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Time-bounded Lattice for Efficient Planning in Dynamic Environments

Abstract
For vehicles navigating initially unknown cluttered environments, current state-of-the-art planning algorithms
are able to plan and re-plan dynamically-feasible paths efficiently and robustly. It is still a challenge, however,
to deal well with the surroundings that are both cluttered and highly dynamic. Planning under these
conditions is more difficult for two reasons. First, tracking and predicting the trajectories of moving objects
(i.e., cars, humans) is very noisy. Second, the planning process is computationally more expensive because of
the increased dimensionality of the state-space, with time as an additional variable. Moreover, re-planning
needs to be invoked more often since the trajectories of moving obstacles need to be constantly re-estimated.
In this paper, we develop a path planning algorithm that addresses these challenges. First, we choose a
representation of dynamic obstacles that efficiently models their predicted trajectories and the uncertainty
associated with the predictions. Second, to provide real-time guarantees on the performance of planning with
dynamic obstacles, we propose to utilize a novel data structure for planning - a time-bounded lattice - that
merges together short-term planning in time with longterm planning without time. We demonstrate the
effectiveness of the approach in both simulations with up to 30 dynamic obstacles and on real robots.
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Abstract— For vehicles navigating initially unknown cluttered
environments, current state-of-the-art planning algorithms are
able to plan and re-plan dynamically-feasible paths efficiently
and robustly. It is still a challenge, however, to deal well
with the surroundings that are both cluttered and highly
dynamic. Planning under these conditions is more difficult for
two reasons. First, tracking and predicting the trajectories of
moving objects (i.e., cars, humans) is very noisy. Second, the
planning process is computationally more expensive because of
the increased dimensionality of the state-space, with time as an
additional variable. Moreover, re-planning needs to be invoked
more often since the trajectories of moving obstacles need to
be constantly re-estimated.

In this paper, we develop a path planning algorithm that
addresses these challenges. First, we choose a representation
of dynamic obstacles that efficiently models their predicted
trajectories and the uncertainty associated with the predictions.
Second, to provide real-time guarantees on the performance
of planning with dynamic obstacles, we propose to utilize a
novel data structure for planning - a time-bounded lattice -
that merges together short-term planning in time with long-
term planning without time. We demonstrate the effectiveness
of the approach in both simulations with up to 30 dynamic
obstacles and on real robots.

I. INTRODUCTION

The most common implementations of path planning
algorithms for unmanned ground vehicles (UGVs) utilize
cost maps (or, in other words, 2D grid worlds) to represent
the surrounding environment. This simple approach, how-
ever, lacks the appropriate framework for robustly dealing
with dynamic obstacles. Consider, for example, a scenario
depicted in Figure 1(a), where the vehicle UGV1 needs to
reach its goal, but a dynamic obstacle, marked UGV2, poses
a collision threat. It should be clear that the straight-line path
from UGV1 to its desired location intersects the anticipated
path of UGV2. A common solution to this planning problem
is to augment a 2D cost map by marking the initial segment
of the predicted obstacle’s path (highlighted with stripes), as
”untraversable” and treating the environment as if it were
static. To UGV1, the obstacle would then appear as a wall,
extending for some distance ahead of UGV2, forcing the
resulting trajectory of UGV1 to be long and inefficient, as
shown. A more optimal plan, on the other hand, would
have been for UGV1 to quickly cut in front of UGV2 or
simply wait for it to pass and then proceed, depending on
the acceleration capabilities of UGV1 (Figure 1(b)). Most
importantly, this approach can sometimes fail to find a
solution, even if one exists.

(a) planning w/o time (b) planning with time

Fig. 1. Example illustrating the need for time-parameterized planning

For example, consider the scenario in Figure 2(a). In this
case, a collision-free path to the goal does not exist in 2D,
and a planner, incapable of finding a time-parameterized tra-
jectory, would not be able to generate a feasible solution for
UGV3. This may result in a collision or a deadlock, depend-
ing on the behavior of UGV4. In contrast, a more complex
planner would make UGV3 back up, let the dynamic obstacle
pass, and then proceed to the goal (Figure 2(b)).

