
University of Pennsylvania
ScholarlyCommons

Lab Papers (GRASP) General Robotics, Automation, Sensing and
Perception Laboratory

7-13-2008

R* Search
Maxim Likhachev
University of Pennsylvania, maximl@seas.upenn.edu

Anthony Stentz
Carnegie Mellon University

Follow this and additional works at: http://repository.upenn.edu/grasp_papers

Copyright 2008 AAAI.
The copies do not imply AAAI endorsement of a product or a service of the employer, and the copies are not for sale.
Reprinted from:
Maxim Likhachev and Anthony Stentz, " R* Search, " Proceedings of the National Conference on Artificial Intelligence (AAAI), 2008.
URL: http://www.aaai.org/Library/AAAI/2008/aaai08-054.php

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/grasp_papers/23
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Maxim Likhachev and Anthony Stentz, "R* Search", . July 2008.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76362019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fgrasp_papers%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/grasp_papers?utm_source=repository.upenn.edu%2Fgrasp_papers%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/grasp?utm_source=repository.upenn.edu%2Fgrasp_papers%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/grasp?utm_source=repository.upenn.edu%2Fgrasp_papers%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/grasp_papers?utm_source=repository.upenn.edu%2Fgrasp_papers%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/grasp_papers/23
mailto:libraryrepository@pobox.upenn.edu


R* Search

Abstract
Optimal heuristic searches such as A* search are widely used for planning but can rarely scale to large complex
problems. The suboptimal versions of heuristic searches such as weighted A* search can often scale to much
larger planning problems by trading off the quality of the solution for efficiency. They do so by relying more on
the ability of the heuristic function to guide them well towards the goal. For complex planning problems,
however, the heuristic function may often guide the search into a large local minimum and make the search
examine most of the states in the minimum before proceeding. In this paper, we propose a novel heuristic
search, called R* search, which depends much less on the quality of the heuristic function. The search avoids
local minima by solving the whole planning problem with a series of short-range and easy-to-solve searches,
each guided by the heuristic function towards a randomly chosen goal. In addition, R* scales much better in
terms of memory because it can discard a search state-space after each of its searches. On the theoretical side,
we derive probabilistic guarantees on the sub-optimality of the solution returned by R*. On the experimental
side, we show that R* can scale to large complex problems.

Comments
Copyright 2008 AAAI.
The copies do not imply AAAI endorsement of a product or a service of the employer, and the copies are not
for sale.

Reprinted from:
Maxim Likhachev and Anthony Stentz, " R* Search, " Proceedings of the National Conference on Artificial
Intelligence (AAAI), 2008.
URL: http://www.aaai.org/Library/AAAI/2008/aaai08-054.php

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/grasp_papers/23

http://repository.upenn.edu/grasp_papers/23?utm_source=repository.upenn.edu%2Fgrasp_papers%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages


R* Search

Maxim Likhachev
Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

maximl@seas.upenn.edu

Anthony Stentz
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213
axs@rec.ri.cmu.edu

Abstract

Optimal heuristic searches such as A* search are widely
used for planning but can rarely scale to large complex prob-
lems. The suboptimal versions of heuristic searches such as
weighted A* search can often scale to much larger planning
problems by trading off the quality of the solution for effi-
ciency. They do so by relying more on the ability of the
heuristic function to guide them well towards the goal. For
complex planning problems, however, the heuristic function
may often guide the search into a large local minimum and
make the search examine most of the states in the minimum
before proceeding. In this paper, we propose a novel heuris-
tic search, called R* search, which depends much less on the
quality of the heuristic function. The search avoids local min-
ima by solving the whole planning problem with a series of
short-range and easy-to-solvesearches, each guided by the
heuristic function towards a randomly chosen goal. In ad-
dition, R* scales much better in terms of memory because
it can discard a search state-space after each of its searches.
On the theoretical side, we derive probabilistic guarantees on
the sub-optimality of the solution returned by R*. On the ex-
perimental side, we show that R* can scale to large complex
problems.

Introduction
A* search is a a provably optimal algorithm in terms of both,
the solution quality as well as the amount of work (state
computations) it has to do to in order to guarantee optimal-
ity of the solution (Pearl 1984). The provable optimality
of the solution however requires the search to explore too
many states for it to be able to solve large complex planning
problems. A number of suboptimal heuristic searches have
been proposed instead (Furcy 2004; Zhou and Hansen 2002;
2005; Likhachev, Gordon, and Thrun 2003). These searches
give up the optimality of the solution guarantee but can of-
ten scale to much larger problems (Zhou and Hansen 2002;
Rabin 2000; Gaschnig 1979; Likhachev, Gordon, and Thrun
2003; Likhachev and Ferguson 2008). The success of these
searches though depends strongly on how well the heuris-
tic function can guide them towards the goal state. This is
perfectly explainable since the heuristic function is the only
information they have about the direction they have to focuss
their search efforts on in order to reach the goal state.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) A* (b) wA*, w = 2 (c) wA*, w = 5

