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Abstract

Binding is a fundamental part of language specification, yet it is both difficult and tedious to get
right. In previous work, we argued that an approach based on locally nameless representation and a
particular style for defining inductive relations can provide a portable, transparent, lightweight method-
ology to define the semantics of binding. Although the binding infrastructure required by this approach
is straightforward to develop, it leads to duplicated effort and code as the number of binding forms in a
language increases.

In this paper, we critically compare a spectrum of approaches that attempt to ameliorate this tedium
by unifying the treatment of variables and binding. In particular, we compare our original methodology
with two alternative ideas: First, we define variable binding in the object language via variable binding
in a reusable library. Second, we present a novel approach that collapses the syntactic categories of the
object language together, permitting variables to be shared between them.

Our main contribution is a careful characterization of the benefits and drawbacks of each approach. In
particular, we use multiple solutions to the PoplMark challenge in the Coq proof assistant to point out
specific consequences with respect to the size of the binding infrastructure, transparency of the definitions,
impact to the metatheory of the object language, and adequacy of the object language encoding.

1 Introduction

Binding is a fundamental part of programming language specification, yet it is both difficult and tedious to
get it right. When you begin to specify a programming language formally in your favorite proof assistant,
the last thing you want to do is prove properties about substitution, alpha equivalence, etc. For this
reason, there are proof assistants carefully tailored to help with binding (e.g., Nominal Isabelle [16] and
Twelf [11]) and tools to help you get started (e.g., Ott [14] and Hybrid [9]). In previous work, we argued
that a combination of a locally nameless representation (described in Section 2.1) with a particular style for
defining inductive relations provides a portable, transparent, lightweight methodology to define the semantics
of binding [1]. These proof assistants, tools, and approaches each address binding throughout the entire scope
of a metatheory development—from defining syntax and relations to proving properties by induction on those
definitions.

In this paper, we focus on a central aspect of the definition of binding: capture-avoiding substitution for
bound and free variables, and proofs of its essential properties. In general, we need to define substitution
and prove its properties for each kind of bound term appearing in each syntactic class. For example, in
the PoplMark Challenge [2], we need three substitution operations: Types in System F<: bind types, and
expressions bind both types and expressions. This means that part of our development is duplicated three
times, once for each substitution operation. For larger languages, with increasingly many kinds of binding
forms, the overhead associated with substitution becomes increasingly unpleasant.
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Our main contribution is a detailed comparison of the costs and benefits of several variations of syntax
encodings, each intended to reduce the burden associated with defining and reasoning about substitution.
These variations live on a spectrum of representation strategies: At one end is the locally nameless approach
proposed by our previous work. At the other end is an approach reminiscent of higher-order abstract syntax
(hoas) [10], in which a reusable library provides a meta-language (the lambda calculus) for representing
the binding structure of an object language. In between are forms of “collapsed” syntax, in which binding
structures (and hence syntactic categories) of the object language are identified; we believe that these
collapsed syntax representations are a second contribution of this work.

Operationally, we carry out this analysis by using five1 different encodings for syntax, each described in
Section 2, in solutions to the PoplMark Challenge using the Coq proof assistant.2 With the exception
of one variant that requires indexed and dependent types, these encodings should be implementable in
any proof assistant that supports inductive datatypes. In Section 3, we compare the encodings along two
lines: by the degree to which they reduce the infrastructure associated with substitution, and by the extent
and nature to which they change a metatheory development. To facilitate our comparisons, we keep the
developments as similar as possible to each other, restricting changes to those aspects that arise from the
syntax representation used. For reasons of practicality, we cannot include here direct comparisons to all
encodings of variable binding. We do, however, discuss in Section 4 other closely related encodings, e.g.,
hoas and nominal approaches, along with other related work. We summarize our conclusions and discuss
future work in Section 5.

