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ABSTRACT 

Packet routing is an important problem in parallel computation since a single 
step of inter-processor communication can be thought of as a packet routing 
task. In this paper we present an optimal algorithm for packet routing on a 
mesh-connected computer. 

Two important criteria for judging a routing algorithm will be 1) its run time, i.e., 
the number of parallel steps it takes for the last packet to reach its destination, 
and 2) its queue size, i.e., the maximum number of packets that any node will 
have to store at any time during routing. We present a 2n - 2 step routing 

algorithm for an n x n mesh that requires a queue size of only 58. , 

The previous best known result is a routing algorithm with the same time bound 

but with a queue size of 672. The time bound of 2n - 2 is optimal. A queue 
size of 672 is rather large for practical use. We believe that the queue size of 

our algorithm is practical. The improvement in the queue size is possible due to 

(from among other things) a new 3s + o(s) sorting algorithm for an s x s mesh. 

1 Introduction 

The design of efficient packet routing algorithms on fixed connection machines has two 

important consequences: 1) they lead to faster inter-processor communication, and 2) ideal 
parallel machines can be efficiently simulated on the fixed connection machines. 

Even though asymptotically optical algorithms have been designed for routing on net- 
works with 'small' diameter (see e.g., [lo, 9, 5, 6]), a direct application of these algorithms 
on an (n x n) mesh connected computer does not seem to yield an optimal run time (i.e., 
2n - 2 steps). Thus, people have designed algorithms that are specific to the mesh. 



Some of the relevant previous results include 1) a 3n + o(n) steps and B(1og n)  queue size 

randomized algorithm of Valiant and Brebner [lo], 2) a 2n + (?(log n) randomized constant 

queue routing algorithm due to Krizanc, Rajasekaran, and Tsantilas [I], and 3) a 2n+B(n/q) 

(for any 1 5 q 5 n) routing algorithm with a queue size of q due to Kunde [3]. Leighton, 

Makedon, and Tollis [4] subsequently presented an optimal algorithm that takes 2n - 2 steps, 

and needs a queue size of 672. A queue size of 672 is rather large. 

In this paper we present a 2n - 2 step deterministic routing algorithm that needs a queue 
size of only 58. We believe this queue size is practical. Our improvement in the queue size 

is possible due to (from among other things), a new 3s + o(s) sorting algorithm on an s x s 

mesh. This paper heavily borrows ideas from [4]. 

In section 2 we make some definitions. In section 3 we show that sorting on an s x s 

mesh can be performed in 3s + o(s) steps. In section 4 we prove some facts connected with 
routing on a linear array. These results are crucial to our algorithm. In sections 5 and 6 we 

present our 2n - 2 step routing algorithm and prove an upper bound of 58 for the queue 

size. Finally in section 7 we provide some concluding remarks. 

Machine Model and Problem Statement 

An n x n mesh is a collection of n2 processors arranged in a square grid of size n x n, one 

per grid point. The grid edges correspond to communication links. We assume all the links 

are bidirectional, and each processor can communicate with all its (four or less) neighbors 

in one time step. This model is called the MIMD mesh and has been assumed in all the 

previous works cited [I, 3, 41. 

The problem of routing is defined as follows. Each processor has a packet of information 

that it wants to send to some other processor. Send all the packets to their destinations such 

that only one packet traverses along any edge at any time, and all the packets reach their 

destinations quickly. If at the most one packet originates from out of any node and at the 

most one packet is destined for any node, the problem of routing is called partial permutation 

routing. The algorithm we present is for routing partial permutations. 

A routing function is a rule that specifies a path for each packet, together with a queue 

discipline. By queue discipline we mean a rule for resolving contentions for the same edge. 
Two popular queue disciplines are: 

Q: The packet with the furthest origin gets priority. 

Q': The packet with the furthest destination gets priority. 