Figure 1:A* and weighted A* dealing with the local minimum

The dependency on the heuristic function leads to a prob-
lem when it guides the search into a local minimum - a por-
tion of the state-space from which there is no way to states
with smaller heuristics without passing through states with
higher heuristics. This problem exists in both discrete as
well as discretized but originally continuous domains. It
is easier though to visualize it in the latter ones. Figure 1
shows this for a path planning problem in 2D. In solid black
are shown obstacles. The world is discretized into a 24-
connected grid, meaning that the agent can transition to any
cell that is one or two moves away. (This way the agent can
move in 16 possible directions.) The cost between any two
cells connected by an edge is proportional to the Euclidean
distance between them if the transition does not go over an
obstacle and is infinite otherwise. In light gray are shown all
the states explored by A* (a), A* with heuristics multiplied
by a factorw of 2 (b) and A* with heuristics multiplied by a
factorw of 5 (c). The last two versions of A* are also often
referred to as weighted A* (wA*) - a suboptimal version of
A* that trades off the quality of the solution for efficiency.
In dashed black are shown the paths found by these algo-
rithms. The figure shows that compared to A*, weighted
A* expands much fewer states but returns somewhat subop-
timal solutions. However, because the obstacle presents a
large local minimum for the heuristic function, all versions
of A* have to expand all the states inside the cul-de-sac be-
fore they find a way around it. This remains true for any
value ofw.

In this paper, we propose a randomized version of A*,
called R* that depends less on the quality of guidance of the
heuristic function. Instead of executing a single search fo-
cused towards a goal state, R* tries to execute a series of
short-range weighted A* searches towards goal states cho-

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

344



sen at random and re-construct a solution from the paths
produced by these searches. The main idea R* builds on is
that rather than running each of its short-range searches until
they find solutions, R* postpones the ones that do not find
solutions easily and tries to construct the overall solution us-
ing only the results of searches that find solutions easily.

R* schedules and re-schedules short-range searches in
such a way as to provide probabilistic guarantees on the sub-
optimality of the overall solution it finds. In our theoretical
analysis, we prove the existence of these guarantees for a
simplified model of the state-space. We also show that the
suboptimality guarantees hold with probability equal to 1 if
R* does not perform randomized down-select of what short-
range searches to schedule. In our experimental analysis, we
show that R* can scale to large complex planning problems,
can find solutions to such problems much more often than
weighted A* search, and can minimize the cost of the found
solutions much better than randomized motion planning al-
gorithms, developed specifically for continuous domains.

Related Work
On one hand, R* is related to the family of randomized mo-
tion planners (Kavraki et al. 1996; Kuffner and LaValle
2000). These algorithms have gained tremendous popularity
in the last decade. They have been shown to consistently
solve impressive high-dimensional motion planning prob-
lems. In addition, these methods are simple, fast and gen-
eral enough to solve a variety of motion planning problems.
R* differs from these algorithms in several aspects. First,
unlike R*, the randomized motion planners were designed
specifically for continuous state-spaces. The exceptions are
few very recent extensions of randomized motion planning
to discrete state-spaces (Burfoot, Pineau, and Dudek 2006;
Morgan 2004). Second, the current randomized planners are
mainly concerned with finding any feasible path rather than
minimizing the cost of the solution. Third, they provide no
guarantees on the sub-optimality of the solution. R* tries to
find the solutions with minimal cost and provides probabilis-
tic guarantees on the quality of the solution. These two as-
pects of R* are important when solving planning problems
for which the minimization of objective function is impor-
tant.

On the other hand, R* falls into the category of heuristic
searches such as A* (Pearl 1984) and its suboptimal vari-
ants (Furcy 2004; Zhou and Hansen 2002; 2005; Likhachev,
Gordon, and Thrun 2003). These searches examine states in
the search-space thoroughly and in a methodological man-
ner and therefore return solutions that are often of much
better quality than those found by randomized planners. In
addition, they often provide sub-optimality bounds on the
solution and some of them, such as weighted A*, can even
be asked to find a solution whose sub-optimality does not
exceed the specified bound. Unfortunately though, the per-
formance of these searches depends largely on the quality
of the heuristic function. Random scheduling of short-range
searches in R* is designed to make the heuristic search less
dependent on the quality of the heuristic function.

The most relevant to ours is a very recently and indepen-
dently developed Randomized A* algorithm (Diankov and

1 select unexpanded states ∈ Γ (priority is given to states not labeled AVOID)
2 if path that corresponds to the edgebp(s) → s has not been computed yet
3 try to compute this path
4 if failed then label states as AVOID
5 else
6 updateg(s) based on the cost of the found path andg(bp(s))

7 if g(s) > w h(sstart, s) labels as AVOID
8 else //expand states (growΓ)
9 letSUCCS(s) beK randomly chosen states at distance∆ from s

10 if goal state within∆, then add it toSUCCS(s)

11 for each states′ ∈ SUCCS(s), adds′ and edges → s′ toΓ, setbp(s′) = s

Figure 2:Singe iteration of R*

Kuffner 2007). Its major difference from our work is that it
mainly targets continuous domains and does not provide the
analysis of bounds on sub-optimality. Their work contains
a number of interesting ideas including the use of statisti-
cal learning to learn the heuristic function in order to avoid
tweaking its parameters.

