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Real-Time Monitoring of Video Quality in IP Networks

Abstract
This paper investigates the problem of assessing the quality of video transmitted over IP networks. Our goal is
to develop a methodology that is both reasonably accurate and simple enough to support the large-scale
deployments that the increasing use of video over IP are likely to demand. For that purpose, we focus on
developing an approach that is capable of mapping network statistics, e.g., packet losses, available from simple
measurements, to the quality of video sequences reconstructed by receivers. A first step in that direction is a
loss-distortion model that accounts for the impact of network losses on video quality, as a function of
application-specific parameters such as the video codec and loss recovery technique, coded bit rate,
packetization, video characteristics, etc. The model, although accurate, is poorly suited to large-scale, on-line
monitoring, because of its dependency on many parameters that are difficult to estimate in real-time. As a
result, we introduce a "relative quality" metric that bypasses this problem by measuring video quality against a
quality benchmark that the network is expected to provide. The approach offers a lightweight video quality
monitoring solution that is suitable for large-scale deployments. We assess its feasibility and accuracy through
extensive simulations and experiments.
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University of Pennsylvania

Philadelphia, PA 19104

guerin@ee.upenn.edu

ABSTRACT
Thispaperinvestigatestheproblemof assessingthequalityof video
transmittedover IP networks. Our goal is to develop a methodol-
ogy that is bothreasonablyaccurateandsimpleenoughto support
thelarge-scaledeploymentsthattheincreasinguseof videooverIP
arelikely to demand.For thatpurpose,we focuson developingan
approachthatis capableof mappingnetwork statistics,e.g.,packet
losses,availablefrom simplemeasurements,to thequalityof video
sequencesreconstructedby receivers. A first stepin thatdirection
is a loss-distortionmodelthat accountsfor the impactof network
lossesonvideoquality, asafunctionof application-specificparam-
eterssuchasthe video codecandlossrecovery technique,coded
bit rate, packetization,video characteristics,etc. The model, al-
thoughaccurate,is poorlysuitedto large-scale,on-linemonitoring,
becauseof its dependency on many parametersthataredifficult to
estimatein real-time. As a result,we introducea “relative qual-
ity” metric thatbypassesthis problemby measuringvideoquality
againsta quality benchmarkthat the network is expectedto pro-
vide. The approachoffers a lightweight video quality monitoring
solutionthat is suitablefor large-scaledeployments.We assessits
feasibility andaccuracy throughextensive simulationsandexperi-
ments.

Categoriesand Subject Descriptors:
C.2.3[Computer-CommunicationNetworks]: Network Operations

GeneralTerms: Measurement,Experimentation

Keywords: VideoQuality, Loss,Model

1. INTRODUCTION
With thegreateravailability of broadbandaccess,deliveringvideo

throughIP networks(e.g.,theemerging IPTV service)hasbecome
an increasinglyattractive solutionto serviceproviders. However,
IP networkscansubjectvideoto a varietyof impairmentsbecause
of packet lossanddelayjitter. Assessingthe impactof thoseim-
pairments,andthereforetheability of IP networksto deliver video
of consistentquality, calls for toolscapableof continuouslymoni-
toringthequalityof videotransmittedoverdifferentnetwork paths.
This paperdescribesa simpleapproachthat is suitablefor large-
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scale,real-timemonitoringof videoqualityover IP networks.
Themoststraightforward solutionfor video quality assessment

is to comparethereconstructedvideosequenceat thereceiver with
theoriginal videosequenceat thesender[8]. Obviously, this is un-
suitablefor on-lineusage,asit requirestheavailability of boththe
receivedandtheoriginal videos.To developanon-linequality es-
timationscheme,we have to rely on approachesthatfirst measure
network losses,and thenusetheselossmeasuresto generatethe
videoquality estimatesaccordingto availableloss-distortionmod-
els.