There are several major challenges in computing collision-
free time-parameterized paths such as the ones shown in
Figures 1(b) and 2(b). First, in most real-world scenarios, it
is nearly impossible to estimate the trajectories of dynamic
obstacles with high certainty. In addition to sensor accuracy
limitations, the quality of such estimates depends greatly
on the size, speed, and distance of these entities from the
main vehicle. To account for this uncertainty in the predicted
motion of the dynamic obstacles, we propose to use an
extended representation of space-time trajectories. In partic-
ular, they can be modeled as time-parameterized sequences
of two-dimensional Gaussian distributions in space. The
covariance matrices at each time step are computed based
on the uncertainty of the past measurements as well as the
uncertainty in the future actions of the dynamic obstacles.

The second challenge is that the actual search for a
collision-free time-parameterized path is computationally ex-
pensive. Let us formally define a time-parameterized trajec-
tory as an ordered set of points: X0, . . . , Xn. Each point Xi

is at least a three-dimensional point (x, y, t), where x, y is
the position of the center (or some other reference point)
of the vehicle at time t. Most of the unmanned vehicles
however, are non-holonomic and have inertial constraints.
Consequently, in order to reason effectively about collisions,
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(a) planning w/o time (b) planning with time

Fig. 2. Example illustrating the need for time-parameterized planning

each point Xi on the path needs to incorporate additional
variables such as orientation θ, translational velocity v, and
rotational velocity w, making Xi a six-dimensional point.
It is hard to guarantee good quality real-time performance
when planning six-dimensional trajectories. In particular,
time parameterization causes the state-space to grow without
bound.

The algorithm presented in this paper addresses these
issues. In particular, when planning in dynamic and uncertain
environments, it often does not make sense to rely on the
predicted obstacle behavior too far into the future - the
uncertainty becomes too great for the estimates to be of any
use. Based on this observation, we propose to use a novel
graph for planning - a time-bounded lattice - which merges
together dynamically-feasible six-dimensional planning in
time (x, y, θ, v, w, t) and fast kinematic planning in (x, y).
The algorithm adaptively controls the extent of the six-
dimensional planning based on the uncertainty in the obstacle
behavior. The resulting implementation of our planner is
capable of generating real-time trajectories that go all the
way to the goal but, at the same time, avoid dynamic
obstacles that can possibly collide within a short period of
time. The success of the planner is demonstrated in both
simulations and on a hardware platform. The experiments
show that the planner can consistently re-plan paths within
tens of milliseconds in the environments filled with up to 30
dynamic obstacles.

II. RELATED WORK

Most of the approaches to dealing with moving obstacles
model them as static obstacles with a short window of high
cost around the beginning of their projected trajectories [5].
While efficient, these approaches suffer from potential high
suboptimality and even incompleteness as described in sec-
tion I.

There has also been quite a bit of work on planning time-
parameterized paths in dynamic environments. The work
can be grouped along different dimensions. For example,
some approaches assume completely known trajectories of
moving objects [1], [12], [2], while others try to model the
uncertainty in the future trajectories of obstacles [4], [9],
[13]. Our proposed approach also models the uncertainty
but is not restricted to a particular noise model and can
even accommodate multiple predictions of the trajectories
of dynamic obstacles.

Planning with time, required for dealing with dynamic
obstacles, is hard to perform on-line since constant demand

for re-planning enforces tight constraints on the duration
of execution cycle. To address the real-time constraints, a
number of approaches have been proposed that sacrifice near-
optimality guarantees for the sake of efficiency [3], [10],
[12]. Our approach differs in that we aim for computing and
re-computing paths that are optimal or nearly-optimal. To
achieve this, we propose a time-bounded lattice data structure
and search it for a solution with a provable suboptimality.

III. ALGORITHM

At the beginning of each planning cycle, our algorithm
estimates the representation of dynamic obstacles by com-
puting their time-parameterized trajectories as a series of
Gaussian distributions evolving through time. This is done
using the latest obstacle position and velocity information,
extracted by a perception module before planning is done.

During a planning cycle, our algorithm constructs a graph
and searches it for a collision-free path (the construction of
the graph is interleaved with the search itself so as to avoid
the construction of the whole graph). The graph is based
on a time-bounded lattice, a structure with two different
types of states: six-dimensional (x, y, θ, v, w, t) states, which
are used to create the time-parameterized portion of the
trajectory, and two-dimensional (x, y) states for the fast
2D search. Each transition in this graph is a short-term
motion/path between the corresponding pair of these states.
The associated transition costs may incorporate a variety of
optimization criteria - in our experiments, we optimize for
expected travel time. Since we have both static and moving
obstacles, both types contribute to the transition cost: the
static map is used to simply look up costs of traversing
particular 2D cells; for the dynamic obstacles, high cost
is assigned to transitions that are expected to collide with
moving obstacles. The following sections provide a more
detailed description for each of these steps.