R* Algorithm
R* operates by constructing a small graphΓ of sparsely
placed states, connected to each other via edges. Each edge
represents a path in the original graph in between the cor-
responding states inΓ. In this respect,Γ is related to the
graphs constructed by randomized motion planners (Kavraki
et al. 1996; Kuffner and LaValle 2000). The difference is
that R* constructsΓ in such a way as to provide explicit
minimization of the solution cost and probabilistic guaran-
tees on the suboptimality of the solution. To achieve these
objectives, R* growsΓ in the same way A* grows a search
tree.

At every iteration, R* selects the next states to expand
from Γ (see figure 2). While normal A* expandss by gen-
erating all the immediate successors of states, R* expands
s by generatingK states residing at some distance∆ from
s (lines 8-11). The distance∆ is some metric that measures
how far two states are from each other. This metric can
be domain dependent or independent such as difference in
heuristic values of two states. Either way the metric should
be applicable to whatever domain we are trying to solve, be
it a discrete one or continuous. If a goal state is within∆
from states then it is also generated as the successor ofs.
R* growsΓ by adding these successors ofs and edges from
s to them.

A path that R* returns is a path inΓ from the start state
to the goal state. This path consists of edges inΓ. Each
such edge, however, is actually a path in the original graph.
Finding each of these (local) paths may potentially be a chal-
lenging planning task. R* postpones finding these paths un-
til necessary and tries to concentrate on finding the paths that
are easy to find instead. It does this by labeling the states to
which it can not find paths easily as AVOID states. Initially,
when generatingK successors, none of these states are la-
beled as AVOID - R* does not try to compute paths toall of
the generated states. Instead, only when states is selected
for expansion does R* try to compute a path from the pre-
decessor ofs, stored in the backpointer ofs bp(s), to states

345



(lines 2-7).
R* uses the weighted A* search with heuristics inflated

by w to compute local paths. It stops the search, however,
if it fails to find the path easily. (Different heuristics can be
used to establish this such as time limit or number of state
expansions. In our experiments, we used a threshold of 100
expansions to detect that a path can not be found easily.) If
it does fail, then R* labels states as AVOID state since it
assumes that it will be time-consuming to find a path to state
s. If the weighted A* search does find a path, then the cost
of the found path can be used to assign the cost of the edge
bp(s) → s. The cost of the edge and the cost of the best path
from sstart to bp(s), stored ing(bp(s)), can then be used to
updateg(s) in the same way A* updatesg-values of states.

R* provides probabilistic guarantees on the suboptimality
of the solution. The uncertainty in the guarantee is purely
due to the randomness of selectingK successors during each
expansion. For a given graphΓ, on the other hand, R* can
state that the found path is no worse thanw times the cost of
an optimal path that uses only the edges inΓ.

Supposeg(s) ≤ wh(sstart, s). Then the cost of the
found path fromsstart to s via the edges inΓ is clearly
no worse thanw times the cost of an optimal path, since
h(sstart, s) is supposed to be no more than the cost of the op-
timal path. Suppose nowg(s) > w h(sstart, s). This means
that a path fromsstart to s may not bew suboptimal. To
prove otherwise, similarly to weighted A*, R* needs to ex-
pands all the statess′ in Γ with f(s′) = g(s′) + w h(s′) ≤
g(s) + w h(s) = f(s). Expanding all of these states, how-
ever, is computationally expensive, because some of these
states are labeled AVOID and therefore require the compu-
tation of hard-to-find local paths to them. Moreover, it may
even be unnecessary to use states. For a givenw, there
often exist a wide spectrum of solutions that satisfyw sub-
optimality - some are easier to find than others. Therefore,
R* considers the statess with g(s) > wh(sstart, s) as the
states it should also avoid expanding. It labels these states
as AVOID (line 7).

To provide the suboptimality guarantees and minimize so-
lution costs while avoiding as much as possible the states
labeled AVOID, R* selects states for expansion in the order
of smallerf(s) = g(s) + w h(s)), same as in weighted A*.
However, it selects these states from the pool of states not la-
beled AVOID first. Only when there are no more such states
left, R* starts selecting AVOID states (in the same order of
f -values).

