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ABSTRACT 

We apply a complexity theoretic notion of feasible learnability called "polynomial learnability" t o  the 

evaluation of grammatical formalisms for linguistic description. We show that  a novel, nontrivial constraint 

on the degree of "locality" of grammars allows not only context free languages but also a rich class of mildly 

context sensitive languages t o  be polynomially learnable. We discuss possible implications of this result to  

the theory of natural language acquisition. 

1 Introduction 

Much of the formal modeling of natural language acquisition has been within the classic paradigm of "iden- 

tification in the limit from positive examples" proposed by Gold [7]. A relatively restricted class of formal 

languages has been shown to  be unlea.rna.ble in this sense, and the problem of learning formal grammars has 

long been considered intractable.' The following t,wo controversial aspects of this paradigm, however, leave 

the implications of these negative results t o  the comput,ational theory of language acquisition inconclusive. 

First, it places a very high demand on the accuracy of the learning that takes place - the hypothesized 

language must be exactly equal to  the target 1angua.ge for it to  be considered "correct". Second, i t  places a 

very permissive demand on the t,ime and alnount of data that may be required for the learning - all that is 

required of the learner is that it converge to the correct language in the limit.' 

Supported by an IBM graduate fellowship. The author gratefully acknowledges his advisor, Scott Weinstein, for his guidance 

and encouragement throughout this research. 

Some interesting learnable subclasses of regular languages have been discovered and studied by Angluin [3]. 

'For a comprehensive survey of various paradigms related to "identificat.ion in the limit" that have been proposed to address 

the first issue, see Osherson, Stob and Weinstein [12]. As for the lat,ter issue, Angluin ( [ 5 ] ,  [4]) investigates the feasible 



Of the many alternative paradigms of learning proposed, the notion of "polynomial learnability" recently 

formulated by Blumer et al. [6] is of particular interest because it addresses both of these problems in a 

unified way. This paradigm relaxes the criterion for learning by ruling a class of languages to be learnable, if 

each language in the class can be approxima.ted, given only positive and negative examples,3 with a desired 

degree of accuracy and with a desired degree of robustness (probability), but puts a higher demand on the 

complexity by requiring that the learner converge in time polynomial in these parameters (of accuracy and 

robustness) as well as the size (complexity) of the language being learned. 

In this paper, we apply the criterion of polynomial learnability to  subclasses of formal grammars t,hat 

are of considerable linguistic interest. Specifically, we present a novel, nontrivial constraint on grammars 

called "k-locality", which enables context free grammars and indeed a rich class of mildly context sensitive 

grammars to  be feasibly learnable. Importantly the constraint of k-locality is a nontrivial one because each 

k-local subclass is an exponential class containing infinitely many infinite languages. To the best of the 

author's knowledge, "k-locality" is the first nontrivial constraint on grammars, which has been shown to  

allow a rich class of grammars of considerable linguistic interest to be polynomially learnable. We finally 

mention some recent negative result in this paradigm, and discuss possible implications of its contrast with 

the learnability of k-local classes. 

2 Polynomial Learnability 

"Polynomial learnability" is a complexity theoretic notion of feasible learnability recently formulated by 

Blumer et  al. ([6]). This notion generalizes Valiant's theory of learnable boolean concepts [15], [14] t o  infinite 

objects such as formal languages. In this paradigm, the languages are presented via infinite sequences of 

positive and negative e x a n ~ ~ l e s ~  drawn with an arbitrary but time invariant distribution over the entire 

space, that is in our case, C T C .  Learners are to  hypothesize a grammar at each finite initial segment of such 

a sequence, in other words, they are functions from finite sequences of members of CT* x { O , l }  to  grammar^.^ 

The criterion for learning is a complexity theoretic, a.pproximate, and probabilistic one. A learner is said 

to  learn if it can, with an arbitrarily high probability (1 - 6 ) ,  converge to  an arbitrarily accurate (within 

learnability of formal languages with the use of powerful oracles such as "MEMBERSHIP" and "EQUIVALENCE". 
3We hold no particular stance on the the validity of the claim that children make no use of negative examples. We do, 

however, maintain that the investigation of learnability of granunars from both positive and negative examples is a worthwhile 

endeavour for a t  least two reasons: First, it has a pot,ential application for the design of natural language systems that learn. 