Video quality is jointly affectedby variousnetwork-dependent
andapplication-specificfactors.For instance,packet lossesandde-
lay jitter (which alsotranslatesinto lossesin the playbackbuffer)
are the major network-dependentfactors,while video codecand
lossrecovery technique,codingbit rate,packetizationscheme,and
contentcharacteristicsarethemajorapplication-specificfactorsthat
affect video quality andits sensitivity to network errors. Most of
the prior work on loss-distortionmodeling,e.g., [2, 3, 4, 5], fo-
cus on only someof the network or applicationfactors. For in-
stance,in [5], distortionin thedecodedframesequencewasmod-
eledasa functionof thelossrate.In [2], thismodelwasfurtherex-
tendedto accommodatetheeffectsof differentlosspatterns.Sim-
ilarly, the modelsdevelopedin [4] aim at directly translatingloss
sequencesinto video quality estimates.In contrastto thesepre-
vious works, we develop a model that characterizesthe relation
betweenpacket lossandvideodistortionasa functionof specific
video codecand loss recovery technique,codingbit rate, packe-
tization, andcontentcharacteristics.The proposedloss-distortion
methodis generallyapplicableto any motion-compensatedvideo
compressionscheme,e.g., any MPEG-x or H.26x codec. In our
study, we usetwo differentandpracticallyimportantvideocodecs
– MPEG-2andH.264/AVC – to conductsimulationsandexperi-
mentsanddemonstratetheeffectivenessof ourapproach.

Although our model proved accuratein translatingloss statis-
tics into videoquality estimates,it still requiresevaluatingseveral
applicationparameters.In particular, it relies on an accuratees-
timate of the distortion causedby losing certainframesor slices
(independentlydecodableportionsof a frame). While this infor-
mation can be obtainedby conductingoffline simulations[2] or
parsingthe transmittedvideo stream[4], suchan approachis not
scalable,especiallywhenthenetwork is usedto distributeavariety
of video contentto a large numberof customers.As a result,we
seekto developaqualityestimationtechniquethatdoesnotrely on
the knowledgeof specificvideo characteristics.Our secondcon-
tribution in this paperis, therefore,theproposalof a videoquality
metric, relative PSNR(rPSNR),which can be evaluatedwithout
knowledgeof thevideocharacteristics,yet still is capableof cap-
turing videoquality variationson a network path.rPSNRis a met-



ric relative to the quality of video transmittedover a benchmark
network paththatdeliversthedesiredperformanceguarantees.Us-
ing this metric,videoquality canbeestimatedusingonly network
statisticsandsomebasicconfigurationparametersof thevideoap-
plication. Our study demonstratesthat rPSNRis capableof ac-
curatelyestimatingvideoquality acrossa broadrangeof network
conditionsandvariationsin contentcharacteristics.

Theremainderof thispaperis organizedasfollows. In Section2,
wepresenttheloss-distortionmodelanddiscusshow it capturesthe
impactof codecselection,codingbit rate,packetization,andvideo
characteristicson video quality. Section3 introducesthe rPSNR
metric and demonstratesits effectivenessin path quality estima-
tion. Finally, Section4 concludesthepaperwith a summaryof our
findings.

2. LOSS-DISTORTION MODELING
In order to estimatevideo quality, we needto first investigate

the relationbetweenpacket lossesanddistortionsin the decoded
video. In the following analysis,we usenotationfrom [2], and
measurevideodistortionin termsof theMeanSquareError(MSE).
Considera video sequencewith framesof size

���������
pixels,

we use �
	 �
� (of size
� � ��� �

) to denotethe1-D vectorobtained
by line-scanningframe � , and ��
	 ��� to denotethe corresponding
framerestoredby the decoder. Thus, the error signal in frame �
is ��	 ����� ��
	 ���
���
	 ��� , which representsthesignal impairmentin
frame � causedby packet losses.TheMSEin frame � is definedas� � 	 �
����������	 ����� �
	 ���"!$#%� ��� � �&� !(' (1)

Thetotal distortionfor a videosequenceis theMSE averagedover
all its frames.Thevalueof � � 	 �
� causedby a lossevent is affected
by several network andapplication-dependentfactors. For exam-
ple, the length of a loss burst impactsthe numberof pixels and
thenumberof subsequentframesaffectedby thelossevent,where
the latteralsodependson thenumberof packetspercodedframe.
Conversely, theerrorconcealmenttechniquesemployedby thede-
coder, togetherwith thepredictionstrategy appliedat theencoder
andthecharacteristicsof thevideocontentitself (i.e., thespatial-
temporalcorrelationbetweendifferentmacroblocks),playarole in
determiningthecorrespondingdistortionin thedecodedvideo.