3 A 3s Sorting Algorithm for an s x s Mesh 

One of the bottlenecks in Kunde's [3] routing algorithm is the need to perform sorting of 
small subsquares. [4] assume a 4s + o(s) algorithm for sorting an s x s mesh. A reduction 

in this sorting time is immediately reflected as a proportionate reduction in the queue size 

of [4]'s routing algorithm. In this section we show sorting can be done in 3s + o(s) steps 

on an s x s mesh. Since we require sorting to be performed in column major order, the 

3s sorting lower bound of Kunde [2] and Schnorr & Shamir [7] holds. And hence as for as 

sorting subsquares is concerned, this is the best we can do. 

The Algorithm 

We make use of Thompson and Kung7s [8] sorting algorithm. Thompson and Kung's al- 

gorithm in turn is an implementation of (a generalized) odd-even merge algorithm. The 

algorithm assumes a snake-like column major indexing scheme (Our routing algorithm also 

makes use of the same indexing scheme). 

The algorithm runs as follows. The mesh is partitioned into subsquares of size k x k 

(where k = s2I3), and each subsquare is sorted independently in parallel in O(k) time. We 

are left with s2/k2 = s2I3 sorted lists. These are merged recursively using a generalized 

odd-even (in fact an s2I3-way) merge algorithm. 

The key steps of this algorithm are the following. 1) Packets are 'unshuffled' in stages 

for a total of s steps; 2) the base case is performed; 3) packets are 'shuffled' for a total of s 

steps; 4) at this point each packet will be at the most s2I3 - 1 distance away from its final 

destination; s2I3 - 1 steps of the odd-even transposition algorithm [S] are applied to send 

each packet to its correct destination. The base case of the algorithm is to merge s2I3 sorted 

lists in the same row. This can be accomplished by sorting the row. A row (of length s) can 

be sorted using s steps of the odd-even transposition algorithm. Each step of the odd-even 

transposition algorithm is a compare-exchange step (i.e., each node compares its key with 

its neighbor's and swaps the key if they are out of order). On the MIMD model we assume 

in this paper, a compare exchange step can be performed in 2 time units. If A and B are 

neighbors, A sends its packet in one time unit to B. B compares the keys of the packet it 

received and its own; the packet with a smaller key is sent back to A. In our model B can 
do these in one time unit. 

A compare exchange can be performed in one step as follows on the MIMD model if we 
are allowed to copy and destroy packets. A sends a copy of its packet to B and at the same 



time B sends a copy of its packet to A. In the same time step, both the nodes make a 

comparison and throw away the unwanted packet. But the assumption that one can copy 

and destroy packets may not be valid. We show that even if we are not allowed to copy or 

destroy packets, we can sort a row of length s in s steps. The only assumption we make is 

that keys (i-e., addresses) of packets can be copied and destroyed. 

An s step row sorting algorithm. 

If A and B are two neighboring nodes that want to perform a compare exchange, they 

each send a copy of their packet's key to the other at the same time. In the same time unit 

both perform a comparison and choose an appropriate key. It may be the case that the 

packets will have to be swapped. Any such swapping is done in the next time unit. Since in 

the odd-even transposition algorithm at any given time only half the number of edges are 

used to perform compare exchanges, packets swapping can be done using the other half of 

the edges, with a net additional delay (over the usual odd-even transposition algorithm) of 

only one step for the whole algorithm. 

Details of the algorithm follow. Each node at any given time has two objects, namely, a 

packet and a key (i.e., a destination address). At the beginning, the packet each processor 

has is simply the one that originates there, and the key it has is the destination address of 

its packet. 

During odd numbered cycles for all i (0 5 i 5 19/21 - 1) in parallel do 

Processor 22 + 1 sends its packet left if the packet's destination is not 

the same as its key, and at the same time sends a copy of its key to 

its right neighbor. In the same time unit it receives a copy of its right 

neighbor's key; compares the two keys and stores the smaller. 

Processor 2i + 2 sends its packet to the right if the packet's address 

does not match its key; it sends a copy of its key to its left neighbor; 

receives a key from left; compares the keys and keeps the larger. 