Second, it is possible that children do make use of indirect negative information. 
4 A  class of grammars B is an exponential class if each subclass of B with bounded size contains exponentially (in that size) 

many grammars. 

We let E X ( L )  denote the set of infinite seqnences which contain only positive and negative examples for L, so indicated. 

We let 3 denote the set of all such functions. 



E) grammar in a feasible number of examples. "A feasible number of examples" means, more precisely, 

polynomial in the size of the grammar it is learning and the degrees of probability and accuracy that it 

achieves - 6-I and 6-l. "Accurate within 6'' means, more precisely, that the output grammar can predict, 

with error probability E ,  future events (examples) drawn from the same dastributaon on which it has been 

presented exan~ples for learning. We now formally state this ~ r i t e r i o n . ~  

Definition 2.1 (Polynomial Learnability) A collection of languages C with an associated 'size'function 

with respect to some fixed representaiion mechanism is polynomially learnable if and only ifis 

3 f ~ F  

3 q :  a polynomial function 

V L I E C  

V P: a probabilaty measure on CT* 

V E , S > O  

V m 2 q ( ~ - l ,  6-l, s ize(L1))  

[P*({ t  E EK(L1) I P(L(f(t,))ALl) I €1) 
2 1 - 6  

and f is computable in time polynomial 

in the length of input] 

If in addition all o f f ' s  output grammars on example sequences for languages in  L beelong to 6, then we say 

that L is  polynomially learnable by G. 

Suppose we take the sequence of the hypotheses (grammars) made by a learner on successive initial finite 

sequences of examples, and plot the "errors" of those grammars with respect t o  the language being learned. 

The two learnability criteria, "identification in the limit" and "polynomial learnability", require different 

kinds of convergence behavior of such a sequence, as is illustrated in Figure 1. 

Blumer et  al. ([6]) shows an interesting connectioil between polynomial learnability and data compression. 

The connection is one way: If there exists a polyno~nial time algorithm which reliably "compresses" any 

sample of any language in a given collectioil to a provably small consistent grammar for i t ,  then such an 

alogorithm polynomially learns that collect,ion. We sta.te this theorem in a slightly weaker form. 

7The following presentation uses concepts and notation of formal learning theory, cf. [12] 
'Note the following notation. The inital segment of a sequence t up t o  the n-th element is denoted by t i .  L denotes some 

fixed mapping from grammars to languages: If G is a grammar, L(G) denotes the language generated by it. If LI is a language, 

s i ze(L1)  denotes the size of a minimal grammar for L1. AAB denotes the symmetric difference, i.e. (A - B) U (B -A) .  Finally, 

if P is a probability measure on CT* , then P* is the cannonical product extension of P. 



I d e n t i f i c a t i o n  i n  t h e  L i m i t  

Error 

Error 
I 

e Time 

I 
Figure 1: Convergence behaviour 

Definition 2.2 Let C be a language coEEection with a n  associated size funct ion "sizeJ', and for each n let 

C, = { L  E L ( s i ze (L)  5 n ) .  T h e n  A i s  an  Occam algorithm for C with range sizeg f ( m ,  n)  i f  and only if:  

V ~ E N  

V L E L ,  

v t  E & X ( L )  

V m E N  

[ A & )  i s  consistent w i t h l O r n g ( L )  

and A ( & )  E C (n,rn) 

and A m n s  i n  t i m e  polynomial i n  I (1 

Theorem 2.1 (Blumer et al.) If  d i s  an  Occam algorithm for C with range size f ( n ,  m )  = O ( n k m a )  for 

some k 2 1, 0 5 a < 1 (2.e. less t h a n  linear i n  sample size and polynomial i n  complexity of language), then  

A polynomially learns L.  

3 K-Local Context Free Grammars 

The notion of "k-locality" of a context free grammar is defined with respect to  a formulation of derivations 

defined originally for TAG'S by Vijay-Slia.nker, \Veir, and Joshi [16] [17], which is a generalization of the 

91n [6], the notion of "range dimension" is used in place of "range size", which is the Vapnik-Chervonenkis dimension of the 

hypothesis class. Here, we use the fact that the dimension of a hypothesis class with a size bound is a t  most equal to that size 

bound. 