A. Representation of Dynamic Obstacles

Our representation of any particular moving obstacle is a
small set of predicted time-parameterized trajectories, each
associated with a confidence and a continuous uncertainty
distribution. Figure 3(a) shows an example. In this figure,
circular dots correspond to the past locations of obstacles
D1 and D2, as observed by the robot (marked as UGV). The
thick dashed curves represent the predicted trajectories. Each
trajectory comes with the continuous uncertainty associated
with it, illustrated roughly with thin dashed curves. This
uncertainty reflects the fact that past sensory information
about the dynamic obstacles is noisy and therefore its mo-
tion cannot be predicted accurately. Any dynamic obstacle
may potentially have more than one estimated trajectory.
For example, in Figure 3(a), D2 has two: T2 and T3. T2

represents the obstacle’s motion in the direction of its current
heading and T3 corresponds to the possible continuation of
the turn. Such multiple alternatives must each have expected
probabilities of occurrence (confidence), which sum up to
one.
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(a) multiple dynamic obstacles (b) trajectory estimate

Fig. 3. Representation of dynamic obstacles. (a) gives an artificial example
illustrating how dynamic obstacles (D1 and D2) are represented. Note how
D2 has two estimated trajectories. (b) gives a specific trajectory estimate
with 95% error ellipses corresponding to Gaussian distributions for each
time step of the estimated trajectory.

To compute the trajectory together with its uncertainty for
some dynamic obstacle Di, we first assume that perception
or some other module on the robot first estimates (a) the
current state of the Di given by the state Xi

0 consisting of the
expected position (xi

0, y
i
0) and orientation θi

0 together with
the 3x3 covariance matrix Σi

0 and (b) its current controls
given by linear and (optionally) angular velocities (vi, wi)
and the variances V i

v and V i
w of each. This form of an

estimate is general and can incorporate various assumptions
the perception module makes. The source of these initial esti-
mates could be any on-board sensors or a remote localization
system.

We can then forward simulate the motion of the dynamic
obstacle by feeding the estimate of its initial state Xi

0, its
uncertainty Σi

0 and controls vi, wi into the prediction step of
Extended Kalman Filter [11]. Using some obstacle dynamics
function g(X, v,w), the standard equations are as follows:

X̂i
t =

0@ x̂i
t

ŷi
t

θ̂i
t

1A = g(X̂i
t−1, v

i, wi), Σi
t = Gi

tΣ
i
t−1(Gi

t)
T +Ri

t

whereGi
t =

∂g(X̂i
t−1, v

i, wi)

∂X̂i
t−1

, Rt = V i
t M

i
t−1(V i

t )T ,

andV i
t =

∂g(X̂i
t−1, v

i, wi)

∂(vi, wi)
, M i

t−1 =

„
V i

v 0
0 V i

w

«

The resulting distribution p(Xi
t) = N (Xi

t ; X̂i
t ,Σ

i
t) is an

estimate of future obstacle position and uncertainty as a
function of time. The assumption, of course, is that the
obstacle maintains constant controls at all future times. Our
representation, however, allows for more than one estimate of
the dynamic obstacle trajectory. Thus, it can model different
control values (i.e., stopping a turn by setting wi = 0 as well
as continuing a turn as was shown in Figure 3(a)).

Figure 3(b) shows a sample obstacle trajectory estimate
along with 95% error ellipses, representing the uncertainty
in the distribution at each future time step. This uncertainty
will only grow with time and, at some point, the distribution
will be so wide, that the probability of a robot colliding with
the dynamic obstacle Di can be considered negligible. This

property is used to find a bounding time T i
b , after which,

the planner can ignore the obstacle completely because its
position distribution will be too spread out in space. This
allows the planner to perform a 2D search (i.e., without time)
as soon as all obstacles can be ignored.

For each dynamic obstacle Di, the value T i
b needs to

be computed once before the each planning episode (i.e.,
before each re-planning), as follows. We iterate over the
trajectory Ti. Since for each time step, it is represented as a
unimodal Gaussian, the most likely position of the obstacle is
at the mean of the distribution. Thus, the highest probability
mass of the robot colliding with obstacle Di at time t is
when the robot is placed at the mean of the distribution
that corresponds to time t. This probability is computed by
integrating the Gaussian distribution of the obstacle position
at time t over a window centered at its mean. The size of
the window is given by the sum of the radii of the robot and
obstacle Di. The time, when this probability drops below a
certain small threshold, for example, 1%, can be used as the
value for T i

b .