During even cycles for all i (0 5 i 5 [(s - 1)/2J - 1) do 

Processors 2i + 2 and 2i + 3 perform exchanges mentioned above. 

Lemma 3.1 The above algorithm sorts a row of length s in s steps on the MIMD model. 



Proof. The keys of packets follow exactly the odd-even transposition algorithm and hence 
the keys will be in sorted order in ( s  - 1) steps [a]. Also, at  any given time unit, each packet 

is at the most one distance away from its key. Thus the result follows. (An example is given 
in figure 7.) 

The above lemma together with the summary given for Thompson and Kung's algorithm 

imply the following 

Theorem 3.1 Sorting on an s x s mesh can be performed in T, = 3s + o(s )  steps under the 

MIMD model. 

4 Routing on a Linear Array 

Consider the following routing problem. Node i (1 5 i 5 n )  of a linear n-array has k; 2 0 

packets initially and each node is the destination of exactly one packet. The following lemma 

has been proven in [I]: 

Lemma 4.1 If the queue discipline used is 'furthest destination first', then the time needed 

for a packet starting at node i to reach its destination is no more than the distance between i 
and the boundary in the direction the packet is moving. That is, this time is no more than i 

or (n  - i) (depending on whether it is moving from right to left or left to right respectively). 

Proof. A summary of this proof is needed in order to understand the subsequent lemmas. 

Consider a packet q at node i with j as its destination. W.l.o.g., let q move from left 

to right. q can only be delayed by packets with destinations > j and which are to the left 
of their destinations. Let ki ,  ki ,  . . . , kh be the number of such packets at  nodes 1,2, . . . , n 

respectively (at the beginning). (Note that C;"=l ki _< n - j - 1). 

Let m be such that kh-l > 1 and ki 5 1 for m 5 j 5 n. Call the sequence 
k k ,  k;+,, . . . , kk the free sequence. Realize that a packet in the free sequence will not be 
delayed by any other packet in the future. Also, at every time step at least one new packet 
joins the free sequence. Thus after (n  - j - 1) steps, all the packets that can possibly delay 

q would have joined the free sequence. q needs only an additional j - i steps or less to reach 
its destination. The case in which the packet moves from right to left is similar. 

As a consequence of the previous lemma we have the following: 

Lemma 4.2 After m steps from the beginning of routing on an n-node linear array, the 

distance of any packet to its final destination can not be greater than n - m. 



Figure 1: 

Figure 2: 

The next two lemmas are crucial to our algorithm. The proof of the first one is similar 
to that of lemma 4.1 and hence is given without a proof. 

Lemma 4.3 Let q be a packet that is currently at node i whose destination is to the right 

of i. Let kj be the number of packets that can potentially delay q and which are currently in 

node j (for 1 5 j 5 n).  Then, the maximum delay the packet can su$er (in addition to the 

distance to its destination), is < ~ j = ,  kj + xy=i+l(kj - 1). 

Lemma 4.4 Let m be any integer 5 5. During the first m time steps, say we do not process 

any packet that 1) originates in the rightmost m nodes and whose destination is to the right 

of its origin, or 2) originates in the leftmost m nodes and whose destination is to the left of 

its origin. If queue discipline Q' is used, routing can be completed in n  steps in the worst 

case. 

Proof. Let B stand for the set of left most m nodes, and C stand for the set of right most 

m nodes in the linear array. Also let A stand for all the nodes in the array except the ones 

in C. (see figure 1). Consider a packet q that is moving from left to right. q is unaffected 
by the constraint in region B. There are three cases. 

Case 1. q starts in region C. The packet doesn't move during the first m steps. After these 
m steps, applying lemma 4.1, q needs an additional m steps or less to reach its destination. 
In all q will be done in 2m(5  n )  steps or less from the start. 

Case 2. q starts in region A and has a destination in region A. Realize that the schedule of 

packets that originate in region A remains unchanged (from the case there is no constraint 



in region C), until they leave region A. Since q has a destination within region A, the time 

it takes to reach its destination remains unaltered. This time is 5 n applying lemma 4.1. 