''Grammar G is consistent with a sample S if {x I (x,0) E S }  C L(G) & L(G) n {a: I (x, 1) E S )  = 4. 
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Figure 2: Degree of locality of a derivation of a3b3ab by GI 

notion of a parse tree. In their formulation, a derivation is a tree recording the history of rewritings. Each 

node of a derivation tree is labeled by a rewriting rule, and in particular, the root must be labeled with a rule 

with the starting symbol as its left hand side. Each edge corresponds to the application of a rewriting; the 

edge from a rule (host rule) to  another rule (applied rule) is labeled with the "position" of the nonterminal 

in the right hand side of the host rule at which the rewriting takes place. 

The degree of locality of a derivation is the number of distinct kinds of rewritings in it - including the 

immediate context in which rewritings take place. In terms of a derivation tree, the degree of locality is the 

number of different kinds of edges in it, where two edges are equivalent just in case the two end nodes are 

labeled by the same rules, and the edges themselves are labeled by the same node address. 

Definition 3.1 Let 'D(G)  denote the set of all derivation trees of G ,  and let r E 'D(G). Then,  the 

degree of locality of T, written local i ty (r ) ,  is defined as follows. l o c a l i t y ( ~ )  = card{ (p ,q ,q )  1 there is  an  

edge in  r from a node labeled with p to  another labeled with q ,  and is  itself labeled with q )  

The degree of locality of a grammar is the maxiinurn of those of all its derivations. 

Definition 3.2 A C F G  G is  called k-local i f  max{ locu l i t y ( r )  I r E V ( G ) )  < k .  

W e  write k-Local-CFG = { G  I G E CFG and G is l-Local) and h-Local-CFL = { L ( G )  ( G E R-Local-CFG ). 

Example 3.1 L1 = {anbna"bm I n,  rn E N )  E 4-Local-CFL since all the derivations of G l  = ( { S ,  S 1 ) ,  { a ,  b ) ,  

S ,  { S  + S I S 1 ,  Sl -+ aS lb ,  S1  -+ A)) generating L1 have degree of locality at most 4. For example, the derizra- 

t ion for the string a3b3ab has degree of locality 4 as sho,wn in  Figure 2. 



A crucical property of k-local grammars, which we will utilize in proving the learnability result, is that 

for each k-local grammar, there exists another k-local grammar in a specific normal form, whose size is only 

polynomially larger than the original grammar. The normal form in effect puts the grammar into a disjoint 

union of small grammars each with a t  most k rules and k nonterminal occurences. By "the disjoint union" of 

an arbitrary set of n grammars, gl ,  ..., g,, we mean the grammar obtained by first reanaming nonterminals 

in each gi so that the nonterminal set of each one is disjoint from that of any other, and then taking the 

union of the rules in all those grammars, and finally adding the rule S -+ Si for each staring symbol Si of 

gi, and making a brand new symbol S the starting synlbol of the grammar so obtained. 

Lemma 3.1 (K-Local Normal Form) For euery k-local-CFG H, if n = s i z e ( H ) ,  then there is a k-local- 

C F G  G such that 

2. G is  i n  k-local normal form, i.e. there is an index set I such that G = (CT, UiEICi, S, { S  -+ Si 1 i E 

I )  U ( U i E r R i ) ) ,  and i f  we let Gd = (CT, Ci lS i l  I&) for each i E I ,  then 

(a) Each Gi  is  "k-simple"; Vi E I I Ri (5 k St N T O ( R a )  5 k.l l  

(b) Each Gi has size bounded by size(G); V i  E I s i z e (Gi )  = O ( n )  

(c)  All Gi 's have disjoint nonterminal sets; Vi, j E I ( i  # j )  -+ Ci n Cj = 4.  

Definition 3.3 We let q5 and $ t o  be any maps that satisfy: If G is  any k-local-CFG in  k-local normal form, 

then $(G) is the set of all of its k-local components (G above.) If G = {Gi  I i E I )  is  a set of k-simple 

grammars, then +(G) is a single grammar that is a "disjoint union" of all of the k-simple grammars i n  G. 