2.1 Basicmodel
An importantissuein modelingthe distortionthat a lossevent

cancauseto predictively encodedvideo,is theextentto which the
resultingerrorpropagatesacrossframes.Specifically, sincetempo-
ral predictionintroducesdependenciesbetweenadjacentframes,a
singlepacket lossaffectsnotonly theframewith datacarriedin the
missingpacket,but alsootherframeswith codingdependencieson
it. Fortunately, becauseof the explicit or implicit spatialfiltering
appliedat the decoder(which canbe modeledasa low passfilter
[5]), theerrorsignalintroducedby alostpacket tendsto decayover
time. If anerrorin frame � hasaresultingMSEof � � 	 ��� , thepower
of thepropagatederrorin frame ���*)�+,! canbeapproximatedas[2]:� � 	 �-)�+���� � � 	 ����� .0/1' (2)

Theattenuationfactor . ( .3254 ) accountsfor theeffect of spatial
filtering, andthereforeis dependenton thepower spectrumdensity
of theerrorsignalandthespatialfiltering appliedby thedecoder,
i.e., variesasa function of the video characteristicsanddecoder
processing.

To limit errorpropagation,periodicintra codingis oftenusedin
video compression.As a result, errors in one frame only prop-
agateuntil correspondingmacroblocks(or entire frame) are re-

freshedby intra coding. For instance,if �768�94�! framesarepre-
dictively coded(P-frames1) betweentwo consecutive intra-coded
frames(I-frames),the total distortioncausedby lossesin frame �
is :;�=<9>@? �/BADC � � 	 ��)9+E� , where F is the numberof framesfrom
wheretheoriginal lossoccurs(frame � ) to thenext I-frame.

Wefirst modeltheaveragedistortioncausedby losingoneslice2

in a frame. We assumethat the initial distortioncausedby a lost
slice is a constant,� �G , and that the location F of the framewith
thelostsliceis uniformly distributedin 	 H
I$6���4(� . Onaverage,the
total distortioncausedby losingasinglesliceis then

: � � � ? �J /"A0C � �G �7.0/$�140� +6 !K� . ��L � ���76M)N4�!,.�)�66&�14O�P.D! � � �G �NQ&� � �G I
(3)

where Q is a functionof . and 6 , andaccountsfor the total prop-
agationeffect of theerror signal. Thevaluesof Q and : �

canbe
estimatedfor individual slice lossesby simulatingthe lossesand
measuringtheMSE in thedecodedframes,asdemonstratedin [2].
However, sincewe aremainly interestedin the averagedistortion
over theentirevideosequenceinsteadof thedistortionin individ-
ual frames,we will usetheaveragevaluesof both Q and : �

in our
modeling.

When losing R ( R=ST4 ) consecutive packets in a single loss
event, �
�ERU! sliceswill beaffected.Here �
�ERU! is themappingfrom
the numberof lost packets to the numberof lost slices,which is
specificto theimplementationof thecodecandlossrecovery tech-
nique. Given �
�ERU! , we canthenmodelthe resultingdistortionas
proportionalto thedistortioncausedby anindividualsliceloss,i.e.,:�VW�X�
�ERU!1: � ' (4)

As studiedin [2, 6], thisadditivemodelmayslightly underestimate
thedistortionin thecaseof burstylosses.However, it greatlysim-
plifies thefinal model.More important,aswe show later, this sim-
plification is key in enablingus to develop a video quality metric
independentof individual videocharacteristics.

We define Y asthenumberof packetstransmittedbetweentwo
consecutive lossevents,or lossdistance.Let Z V denotetheproba-
bility of having R consecutive packetslost in a lossevent,and Z*[
denotetheprobabilityof having two consecutive losseventssepa-
ratedby Y packets.Weassumethateachframeis transmittedusing\

packets,andthat R and Y areindependent.Thus,theexpected
MSEof thereconstructedvideois givenby:5� < V Z V : V< [ Z*[M�EY]# \ ! � �
�ERU!Y \ : � ' (5)

Or equivalently, :^�8Z
_ �
�ERU! \ : � I (6)

where Z _ is theprobabilitythata lossevent(of any length)occurs
within thevideostream.Z _ and �
�ERU! capturethecharacteristicsof
thelossprocessseenby thevideostream( �
�ER
! is alsoafunctionof
packetizationandlossrecoveryatthedecoder),while

\
and : �

are
specificto thecodecandvideocontent.For instance,

\
is typically

largerwhenvideo is encodedat a higherbit rate,and : �
is itself

dependenton Q and � �G , asshown in Eq. (3).