Case 3. The packet starts in region A and has a destination in region C. Let i, j, k be the 
origin, position after m steps, and the destination of q respectively. q can only be delayed 

by packets with destinations in region D (see figure 2; in figure 2, G stands for all the nodes 

to the right of i up to and including node j, and E stands for the next m - (j  - i + 1) nodes. 

Regions F and D are also defined in a similar manner). After m steps from the start, all 

the packets with a destination address 2 k and which originated in region A will be in a 

free sequence (see lemma 4.1). This in particular means that all such packets will be found 

at the most one per node. The number of such packets in the free sequence that are to the 

right of node j is 2 m -  ]GI = IEl. 
Therefore, using lemma 4.3, q needs an additional time (after the first m steps) of < 

\El + IF1 + (ID1 - IEI) = ID1 + IF1 5 (n - m). Thus, q will be done in 5 n steps. 
The case of the packet moving from right to left is similar. 

5 The Routing Algorithm 

Before we give the details of the algorithm, a few definitions are in order. 

The mesh is partitioned into 64 subsquares as shown in figure 3. Let 'column block j' 
(for 1 5 j < 8) correspond to columns ( j  - l)n/8 + 1 through jn/8, and 'row block i' (for 

1 < i 5 8) correspond to rows (i - l)n/8 + 1 through in/8. By 'supersquare < i, j >' 
we mean the intersection of row block i with column block j. The size of any supersquare 

is m x m where m = n/8. Supersquares < 1,l >,< 1,8 >,< 8 , l  >, and < 8,8  > will be 

called 'corner supersquares'. 

The algorithm to be described is a recursive routing algorithm. There are d(1og n) levels 

of recursion. Packets that originate in a corner supersquare that are destined for an opposite 

corner supersquare are the most troublesome to route. Highest priority is given to these 

packets while routing. This idea was first introduced in [I], and subsequently employed also 

in [4]. Packets are grouped into different types depending on their origins and destinations. 

Each type of packets executes a different algorithm. 

We categorize the packets into three major types. Packets that originate in a corner 
supersquare and whose destinations are in an opposite corner supersquare will be called 

'critical packets' (following the definitions given in [4]). The rest of the packets (called 'ordi- 

nary packets7) are further categorized into two types: Any ordinary packet whose destination 



supersquare (7,2) 

row block 3 

column block 5 

Figure 3: Partitioning of the Mesh into supersquares. 

is in column block 4 or 5 will be referred to as a 'type-I' packet; the rest of the ordinary 

packets will be known as 'type-11' packets. 

Next we describe the algorithms executed by the different types of packets. 

5.1 Algorithm for type-I1 packets 

Kunde's algorithm is used to route type-I1 packets. Partition each supersquare into s x s 

subsquares (for some s to be specified). Sort all the ordinary packets in each such s x s 

square according to their destination column (in column major order). We emphasize the 

fact that all the ordinary packets participate in this sorting phase. This sorting step can be 

performed in T, = 3s + o(s) steps (see theorem 3.1). 

After the sorting step, if a type-I1 packet q is in node (i, j), it is sent along row i to 

column I (where (k, I )  is the destination of this packet), and then q is sent to node (k, 1) 

along column I. Queue discipline Q' is used during the column routing. 

During the row routing there is no queuing of packets and hence the time needed for 

a packet to reach its destination is simply the distance between its origin and destination. 

During the column routing queues can build and the queue size at any node can not exceed 
2 n / s  (for a proof see [3] or [4]). The following lemma has been proven by Leighton, Makedon, 

and Tollis [4]: 

Lemma 5.1 The above algorithm routes all type-11 packets in time 2n - 2 - m + T, (where 



T, is the time needed for sorting s x s squares). Also, routing in columns c and n - c + 1 

(for 1 5 c 5 n/2) will be done by step 2n - 1 - max(m + 1, c)  + T, even if column routing 

in these columns is delayed until step n + T, - max(m + 1, c). 