4 K-Local Context Free Languages Are Polynomially Learnable 

In this section, we present a sketch of the proof of our main learnability result. 

Theorem 4.1 For each k E N ;  

k-local-CFL is  polynomially learnable.12 

- -- 

llIf R is a set of production rules, then N T O ( R , )  denotes the number of nonterminal occurrences in those rules. 

6 



Proof: 

We prove this by exhibiting an Occam algorithm A for k-local-CFL with some fixed k, with range size 

polynomial in the size of a minimal grammar and less than linear in the sample size. 

We assume that A is given a labeled m-sample13 SL for some L E k-local-CFL with s i re (H)  = n where H 

is its minimal k-local-CFG. We let length(SL) = C I E S  length(s) = l.14 We let S: and S i  denote the positive 

and negative portions of SL respectively, i.e., S,? = {x 1 3s E SL such that s = (x, 0)) and S i  = {X I 3s  E SL 

such that s = (x , l ) ) .  We fix a minimal grammar in k-local normal form G that is consistent with SL with 

size(G) 5 p(n) for some fixed polynomial p by Lemma 3.1. and the fact that a minimal consistent k- 

local-CFG is not larger than H .  Further, we let G be the set of all of "k-simple components" of G and 

define L(G) = U G , E ~ L ( G i ) .  Then note L(G) = L(G). Since each k-simple component has at most k 

nonterminals, we assume without loss of generality that each Gi in G has the same nonterminal set of size 

k, say Ck = {A1, ..., Ak). 

The idea for constructing A is straightforward. Step 1. We generate all possible rules that may be in 

the portion of G that is relevant to s,?. That is, if we fix a set of derivations D ,  one for each string in s,? 
from G, then the set of rules that we generate will cont.ain all the rules that participate in any derivation in 

D.  (We let R e l ( ~ ,  s:) denote the restriction of G to Sz with respect t o  some V in this fashion.) We use 

k-locality of G to  show that such a set will be polynomially bounded in the length of Sz. Step 2. We then 

generate the set of all possible grammars having at most k of these rules. Since each k-simple component of 

G has a t  most k rules, the generated set of grammars will include all of the k-simple components of G. Step 

3. We then use the negative portion of the sample, S i  to  filter out the "inconsistent" ones. What we have a t  

this stage is a polynomially bounded set of k-simple grammars with varying sizes, which do not generate any 

of S i ,  and contain all the k-simple grammars of G. Associated with each k-simple grammar is the portion 

of s L ~  that it "covers" and its size. Step 4. What an Occam algorithm needs to  do, then, is to  find some 

subset of these k-simple grammars that  "covers" Sz, and has a total size that is provably only polynomially 

larger than a minimal total size of a subset that covers S,?, and is less than linear is the sample size, rn. We 

formalize this as a variant of "Set Cover" problem which we call "Weighted Set Cover"(WSC), and prove 

the existence of an approximation algorithnl with a performance guarantee which suffices t o  ensure that the 

output of A will be a grammar that is provably only polynomially larger than the minimal one, and is less 

than linear in the sample size. The algorithm runs in time polynomial in the size of the grammar being 

learned and the sample length. 

12We use the size of a minimal k-local CFG as the size of a k-local-CFL, i.e., V L  E k-local-CFL size(L)  = min{size(G) I G E 

k-local-CFG & L ( G )  = L).  
I3SL is a labeled m-sample for L if S graph(char(L)) and card(S) = m. g ~ a p h ( c h a r ( L ) )  is the graph of the characteristic 

function of L, i.e. is the set {(x ,O) I x ?: L }  u { ( x , l )  ( x L}. 
]*In the sequel, we refer to the number of strings in a sample as the sample size, and the total length of the strings in a 

sample as  the sample length. 



Step 1. 

A crucial consequence of the way k-locality is defined is that the "terminal yield" of any rule body that is 

used to  derive any string in the language could be split into at most k+  1 intervals. (We define the "terminal 

yield" of a rule body R to be h(R), where h is a homoinorphism that preserves terminal symbols and deletes 

nonterminal symbols.) 

