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A fair scheduling policy for wireless channels with intermittent
connectivity

Abstract
We consider a system of parallel queues with the constraint that only one queue can be served at a time. Each
queue can be served through a wireless channel with intermittent connectivity. We propose a policy which
serves the longest connected queue when the lengths of all connected are below a given threshold, and serves
the connected queue that exceeds the threshold and has received the least service so far, otherwise. We prove
that this simple policy (a) maximizes the aggregate service rate of all queues (b) maximizes the minimum
service rate attained by any queue and (c) attains the stability region of the network.
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A Fair Scheduling Policy for Wireless Channels with
Intermittent Connectivity

A. Aaram M.H.R. Khouzani, S. Sarkar, L. Tassiulas

Abstract—We consider a system of parallel queues with the
constraint that only one queue can be served at a time. Each
queue can be served through a wireless channel with inter-
mittent connectivity. We propose a policy which serves the
longest connected queue when the lengths of all connected
are below a given threshold, and serves the connected queue
that exceeds the threshold and has received the least ser-
vice so far, otherwise. We prove that this simple policy (a)
maximizes the aggregate service rate of all queues (b) max-
imizes the minimum service rate attained by any queue and
(c) attains the stability region of the network.

I. Introduction

Throughput and fairness guarantees have been obtained
in wireless networks owing to several seminal results ob-
tained in the last two decades [8], [4]. Most of these perfor-
mance guarantees however rely on complex computations.
Devices in wireless networks however have limited energy
and can therefore only execute low complexity scheduling
strategies. Several recent papers have obtained through-
put and fairness guarantees using low complexity schedul-
ing strategies[2], [3], [5], [6], [9]. But, most of these papers
consider wireless networks where transmission conditions
do not change with time. Nevertheless, wireless links of-
ten suffer from intermittent connectivity owing to fading
and multi-path effects. We seek to attain throughput and
fairness guarantees in wireless networks in presence of in-
termittent connectivity.

We consider a simple topology consisting of one server
and n queues. The server can serve at most one queue at
a time. The link, or the channel, between the server and
any queue is connected only intermittently. A queue can
be served only when its channel is connected. Tassiulas [7]
proved that scheduling the longest connected queue (LCQ)
attains the maximum possible stability region in such net-
works. But, as the following example demonstrates, LCQ
can treat some queues unfairly when the arrival rate vector
is outside the network stability region. Suppose there are
two queues (q1 and q2) and the channels between the queues
and the server are always connected. Two packets arrive at
q1 in each slot and one packet arrives at q2 every other slot.
Clearly, in this case, LCQ will always serve q1 and never
serve q2, allocating rates of (1, 0) to them. Now, consider
another policy, the Least Service First or LSF, that serves
the non-empty connected queues that has received the least
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accumulative service from the server. Intuitively, it is fairer
than LCQ. For example, in the above specific case, it allo-
cates a rate of 0.5 to each of the queues. Nevertheless, as
the following examples demonstrate, LSF is inefficient in
that (a) it does not attain the maximum possible stability
region, and (b) does not maximize the aggregate service
rate irrespective of whether the arrival rate vector is inside
or outside the network stability region.

Example 1. Consider two queues q1 and q2 and let the
channel for queue 1 be connected in odd numbered slots,
and the channel for queue 2 always be connected. Queue q1

receives a packet in every odd slot, and q2 receives a packet
in slots 3, 6, . . . . The corresponding arrival rate vector is in
the stability region of the network as a policy (say policy P )
that serves q1 in odd slots, and q2 in slots 3i+1, i = 0, 1, . . .
stabilizes both queues. P allocates a service rate vector of
(1/2, 1/3). LSF serves q2 whenever it receives packets, and
q1 in slots in which q1 is connected and q2 does not receive a
packet. Thus, each queue is served at rate 1/3. Thus, LSF
does not stabilize q1. Thus, LSF does not attain the stability
region of the network, and does not maximize the aggregate
service rate. Now suppose that q1 has packet arrivals in
every slot. Now, note that q1 can not be stabilized under
any policy as its packet arrival rate exceeds its connectivity
rate. Thus, the arrival rate vector is outside the network
stability region. The service process under LSF remains
the same, and thus LSF serves each queue at rate 1/3. As
before, policy P can serve each queue at rate 1/2. thus,
LSF does not maximize the aggregate service rate in this
case either.