5.2 Algorithm for critical packets 

If there were no ordinary packets in the mesh, critical packets could be sent as blocks (in 14m 

steps) to opposite corner supersquares and they could be recursively routed there (in 2m - 2 

steps), accounting for a total of 16m - 2 = 2n - 2 steps. But the ordinary packets can 

potentially interfere with the recursive routing. This is why [4] use the following algorithm 

for routing critical packets. 1) The critical packets are moved as blocks to the 'center' of the 

mesh (where there is more slack); 2) these blocks are recursively routed in (2m - 2) steps, 

and finally 3) they are moved intact to the appropriate corner supersquares. The queue size 

of the algorithm is made constant by picking m and s as constant fractions of n, and making 

sure the region where recursive routing is done is empty (just before the critical packets 

enter) . 
We also make use of the same algorithm to route critical packets, except that we choose 

a different region to perform recursive routing. Details of our algorithm follow. We only 

describe the algorithm used by the critical packets originating from the supersquare < 1,l >. 
The other critical packets execute a symmetric algorithm. 

The sorting algorithm presented in section 3, is such that at any given time, either only 

column edges are used or row edges are used for transmitting packets. We assume m = T,. 
During the T, steps during which the s x s squares are sorted, the critical packets are moved 

as blocks uniformly making use of the unused edges. The critical packets from supersquare 

< 1 , l  > then move down all the way up to row block 8, and then move along row block 8 

until they reach the supersquare < 8,5 >. l l m  steps would have passed by now. Recursive 

routing of critical packets from < 1,l > is performed here in 2m - 2 steps. After recursive 

routing, the block moves to supersquare < 8,8 > in 3m steps, accounting for a total of 

l l m  + (2m - 2) + 3m = 16m - 2 = 2n - 2 steps. 

Just before the critical packets enter supersquare < 8,5 >, this supersquare will be 

evacuated, so that only critical packets will be present in this supersquare when recursive 

routing is performed. This evacuation ensures that queues in the supersquare < 8,5  > do 
not build over the 0(log n) levels of recursion (requiring a queue size of R(1og n)). Also since 

the critical packets have the highest priority in the mesh, they will never be delayed by 



ordinary packets. Therefore, all the critical packets can be routed within 2n - 2 steps. 
Even after accounting for the interference of critical packets with type-I1 packets, all the 

type11 packets can still be routed within 2n - 2 steps for the following reason: Clearly, 

critical packets do not interfere with the row routing of type-I1 packets. Notice also that 

critical packets from supersquare < 1,l > will reach row block 8 before step 8m - 1, and 
hence even if column routing is delayed until step 8m - 1, routing of type-I1 packets can be 

completed in 2n - 2 steps (see lemma 5.1). 

5.3 Row routing of type-I packets 

For routing critical and type-I1 packets we use essentially the same algorithms used by [4]. 

However for routing type-I packets we use an entirely different algorithm. Also in [4]'s 

algorithm, column routing is frozen for type-I packets during the 2m - 2 steps of recursive 

routing of critical packets. But we do column routing even when the recursive routing is 

performed. 

Type-I packets are those that are destined for column blocks 4 or 5. Call the type-I 

packets that originate from row block 1 or row block 8 as type-la packets, and the rest as 

type-Ib packets. 

After the initial phase of sorting, type-Ib packets traverse along the current row to the 

column of their destination and join the column routing. 

Type-Ia packets can not use the same algorithm since the recursive routing region has the 

potential of being occupied when the critical packets arrive. And hence they use a slightly 

different algorithm. The following algorithm for type-la packets pertains to those in row 

block 8. A symmetric algorithm is executed by packets from row block 1. 