2 Approaches to abstraction

In this section, we describe in detail several approaches for encoding syntax, working from locally nameless
to various forms of “collapsed” syntax. We use System F<:, the language of the PoplMark Challenge, as a
running example of an object language that we wish to encode. This language has two syntactic categories,
types and expressions, both of which include binding constructs. The syntax is not mutually recursive: while
types may appear in expressions, expressions may not appear in types. For reference, we show below the
syntax of types and expressions in System F<:.

types T ::= > | X | T1 → T2 | ∀X<:T1. T2

expressions e ::= x | λx:T. e | e1 e2 | ΛX<:T. e | e [T ]

We have implemented System F<: in Coq and proved type safety for the language using each of the
approaches we describe below. Our implementations also include sum types (with case analysis) and let
expressions, constructs that we omit from our running example for brevity. Where possible, we use standard
mathematical notations for inductive definitions in the descriptions that follow, using Coq’s concrete syntax
only in cases requiring indexed datatypes or dependent types.

2.1 Locally nameless

Locally nameless representation is a first-order approach that encodes bound variables using de Bruijn indices
and free variables using names [12]. Thus, alpha-equivalent terms are syntactically equal, and there is no
need to place an arbitrary ordering on free variables, as with a pure de Bruijn representation. In this section,
we give a brief overview of this approach.

We present below the syntax of System F<: in a locally nameless representation. By each constructor,
we put in parentheses the System F<: term it corresponds to.

1In the course of our research, we actually implemented several additional variants whose properties were too similar to
those we selected to present here.

2Our Coq code may be found at http://www.cis.upenn.edu/~baydemir/.
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Operation or judgement Description
{n 7→ T1}T2 index substitution of T1 for index n in T2

{n 7→ T}e index substitution of T for index n in e
{n 7→ e1}e2 index substitution of e1 for index n in e2

[x 7→ T1]T2 name substitution of T1 for x in T2

[x 7→ T ]e name substitution of T for x in e
[x 7→ e1]e2 name substitution of e1 for x in e2

` T judgement that T is locally closed
` e judgement that e is locally closed
Γ `typ T judgement that T is well-formed in Γ
Γ `exp e judgement that e is well-formed in Γ

Figure 1: Infrastructure for the locally nameless representation. Here, Γ is a mapping from variable names
to their sorts—either “type variable” or “expression variable.”

T ::= typ bvar i (bound var.)
| typ fvar x (free var.)
| typ top (>)
| typ arrow T1 T2 (T1 → T2)
| typ all T1 T2 (∀X<:T1. T2)

e ::= exp bvar i (bound var.)
| exp fvar x (free var.)
| exp abs T e (λx:T. e)
| exp app e1 e2 (e1 e2)
| exp tabs T e (ΛX<:T. e)
| exp tapp e T (e [T ])

The constructors exp tabs, exp abs, and typ all do not name the variables they bind since bound variables are
represented with de Bruijn indices. We use only one sort for variables names (denoted by the metavariable x),
as opposed to separate sorts for type and expression variables (as in a traditional paper presentation). Con-
flating these sorts of variables does not change the correctness of our representation and, more importantly,
simplifies comparisons with the representations discussed below.

As an example term in this representation, the polymorphic identity function, ΛX<:>. λy:X. y, is
written here as

exp tabs typ top (exp abs (typ bvar 0) (exp bvar 0)) .

The two occurrences of “0” in the identity function point to different binding occurrences. The 0 in
(typ bvar 0) refers to the variable bound by exp tabs; the 0 in (exp bvar 0) refers to the variable bound
by exp abs.

In the remainder of this section, we describe the infrastructure for substitution and induction associated
with this locally nameless representation. While our focus is on substitution, the treatment of induction
varies between the representations we consider below. It is, therefore, an interesting point for comparison.
The infrastructure is summarized in Figure 1.

Substitution Because there are two kinds of variables (bound and free) in this representation, there
are two kinds of substitution operations. Index substitution replaces a bound variable with another term,
and name substitution replaces a free variable with another term. We need to define three versions of each
operation due to the syntax of System F<:: types may be bound in types, types may be bound in expressions,
and expressions may be bound in expressions. This results in a total of six functions, all of which are
straightforward to define by induction on syntax. Lemmas concerning the properties of substitution, such
as the fact that substituting for a name fresh for a term leaves the term unchanged, are straightforward to
prove. Such properties are proved for each version of substitution.