We now explore whether the above policies (LCQ and
LSF) can be combined to attain both efficiency and fair-
ness. We propose a policy that serves the (a) longest con-
nected queue while all connected queues are below a certain
threshold and (b) the connected queue that has received
the least accumulative service so far among all connected
queues, otherwise. We prove that this policy (a) maximizes
the aggregate service rate of all queues (b) maximizes the
service rate of the queue that receives the minimum service
rate and (c) maximizes the stability region of the network
(i.e., stabilizes the network if the arrival rate vector is in
the network stability region). The policy and the proof
constitute the main contributions of the paper.

II. System Model

We assume that there exists a single server and n queues:
Q = {1, 2, · · · , n}. Time is slotted. The server can serve
at most one queue in a given slot, and serves one packet
from such a queue in the slot. The link or the channel
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between each queue and the server can either be connected
(ON) or disconnected (OFF). For any Qi, Qj ⊆ Q with
Qi

⋂
Qj = ∅, let µQi,Qj

(tk, tl) be the number of slots in
the time interval [tk, tl] during which at least one of the
queues in Qi is connected while all of the queues in Qj are
disconnected. Packets arrive to a queue at the beginning
of a slot and can be transmitted in the same slot. Let
AQi(tk, tl) be the aggregate number of packets that arrived
to queues in Qi ⊆ Q during interval [tk, tl]. A queue can
be served only when it is connected and it has a packet to
transmit. Let SQi(tk, tl) be the total number of packets
served from queues in Qi ⊆ Q during interval [tk, tl].

We assume that queues have unlimited buffer size. Let
Xi(t) be the number of packets waiting for transmission in
queue i at time t. We assume that Xi(0) = 0 for all i. In
each slot t, Xi(t) increases by A{i}(t, t), and decreases by
1 if queue i is served in t. Let M be the maximum amount
by which Xi(t) can change in one time slot for any i.

We assume that the processes µQi,Qj
(tk, tl) and

AQi(tk, tl) are pseudo-deterministic. In other words, there
exists numbers {ai}, {µ(Qi, Q̄j)},∆ such that for any
Qi, Qj , tk, tl we have:

|µQi,Qj
(tk, tl)− µ(Qi, Qj)(tl − tk)| ≤ ∆ (1)

|AQi(tk, tl)−
∑

j∈Qi

aj(tl − tk)| ≤ ∆. (2)

The numbers {ai}, {µ(Qi, Qj)} are denoted as the arrival
rates and connectivity rates respectively, and (a1, . . . , an)
is denoted as the arrival rate vector. Clearly, M =
max(maxi ai, maxj µ(qj , ∅)) + ∆.

We make the following technical assumption.

µ(Qi, Qj) 6=
∑

l∈Qi

al, (3)

for all disjoint Qi 6= ∅ and Qj .
A queue i is said to be stable if supt Xi(t) < ∞. The

stability of a queue depends on the arrival and connectivity
processes and the scheduling policy. We say the arrival
rates are inside the stability region of the system iff for
some scheduling policy, all queues are stable. A scheduling
policy is said to attain the stability region of the system
provided it can stabilize the system for any arrival rate
vector that is in the stability region of the system.

Lemma 1. Given any set of arrival and connectivity para-
meters, we can always partition the set of queues into two
subsets: Subset Y and subset Z = Y c with the following
properties:

µ(Qi, Z) >
∑

j∈Qi

aj for all ∅ ⊂ Qi ⊆ Y, (4)

and

µ(Qk, Z \Qk) <
∑

j∈Qk

aj for all ∅ ⊂ Qk ⊆ Z. (5)

Moreover, this partitioning is unique.

The proof of Lemma 1 reveals that the pair (Y, Z) where
Y is the largest cardinality set that satisfies (4) and Z = Y c

constitutes the above unique partition.
The following argument establishes that the arrival rates

are not inside the stability region of the system if Z 6= ∅.
Note that this fact is consistent with the result of [7] for a
different arrival and connectivity model. From Lemma 1,
for any disjoint φ ⊂ Q ⊆ Z, we have

µ(Q, Z \Q) <
∑

l∈Qi

aj . (6)

Thus, from (1) and (2),
∑

j∈Z Xj(t) ≥ t
∑

j∈Z(aj −
µ(Z, ∅))− 2∆. Thus,

sup
j∈Z

t

Xj(t) = ∞. (7)

III. Scheduling Policy and Performance
Guarantees

We now present our scheduling policy f(L) which sched-
ules the queues as follows. Let U(t) be the set of queues
that are connected in t and have queue lengths greater
than or equal to a threshold L. If U(t) 6= ∅, the queue
in U(t) that has received the least service so far is served,
else, the connected queue with the maximum queue length
is served. The policy is parameterized with parameter L,
and does not require the scheduler to know the arrival and
connectivity rates and ∆.