Definition 4.1 (Subyields) For an arbitrary i E N, an i-tuple of members of C; w = ( v l , v ~ ,  ..., vi) is 

said to be a subyield of s, if there are some u l ,  ..., u<,ui+l E C& such that s = ~ 1 v l u 2 ~ 2 . . . u j ~ i ~ i + l .  We let 

SubYields(i, s)  = {w E (C;)" I x 5 i & w is a subyield of s) .  

We then let SubYieldsk(Si) denote the set of all subyields of strings in S i  that may have come from a 

rule body in a k-local-CFG, i.e. subyields that are tuples of at most k + 1 strings. 

Definition 4.2 ~ u b y i e l d s ~ ( ~ : )  = ~ , ~ ~ ~ S u b y i e l d s ( k  + 1, s). 

Claim 4.1 c a r d ( S u b ~ i e l d s ~ ( S i ) )  = 0(12k+3). 

Proof: 

This is obvious, since given a string s of length a,  there are only ~ ( a ~ ( ~ + ' ) )  ways of choosing 2(k+ 1) different 

positions in the string. This completely specifies all the elements of S~bYie ld sk+~( s ) .  Since the number of 

strings (m) in S i  and the length of each string in SL are each bounded by the sample length (l), we have 

at most O(1) X 0(1'(~+')) strings in ~ u b ~ i e ~ d s k ( ~ L + ) .  

Thus we now have a polynomially generable set of possible yields of rule bodies in G. The next step 

is to generate the set of all possible rules having these yields. Now, by k-locality, in any derivation of G 

we have a t  most k distinct "kinds" of rewritings present. So, each rule has a t  most k useful nonterminal 

occurrences and since G is minimal, it is free of useless nonterminals. We generate all possible rules with at 

most k nonterminal occurrences from some fixed set of k nonterrninals (Ck), having as terminal subyields, 

one of Subyieldsk(s:). We will then have generated all possible rules of  el(^, s:). In other words, such 

a set will provably contain all the rules of Rel(G, S z ) .  We let TFRules(Ck) denote the set of "terminal free 

rules" {Aj, + xlAj,x2 .... xnAanxn+l I n 5 k 6: V j  5 n AiJ E Ck) We note that the cardinality of such a 

set is a function only of k. We then "assign" members of S u b ~ i e l d s ~ ( ~ z )  to TFRules(Ck), wherever it  is 

possible (or the arities agree). We let CRules(k, ST) denote the set of "candidate rules" so obtained. 



Definition 4.3 CRules(k,SL) = {R(w1/z1, ..., tun/en) I R E TFRden(Ck) & w E S u b ~ i e l d s ~ ( S i )  & arity(w) = 

arity(R) = n) 

It  is easy to  see that the number of rules in such a set is also polynomially bounded. 

C la im  4.2 card(CRules(k, S i ) )  = O(12k+3) 

S t e p  2. 

Recall that we have assumed that they each have a nonterminal set contained in some fixed set of k nonter- 

minals, C k .  SO if we generate all subsets of CRules(k,S;) with a t  most k rules, then these will include all 

the k-simple grammars in G. 

Definition 4.4 CGrams(k, SL) = Pk(CRules(k, s2)).15 

S t e p  3. 

Now we finally make use of the negative portion of the sample, S i ,  to  ensure that we do not include any 

inconsistent grammars in our candidates. 

Definition 4.5 FGrams(k,  SL) = {H I H E CGrams(k, s:) & L(H) n Si  = 4 )  

This filtering can be computed in time polynomial in the length of SL, because for testing consistency of 

each grammar in CGrams(k,SL), all that is involved is the membership question for strings in S i  with 

that grammar. 

S t e p  4. 

What we have at this stage is a set of 'subcovers' of S i ,  each with a size (or 'weight') associated with it, 

and we wish to find a subset of these 'subcovers' that cover the entire S:, but has a provably small 'total 

weight'. We abstract this as the following problem. 

W E I G H T E D - S E T - C O V E R ( W S C )  

INSTANCE: (X, Y, w) where X is a finite set and Y is a subset of P ( X )  and w is a function from Y t o  N + .  

Intuitively, Y is a set of subcovers of the set X,  each associated with its 'weight'. 

NOTATION: For every subset Z of Y, we let covev(Z) = U{z I z E Z), and totalweight(2) = CrEZ ~ ( z ) .  