The key points here are not the particular definitions of substitution or the properties we need, but that
we need three versions of each substitution operation, each with its own lemmas. The three versions arise
solely from the definition of System F<: (specifically, its binding forms), not our use of a locally nameless
representation.
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Induction The inductive definitions for types and expressions, as stated above, include terms, such as
(typ bvar 3), that contain dangling indices. Thus, the induction principles for those datatypes do not cor-
respond to the usual induction principles for syntax: they require one to consider cases for bound variables
(indices), which have no correspondence to informal practice. One solution is to define a predicate that holds
when a term is locally closed—that is, when all its indices point to binders within the term.3 We need two
judgements for local closure, one each for types and expressions. As an example, the definition of locally
closed types is shown below.

` typ fvar x ` typ top

` T1 ` T2

` typ arrow T1 T2

` T1 ` {0 7→ typ fvar x}T2

` typ all T1 T2

Induction on a derivation of ` T corresponds to informal structural induction on the structure of T .4 There
is no case for bound variables, since they are never locally closed.

However, in order to prove that the representation here defines the same language as the representations
below, we need also to rule out terms where the same name is used as both a type variable and an expression
variable. For example, in the term (exp abs (typ fvar b) (exp fvar b)), the name b is reused in this way. Our
particular formalization of System F<: also does not treat such terms as being meaningful, e.g., they are never
typeable. We rule out these terms by defining a predicate, called well-formedness, that ensures both that a
term is locally closed and that its free variables are used in a well-sorted way with respect to an environment
declaring their sorts. As with local closure, we define one well-formedness judgement each for types and
expressions. We choose to define these judgements in such a way that they also provide structural induction
principles for syntax. This simplifies comparisons to the approaches below because for those representations,
well-formedness will sometimes be the only means of reasoning by structural induction on syntax. Here, in
our locally nameless representation, when we need to reason by structural induction on syntax, we have a
choice and prefer to use local closure.

Strictly speaking, for our locally nameless representation, we do not need to define both local closure and
well-formedness, since well-formedness is sufficient to define System F<: and prove type safety. However, local
closure by itself is enough to prove lemmas about index and name substitution. Statements of these lemmas
are slightly simpler than with well-formedness, since they do not need to mention an arbitrary environment.

2.2 Collapsed syntax

As stated in the introduction, we need a definition of substitution and proofs of its properties for each kind
of bound term appearing in each syntactic class. Thus, the number of definitions and proofs required scales
with the size of the language. We can mitigate this scaling issue by collapsing multiple syntactic categories
into one single category, called simply syntax. This is similar to the collapsed syntactic categories of Pure
Type Systems [3]. We give below the definition of System F<: in this style, highlighting the changes from
our original definition.

syntax s, T, e ::= bvar i | fvar x

| typ top | exp abs T e
| typ arrow T1 T2 | exp app e1 e2

| typ all T1 T2 | exp tabs T e
| exp tapp e T

This definition makes no distinction between types and expressions, and we retain only one constructor
each for bound and free variables.5 Similarly, we combine the definitions of the local closure predicates for

3McKinna and Pollack first used this technique in their formalization of Pure Type Systems [8].
4As the definition is stated here, the resulting induction principle is actually comparatively weak. Aydemir et al. [1] discuss

how to take this idea and strengthen it, which is what we do in the Coq code.
5We could further collapse the binding forms by adding to the collapsed syntax an additional constructor (abs e). In this

case, abs would be the only constructor to bind a variable. For example, we would write here (exp abs T (abs e)) instead of
(exp abs T e). Collapsing binding forms in this way does not change developments in any other significant way. Thus, we say
nothing more about this approach.
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Operation or judgement Description
{n 7→ s1}s2 index substitution of s1 for index n in s2

[x 7→ s1]s2 name substitution of s1 for x in s2

` s judgement that s is locally closed
Γ `typ s judgement that s is a well-formed type in Γ
Γ `exp s judgement that s is a well-formed expression in Γ

Figure 2: Infrastructure for the collapsed representation.

types and expressions into a single predicate on syntax. As an example term, in this representation, the
polymorphic identity function is written

exp tabs typ top (exp abs (bvar 0) (bvar 0) ) .