B. Time-bounded Lattice

Once T i
b are computed for all dynamic obstacles Di,

the planner can compute a single bound for how long
the planning should be done in time: Tmax

b = maxi T
i
b .

The bound may also be limited from above by a hard-
coded limit on maximum planning in time TMAX

b . The
computed bound Tmax

b is then used to construct a graph
GtbL, called time-bounded lattice, which is a combination of
a lattice-based graph GL and an eight-connected grid G2D.
In a lattice-based graph GL all states are six-dimensional:
(x, y, θ, v, w, t) and the costs of the transitions in between
these states take into account dynamic obstacles. In the eight-
connected grid G2D each state is represented by just x, y,
and the costs of transitions in between neighboring cells take
into account only static obstacles.

Our version of the lattice-based graph GL is an extension
of lattice-based graphs used by planners to produce paths that
can be executed smoothly and at a high speed [5]. Figure 4
shows a simple example of how graph GL is constructed. It is
built from a database of very short dynamically-feasible mo-
tion segments (a.k.a. primitives). A set of motion primitives
is shown in Figure 4(a). Each of these motion primitives
corresponds to a short-term (e.g., 100 msecs) action that
moves the vehicle according to some pre-defined sequence
of controls (for example, a constant acceleration and constant
rotational velocity). As a result, each action moves the
vehicle from its initial state (x, y, θ, v, w, t) into a new state.
These states are shown as ovals in the figure. Figure 4(b)
shows how these motion primitives are being stitched to-
gether to construct a full lattice-based graph GL. An edge in
the graph GL corresponds to a motion primitive that connects
the corresponding poses. Also, any edge (motion primitive)
that intersects a known static obstacle is pruned. This can be
seen in Figure 4(b), where no edges of the graph intersect
the obstacle shown as a black polygon. Thus, any path in
the graph GL is a collision-free dynamically-feasible path.
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(a) subset of motion primitives (b) lattice-based graph

Fig. 4. The construction of a lattice graph G. The planner constructs
this graph on the fly as needed by the search and finds a path in it that
corresponds to a dynamically feasible path that minimizes costs

The graph GL is grown online on as-needed basis during the
search (which is explained in the next section).

The task of the planner however, is not to find any feasible
path. Instead, it should find a path that minimizes the sum
of the costs of the edges that make up this path. Thus, as
shown in Figure 4(b) there is a cost c(s, s′), associated with
each edge, which is proportional to the following quantities:
time it takes to traverse the corresponding motion primitive,
proximity to known static obstacles, and the probability of
colliding with any of the dynamic obstacles. The cost based
on static obstacles is computed in a standard fashion: it is a
simple look-up of a single location in an expanded 2D map.
We assume that the robot is circular and expand all the static
obstacles by its radius for efficient collision detection.

The dynamic collision cost is computed in a different way.
In order to prevent plans that ”jump over” obstacles when
motion primitives have a long duration, the transitions must
be broken up into n smaller segments. There will be a total
of n poses, associated with the transition, and we will run
collision checks on each one. The exact value for n is not
critical and may be even chosen adaptively, based on the
current relative speeds of the robot and obstacles. The main
idea, though, is to have the collision checks done frequently
enough, so that there is no chance of an obstacle intersecting
robot’s path without being detected.

The actual collision detection is performed at each of n
time steps of duration dt, for each obstacle, by integrating its
instantaneous 2D Gaussian position pdf over the expanded
area of the robot (the size of the robot is expanded and
circular dynamic obstacles become point objects for effi-
ciency). This means that we need to compute the trajectory
of each obstacle at dt resolution in time. Thus, if we have
k obstacles, n · k collision checks will be performed for
each transition. In order to combine these results into a
single probability, P (col), we assume that the events of not
colliding are independent. Then,

P (col) = 1− P (col) = 1−
k∏

i=0

n∏
j=0

(1− P (col)i
j)

where P (col)i
j is the probability of colliding with ith ob-

stacle at time j · dt from the start of the transition. In

Fig. 5. Time-bounded lattice

addition, since the 2D integral of a Gaussian distribution
over an arbitrary area does not have a closed form solution,
the approximations can be pre-computed for a finite number
of shapes, relative locations and orientations and used while
planning, which is much faster than doing the calculations
online. In other words, the value of P (col)i

j is looked up in
a table. Finally, the dynamic collision cost of a transition is
computed as the cost of a collision times P (col).