Actual Implementation Details The pseudocode of the
R* algorithm is given in figure 3. The algorithm first goes
through the initialization of variables. Theg-values are es-
timates of the distance from the start state to the state in
question, same as in normal A* search.bp-values are back-
pointers in graphΓ that can be used to backtrack the solution
after the search terminates.k-values are priorities used to se-
lect states for expansion fromOPEN - the list of states inΓ
that have not been expanded yet. A state with the minimum
priority is always selected for expansion first. Priorities are
two-dimensional values and are compared according to the
lexicographical ordering (first dimension is compared first,
and the second is used to break ties). Whenever a state is

1 procedure UpdateState(s)

2 if (g(s) > w h(sstart, s) OR

(pathbp(s),s = null AND s is labeled AVOID))

3 insert/updates in OPENwith priority k(s) = [1, g(s) + w h(s, sgoal)];
4 else
5 insert/updates in OPENwith priority k(s) = [0, g(s) + w h(s, sgoal)];

6 procedure ReevaluateState(s)

7 [pathbp(s),s, clow(pathbp(s),s)] = TrytoComputeLocalPath(bp(s),s);
8 if (pathbp(s),s = null ORg(bp(s)) + clow(pathbp(s),s) > w h(sstart, s))

9 bp(s) = arg mins′|s∈SUCCS(s′)(g(s′) + clow(paths′,s));
10 labels as AVOID state;
11 g(s) = g(bp(s)) + clow(pathbp(s),s);
12 UpdateState(s);

13 procedure RandomizedAstar()
14 g(sgoal) = ∞, bp(sgoal) = bp(sstart) = null, k(sgoal) = [1,∞];
15 OPEN= CLOSED= ∅;
16 g(sstart) = 0;
17 insertsstart into OPENwith priority k(sstart) = [0, w h(sstart, sgoal)];
18 while(k(sgoal) ≥ mins′∈OPENk(s′) AND OPEN 6= ∅)
19 removes with the smallest priority fromOPEN;
20 if s 6= sstart AND pathbp(s),s = null

21 ReevaluateState(s);
22 else //expand states
23 inserts into CLOSED;
24 letSUCCS be the set ofK randomly chosen states at distance∆ from s

25 if distance fromsgoal to s is smaller than or equal to∆
26 SUCCS(s) = SUCCS(s) ∪ {sgoal};
27 SUCCS(s) = SUCCS(s)− SUCCS(s) ∩ CLOSED
28 for each states′ ∈ SUCCS(s)

29 [paths,s′ , clow(paths,s′ )] = [null, h(s, s′)];
30 if s′ is visited for the first time
31 g(s′) = ∞, bp(s′) = null;
32 if bp(s′) = null ORg(s) + clow(paths,s′ ) < g(s′)

33 g(s′) = g(s) + clow(paths,s′ ); bp(s′) = s;
34 UpdateState(s′);

Figure 3:The pseudocode of R*

labeled AVOID, the first dimension of its priority is set to 1.
Otherwise, it is 0. This way, the states labeled AVOID are
only selected for expansion if there are no states not labeled
AVOID left to expand. The second dimension of the priority
k(s) is f(s) = g(s) + w h(s), whereh-values are heuristic
values and must be consistent (Pearl 1984).

As in weighted A*, R* expands states until the prior-
ity of the goal state is smaller than the smallest priority
in OPEN. The lines 22-34 correspond to a normal expan-
sion of states. It generatesK random successors of state
s, that haven’t been expanded (closed) previously and goal
state if within ∆ from s. For each generated states′, it
then setspaths,s′ = null to represent that no path from
s to s′ has been found yet. The cost of the edges → s′

is therefore set to the heuristic estimate of the distance,
clow(paths,s′) = h(s, s′), which is an admissible estimate.
Finally, same as in (weighted) A*, R* tries to decrease the
g-value of states if it has been already generated previously.

If R* selects a states for expansion and the path tos
from its parentbp(s) in Γ has not been computed yet, then
R* tries to compute this path first by calling the function
ReevaluateState(s) on line 21. If path is found, R* updates
the costclow(pathbp(s),s′) of the edgebp(s) → s based on

346



(a) R*, w = 2 (b) R*, w = 1.5 (c) R*, w = 1

Figure 4:R* dealing with the local minimum

the cost of the found path. If not found, weighted A* search
is supposed to return the smallest (un-inflated)f -value of
a state in its queue which can be used to set the edge cost
clow(paths,s′) to an improved estimate of the path. Depend-
ing on whether R* successfully finds the path and how costly
the path is, R* labelss as AVOID or not (described above).
If it does set the state as AVOID, it re-computes the best pre-
decessor ofs (in case there are multiple predecessors) and
setsbp(s) accordingly. Afterwards,g(s) is updated based
on theg-value ofbp(s) and the cost of the edge in between
bp(s) ands.

After the while loop of R* terminates, the solution can
be re-constructed by following backpointersbp backwards
starting at statesgoal until sstart is reached. The path is given
in terms of edges in R*, but each edge is guaranteed to have
a local path computed. Thus, the solution in the original
graph can be re-constructed.