The following theorem shows that for a large enough L,
the buffer sizes of the queues in Y are upper bounded under
f(L). Also, the buffer sizes of the queues in Z are larger
than that of those in Y after a finite time. Note that as
a special case, this shows that f(L) stabilizes the arrival
rates inside the throughput region.

Theorem 1. There exist D0 and L(D0), which depend only
on the system parameters, such that for all L > L(D0), we
have the following.

∃t0 s.t





supj∈Y
t≥t0

Xj(t) < D0

inf j∈Z
t≥t0

Xj(t) > D0

.

The proof of the theorem relies on the following lemmas
which we prove in the appendix (Lemmas‘3,4) and in a
technical report [1] (Lemma 2).

Lemma 2. Let T = D
1/4
0 , L >

√
2D0 +MD

1/4
0 . Then, for

all large enough D0,
∑

j∈Y

X2
j (t+T )−

∑

j∈Y

X2
j (t) ≤ 0 if D0 ≤

∑

j∈Y

X2
j (t) ≤ 2D0

The minimum required value of D0 for the above lemma
to hold depends only on n, M arrival and connectivity rates
and not on t or the queue lengths at t.
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Lemma 3. For all D′ ≥ 0, there exist L0, which depends
only on D′ and the arrival and service parameters, such
that for all L > L0,

∑

j∈Z

X−2
j (t0) <

1
D′

for some finite t0.

Lemma 4. For all D̄ > Dmin, there exists T and large
enough LD̄ such that if L > LD̄,T , and for some t, 1/D̄ <∑

j∈Z X−2
j (t) ≤ n/(

√
D̄ −MT )2, we have

∑

j∈Z

X−2
j (t + T )−

∑

j∈Z

X−2
j (t) ≤ 0.

Here, Dmin and T depend only on the parameters of the
system, and LD̄ depends only on D̄, T and the parameters
of the system.

Proof of Theorem 1: We first show that there exists D′

such that for all L >
√

D′,

sup
t≥0

∑

j∈Y

X2
j (t) ≤ D′. (8)

We next show that there exists D̂ > D′ such that for a
finite t0 and L large enough,

∑

j∈Z

X−2
j (t) ≤ 1/D̂ ∀ t ≥ t0. (9)

The Theorem follows.
We now show (8). Let D0 satisfy the minimum required

value for Lemma 2 to hold, and, in addition, D0 be large
enough such that

D′ = 2D0 ≥
(√

D0 +
∑

j∈Y

(aj(D0)1/4 + ∆)
)2

.

Let T = D
1/4
0 , L >

√
2D0 + MD

1/4
0 .

Now we show by induction that
∑

j∈Y

X2
j (t + kT ) ≤ D′ ∀t ∈ [0, T ], k ≥ 0.

The base case corresponds to k = 0, and holds since T =
D

1/4
0 and Xj(t) ≤ ajT+∆ for each j and t ∈ [0, T ]. Now, let

the hypothesis hold for k = 0, . . . , m. Consider a t ∈ [0, T ].
If

∑
j∈Y X2

j (t+mT ) ≤ D0, then, clearly,
∑

j∈Y X2
j (t+(m+

1)T ) ≤ D′ since each Xj can increase only by ajT + ∆
in [t + mT, t + (m + 1)T ]. If D0 ≤

∑
j∈Y X2

j (t + kT ) ≤
2D0 = D′, then by Lemma 2,

∑
j∈Y X2

j (t + (m + 1)T ) ≤∑
j∈Y X2

j (t + mT ) ≤ D′.
We now show (9). Select D̄ such that D̄ ≥ Dmin in

Lemma 4, and D̂ = (
√

D̄−MT )2

n > D′. Now, from Lemma 3,
there exists L0, t0 such that

∑

j∈Z

X−2
j (t0) < 1/D̄ for L > L0.