15Pk(X) in general denotes the set of all subsets of X with cardinality at most k. 



QUESTION: What subset of Y is a set-cover of X with a minimal total weight, i.e, find Z C_ Y with 

the following properties: 

(i) cover(Z)  = X. 

(ii) VZ' Y if cover(Z1) = X then tota1weight(Z1) 2 totalweight(Z).  

We now prove the existence of an approximation algorithm for this problem with the desired performance 

guarantee. 

Lemma 4.1 There is an algorithm B and a polynomial p such that given an arbatrary instance (X,Y,  w )  of 

WEIGHTED-SET-COVER with I X I= n ,  always outputs Z such that; 

1. Z C Y  

2. Z is a cover for X ,  i.e. U Z  = X 

3. If  Z' is a minimal weight set cover for (X,Y,w),  th.en C y E Z  w ( y )  < p ( C y E Z ,  w ( y ) )  x logn 

4.  U runs in  time polynomial in the size of the instance. 

Proof:  To exhibit an algorithm with this property, we make use of the greedy algorithm C for the standard 

set-cover problem due to  Johnson ([8]), with a performance guarantee. SET-COVER can be thought of as 

a special case of WEIGHTED-SET-COVER with weight function being the constant funtion 1. 

T h e o r e m  4.2 (David S. Johnson )  There is a greedy a1gorith.m C for SET-COVER such that given an 

arbitrary instance ( X ,  Y )  with an optimal solution Z', outputs a solution 2, such that card(Z)  = O(1og I X I 
x c a r d ( Z 1 ) )  and m n s  in time polynomial in the instance size. 

Now we present the algorithm for WSC. The idea of the algorithm is simple. It applies C on X and 

successive subclasses of Y with bounded weights, upto the maximum weight there is, but using only powers 

of 2 as the bounds. It then outputs one with a minimal total weight among those. 

Algor i thm B: ((X, Y, w ) )  

maxweight := r n ~ x { w ( ~ )  I y E Y }  



m := [log maxweightl 

/* this loop gets an approximate solution using C 

for subsets of Y each defined by putting an upperbound 

on the weights */ 
For i = 1 to m do: 

Y [i] := {y I y E Y & W(Y) < 2') 

s[i] := C((X, Y [i])) 

End /* For */ 
/* this loop replaces all 'bad' (i.e. does not cover X) 

solutions with Y - the solution with the maximum 

total weight */ 
For i = 1 to m do: 

s[i] := s[i] if cover(s[i]) = X 

:= Y otherwise 

End /* For */ 
mintotalweight := min{totalweight(sljI) I j E [m]) 

Return s[min{i ( totalweight(s[i]) = mintotalweigh,t)] 

End /* Algorithm B */ 

Time Analysis 

Clearly, Algorithm B runs in time polynomial in the instance size, since Algorithm C runs in time poly- 

nomial in the instance size and there are only m = pogmaxweightl calls to  it, which certainly does not 

exceed the instance size. 

Performance Guarantee 

Let (X, Y, w) be a given instance with card(X) = n.  Then let Z*  be an optimal solution of that instance, i.e., 

it is a minimal total weight set cover. Let totaltueight(Z*) = w*. Now let m* = Pog max{w(z) I r E Z*)]. 

Then m* < min(n, pog mazweightl). So when C is called with an instance (X,  Y[m*]) in the m*-th iteration 

of the first 'For7-loop in the algorithm, every member of Z* is in Y [m*]. Hence, the optimal solution of this in- 

stance equals 2'. Thus, by the performance guarantee of C, s[m*] will be a cover of X with cardinality a t  most 

card(Z*) x log n. Thus, we have card(s[m*]) 5 card(Z*) x log n. Now, for every member t of s[m*], w(t) 5 

2m* 5 2rlogw*1 < - 2w*. Therefore, totalweight(s[m*]) = card(Z*) x log n x  0 (2wt )  = O(w*) x log n x 0(2w*), 

since w* certainly is at  least as large as card(Z*). Hence, we have totalweiyht(s[m*]) = 0(w*' x logn). 