Example

Figure 4 shows three runs of R* with different values ofw on
the same 24-connected gridworld as in figure 1. In all three
runs, during each expansion,K = 36 successor cells were
generated at random at a distance∆ = 60 cells (the overall
size of the grid was 200 by 200 cells). The small circles in
these figures, represent those states inΓ to which paths have
been computed. So, these states do not include the states
that were labeled AVOID or states to which R* has not tried
to compute paths. Thus, for example, the figure shows that
R* has never computed a path in between states that lie on
the opposite sides of the obstacle, as it would have involved
running a weighted A* search for a (relatively) long period
of time. All the cells in light gray are states expanded by
local weighted A* searches R* executed. These cells are
discarded after each local weighted A* search and therefore
do not take up any memory (which is important when plan-
ning in higher dimensional state-spaces).

Compared to figure 1, figure 4 shows that the exploration
done by R* withw = 2 andw = 1.5 is much sparser than
that of the weighted A* search with anyw. The quality of
the returned solutions, on the other hand, is approximately
the same and even better than the quality of the solution re-
turned by weighted A* withw = 5. Also, asw decreases,
the exploration performed by R* becomes denser in order to
satisfy the probabilistic suboptimality bound.

Theoretical Analysis
This section first presents few basic properties about the al-
gorithm. It then presents several theorems that come out
of our analysis of the probabilistic guarantees on the sub-
optimality bound of the solution returned by the algorithm.
The full formal analysis of the algorithm can be found
in (Likhachev and Stentz 2008).

Basic PropertiesThe first theorem shows that the algo-
rithm is guaranteed to terminate.

Theorem 1 No states is expanded (lines 22-34) more than
once, and the algorithm is guaranteed to terminate when-
ever the state-space is finite or the cost of an optimal path
fromsstart to sgoal is finite.

In the next theorem, we useπΓ
bp(sstart, s) to denote the

path fromsstart to s by backtracking the backpointers start-
ing at s. c(πΓ

bp(sstart, s)) is used to denote the actual cost
of this path. We also useπΓ

opt(sstart, s) to denote the path in
graphΓ that is optimal assuming the cost of each edge inΓ is
equal to itsclow value. Finally,c∗(πΓ

opt(sstart, s)) is the cost
of this path using costs of optimal transitions between any
two consecutive states in this path rather thanclow values.

Theorem 2 At line 18, for any states ∈ Γ it holds
that c(πΓ

bp(sstart, s)) ≤ g(s). Moreover, if (g(s) +
w h(s, sgoal) ≤ g(u) + w h(u, sgoal) ∀u ∈ OPEN), it holds
thatg(s) ≤ w c∗(πΓ

opt(sstart, s)).

From the above theorem it follows that when the algo-
rithm terminates the cost of the found path fromsstart to
sgoal is no more thang(sgoal), which in turn is no more
thanw c∗(πΓ

opt(sstart, sgoal)). The reason is that when the
algorithm terminates eitherOPEN is empty, in which case
minu∈OPENg(u) + w h(u, sgoal) = ∞, or k(sgoal) <
minu∈OPENk(u). And the latter condition means that ei-
ther the first element ofk(sgoal) is 0, which means that
g(sgoal) ≤ w h(sstart, sgoal) ≤ w c∗(πΓ

opt(sstart, sgoal))
or g(sgoal) + w h(sstart, sgoal) < minu∈OPEN(g(u) +
w h(u, sgoal)).

If every time a state is expanded, the algorithm generates
all of the states that lie at distance∆ from it, thenΓ is guar-
anteed to contain an optimal state fromsstart to sgoal and
therefore the above theorem implies that the algorithm is
guaranteed to return a path whose cost is no more thanw
times the costc∗(sstart, sgoal) of this optimal path. This is
summarized in the theorem below.

Theorem 3 Suppose on line 24 R* always generates all of
the states that lie at distance∆ from s. Then upon termina-
tion, R* returns a path whose cost is no more thang(sgoal)
which, in turn, is no more thanw times the cost of an opti-
mal path fromsstart to sgoal. That is,c(πΓ

bp(sstart, sgoal)) ≤
g(sgoal) ≤ w c∗(sstart, sgoal).

Analysis of the Confidence on suboptimality bound
For the purpose of this analysis, we will assume that all
edges in the graph have unit costs and each states has
M states lying at distance∆ edges from it. We will also
assume that every timeK states are generated by search
on line 24, they have not been encountered previously by

347



search. This assumption is correct when the search-space is
a tree with a single or multiple goal states. The tree model
of a search-space has been commonly used for the statis-
tical analysis of A*-like searches (Pearl 1984; Pohl 1977;
Gaschnig 1979). Our assumption is also approximately cor-
rect if K is negligibly small in comparison to the number
of states that lie at distance∆ from states that is being ex-
panded.