Compared to our locally nameless encoding for this term, the primary difference concerns the bound variables:
they are both constructed using the same constructor.

The advantage of this collapsed representation over our locally nameless one is in the reduction of in-
frastructure, which is summarized in Figure 2. Instead of three versions of substitution, as in the locally
nameless representation, we need only one version: substitution of syntax in syntax. This results in a sig-
nificant reduction in the number of lemmas that we must prove about substitution and is the main source
of the reduction in infrastructure.

However, this collapsed datatype encodes the syntax of System F<: in an essentially untyped manner:
there are no restrictions on where types and expressions may appear in terms. For example, the datatype
includes terms of the form (exp abs typ top (typ all . . .) ), where a type appears in a location where an
expression should be. Local closure cannot rule out such terms, since it is defined for the entire syntax
datatype. Consequently, local closure also does not provide an effective induction principle over types and
expressions as it includes too many cases for each. The distinctions and induction principles we need are
provided by the definitions of well-formed types and expressions. Thus, we still need to define well-formedness
predicates as we did for the locally nameless encoding.

Tagged syntax In a proof assistant that supports indexed and dependent types, we can define syntax
as an indexed datatype that distinguishes types from expressions.6 Here, the index is used to capture the
recursion between multiple datatypes. Specifically, the datatype for syntax is indexed by a tag that indicates
the original syntactic category that each constructor came from. Because indexed and dependent types play
a crucial role in this formulation, we give the definitions below using a pretty-printed form of Coq’s concrete
syntax. (Coq uses “∀” for writing dependent types.)

For System F<:, we define a datatype tag with two zero-argument constructors, Typ and Exp.

Inductive tag : Set := Typ : tag | Exp : tag.

With tags defined, we define the indexed datatype for syntax.
6This idea is due to Randy Pollack (personal communication).
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Inductive syntax : tag → Set :=
| bvar : ∀ T:tag, nat → syntax T
| fvar : ∀ T:tag, atom → syntax T
| typ top : syntax Typ
| typ arrow : syntax Typ → syntax Typ → syntax Typ
| typ all : syntax Typ → syntax Typ → syntax Typ
| exp abs : syntax Typ → syntax Exp → syntax Exp
| exp app : syntax Exp → syntax Exp → syntax Exp
| exp tabs : syntax Typ → syntax Exp → syntax Exp
| exp tapp : syntax Exp → syntax Typ → syntax Exp.

Above, syntax is a type constructor that takes one argument: a tag. We use syntax Typ as the type
of System F<: types and syntax Exp as the type of System F<: expressions. Under this reading, all the
constructors except for bvar and fvar construct types and expressions exactly as they did in the original
locally nameless representation. The constructors for bound variables and free variables are polymorphic,
since they can be used to construct both types and expressions. Except for the tag arguments to bvar and
fvar, terms are written in this encoding exactly as they were in the original collapsed encoding. The types
of the constructors rule out terms, such as (exp abs typ top (typ all . . .) ), that do not respect where types
and expressions may appear. This is the key advantage of using this tagged representation over the original
collapsed representation.

In this variation, we still need to define only one version each of index substitution and name substitution
(the same as in the original collapsed encoding). Thus, we retain the reduction in infrastructure of the
collapsed encoding. Local closure for syntax must still be defined, but it is now a dependently typed
judgement: it takes a tag t and a term of type syntax t. Therefore, we can distinguish between locally
closed types and expressions by supplying a tag to the local closure judgement. Local closure for the untagged
collapsed representation could not make such a distinction. The ability to make this distinction gives us
structural induction principles for System F<: types and expressions. As before, we still need to define
well-formed types and expressions in order to rule out terms with reused variable names.