Select T such that Lemma 4 holds, and let L1 = LD̄,T

given in Lemma 4. The result follows if we can show that
for all L > max(L0, L1),

∑

j∈Z

X−2
j (t + kT ) ≤ 1/D̂ ∀t ∈ [t0, t0 + T ], k ≥ 0.

We prove the above using induction on k. We first prove
the above for k = 0. Clearly, since

∑
j∈Z X−2

j (t0) ≤ 1/D̄,
then

∑
j∈Z X−2

j (t0+t) ≤ 1/D̂ for all t ∈ [0, T ]. Now, we
assume that the above hypothesis holds for k, and prove
it for k + 1. Consider some t ∈ [0, T ]. If

∑
j∈Z X−2

j (t +
kT ) ≤ 1/D̄, then, clearly,

∑
j∈Z X−2

j (t+(k +1)T ) ≤ 1/D̂.
If 1/D̄ <

∑
j∈Z X−2

j (t + kT ) ≤ 1/D̂, then by Lemma 4,∑
j∈Z X−2

j (t+(k+1)T ) ≤ ∑
j∈Z X−2

j (t+kT ) ≤ 1/D̂. The
result follows.

We have already argued that if Z 6= ∅ then the arrival
rates are not inside the stability region of the system. The-
orem 1 shows that if Z = ∅ then f(L) stabilizes the system
for all large enough L. Thus, for any arrival rate vector that
is inside the stability region of the system, f(L) stabilizes
the system for all large enough L. Thus, this policy attains
the stability region of the system. We next use Theorem 1
to prove the following main results of the paper.

Theorem 2. For L large enough, the policy f(L) maxi-
mizes both the aggregate and the minimum service rates.

Proof: Let L be such that for some D > 0 and finite
t0, 




supj∈Y
t≥t0

Xj(t) < D

inf j∈Z
t≥t0

Xj(t) > D
.

From Theorem 1, L,D, and t0 as above exist. Therefore,
under f(L), all queues in Y are stable and their lengths are
less than that of those in Z after a finite time. As a result,
whenever a queue in Z is connected, one of them will be
served. This means that f(L) maximizes the aggregate ser-
vice rate of Z. Moreover, since queues in Y are all stable,
this subset also receives the maximum service. Therefore,
f(L) maximizes the aggregate service rate.
In the following, we proceed to prove the second claim. We
use the following assumption without a proof: There exist
a service rate for each queue.

Suppose {q1, q2, · · · , qk} is the set of queues which re-
ceive the minimum service rate r1 = r2 = · · · = rk un-
der f(L). Also suppose there is a policy which gives rates
r′1, r

′
2, · · · , r′k to these queues where r′i > ri for i = 1, · · · , k.

So under f(L), q1, · · · , qk are all unstable. Therefore, after
a finite time, their lengths are always greater than L. This
means that if at least one queue in the set {q1, q2, · · · , qk}
is connected, one of them will receive the service. So the
set {q1, q2, · · · , qk} receives the maximum possible service
among all policies. As a result

∑k
i=1 ri ≥

∑k
i=1 r′i, which

is a contradiction. Hence, f(L) maximizes the minimum
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service rate.
Putting these together, the theorem follows.

The proof that f(L) maximizes the minimum ser-
vice rate relies on the assumption that the service rates
limt→∞ S{j}(0, t)/t exist for each queue j under f(L). Ex-
tensive simulations, which we present in our technical re-
port [1], demonstrate that this is indeed the case.

Another interesting question is whether the above simple
policy attains the max-min fair service rate. A service rate
allocation is max-min fair if it has the maximum value of
the minimum component among all service rate vectors,
and subject to the above the maximum value of the second
minimum and so on. The following example reveals that
this is not true in general.

Example 2. Let n = 3 and the connectivity and ar-
rival processes constitute mutually independent Bernoulli
processes with rates µ({1}, φ) = 1/7, µ({2}, φ) =
0.3, µ({3}, φ) = 5/6, a1 = 0.1, a2 = 0.7, a3 = 0.7. Sim-
ulation reveals that our policy provides service rates of
(0.1, 0.27, 0.53).

Nevertheless, our extensive simulations also indicate that
in most of the cases, the achieved service rates are very
close to the max-min fair rates.