The construction of the graph GtbL uses graph GL only
until the time associated with a state is below Tmax

b . As
soon as state s has a variable time t >= Tmax

b , the state s is
projected onto a 2D grid (graph G2D) and starts following
the grid transitions. This is shown in figure 5. The costs of
transitions in the gridworld are proportional to their lengths
and can also incorporate other costs associated with each cell
in the grid (i.e., traversability, risk, etc.).

Since the time bound Tmax
b is re-evaluated online based

on the certainty in the dynamic obstacle trajectory predic-
tions, graph GtbL dynamically adapts. For example, if the
environment has no dynamic obstacles, then graph GtbL

automatically reduces to a 2D gridworld.

C. Searching Time-bounded Lattice

To find a good quality path in the constructed time-
bounded lattice, we use weighted A* search with an addi-
tional restriction that no state is expanded more than once.
Weighted A* search is A* search with inflated heuristics
(actual heuristic values are multiplied by an inflation factor
ε > 1). It proves to be fast for many domains and, in partic-
ular, for robot navigation tasks [5]. It also provides a bound
on the sub-optimality, namely, the ε by which the heuristics
are inflated. The same bound on sub-optimality continues
to hold when we introduce the additional restriction that no
state is expanded more than once [7] (without the restriction,
weighted A* can re-expand the same state many times).

The heuristics are estimates of the cost-to-goal. In order
for weighted A* to provide suboptimality guarantees, the
heuristics (before inflation) must be consistent (i.e., satisfy
a triangle inequality). That is, for any state s ∈ GtbL,
h(s) ≤ c(s, s′) +h(s′) for any successor s′ of s if s 6= sgoal
and h(s) = 0 if s = sgoal. Here, c(s, s′) denotes the cost of
a transition from s to s′ and has to be positive. At the same
time, the heuristics need to be as informative as possible

1665

Authorized licensed use limited to: University of Pennsylvania. Downloaded on October 1, 2009 at 12:07 from IEEE Xplore.  Restrictions apply. 



in order to guide the search well. To obtain such heuristic
function, we run online a 2D Dijkstra’s search to compute
costs-to-goal for each cell in the gridworld taking into
account static obstacles (similarly to how it is done in [5]).
The search takes few tens of msecs and can therefore be
invoked every time the map is updated. It can be shown that
the resulting heuristic function is consistent, and weighted
A* can therefore provide ε bound on the suboptimality of its
solution.

IV. EXPERIMENTAL ANALYSIS
A. Experimental Setup

We have implemented and tested our planner both in
simulation and on real robots. The goal was to show that
actual planning times are short and allow for responsive
behavior in dynamic environments. Two scenarios were
simulated, one of which was set up as a real experiment.
Gazebo and Player software was used as primary simulation
and robot interfacing tools. The platform that we have chosen
for testing was a custom built differential drive wheeled robot
with velocity control. Its circular body, 30cm in diameter, has
been previously modeled in Gazebo along with appropriate
dynamics [8] - therefore the expectation was to see little
difference in between the simulation and actual runs.

A single robot, running our planner, was tested in environ-
ments with varying static and dynamic obstacles. The role
of the latter was fulfilled by other robots of the same type,
controlled either by a human or a computer, depending on the
specific experiment. The appropriate static obstacle map was
provided to all robots before the start of each experiment.
In simulation, the poses of the dynamic obstacles as well
as the pose of the robot itself, were read directly from the
simulator and Gaussian noise was added to simulate the
sensor uncertainty. In real experiments, an overhead tracking
system, consisting of an array of monocular cameras, pro-
vided approximate robot locations [8]. Obstacle velocity and
heading were estimated from pose changes over time with an
additional assumption that the expected obstacle paths were
straight (w = 0).