2.3 Reusable lambda calculus library

We now turn to an approach inspired by hoas and Twelf [11]. In Twelf, the Edinburgh Logical Framework
(LF [7]) is used as a meta-language for representing deductive systems, where the systems are typically
encoded using hoas. Twelf adds to LF a separate meta-logic to reason about the metatheoretic properties
of such encodings. In our work, we implement a library that encodes a simple language to represent binding
(taking the place of LF), proving the properties of that language once and for all, and separately from the
semantics of the object language. Below, we consider two languages for representation: an untyped lambda
calculus and a simply-typed lambda calculus. Unlike with LF, we use these languages only for representing
syntax and do not represent the typing rules or operational semantics of System F<: in this way.

2.3.1 Untyped lambda calculus

In our first version of the library, we implement the untyped lambda-calculus extended with a constructor
for constants using a locally nameless encoding.

lambda terms t ::= const C | bvar i | fvar x | abs t | app t1 t2

This definition is parameterized over a syntactic category C of constant symbols. When using this language
as a meta-language, constant symbols represent the names of constructors in an object language. Because
constant symbols do not bind anything nor contain any variables (free or bound), we can define, once and
for all, index substitution and name substitution over this datatype and prove their properties. We can also
define, once and for all, local closure for this datatype.

6



Operation or judgement Description
Γ `typ s judgement that s is a well-formed type in Γ
Γ `exp s judgement that s is a well-formed expression in Γ

Figure 3: Infrastructure (specific to System F<:) for the representations based on a lambda calculus library.

In order to encode System F<: using this untyped lambda calculus, we first define a datatype of constant
symbols corresponding to the constructors of types and expressions in System F<:.

C ::= typ top c | typ arrow c | typ all c
| exp abs c | exp app c | exp tabs c | exp tapp c

Second, we instantiate the lambda-calculus definition with this datatype. We can write System F<: terms via
explicit applications (apps) of constant symbols to their arguments, using abs to encode binding. To illustrate
how the encoding works, the following table illustrates how the constructors of our originally locally nameless
representation of System F<: types are encoded here.

Locally nameless Corresponding lambda term
typ bvar i bvar i
typ fvar x fvar x
typ top const typ top c
typ arrow T1 T2 app (app (const typ arrow c) T1) T2

typ all T1 T2 app (app (const typ all c) T1) (abs T2)

The encoding for expressions is similar. In this representation, the polymorphic identity function is written
as

app (app (const exp tabs) (const typ top))
(abs (app (app (const exp abs) (bvar 0)) (abs (bvar 0)))) .

The infrastructure needed specifically for System F<: using this representation is summarized in Figure 3.
We get the definitions of index and name substitution, and local closure on System F<: terms “for free” since
the terms are encoded into the library’s lambda calculus implementation, where they are already defined.
This is a significant savings in the infrastructure needed specifically to define the language. However, because
the local closure predicate in the library is defined over the structure of lambda terms in the library, it does
not track the structure of System F<: terms. Thus, it does not provide a structural induction principle
over System F<: types and expressions. We obtain suitable induction principles by defining well-formedness
predicates. (We also need to define well-formedness in order to rule out terms with reused variable names.)

2.3.2 Typed lambda calculus

In our second version of the library, we implement a typed lambda calculus. The language of terms is the
same as in the library above. We add to that library a definition for sorts parameterized over a set of base
sorts A. We use these sorts as the types of the lambda calculus terms.

sorts S ::= lt base A | lt arrow S1 S2

We then define a typing judgement Γ `Σ t : S on these lambda-calculus terms in the usual way for a locally
nameless encoding. (The environment Γ maps variable names to sorts.) The relation is parameterized by a
signature Σ which assigns sorts to constant symbols.

To encode System F<: using this typed lambda calculus, we define a datatype of constant symbols
corresponding to the constructors of types and expressions in System F<:, as we did with the untyped
lambda calculus library. We also need to define a set of base sorts and a signature. For the base sorts, we
take

A ::= Typ | Exp .
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We define the signature such that the sort assigned to each base constant is reminiscent of the type it would
have under a hoas encoding. For example, the sort we assign to typ all c is

lt arrow (lt base Typ) (lt arrow (lt arrow (lt base Typ) (lt base Typ)) (lt base Typ)) .