Now it is clear that the output of B will be a cover, and its total weight will not exceed the total weight of 

s[m*]. We conclude therefore that B((X,Y,w)) will be a set-cover for X, with total weight bounded above 

by o ( w * ~  x logn), where w* is the total weight of a minimal weight cover and n =I X I. 
0 

Now, to apply algorithm B to  our learning problem, we let Y = {S: fl L(H) I H E FGrums(k,  SL)) 

and define the weight function w : Y + N +  by Vy E Y w(y) = min{size(H) I H E FGrams(k,  SL) & y = 

L ( H )  fl s;) and call B on ( S i ,  Y, w). We then output the grammar 'corresponding' to B((S;, Y, w)). In 

other words, we let H = {mingrammar(y) I y E B((s:,Y, w))) where mingrammar(y) is a minimal-size 

grammar H in FGrums(k, SL) such that L(H) n S; = y. The final output grammar H will be the "disjoint 

union" of all the grammars in H, i.e. H = @ ( H ) .  H is clearly consistent with SL,  and since the minimal total 

weight solution of this instance of WSC is no larger than   el(^, s;), by the performance guarantee on the 

algorithm B, size(H) < p ( s i z e ( ~ e l ( ~ ,  s:))) x O(1og m) for some polynomial p,  where m is the sample size. 

size(G) 2 size(Rel(@, SE)) is also bounded by a polynomial in the size of a minimal grammar consistent 

with SL. We therefore have shown the existence of an Occam algorithm with range size polymomial in the 

size of a minimal consistent grammar and less than linear in the sample size. Hence, Theorem 4.1 has been 

proved. 

5 Extension to Mildly Context Sensitive Languages 

The learnability of k-local subclasses of CFG may appear to  be quite restricted. It  turns out,  however, 

that the learnability of k-local subclasses extends to a rich class of mildly context sensitive grammars which 

we call "Ranked Node Rewriting Grammars" (RNRG's). RNRG's are based on the underlying ideas of 

Tree Adjoining Grammars (TAG's) 16, and are also a specical case of context free tree grammars [13] in 

which unrestricted use of variables for moving, copying and deleting, is not permitted. In other words each 

rewriting in this system replaces a "ranlted" nonterminal node of say rank j with an "incomplete" tree 

containing exactly j edges that have no descendants. If we define a hierarchy of languages generated by 

subclasses of RNRG's having nodes and rules with bounded rank j (RNRLj), then RNRLo = CFL, and 

RNRLl = TAL.17 It  turns out that each 1;-local subclas of each RNRLj is polynomially 1ea.rnable. Further, 

the constraint of k-locality on RNRG's is an interesting one because not only each k-local subclass is an 

''Tree adjoining grammars were introduced as a formalism for liilguistic description by Joshi et al. [lo], [9]. Various formal 

and computational properties of TAG's were studied in [16]. Its linguistic relevance was demonstrated in [ I l l .  

17This hierarchy is different from the hierarchy of "meta-TAL's" invented and studied extensively by Weir in [IS]. 
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exponential class containing infinitely many infinite languages, but also k-local subclasses of the RNRG 

hierarchy become progressively more complex as we go higher in the hierarchy. In particular, for each j ,  

RNRGj can "count up to" 2( j  + 1) and for each k 2 2, k-local-RNRGj can also count up t o  2( j  + l).la 

We will omit a detailed definition of RNRG's (see [I]), and informally illustrate them by some examples.lg 

Example 5.1 L1 = {anbn I n E N )  E C F L  is generated by  the following RNRGo grammar, where a is 

shown in Figure 3. G1 = ({S},{s,a,b),#,{S), {S -+ a,S -+ s(A))) 

Example 5.2 L2 = {anbncndn I n E N )  E TAL is generated by the following RNRGl  grammar, where ,D 

is shown in Figure 3. G2 = ({S}, {s, a,  b, c, d), #, {(S(X))), {S -+ P, S -. s(#)}) 

Example 5.3 L3 = {anbncndnen f n  I n E N )  $ TAL is generated by the following RNRG2 grammar, where 

y is shown in Figure 3. G3 = ({S), {s,a,  b,  c, d, e,  f},#, {(S(A, A))), {S -+ y,  S + s(#, #))). An example of a 

tree in the tree language of Gg having as its yield 'aabbccddee f f ' is also shown in Figure 3. 