Immediately after the initial sorting phase, type-la packets that originate from super- 

squares < 8,4 >, and < 8,5 > are moved as blocks up, to supersquares above as shown in 

figure 4b. For example, the leftmost 2/3rd of < 8,4 > is moved to < 7,4 >; the rightmost 

1/3rd of < 8,4 > is move to < 6,4 > and so on. These type-Ia packets then move along 

the current row to the column of their destination and join the column routing. Type-Ia 

packets that originate from supersquares < 8 , l  >, < 8,2 >, and < 8,3 > are moved as 

blocks to an appropriate supersquare in column block 4, and type-Ia packets that originate 
from < 8,6 >, < 8,7 >, and < 8,8 > are moved to an appropriate supersquare in column 
block 5 (as shown in figure 4a). For example, packets from < 8 , l  > are moved to < 7,4 >; 
packets from < 8,7 > are moved to < 6,5 > and so on. These packets then move along the 



Figure 4: (a and b): Distribution of type-Ia packets 

current row to the column of their destination and join the column routing. 

Some of the type-Ia packets that originate from supersquares < 1,l >, < 1,2 >, < 
1,7 >, < 1,8 >, < 8 , l  >, < 8,2 >, < 8,7 >, and < 8,8 > can be delayed by the critical 

packets. This may increase the queue size of the algorithm. We avoid this delay by sending 
portions of supersquares first horizontally and then vertically. For example (see figure 5)) the 
supersquare < 1,l > splits into two after sorting. These two portions unite in supersquare 

< 2,4 > traversing on different paths, such that the net delay due to critical packets is zero. 

It is easy to see that each type-Ib packet will be in its correct column (and ready to 

participate in column routing) by step 6m, and each type-Ia packet will be in its correct 
column by step 7fm. For example, type-Ia packets from supersquare < 8 , l  > will reach 

supersquare < 7,4 > (as a block) by step 5m. Each packet then needs at the most 2:m 

additional steps to go to its column of destination. Thus all the type-I packets will reach 

their column of destination by step 73m < (8m - 1). It remains to show that column routing 

of type-I packets can be accomplished in (8m - 1) further steps. 

Notice that type-I packets do not interfere with either the row routing or the column 
routing of type-I1 packets. 



Figure 5: Avoiding delays due to critical packets 

5.4 Column routing of type-I packets 

Here we describe the algorithm used for column routing of type-I packets and show that 

column routing can be completed in (8m - 1) steps. 

During steps 8m - 1 through 14m-2 all the type-I packets participate in column routing, 

using queue discipline Q'. Packets with a destination in either row block 1 or row block 8 (call 

these packets special packets) are routed as though their destination is (the corresponding 

node) in row block 2 or row block 7 (respectively). Special packets will have the highest 

priority in column routing. By step 14m - 2, each special packet will be in its corresponding 

node in a neighboring row block. 

Any type-I packet with a destination outside of row blocks 1 and 8 will be at the most 

2m distance away from its final destination at time step 14m - 2 (in accordance with lemma 

4.2). 

During steps 14m - 2 through 16m - 2, special packets move as blocks to the correct 

supersquare in m further steps. Other packets will also reach their destination within 2m 

further steps, even if the (non special) packets present in supersquares < 2,4 >, < 2,5 >, < 
7,4 >, and < 7,5 > at time step 14m - 2 are not processed during the time steps 14m - 2 
through 15m - 2 (see lemma 4.4). 



6 Queue Size Analysis 

First we analyze the queue size of an abstract algorithm and then apply the results to our 

routing algorithm. Let an n x n mesh be partitioned into s x s subsquares, and let each such 

subsquare be sorted according to column number in column major order. Let the mesh also 

be partitioned into m x m supersquares (for m 2 s). Let ai be the number of packets in 

subsquare i that are destined for a particular column say 1 (of length u). If r such m x m 

supersquares are arranged as a row block (see figure 6), and each packet traverses to its 

correct column along its current row, the maximum queue size of any node in column I will 

be 

Clearly, in our algorithm, the queue size for nodes other than the ones in column blocks 

4 and 5 is 2721s. We make use of equation 1 to compute the queue size of nodes in column 

blocks 4 and 5. Notice that at the most 10; supersquares contribute to the queue size in 

any column (in column blocks 4 and 5).  Thus substituting r = 10; and u = 8 m  in equation 

1, we conclude that the queue size is no more than 18: y .  Taking m = 39, this becomes 56. 