The infrastructure needed specifically for System F<: using this representation is the same as with the
untyped library (c.f. Figure 3). We get the definitions of index and name substitution, and local closure “for
free” from the library. Local closure from the library still does not provide a useful induction principles over
the syntax of System F<: terms. As before, we define well-formedness to obtain such induction principles
(and to rule out terms with reused variable names).

3 Comparison

Having described several approaches to representing syntax, we turn now to more detailed comparisons. We
use our Coq implementations of System F<: in each approach to collect both quantitative data (reduction
in substitution infrastructure, changes to metatheory proofs, adequacy) as well as qualitative data (i.e.,
anecdotal evidence).

The locally nameless implementation served as the starting point for the other implementations. To
implement System F<: in the other approaches, we copied the locally nameless implementation and then
modified the copy. We were careful to ensure that differences between our developments directly reflect the
differences in the representations used. Since we did not rework the soundness proofs from scratch, there is
a small possibility that we missed opportunities to simplify those proofs. However, our main focus is on the
definitions and infrastructure code, e.g., proofs about substitution.

3.1 Substitution infrastructure

The easiest, and perhaps simplest, comparison is to examine the sizes of each of our implementations. The
data are shown in Figure 4. Each implementation is split into three parts.

• Definitions: Contains the definitions for System F<:, including its syntax, relations, operations over
syntax (e.g., index and name substitution), and induction principles for syntax (e.g., well-formedness).

• Infrastructure: Contains the proofs of properties of substitution.

• Soundness: Contains the proof of type-safety for System F<:.

Our line counts include definitions, statements of theorems, and tactic scripts used to generate proofs of
theorems. We exclude definitions of tactics and notations, except for the library-based variants, where we
include notations that are required to write terms in a familiar way.

The differences in the sizes of the definition and infrastructure parts of each development follow directly
from the differences in the representations used. For example, the collapsed and tagged representations need
only one version of substitution, compared with three for the locally nameless representation. The library-
based representations obtain these definitions directly from their respective libraries. The representation
based on the typed lambda calculus library requires more definition lines than the untyped variant since it
defines a signature for the base constants.

Overall, the library-based implementations are shortest, with a 18–23% reduction in code size compared
to the locally nameless development. The collapsed and tagged developments, while longer than the library-
based implementations, still result in a noticeable 14% reduction in code size.

3.2 Changes to metatheory proofs

Figure 4 also indicates that as we move from the locally nameless development to the library-based ones,
the soundness proofs become longer. The presence or absence of one particular lemma—which states that
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Definitions Soundness Infrastructure

LN 410 1064 339

Collapsed 343 1115 96
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Figure 4: Lines of code in each of our Coq developments. LN is the locally nameless implementation. Library-
U and Library-T are the implementations based on the untyped and typed lambda calculus libraries.

substituting for an expression variable inside a type leaves the type unchanged—accounts for most of this
increase. In the locally nameless development, this fact is immediately evident; the lemma need not even
be stated. With the tagged representation, this lemma requires a short and trivial proof. With the other
representations, the proof is noticeably longer but still straightforward. The soundness proofs in the library-
based implementations are also slightly longer due to additional steps that make it easier for Coq’s automated
tactics to find proofs.

3.3 Adequacy

All the representations of System F<: described above (in Section 2) define the same language, and we prove
this formally within Coq. Were this not the case, our comparisons would be significantly less meaningful. We
would have to account for the fact that some differences between the formalizations may reflect differences
in the languages and not the representations being used.

More precisely, we prove that the collapsed and library-based representations are adequate with respect
to the locally nameless representation. An encoding of syntax (e.g., for types and expressions) is adequate
when there is a bijection between the terms of the object language and its encoding such that substitution
commutes with the bijection [7]. Formally, we give a bijection between the well-formed terms of the locally
nameless representation and each of the other representations. (We cannot show that substitution commutes
with the bijection if we consider terms that are merely locally closed.) We prove that a locally nameless
term type checks (according the typing relation of System F<:) if and only if its corresponding term in the
collapsed representation type checks. We also prove similar facts about reduction and subtyping, and with
respect to the other representations.