Let us introduce the following tree, denoted byΓM . The
root of the tree issstart and the successors of each nodes′

in the tree are allM successors lying at distance∆ edges
from states′ in the original graph. We defineNl,w to be the
number of distinct pathsπΓM

(sstart, v) in ΓM such that they
satisfy two conditions: (a) a goal state lies within∆ edges
from v in the original graph and (b)c∗(πΓM

(sstart, v)) +
c∗(v, sgoal) ≤ w c∗(sstart, sgoal), wherec∗(πΓM

(sstart, v))
is the cost of the path inΓM using optimal transitions be-
tween any two consecutive states in this path. The condition
(b) means that pathπΓM

(sstart, v) is w-suboptimal if fol-
lowing optimal paths in between every pair of states on this
path. (Remember that pathπΓM

(sstart, v) is given as a se-
quence of states from the treeΓM .) The probabilistic guar-
antee on suboptimality bound will useNl,w. While Nl,w is
domain dependent, it can be estimated on smaller instances
of the same or simpler (e.g., 2D search) but similar prob-
lems. It can also be just set to some small number to give a
crude estimate on the probabilistic bound.

We define aK random walk on any graphG starting with
any statesstart as a process of iteratively building a treeΓK

of depthm in the following way: its root is statesstart; the
successors of any states′ ∈ ΓK areK randomly selected
successors of states′ in G. ith step of aK random walk is
defined to be a process of generating all states inΓK that will
reside at the depth ofi from the root ofΓK . Thus, after the
0th step of theK random walk,ΓK consists of onlysstart;
after the 1st step of theK random walk,ΓK consists ofsstart

andK randomly chosen successors ofsstart from the graph
G; after the 2nd step,ΓK is grown further to contain an
additionalK2 states, that are randomly chosenK successors
of K states added in the previous step. ThisK random walk
is used to analyze the way R* constructs its graphΓ. The
next two theorems prove few properties of theK random
walk we have just introduced (these results are independent
of the R* algorithm).

Theorem 4 Consider a tree with constant branching factor
of M andNl goal states at depthl distributed uniformly. A
K random walk starting at the rootsstart of this tree gen-
erates at least one goal statesgoal at lth step with the prob-

ability of 1−
∏Nl−1

i=0
M l−Kl−i

M l−i
if Nl ≤ M l − Kl and 1

otherwise.

The proof to the above theorem is based on the fact that
a K random walk executed forl steps generates a treeΓK

with M l leaves. We need to compute the probability that
at least one of these leaves is one ofNl goal states. This
probability is one minus the probability that by selecting at
randomNl goal states out ofM l states, none ofKl leaves

of ΓK are selected. The latter probability follows the hy-
pergeometric distribution as given in the theorem. The next
theorem extends this result to the case when goal states lie
uniformly in between depthsm andl, rather than at a single
depthl.

Theorem 5 Consider a tree with constant branching fac-
tor of M and N≤l goal states distributed uniformly in be-
tween depthsm and l (including the depthsm and l) of
the tree. AK random walk starting at the rootsstart

of this tree generates at least one goal statesgoal at less
than or equal tol steps with the probability of1 if K =

M andN≤l > 0, the probability of at least1 − e−
Kl

l−m+1

if K < M andN≤l > M l, and the probability of at least

min(1−
∏N≤l−1

i=0
M l−Kl−i

M l−i
, 1− e−

Kl−1 (M−K)
l−m ) otherwise.

The theorem above is the main result used to derive the
probabilistic guarantees for the suboptimality bound of R*
as given in the next theorem.

Theorem 6 The probability that a particular run of R* re-
sults in a path whose cost is no more thanw2 times the
cost l of an optimal path (that is,c(πΓ

bp(sstart, sgoal)) ≤
w2 c∗(sstart, sgoal)) is 1 if K = M or l ≤ ∆. Oth-

erwise, it is at least1 − e−
KH

H−L+2 if Nl,w > MH

and min(1−
∏Nl,w−1

i=0
MH−KH−i

MH−i
, 1− e−

KH−1 (M−K)
H−L+1 ) if

Nl,w ≤ MH , whereL = b l
∆c andH = bw l

∆ c.

Sketch of the proof: In caseK = M , the proof follows directly
from theorem 3. In casel ≤ ∆, the proof is also trivial since a
goal state will be generated during the very first expansion, namely
the expansion ofsstart. The proof for the other cases uses theo-
rem 5 to compute a lower bound on the probability that the graph
Γ generated by R* contains at least one pathπΓ(sstart, sgoal) such
thatc∗(πΓ(sstart, sgoal)) ≤ w c∗(sstart, sgoal). This bound is also
a lower bound onP (c(πΓ

bp(sstart, sgoal)) ≤ w2 c∗(sstart, sgoal))
because according to the termination criterion of R* and the-
orem 2, c(πΓ

bp(sstart, sgoal)) ≤ w c∗(πΓ
opt(sstart, sgoal)) and

therefore c(πΓ
bp(sstart, sgoal)) ≤ w c∗(πΓ(sstart, sgoal)) ≤

w2 c∗(sstart, sgoal).