Appendix

A. Proof of Lemma 1

Proof: First, we claim that if for some Z and ∅ ⊂
Q ⊆ Z

µ(Q, Z \Q) >
∑

j∈Q

aj , (10)

then there exist ∅ ⊂ Q̂ ⊆ Q such that

µ(Qi, Z \ Q̂) >
∑

j∈Qi

aj for all ∅ ⊂ Qi ⊆ Q̂. (11)

We prove this claim by induction on |Q|. For |Q| = 1, the
claim easily follows. Now suppose the claim is true for
|Q| = k − 1, we show it is also true for |Q| = k. If (11)
holds for Q = Q̂, the claim follows. So, suppose there exist
Qi ⊂ Q such that µ(Qi, Z \Q) <

∑
j∈Qi

aj . Consider the
subset Q \Qi. It is clear that

µ(Qi, Z \Q) + µ(Q \Qi,Z \ (Q \Qi))

= µ(Q, Z \Q),

which, together with (3), (10) and the fact that
µ(Qi, Z \Qi) <

∑
j∈Qi

aj , gives

µ(Q \Qi, Z \ (Q \Qi)) >
∑

j∈Q\Qi

aj .

Now, Q\Qi satisfies (10) and |Q\Qi| < |Q| = k. Therefore
there exist Q̂ ⊆ (Q \ Qi) that satisfies (11) and the claim
follows.
Now we proceed to prove the lemma. Let Y1 be the largest
cardinality set (which can be an empty set) that satisfies

(4). We show that Z1 = Y c
1 . satisfies (5). Then the lemma

follows for Y = Y1 and Z = Z1. Let Z1 not satisfy (5).
Then, for some ∅ ⊂ Q ⊆ Z1

µ(Q, Z1 \Q) >
∑

j∈Q

aj .

By the claim proved above, there exist ∅ ⊂ Q̂ ⊆ Q such
that

µ(Qi, Z1 \ Q̂) >
∑

j∈Qi

aj for all Qi ⊆ Q̂. (12)

Now consider Y2 = Y1 ∪ Q̂. Clearly, for all ∅ ⊂ Qi ⊆ Y1,
µ(Qi, Z1 \ Q̂) ≥ µ(Qi, Z1). Also, for all ∅ ⊂ Qi ⊆ Y1 and
∅ ⊂ Qj ⊆ Q̂,

µ(Qi ∪Qj , Z1 \ Q̂) = µ(Qi, Z1 \ (Q̂ \Qj)) + µ(Qj , Z1 \ Q̂)

≥ µ(Qi, Z1) + µ(Qj , Z1 \ Q̂).

Thus, from (12) and since Y1 satisfies (4), Y2 satisfies (4).
But, |Y2| > |Y1| which is a contradiction.

Now we show the uniqueness of Y and Z. Suppose there
are two different partitioning pairs (Y1, Z1) and (Y2, Z2)
that satisfy (4) and (5). Now consider the subset Z2 \Z1 6=
∅. From Z2 \ Z1 ⊆ Y1 and (4) we have

µ(Z2 \ Z1, Z1) >
∑

j∈Z2\Z1

aj , (13)

while from Z2 \ Z1 ⊆ Z2 and (5) we have

µ(Z2 \ Z1, Z2 \ (Z2 \ Z1)) = µ(Z2 \ Z1, Z2 ∩ Z1)

<
∑

j∈Z2\Z1

aj ,
(14)

It is now clear that (13) and (14) cannot be true at the same
time which contradicts the assumption of the existence of
different partitioning pairs.

B. Proof of Lemma 3

Proof: It is sufficient to show that for some finite t0,
Xj(t0) >

√
nD′ for all j in Z. We prove the lemma by

induction. From (7), for any D′ ≥ 0, there exist L0 such
that for all L > L0, Xj(t0) > D′ for at least one j in Z and
a finite time t0. Now, suppose for all D̄, there exists t0, L0

such that for all L > L0, Xj(t0) > D̄ for at least k queues
in Z, where k ≥ 1. We will show that for all D′ there exists
t1, L0 such that for all L > L0, Xj(t1) > D′ for at least
k + 1 queues.