3.4 Effects on metatheory development

Turning away from quantitative aspects of our developments, we report on several qualitative aspects of our
developments: How easy are terms to read? Where are errors in definitions caught? Are proofs easy to carry
out? We consider each of these questions in turn.
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How easy are terms to read? We find locally nameless representations to be relatively easy and straight-
forward to read for two reasons: free variables are named, and there is little of the noise associated with
shifting of indices in a pure de Bruijn representation. With respect to the definitions of System F<:’s sub-
typing and typing relations and the soundness proofs, the collapsed and tagged representations look almost
exactly like a locally nameless representation. This is not surprising: they are based on the same general
idea! The only difference is whether there are multiple constructors for variables or only a single one. If
we use implicit coercions that automatically insert applications of constructors for variables where needed,
there is no visible difference between these approaches and locally nameless.

The library-based approaches, however, are noticeably less easy to read in their raw form. Recall the
example of the polymorphic identity function in Section 2.3. The term is unreadable due to all the nested
instances of app. In practice, we found that the only way to completely address this problem was to define
notations that enabled us to read and write terms as we would in the locally nameless representation; the
notations effectively look and act like the constructors of a datatype. One still has to check that these
notations are defined correctly. This involves either visually inspecting the definitions or verifying that
standard properties of an inductive datatype hold (e.g., injectivity and distinctness of constructors).

Where are errors in definitions caught? There are several kinds of errors that may happen when
defining a new language. At the level of syntax, we consider two kinds of typographical mistakes: arity
and sort errors. We may apply a constructor to an incorrect number of arguments (an arity error) or to
arguments of the wrong type (a sort error).

With a locally nameless representation or tagged representation, both arity and sort errors are caught at
definition time (i.e., when definitions are processed by the proof assistant), because of the typed nature of
definitions. With a collapsed representation, since multiple syntactic categories are implemented in the same
inductive datatype, only arity errors can be caught at definition time. For example, the term (exp abs typ top)
would be caught at definition time, but not (exp abs typ top (typ all . . .) ). Sort errors can be caught only
by verifying that the objects in which terms appear satisfy certain properties, e.g., that they contain only
well-formed terms. For the library-based approaches, no sort errors and only some arity errors will be
caught at definition time. This is true even for the typed lambda calculus library: the sort checking of terms
is at the level of the lambda calculus encoding, not the proof assistant’s type system. For example, both
(const exp tapp c) and (app (const exp tapp c) (const typ top)) will be allowed at definition time, even though
neither corresponds to a System F<: type application.

Errors other than arity and sort errors tend to be of a more semantic nature, e.g., swapping two terms
of same sort or defining an unsound typing rule. No representation for syntax can catch such errors.

Are proofs easy to carry out? For System F<:, we were able to port proofs from one implementation
to another with only minimal changes to the already written parts of the soundness proof. Because we
copied proofs in this manner, we did not explicitly test the ability to generate proofs from scratch. However,
once the infrastructure for a language is in place, proof development should be equally easy across all the
representations. We note that while a collapsed representation does not check as much at definition time as a
locally nameless representation, our experience with using a collapsed representation for other developments
suggests that errors in encoding syntax are easily caught and corrected during proof development. We expect
that the same would be true for the library-based representations.

It is worth noting that some of Coq’s tactics do not handle indexed datatypes, such as the one used by the
tagged representation, in a completely natural manner. In order to prove some properties, e.g., injectivity
of index substitution, we proved by-hand the desired elimination principles.

4 Related work

Below, we discuss related approaches to those presented here. We do not attempt to survey all representation
techniques for binding. See Aydemir et al. [1] for a comparison.
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Our collapsed representation is novel to this paper, but inspired by Pure Type Systems (PTS) [3]. PTS
elegantly combine all syntactic forms for a dependently-typed language into a single syntax, and collapse
the typing relation into a single judgment on that semantics. Our collapsed version does the former, but not
the latter. By collapsing the semantics as well as the syntax, PTS simplifies the metatheory of substitution
for that semantics. Only one substitution lemma need be proved. However, the collapsed static semantics
can make the language definition less transparent. Furthermore, it is not clear that combining judgements
is beneficial to languages such as System F<:, where there is little structural similarity between different
judgements. For example, we may need to prove substitution only once, but we may have to consider as
many cases as with several proofs about several different judgements.

