views: organ sys- 
tems involved, mechanisms of operation inside the body, etc. 
This approach is also being followed in recent work by Kautz 
(Kautz 1986) 

''A key point is that the causal strength is not the same as 
P(mi 1 d), the posterior probability of the manifestation given 
the presence of the disorder. 

most probable (multiple disorder) diagnosis is a u t e  
matically identified. 

The mathematical details are cumbersome, but 
they propose an algorithm which exploits these key 
ideas: 

1. It is tractable to calculate a relative likelihood 
measure L(Dr 1 M+) for any hypothesis Dr; it 
differs from the posterior probability of DI by 
a constant factor. Thus, the largest L always 
signifies the most probable hypothesis. 

2. It is tractable to calculate UB(DI, M+), an 
upper bound on the relative likelihood of any 
proper superset of Dr. 

3. The s u m  of the relative likelihoods (L-values) of 
all proper supersets of any DI can be calculated. 

4. Whenever some hypothesis DK which is a cover 
for M+ has the Kth  largest L-value of all cover 
hypotheses, and its L-value exceeds the UB-value 
of any non-cover hypothesis which has been gen- 
erated to date by the algorithm, then DK is the 
Kth most probable hypothesis among all possible 
hypotheses. 

Although this method has not been implemented 
or tested to our knowledge, it could make possi- 
ble a diagnostic paradigm which meets the consen- 
sus desiderata of all the researchers surveyed here. 
That assumes, of course, that this Bayesian GSC 
style of problem formulation can effectively comple- 
ment nosological and causal reasoning, and that a 
control strategy can be devised which draws upon 
the strengths of each reasoning style at  the appro- 
priate time in a calculate-hypothesize-question cycle. 
The creation of such a consensus system in a com- 
plex, real-world domain would be a significant effort, 
but potentially a very rewarding one. 
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