We state the learnability result of RNRLj's below as a theorem, and again refer the reader to  [I] for 

details. Note that this theorem subsumes Theorem 4.1 as the case j = 0. 

Theorem 5.1 V j ,  k E N k-local-RNRLj is polynomi~lly lear~zable .~~  

IsA class of grammars B is said to be able t.o ''count up to" j, just in case {aya ;...a; I n  E N }  E {L(G)  I G  E B) but 

(a;a;...a;+l In  E N }  @ {L (G)  I G E  8) .  
lgSimpler trees are represented as term structures, whereas more involved trees are shown in the figure. Also note that we 

use uppercase letters for nonterminals and lowercase for terminals. Not,e the use of the special symbol fl to indicate an edge 

with no descendent. 
='We use the size of a minimal k-local RNRGJ as the size of a k-local RNRL,, i.e., Vj E N  VL  E k-local-RNRL, size(L) = 

min{size(G) I G E k-local-RNRG3 & L(G)  = L}. 



6 Some Negative Results 

The reader's reaction to  the result described above may be an illusion that the learnability of k-local grammars 

follows from "bounding by k". On the contrary, we present a case where "bounding by k" not only does not 

help feasible learning, but in some sense makes it harder to  learn. Let us consider Tree Adjoining Grammars 

witho.ut local cons t ra in t s ,  TAG(wo1c) for the sake of comparison.21 Then an anlogous argument t o  the one 

for the learnability of k-local-CFL shows that k-local-TAL(wo1c) is polynomially learnable for any k. 

Theorem 6.1 V k  E Nf k-local-TAL(wo1c) is  polynominl ly  learnable.  

Now let us define subclasses of TAG(wo1c) with a bounded number of initial trees; k-initial-tree-TAG(wo1c) 

is the class of TAG(wo1c) with at most k initial trees. Then surprisingly, for the case of single letter alphabet, 

we already have the following striking result. (For full detail, see [2].) 

Theorem 6.2 (i) TAL(wo1c)  o n  1- le t ter  alphabet i s  polynomial ly  learnable. 

(ii) VE > 3 k-initial-tree-TAL(wolc) o n  I - le t ter  alph,abel i s  n o t  polynomial ly  learnable by  k-init ial-tree- 

TAG(wo1c) .  

As a corollary to  the second part of the above theorem, we have that k-initial-tree-TAL(wo1c) on an arbitrary 

alphabet is not polynomially learnable (by k-initial-tree-TAG(wo1c)). This is because we would be able to  

use a learning algorithm for an arbitrary alphabet to  construct one for the single letter alphabet case. 

Corollary 6.1 k-initial-tree-TAL(wolc) i s  n o t  polynomial ly  learnable by k-initial-tree-TAG(wo1c). 

The learnability of k-local-TAL(wo1c) and the non-learnability of k-initial-tree-TAL(wo1c) is an interesting 

contrast. Intuitively, in the former case, the "k-bound" is placed so that the grammar is forced to  be an 

arbitrarily "wide" union of boundedly small grammars, whereas, in the latter, the grammar is forced t o  be 

a boundedly "narrow" union of arbitrarily 1a.rge gra.nlmars. It is suggestive of the possibility that in fact 

human infants when acquiring her native tongue may start developing small special purpose grammars for 

different uses and contexts and slowly start to  generalize and compress the large set of similar gra.mmars 

into a smaller set. 

Tree Adjoining Grammar formalism was never defined u,ithout local constrains. 



7 Conclusions 

We have investigated the use of complexity theory to the evaluation of grammatical systems as linguistic 

formalisms from the point of view of feasible learnability. In particular, we have demonstrated that a single, 

natural and non-trivial constraint of "locality" on the grammars allows a rich class of mildly context sensitive 

languages to  be feasibly learnable, in a well-defined complexity theoretic sense. Our work differs from recent 

works on efficient learning of formal languages, for example by Angluin ([4]), in that it uses only examples 

and no other powerful oracles. We hope to have demonstrated that learning formal grammars need not be 

doomed to be necessarily computationally intractable, and the investigation of alternative formulations of 

this problem is a worthwhile endeavour. 
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