Setup of experiment I The first simple experiment was set
up specifically to demonstrate the advantage of planning in
time - it demonstrated the collision avoidance and following
an obstacle if the obstacle was moving in the direction of
the goal. The idea was for the robot to drive from start to
goal position with only a narrow corridor connecting the
two points. The diagram of the environment is shown in
Figure 6. The square with an arrow represents a dynamic
obstacle and the circle is the robot. The dynamic obstacle
robot, controlled by a human, is temporarily blocking the
corridor and moving in different directions (toward or away
from the goal), while the robot has to decide whether to
follow the dynamic obstacle towards the goal or back up
and get out of its way in order to avoid a collision.

Setup of experiment II The second experiment was set
up in a virtual 15x15m environment with 20 static obstacles
(circular and rectangular) and 30 dynamic obstacles. The lat-
ter were assigned random individual goals, used standard A*

(a) robot goes to goal (b) robot backs up (b) robot goes to goal

Fig. 6. Generated plans for T MAX
b = 20 secs. Dashed curves are six-

dimensional portions of the planned trajectories, while dotted curves are
2-dimensional portions.

for planning 2D paths and simple state feedback linearization
controllers for tracking these 2D trajectories. The obstacle
map for this experiment is shown in Figure 7. The goal
of this experiment was to see how effectively the planner
could control the robot towards the goals, while keeping
track of 30 dynamic obstacles. The simulation ran for 30
minutes continuously, with goals randomly reassigned upon
successful arrival at the destination.

B. Simulation Results

Experiment I To better see the planned trajectory of the
robot when planning with time, we first ran our planner
on experiment I using TMAX

b = 20 secs and assuming
high certainty in the trajectories of the dynamic obstacles.
The generated plans are shown in Figure 6(a-c). Figure 6(a)
shows that in case where the dynamic obstacle is moving
towards the goal, the plan generated by the robot makes it
follow the obstacle and expects to reach the goal in under
20 seconds (dashed lines represent the time-parameterized
portion of the trajectory). Figures 6(b) and (c) show the plan
generated in cases the obstacle is moving away from the
goal. The robot first chooses to back up and let the obstacle
pass through and then re-enters the corridor. 20 seconds is
no longer enough to reach the goal and therefore the planned
trajectory involves a 2D trajectory, which completes the path
(shown with a dotted line).

These results are just a proof of concept, since planning
with TMAX

b = 20 secs was too expensive to compute - it
took several seconds, which is not acceptable for dynamic
control. In practice, robust collision avoidance behavior is
achieved by limiting TMAX

b to a lower case, 4 seconds
in our case. This bound allows the planner to re-generate
its plans quickly and thus to react fast to the most recent
changes in the environment. The series of screenshots shown
in Figure 10 (top row) show how the actual execution
happens in simulation for the same environment but with
TMAX

b = 4 and some uncertainty about the position of the
dynamic obstacles. The figures show that the sequence of
events is nearly identical - the robot first follows the dynamic
obstacle, and then (when the dynamic obstacle goes back)
the robot turns around, backs up, lets the dynamic obstacle
pass through and then proceeds towards the goal.

Experiment II In the second experiment we were in-
terested in obtaining statistics for average planning times,
number of completed goals and number of collisions with
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Fig. 7. Experiment II in simulation. A robot (shown in yellow) can navigate
an environment full of dynamic obstacles (shown in green and red) and static
obstacles (large blue obstacles). The dynamic obstacles, i.e., the potential
collisions which are considered by the time-bounded lattice, are shown in
red (the two next to the robot). The collisions with the rest of the dynamic
obstacles are not considered by the time-bounded lattice. This figure should
be viewed in color.

t(secs) time-bounded lattice full 6D
(TMAX

b = 4 secs)
0-0.5 99.19% 97.6%
0.5-1 0.67% 0.8%
1-2 0.11% 0.4%
2-5 0.03% 0.5%

5-10 0% 0.2%
10+ 0% 0.5%

Fig. 8. Planning time distributions for time-bounded lattice and a full
six-dimensional planning with time

dynamic obstacles. This experiment also served as a means
of comparing our time-bounded lattice approach (with
TMAX

b = 4 secs) to a full 6D planning in time.
In case of planning with time-bounded lattice, the robot

was able to achieve 69 goals with the mean planning time of
only 34 msecs (or 125 state expansions). The total number
of collisions during the experiment was equal to 12. Some of
these collisions were unavoidable, since the obstacle robots
did not try to avoid collisions.