But Ts is not exactly 3s. It is 3s + o(s). Even for reasonably small mesh sizes, T, 5 3.1s, 

and hence the queue size is 5 58. 

Thus we have the following 

Theorem 6.1 Permutation routing on an (n x n) mesh can be performed in 2n - 2 steps 

with a queue size of only 58. 

7 Conclusions 

The routing algorithm we presented runs in 2 n  - 2 steps and has a queue size of 58. It 

would be nice to have an algorithm with a queue size of < 10. If one uses Kunde's routing 

algorithm with s = n/24, the queue size will be 48. The run time will be 2 i n  steps. For this 

value of s, the queue size we achieve in our algorithm is very close to 48 and the run time 

is optimal. One of the bottlenecks in reducing the queue size further is the initial sorting 
phase. This is a costly operation. Using Kunde's original algorithm, if one wants get a time 

bound of < 3n steps, the queue size will have to be > 6. Even if one wants to spend 2.5n 

steps, the queue size can only be brought down to 12. 



Figure 6: Queue size analysis. 

The only function of the sorting phase is to distribute the packets that have the same 

destination column. Another faster way of distributing the packets will reduce the queue 

size further. We are currently exploring methods to perform such a distribution. We are 
also looking at the problem of routing on a mesh with wrap arounds. 

References 

[I] Krizanc, D., Rajasekaran, S., and Tsantilas, T., 'Optimal Routing Algorithms for Mesh- 

Connected Processor Arrays,' Proc. AWOC 1988, Springer-Verlag Lecture Notes in 

Computer Science 319, pp. 411-422. Also submitted to Algorithmica, 1989. 

[2] Kunde, M., 'Optimal Sorting on Multi-Dimensionally Mesh-Connected Computers,' 

STACS 1987, Springer-Verlag Lecture Notes in Computer Science 247, pp. 408-419. 

[3] Kunde, M., 'Routing and Sorting on Mesh-Connected Arrays,' VLSI Algorithms and 

Architectures: Proc. AWOC 1988, Springer-Verlag Lecture Notes in Computer Science 
319, pp. 423-433. 

[4] Leighton, T., Makedon, F., and Tollis, I.G., 'A 2n - 2 Step Algorithm for Routing in 
an n x n Array With Constant Size Queues,' Proc. 1989 ACM Symposium on Parallel 
Algorithms and Architectures, pp. 328-335. 

[5 ]  Pippenger, N., 'Parallel Communication with Limited Buffers,' Proc. IEEE Symposium 
on Foundations Of Computer Science, 1984, pp. 127-136. 



[6] Ranade, A.G., 'How to Emulate Shared Memory,' Proc. IEEE Symposium on Founda- 

tions Of Computer Science, 1987, pp. 185-194. 

[7] Schnorr, C., and Sharnir, A., 'An Optimal Sorting Algorithm for Mesh Connected Com- 

puters,' Proc. 18th Annual ACM Symposium on Theory Of Computing, 1986, pp. 255- 
263. 

[8] Thompson, C., and Kung, H.T., 'Sorting on a Mesh-Connected Parallel Computer,' 

CACM, vol. 20, 1977, pp. 263-270. 

[9] Upfal, E., 'Efficient Schemes for Parallel Communication,' J. ACM 31, 3, 1984, pp. 

507-517. 

[lo] Valiant, L.G., and Brebner, G.J., 'Universal Schemes for Parallel Communication,' Proc. 

ACM Symposium on Theory Of Computing, 1981, pp. 263-277. 



PROCESSORS 
1 2 3 4 5 6 7 8  

Figure 7: Routing on a Linear Array: An Example. 
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