Others have also proposed using a library or tool to provide generic support for representing and reasoning
about binding. The Nominal Isabelle package [16] provides substantial support for defining datatypes,
functions, and relations involving binding, and for reasoning about them. The collapsed representations
and reusable library studied here are also applicable to Nominal Isabelle, since it does not automatically
define substitution functions and their properties. The benefits would be less than in our locally nameless
setting, since a number (but not all) of the properties we need to prove here are specific to a locally nameless
encoding, e.g., interactions between index and name substitution. However, our results are useful for those
who wish to work in a system without a nominal package (e.g., Coq) for whatever reason (e.q., necessity of
dependent types).

The Lambda Tamer package for Coq [4] also provides substantial support for defining datatypes with
binding and their associated infrastructure. It assumes a pure de Bruijn encoding of object languages and
appears to be designed for use with denotational semantics, not the structural operational semantics we
considered in our System F<: type-safety proofs.

Gordon and Melham used an axiomatized presentation of named syntax to encode object languages [6].
This is completely analogous to our use of our lambda calculus libraries (c.f. Section 2.3) to encode object
languages. The main difference between their work and ours is whether encodings of object languages look
named (Gordon and Melham) or locally nameless (ours).

Stump [15] and Ridge [13] have both proposed libraries for two-level representation based on raw, named
representations of syntax. Stump’s library also generically proves a number of lemmas about terms with
respect to an environment of free variables, in addition to providing basic support for syntax. Ridge’s work
is similar, though he chooses to represent treat variables bound by an environment similarly to variables
bound by a term. Both libraries provide more functionality than our current lambda calculus libraries.

The Hybrid tool of Momigliano et al. [9] also takes a similar approach to provide an implementation
of hoas. Similar to our work, they build off of a locally nameless implementation of the lambda calculus.
They provide a view of this datatype that uses the function space of the proof assistant (either Isabelle/HOL
or Coq). Considerable effort is required to restrict the proof assistant’s function space so that adequate
encodings are possible. We avoid that effort by viewing the locally nameless datatypes in our lambda
calculus libraries as they are. Moreover, because we do not attempt to make use of Coq’s function space to
implement hoas, we obviate the need for two-level reasoning [5] that is needed when working with Hybrid.
Rather than encode our judgements in a specification logic, which itself is encoded in Coq, we can write our
definitions as standard Coq inductive datatypes and directly use Coq’s mechanisms for manipulating such
datatypes.

As mentioned in Section 2.3, our lambda calculus libraries are inspired by hoas, LF and Twelf. Our
lambda calculus libraries can be viewed as a simple logical framework, capable of only representing syntax.
Canonical forms in LF are essential for adequate encodings. Our lambda calculus libraries do not define
reduction on lambda terms. Instead, well-formedness (defined at the level of the object language) is used to
ensure that one reasons only about terms in canonical form.

5 Conclusions and future work

Stepping back, our comparisons show that our collapsed and library-based approaches are successful at
reducing binding infrastructure in a development, though the library-based representations are slightly less
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transparent than the others. Given the current state of our libraries, we prefer the collapsed and tagged
representations, since they are very close to a locally nameless representation but with significantly less
infrastructure.

There are several promising directions for future work. First, we can modify our typed lambda calculus
library such that only well-sorted terms are representable.7 This would allow both sort and arity errors when
writing syntax to be caught at definition time (c.f. Section 3.4). Second, we conjecture that with a more
sophisticated typed lambda calculus library, we could automatically generate induction principles and proofs
of lemmas about well-formed terms. In essence, we would be implementing in Coq some of the features
provided by Twelf’s metalogic. We could alternatively use a tool, perhaps implemented as an extension of
Ott, to automatically generate the infrastructure for any of the approaches discussed above.
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