In case of full six-dimensional planning, only 25 goals
were achieved, with the mean planning time of 230 msecs
(or 742 state expansions). Even though the average planning
times are still acceptable, a closer look at the plan times
reveals that the fast planning times result from scenarios,
which agree closely with the pre-computed (2D Dijkstra’s)
heuristics. If the dynamic obstacles cause the optimal path
to shift away from the heuristics, on the other hand, then
planning times increase dramatically in the six-dimensional
search. The consequence of this is that the robot essentially
looses the ability to avoid obstacles due to large delays
in planning. The table in Figure 8 demonstrates this by
showing that the proportion of planning times for a full six-
dimensional planning that exceeded 5 and even 10 seconds
was too high.

C. Real Robot Experiments

The first experiment was also set up on the real robot
platforms in order to make sure that our approach is robust
enough to handle the extra uncertainty, not modeled by the

Fig. 9. Real robot experiment with two dynamic obstacles.

simulation. We ran this experiment with 1 dynamic obstacle
(Figure 10(bottom row)), same as in simulation, and we also
ran this experiment with 2 dynamic obstacles (Figure 9).
In both cases, the planner was able to react fast and avoid
collisions. The behavior in the first case was very similar to
the one in simulation - the robot was able to react promptly
to the changing direction of motion of the dynamic obstacle
and to re-plan accordingly. The series of screenshots shown
in Figure 10(bottom row) show that the robot first follows
the dynamic obstacle, then turns back as soon as the
dynamic obstacle turns back, backs up to let the dynamic
obstacle go through, and finally proceeds to its goal.
Similar behavior of the robot was observed with 2 dynamic
obstacles (a movie demonstrating this behavior can be found
at http://www.seas.upenn.edu/˜akushley/
movies/TimeBoundedLattice.mp4).

V. DISCUSSION

The time-bounded lattice we proposed limits the amount
of planning in 6D (with time) based on the uncertainty
in the predictions of the dynamic obstacle trajectories. In
addition, to guarantee the real-time performance, it uses the
hard threshold TMAX

b as the maximum possible amount of
planning. This hard threshold makes the planner “not see” a
dynamic obstacle if it is beyond TMAX

b secs (based on the
velocity with which the robot and the obstacle approach each
other) and “see” it when it gets closer. This phenomenon
makes the robot actively avoid the dynamic obstacle only
when it is within TMAX

b seconds. This implies that TMAX
b

must be large enough for the robot to have enough time to
react. Otherwise it may fail to avoid collisions due to its
dynamic constraints.

The parameter TMAX
b does not make the robot oscillate

(or get stuck) unless the dynamic obstacle remains stationary
(or moves back and forth all the time). If the dynamic
obstacle does remain stationary, then the robot may get
stuck in a hallway-like environment. In such environment,
the robot would get to the obstacle within TMAX

b secs, and
would remain there forever, waiting for the obstacle to move.
This is because the time-parameterized path would tell the
robot not to move and wait until TMAX

b expires, at which
point all dynamic obstacles ”disappear” and a 2D path can
cut through the dynamic obstacles. Our assumption is that
all dynamic obstacles that are actually stationary can (and
should) be resolved at a higher level of the robot architecture.
In particular, they can eventually be declared as static.
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Fig. 10. Experiment I in simulation (top row) and on real robots (bottom row)

In the future, we intend on extending planning with time-
bounded lattice graphs to incremental planning [6], which
would allow us to speed up the planner when re-planning in
response to map updates. In addition, we would like to find
a principled approach to resolving the case of a stationary
dynamic obstacle explained above. We would like to find an
approach that can always guarantee reaching the goal state
in finite amount of time whenever an infinite time-horizon
6D planning can.

Also, the obstacle model we use can be improved. Cur-
rently, the trajectory prediction does not take into account
the surrounding static map, which does have an effect on
the possible actions. For example, in a narrow hallway, the
obstacle cannot drive past the walls. This implies that its po-
sition uncertainty distribution should be adjusted accordingly
to fit most of the probability density within the reachable
area.

VI. CONCLUSIONS

In this paper we have introduced a novel graph structure
called time-bounded lattice useful for planning with dynamic
obstacles. This graph merges together short-term planning in
time with long-term planning without time. The amount of
planning with time is adjusted automatically based on the
uncertainty in the prediction of dynamic obstacle trajectories
as well as their presence. For example, when no dynamic
obstacles are present or they are too far to be detected with
reasonable certainty, the planning automatically reduces to
2D planning. We have demonstrated the effectiveness of our
approach both in simulations with up to 30 dynamic obstacles
and on real robots.
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