1To simplify theanalysis,herewe do not considerbi-directionally
predictedframes(B-frames).However, sinceB-framesarenotused
ascodingreferencefor otherframes,it is straightforwardto extend
ourmodelto accommodatelossesin B-frames.
2Recall that a slice is an independentlydecodableportion of a
frame.
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Figure1: Averagedistortioncausedby asinglelosseventwith dif-
ferentlengths:Foreman, QCIF with ab�c4 , \ �ed (left); Foreman,
CIF with ab�c4 , \ �Xf (right).

2.2 The impact of codecselection
Althoughmostvideocompressionstandardssupportpictureseg-

mentationin theform of slices,differentcodecstypically reactdif-
ferently in the faceof slice losses. As a comparison,we study
a MPEG-2codecanda H.264codec,implementedwith different
error handlingcapabilities. In the MPEG-2codec,packet losses
aresimply handledasfollows: if thedecoderdetectsany number
of packet lossesin a frame, it discardsthe entiredamagedframe
and replacesit with the frame previously decoded. The H.264
codecemploys more sophisticatederror-concealmenttechniques:
all slicesin the received packetsaredecodedandthe slicescon-
tainedin the lost packets are recoveredusing the corresponding
slicesin thepreviousframeandthemotion-compensationinforma-
tion of theotherslicesin thesameframe.Obviously, theabove two
codecswill resultin differentloss-distortionmodels,sincethemap-
pingsfrom packet lossesto slicelosses,�
�ERU! , aredifferent. In the
MPEG-2codec,a losseventaffectsnotonly theslicescontainedin
thelostpackets,but alsotheotherslicesin thesameframe,while in
theH.264codec,only theslicesin thelostpacketsareaffected.As
aconsequence,thevalueof �
�ERU! of theMPEG-2codectendsto be
larger thanthat of the H.264codec,even if they areexperiencing
thesamelossprocess.Notethattheabove descriptionsof MPEG-
2 and H.264 representspecific implementations.SomeMPEG-
2 basedsystemsincorporatemoresophisticatedlossconcealment
schemessimilar to thoseusedby H.264systems.Conversely, some
H.264 systemsuseonly simple loss handlingschemes,as basic
MPEG-2systemsdo. However, we believe that the above exam-
ples of MPEG-2 with a simple loss recovery schemeand H.264
with a moresophisticatedlossrecovery scheme,arerepresentative
of many systemseitherdeployedor beingdeployedandof theap-
plicationsfor which they areused.

We assumea slicesperpacket,
\

packetsper frame,andthat in
eachframe the startingpoint of a lossevent (if it occurs)is uni-
formly distributedbetweenpacket 1 andpacket

\
. For theMPEG-

2 codec,�
�ER
! canbeestimatedasfollows: let gW�cRihWj
k \
, the

averagenumberof slicesaffectedby R consecutive packet lossesis�
�ERU!��8a \Xl 4\ R\ )nm04o� 4\&pXq R\ )N4 r�s
if gt�9H , and�
�ERU!u�Xa \ l \ �Pgo)N4\ v R\-wx) gy�z4\ q v R\xw-)N4 r s
if g&{X4 , which in bothcasessimplifiesto a linearfunctionof R :�
�ERU!u�Xau�7RW) \ �z4�! (7)

For theH.264codec,themappingis simply�
�ERU!u�Xa R|I (8)

Table1: LossstatisticsandMSEfor Foreman: Bernoulli loss.
Format } ~ � � _ � (MPEG-2) � (H.264)
QCIF 2 1.034 1 0.038 43.19 62.59
QCIF 1 1.041 2 0.038 85.53 54.67
CIF 2 1.037 4 0.039 184.13 42.78
CIF 1 1.038 8 0.038 402.61 39.10