The derivation of the lower bound on the probability thatΓ con-
tains at least onew-suboptimal path uses the fact that the number
of paths satisfying the conditions (a) and (b) isNl,w and then uses
theorem 5 to analyze the probability that the following treeΓ′ con-
tains such path.Γ′ of depthH is defined as follows: the root of
the tree issstart; for each non-leaf states in Γ′, its successors are
the same as inΓ (generated at random on line 24), ifs was ex-
panded by R*, and are a new set of successors generated according
to line 24, if s was not expanded by R*. The process of generat-
ing Γ′ is a K random walk on the treeΓM . Theorem 5 gives us
a lower bound on the probability thatΓ′ contains aw-suboptimal
path. Similar to how weighted A* givesw-suboptimality guaran-
tee, R* can also guarantee that the cost of the path returned by it
is at mostw times the cost of thatw-suboptimal path. This gives
the desired probabilistic bound on R* returning anw2-suboptimal
solution.

348



(a)motion generated by RRT (b) motion generated by R*
(cost=91) (cost=49)

Figure 5: Motions generated for a simulated 6 DOF robot arm
after 30 secs of planning.

Experimental Analysis
We evaluated the performance of R* on simulated 6 (fig-
ure 5) and 20 degree of freedom (DOF) robotic arms against
ARA* (Likhachev, Gordon, and Thrun 2003), which is
an efficient execution of a series of weighted A* searches
with gradually decreasingw, and RRT-based motion plan-
ner (Kuffner and LaValle 2000). In these experiments, the
base of the arm is fixed, and the task is to move its end-
effector to the goal (small circle on the left) while navigating
around obstacles (indicated by grey rectangles). The arm is
allowed to intersect itself. Initially, the arm is in the right-
most configuration. An action is defined as a change of a
global angle of any particular joint The cost of each action
is 1. We discretize the workspace into 50 by 50 cells. Our
heuristic function is a distance from each cell to the cell con-
taining the goal while taking into account that some cells are
occupied by obstacles. In order for the heuristic not to over-
estimate true costs, joint angles are discretized so as to never
move the end-effector by more than one cell in a single ac-
tion. The resulting state-space is over 3 billion states for a
6 DOF robot arm and over1026 states for a 20 DOF robot
arm, and memory for states is allocated on demand.

If all obstacles were adjacent to walls, our heuristic would
nearly always direct the robot arm in a more or less correct
direction. As a result, the local minima for weighted A*
search would have been small and it would have been able to
compute solutions fast (see (Likhachev, Gordon, and Thrun
2003)). In our more general setting, however, obstacles can
appear anywhere in the environment. This can cause large
local minima for the heuristic function since the robot arm
may often not be able to reach the desired goal location fol-
lowing the heuristic function. For example, the heuristic
function in figure 5 advocates going above the free-floating
obstacle, whereas the robot arm can only go underneath it.
This large local minima in the heuristic function make the
weighted A* search (and consequently ARA*) quickly run
out of memory trying to find a way out of these minima by
carefully examining all states in them. In contrast, the al-
gorithms that perform sparse exploration of state-space such
as RRT and R* can handle these scenarios well. This is ex-
pressed in the results (Table 1) that show that ARA* solves

much fewer environments than either RRT or R*.
Figure 5 compares the motion generated by R* to the mo-

tion generated by RRT for a 6 DOF robot arm. The cost of
the motion generated by RRT is 91, while the cost of the
motion found by R* is 49.1 We have also ran 65 runs for the
environments with 15 randomly placed obstacles of size 2 by
2. The robot arm had 20 DOFs. The results are reported in
table 1 (with 95% confidence intervals when appropriate). In
all the experiments, ARA*, RRT and R* were all run for 30
secs.2 (Each state expansion was slow due to forward kine-
matics and collision checking for every generated successor
configuration of a 20DOF arm.) ARA* was executed with
initial w = 10 and the decrease of 0.2. RRT was executed
in anytime fashion, meaning that after it found its first solu-
tion, it continued to grow the tree and whenever possible to
improve the solution. In addition, following the suggestion
in (Ferguson and Stentz 2006), we controlled the growth of
the tree and pruned away the states that were clearly irrele-
vant to improving the solution based on their heuristic values
and the cost of the current solution. 30 seconds were enough
to execute R* several times. R* was always executed with
w = 10.0. In fact, each execution was limited to 10 seconds,
even if it did not find the solution within this time period. R*
returned the best solution it found across its multiple runs.

The metric used by R* to compare the distance in between
states against∆ was set to be the maximum difference in
x, y coordinates of the end-effector positions of two states
in question. The actual value of the parameter∆ was set
to 20. Thus, a goal state (a single state representingany
configuration with the desired end-effector) was generated
and added to the setSUCCS(s) whenever its end-effector
was within∆ distance from the end-effector ofs, the state
that was being expanded (line 26 in figure 3).

While both R* and RRT were able to solve about the same
number of environments (we are not sure whether the ones
that were not solved were solvable at all), ARA* solved only
half of the environments solved by RRT and R*. On the
other hand, the solutions returned by ARA* were better than
the ones returned by RRT. The solutions by R* were of the
same quality as the ones returned by ARA* (Table 1(b)) and
significantly better than the solutions returned by RRT (Ta-
ble 1(c)). The amount of work done by all algorithms was
about the same in terms of the number of expansions (the
columns labeled exp) and exactly the same in terms of run-
time - 30 secs per environment.