Let r = min∅⊂Q⊆Z

(∑
i∈Q ai − µ(Q, Z \Q)

)
. From (6),

r > 0. Let D̄ = (1 + (nM/r)) D′+(M/r)2∆. By induction
hypothesis, there exists there exists t0, L0 > D̄ such that
for all L > L0, Xj(t0) > D̄ for at least k queues in Z.
Let B be the set of those k queues. If Xj(t0) > D′ for
any j ∈ Z \ B, since D̄ > D′, Xj(t0) > D′ for at least
k + 1 queue in Z and the claim follows with t1 = t0. Now
consider the case that Xj(t0) < D′ for all j ∈ Z \B.
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Let T = (n/r)D′+(2∆/r). Consider an interval [t0, t0 +
T ]. Since a queue can decrease by at most M in a slot
and Xj(t0) > (̄D) for each j ∈ B, Xj(t) > D′ for each
t ∈ (t0, t0 + T ] for each j ∈ B. Let Xj(t) ≤ D′ for each
t ∈ (t0, t0 +T ] and j ∈ Z \B. Then, since L0 > D̄ > D′, no
queue in Z \ B is served in any slot in [t, t + T ] unless all
queues in B are disconnected in the slot. Thus, from (1)
and (2),

∑
j∈Z\B Xj(t) increases by at least rT−2∆ during

(t, t + T ]. Thus, at leat one queue in Z \B increases by at
least (rT − 2∆)/n during (t, t + T ]. Note that T is such
that this increase exceeds D′. Thus, Xj(t) > D′ for some
t ∈ (t0, t0 + T ] and j ∈ Z \ B. The induction hypothesis
now holds with t1 being the first such time in (t0, t0 + T ]
where the above happens.

C. Proof of Lemma 4

Proof: We first introduce a few terminologies.
Let P be the set of partitions of Z. For each partition
P = {Q̂1, Q̂2, ....} ∈ P, let µP

i = µ(Q̂i, (∪l≥i+1Q̂l)),
and ρP

i =
∑

j∈Q̂i
aj . Using Lemma 1, we have

∑i
1 µP

l <∑i
1 ρP

l for each i, P ∈ P. Consider some α ∈ (0, 1)
such that

∑i
1 µP

l <
∑i

1 ρP
l for each i, P ∈ P. Let

u = minP∈P mini(
∑i

1 αρP
l −

∑i
1 µP

l ). Clearly, u > 0.
Consider some δ > 0. Now let T be a positive integer

such that −uT + n∆ < −δ.
Let Dmin be a large enough number such that

(
(
√

Dmin−MT )2

n −MT
(
√

Dmin−MT )2

n + (2n + 1)MT

)3

> α (15)

and

√
(
√

Dmin −MT )2

n
> MT. (16)

Let µ =
∑

i∈Z µ({i}, ∅).
Let Dmax be a large enough number such that

Dmax > n
√

D̄ + 2nMT (17)

and
−δ

(n
√

D̄ −MT )3
+

µT + ∆
(Dmax −MT )3

< 0. (18)

Let LD̄,T = Dmax +2(n+1)MT. Thus, when L > LD̄,T ,
if a queue is below Dmax + 2nMT at time t, it remains
below L in time interval [t, t + T ], and is served under
longest connected queue policy in [t, t + T ].

Let D̂ = (
√

D̄−MT )2

n , and D0 = n
√

D̄.

Now, the bounds on
∑

j∈Z X−2
j (t) in the statement of

the lemma imply that 1/D̄ <
∑

j∈Z X−2
j (t) < 1/D̂. From

the left hand side inequality, we have

Xj(t) < D0 for at least one j in Z, (19)

while since D̄ ≥ Dmin, (16) and the right hand side in-
equality imply that minj∈Z Xj(t) ≥

√
D̂ > MT.

We now consider a specific partition of Z {Q1, Q2, · · · , QK}
which is constructed as follows. Sort queues in Z in non-
decreasing order of their queue lengths and do the follow-
ing.

1. Set i = 0.
2. Increment i by one.
3. Move along the sorted list. As long as the difference in
length between consecutive queues is less than or equal to
2MT , put every queue in Qi.
4. If the next queue has length less than Dmax return to
(2). Else put the remaining queues in Qi+1 (which may be
an empty set) and terminate.
The above algorithm partitions Z . Let Di =
minj∈Qi

Xj(t) and |Qi| = ni. Note that (17) implies that
Dmax > D0 + 2nMT , which leads to the following proper-
ties of the partition.
1. Subsets Q1, Q2, · · · , QK−1 are all nonempty.
2. minj∈QK

Xj(t) ≥ Dmax.
3. maxj∈Qi

Xj(t) < minl∈Qi+1 Xl(t) − 2MT for i =
1, 2, · · · ,K − 1.
4. maxj∈Qi Xj(t) ≤ Di +2nMT for i = 1, 2, · · · ,K−1.
5. DK−1 < Dmax.

We now mention some properties of the above partition
which we will use throughout the proof. Properties (4) and
(5) and the fact that L > LD̄,T = Dmax + 2(n + 1)MT,
ensure that all queues in Q1, . . . , QK−1 are served as per
LCQ policy during [t, t + T ]. Property (3) ensures that
minj∈Qi+1 Xj(t1) > maxj∈Qi Xj(t1) for each i = 1, . . . ,K−
1, t1 ∈ [t, t+T ]. Thus, a necessary condition for a queue in
Qi to be served in a slot in [t, t+T ] is that at least one queue
in Qi is connected and all queues in (∪i−1

l=1Ql∪Z) are discon-
nected for i = 1, . . . K − 1. Let µi = µ(Qi,∪K

l=i+1Ql), and
ρi =

∑
j∈Qi

aj . Note that {µi}s and {ρi}s are {µP
i }s {ρP

i }s
for partition P = {Q1, . . . , QK}. Clearly, µ ≥ maxi µi.
Thus, from (1),

∑
j∈Qi

S{j}(t, t + T ) ≤ µiT + ∆. Now,

∑

j∈Z

X−2
j (t + T )−

∑

j∈Z

X−2
j (t)

= −
∑

j∈Z

(X−1
j (t + T )−X−1

j (t))2

+2
∑

j∈Z

X−1
j (t + T )(X−1

j (t + T )−X−1
j (t))

≤ 2
∑

j∈Z

X−2
j (t + T )X−1

j (t)(Xj(t)−Xj(t + T ))

= 2
∑

j∈Z

X−2
j (t + T )X−1

j (t)S{j}(t, t + T )

−2
∑

j∈Z

X−2
j (t + T )X−1

j (t)A{j}(t, t + T ). (20)

∑

j∈Qi

S{j}(t, t + T )
Xj(t)X2

j (t + T )

≤
∑

j∈Qi

S{j}(t, t + T )
(Xj(t)−MT )3

(since min
j∈Z

Xj(t) > MT ),

≤ 1
(Di −MT )3

∑

j∈Qi

S{j}(t, t + T )

≤ µiT + ∆
(Di −MT )3

for i = 1, · · · ,K .
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The last inequality follows since
∑

j∈Qi
S{j}(t, t + T ) ≤

µiT +∆). Since minj∈Z Xj(t) > MT Dj > MT for each j.
Thus, from property (2), we have

∑

j∈Z

S{j}(t, t + T )
Xj(t)X2

j (t + T )
≤

K−1∑

i=1

µiT + ∆
(Di −MT )3

+
µKT + ∆

(Dmax −MT )3

(21)

∑

j∈Qi

A{j}(t, t + T )
Xj(t)X2

j (t + T )

≥
∑

j∈Qi

A{j}(t, t + T )
(Xj(t) + MT )3

≥
∑

j∈Qi
A{j}(t, t + T )

(Di + 2nMT + MT )3
(from property (4)),

≥
∑

j∈Qi
aiT −∆

(Di + (2n + 1)MT )3
for i = 1, · · · ,K − 1.

The last inequality follows from (2). Thus,

∑

j∈Z

A{j}(t, t + T )
Xj(t)X2

j (t + T )
≥

K−1∑

i=1

ρiT −∆
(Di + (2n + 1)MT )3

(22)

Since D̄ ≥ Dmin and due to (15),

( √
D̂ −MT√

D̂ + (2n + 1)MT

)3

> α.

Now, since Di ≥ minj∈Z Xj(t) ≥
√

D̂, for each i,

(
Di −MT

Di + (2n + 1)MT

)3

> α for i = 1, 2, · · · , K − 1,

which gives

ρi

(Di + (2n + 1)MT )3
− µi

(Di −MT )3
≥ αρi − µi

(Di −MT )3

for i = 1, 2, · · · ,K − 1.

(23)

From (21), (22), and (23) we have
∑

j∈Z

X−2
j (t + T )−

∑

j∈Z

X−2
j (t)

≤ −T

K−1∑

i=1

αρi − µi

(Di −MT )3
+

n∆
(D1 −MT )3

+
µKT + ∆

(Dmax −MT )3.