Typically, planning for mobile and articulated robots such
as the ones in our experiments gets harder as non-holonomic
constraints become more pronounced. One of the intents of
our experiments was to show that R* can handle these con-
straints efficiently. It does so by postponing very difficult

1While sometimes paths generated by RRT can be smoothed by
post-processing, smoothing is limited to homotopic paths. It also
relies on Jacobians which can be hard to derive for non-trivial do-
mains and impossible to derive for domains modeled by weighted
graphs.

2The motivation for our work was planning for autonomous ro-
bots, where planning is typically done in real-time and therefore
the available planning time is in seconds. Hence, was our choice of
30 secs as opposed to minutes.

349



solved

ARA* 17

RRT 33

R* 38

exp cost overhead in cost

ARA* 29,785 61.9 2.8%(± 8.6%)

R* 30,625 62.1 0.0%(± 0.0%)

(a) number of solved (b) ARA* vs. R* (average over solved by both)

exp cost overhead in cost

RRT 31,382 71.5 18.3%(± 10.9%)

R* 32,935 61.9 0.0%(± 0.0%)

(c) RRT vs. R* (average over solved by both)

Table 1: Experimental Results. The numbers in parentheses are
95% confidence intervals.

cases and trying first to find a solution for which it is easy
to connect subgoals. In particular, R* postpones searches
that need to connect hard-to-connect subgoals and tries to
solve the whole problem by stitching together solutions to
easier cases, where heuristic function has shallow minima.
Only when absolutely necessary (to satisfy the probabilis-
tic bound) does R* goes to evaluating hard cases (AVOID
nodes). The priority function of R* makes it always favor
working on easy cases first.

Acknowledgements
This work was sponsored by the U.S. Army Research Lab-
oratory, under contract Robotics Collaborative Technology
Alliance (contract number DAAD19-01-2-0012). The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the of-
ficial policies, either expressed or implied, of the Army Re-
search Laboratory or the U.S. Government.

References
Burfoot, D.; Pineau, J.; and Dudek, G. 2006. RRT-plan:
a randomized algorithm for strips planning. InProceed-
ings of the National Conference on Artificial Intelligence
(AAAI).

Diankov, R., and Kuffner, J. 2007. Randomized statistical
path planning. InProceedings of IEEE/RSJ 2007 Interna-
tional Conference on Robots and Systems (IROS).

Ferguson, D., and Stentz, A. 2006. Anytime RRTs. In
Proceedings of the International Conference on Intelligent
Robots and Systems (IROS).

Furcy, D. 2004. Chapter 5 of Speeding Up the Conver-
gence of Online Heuristic Search and Scaling Up Offline
Heuristic Search. Ph.D. Dissertation, Georgia Institute of
Technology.

Gaschnig, J. 1979. Performance measurement and analysis
of certain search algorithms. Tech. Rep. CMU-CS-79-124,
Carnegie Mellon University.

Kavraki, L.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces.IEEE Transactions
on Robotics and Automation12(4):566–580.

Kuffner, J., and LaValle, S. 2000. RRT-connect: An effi-
cient approach to single-query path planning. InProceed-

ings of the IEEE International Conference on Robotics and
Automation (ICRA).
Likhachev, M., and Ferguson, D. 2008. Planning long
dynamically-feasible maneuvers for autonomous vehicles.
In Proceedings of Robotics: Science and Systems (RSS).
Likhachev, M., and Stentz, A. 2008. R* search: The
proofs. Tech. Rep., University of Pennsylvania, Philadel-
phia, PA.
Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*:
Anytime A* with provable bounds on sub-optimality.
In Advances in Neural Information Processing Systems
(NIPS) 16. Cambridge, MA: MIT Press.
Morgan, S. 2004.Sampling-based planning for discrete
spaces. Ph.D. Dissertation, Case Western Reserve Univer-
sity.
Pearl, J. 1984.Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Pohl, I. 1977. Practical and theoretical considerations in
heuristic search algorithms. In Elcock, E. W., and Michie,
D., eds.,Machine Intelligence 8, 55–72. New York: Wiley.
Rabin, S. 2000. A* speed optimizations. In DeLoura, M.,
ed.,Game Programming Gems, 272–287. Rockland, MA:
Charles River Media.
Zhou, R., and Hansen, E. A. 2002. Multiple sequence
alignment using A*. InProceedings of the National Con-
ference on Artificial Intelligence (AAAI). Student abstract.
Zhou, R., and Hansen, E. A. 2005. Beam-stack search: In-
tegrating backtracking with beam search. InProceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS), 90–98.

350


	University of Pennsylvania
	ScholarlyCommons
	7-13-2008

	R* Search
	Maxim Likhachev
	Anthony Stentz
	Recommended Citation

	R* Search
	Abstract
	Comments


	R* Search