(24)

We now lower bound
∑K−1

i=1
αρi−µi

(Di−MT )3 . Start with the
right most term. If αρK−1 ≥ µK−1, then the term
αρK−1−µK−1
(DK−1−MT )3 is positive and the sum can be lower

bounded by
∑K−2

i=1
αρi−µi

(Di−MT )3 . If, on the other hand,

αρK−1 < µK−1,
αρK−1−µK−1
(DK−1−MT )3 ≥ αρK−1−µK−1

(DK−2−MT )3 , and

the sum can be lower bounded by
∑K−3

i=1
αρi−µi

(Di−MT )3 +
α(ρK−2+ρK−1)−(µK−2+µK−1)

(DK−2−MT )3 . Continuing in the same man-

ner we obtain,
∑K−1

i=1
αρi−µi

(Di−MT )3 ≥
∑l

i=1
αρi−µi

(D1−MT )3 for some
l ∈ {1, 2, · · · ,K − 1}. The second term can be lower
bounded by u/(D1 −MT )3. Thus, from (24) we have

∑

j∈Z

X−2
j (t + T )−

∑

j∈Z

X−2
j (t) ≤ −uT + n∆

(D1 −MT )3

+
µKT + ∆

(Dmax −MT )3
.

Now, since −uT + n∆ < −δ, where δ > 0, and µK ≤ µ,
from (19), we have

∑

j∈Z

X−2
j (t + T )−

∑

j∈Z

X−2
j (t) ≤ −δ

(D0 −MT )3

+
µT + ∆

(Dmax −MT )3
.

(25)

From (18), (25) is negative and the lemma follows.

References

[1] A. Aaram, M.H.R. Khouzani, S. Sarkar, and L. Tas-
siulas. A fair scheduling policy for wireless chan-
nels with intermittent connectivity. Technical report,
Univ. of Pennsylvania, Philadelphia, PA, March 2008.
http://www.seas.upenn.edu/∼swati/publication.htm.

[2] P. Chaporkar, K. Kar, and S. Sarkar. Throughput guarantees
through maximal scheduling in multihop wireless networks. In
Proceedings of 43d Annual Allerton Conference on Communica-
tion, Control and Computing, Allerton, Monticello, Illinois, Sep-
tember 28-30 2005.

[3] X. Lin and N. Shroff. The impact of imperfect scheduling on cross-
layer rate control in multihop wireless networks. In Proceedings
of INFOCOM, Miami, FL, Mar 2005.

[4] M. Neely, E. Modiano, and C. Li. Fairness and optimal stochastic
control for heterogeneous networks. In Proceedings of INFOCOM,
Miami, Florida, March 2005.

[5] S. Ray and S. Sarkar. Arbitrary throughput versus complexity
tradeoffs in wireless networks using graph partitioning. In Pro-
ceedings of Information Theory and Applications Second Work-
shop, University of California at San Diego, 2007.

[6] S. Sarkar and L. Tassiulas. End-to-end bandwidth guarantees
through fair local spectrum share in wireless ad-hoc networks.
IEEE Transactions on Automatic Control, September 2005.

[7] L. Tassiulas. Adaptive back-pressure congestion control based on
local in formation. IEEE Transactions on Automatic Control,
February 1995.

[8] L. Tassiulas and A. Ephremidis. Stability properties of con-
strained queueing systems and scheduling policies for maximum
throughput in multihop radio networks. IEEE Transactions on
Automatic Control, 37(12):1936–1948, Dec 1992.

[9] X. Wu and R. Srikant. Regulated maximal matching: a distrib-
uted scheduling algorithm for multihop wireless networks with
node-exclusive spectrum sharing. In Proceedings of IEEE CDC-
ECC’05, Seville, Spain, Dec 2005.

508

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 10, 2008 at 16:36 from IEEE Xplore.  Restrictions apply.


	University of Pennsylvania
	ScholarlyCommons
	March 2008

	A fair scheduling policy for wireless channels with intermittent connectivity
	A. Aram
	M.H. R. Kzouhani
	Saswati Sarkar
	L. Tassiulas
	Recommended Citation

	A fair scheduling policy for wireless channels with intermittent connectivity
	Abstract
	Comments


	 Fair Scheduling Policy for Wireless Channels with Intermittent Connectivity