Table 2: LossstatisticsandMSE for Foreman: burstyloss.
Format } ~ � � _ � (MPEG-2) � (H.264)
QCIF 2 1.724 1 0.023 53.80 78.24
QCIF 1 2.639 2 0.015 75.58 73.87
CIF 2 3.860 4 0.010 99.43 60.88
CIF 1 5.448 8 0.007 109.65 60.51

sinceeachpacketlosscausesthelossof a slices.CombiningEqs.(6),
(7) and(8), theoverall distortionof a videosequencecanbemod-
eledas:5�^� aK� R�) \ ��4�!�Z*_ \ : ���

MPEG-2codeca RDZ*_ \ : ���
H.264/AVC codec

(9)

Note that the above modelcapturesthe effect on video distortion
of (1) the packet losspatternsasexpressedby R and Z*_ , (2) the
compressedbit rateasexpressedby the requirednumberof slices
perframe(givenby a \ ), (3) thepacketizationstrategy asexpressed
by

\
, and (4) the video codecand loss recovery mechanismsas

capturedfor MPEG-2andH.264.
To verify this model,we simulateda scenarioinvolving a sin-

gle loss event within the packet stream(thus, Z _ in Eq.(9) is a
fixedvalue),andvariedthe lengthof theresultinglossevent from
1 to 20 packetsover different runsof the simulation. The tested
videosequenceForemancontains300framesandis transmittedin
two videoformatscorrespondingto differentqualitiesanddifferent
transmissionrates.Specifically, weusethestandardQCIFandCIF
video formatsof 144x176and288x352pixels/frame,codedat bit
ratesof 100 Kbps and500 Kbps, respectively. EachQCIF frame
containsd slices,while eachCIF framecontainsf slices,andwe
transmiteachslicein aseparatepacket. Theframerateis 30frames
persecond,for both formats.We encodethevideousingboth the
MPEG-2andthe H.264codecs.As shown in Fig. 1, the average
distortionis indeedwell modeledby a linearfunctionof R (which
in this caseequalsR ), aspredictedby Eq. (9). Thedifferencebe-
tweenthetwo codecsis alsoroughlyconstant,which againagrees
with Eq. (9) given that the valuesof : �

for the two codecsare
close.

2.3 The impact of packetization
As mentionedearlier, how video datais packetized is another

importantfactor that influenceshow video quality is affectedby
packet losses.Theeffectsof packetizationaretwo-fold. First, the
numbera of slicescontainedin a packet, togetherwith thenumber\

of packetsusedfor transmittingaframe,affect themappingfrom
packet lossesto slice losses,i.e., �
�ERU! , asshown in Section2.2.
Second,video streamswith differentvaluesof

\
samplenetwork

pathsdifferently, andcan, therefore,experiencedifferentpacket-
level lossprocesseseven whentransmittedon thesamepath. For
instance,videostreamsconfiguredwith larger

\
tendto seelonger

packet lossburststhanthosewith smaller
\

. This effect hasbeen
analyzedin ourearlierwork [7].

To studytheimpactof packetization,werely onanetwork emu-
latorto simulatepathperformancevariationsusingaMarkov model
with two states[7]. Thetwo statesof apathareassociatedwith loss
probability � C and � � , respectively. Furthermore,the time that the



pathstaysin eachstateis exponentiallydistributedwith mean � C
and � � . By varying the valuesof the above parameters,we can
simulatechangesnot only in the packet loss rate,but also in the
lossburstiness.We againusethe Foremanvideo sequencecoded
usingboth MPEG-2andH.264codecs,in QCIF andCIF formats
whichwerecallcorrespondto 2 and8 slices,respectively. Wethen
generatea rangeof packetizedvideostreamsconfiguredwith dif-
ferenttransmissionparameters,i.e.,combinationof a and

\
values

thatdeterminehow slicesarepackedinto packets,which we trans-
mit simultaneouslythroughthenetwork emulator. We measurethe
relatedloss statistics,i.e., Z*_ and R , experiencedby eachvideo
stream,aswell astheMSEof thedecodedframesequences.

Table1 and2 summarizethe resultsof two simulations.In Ta-
ble 1, we simulatea pathusinga Bernoulli model. The average
lossrateis configuredas4%(i.e., � C �N� � �9H%' H�� ). In Table2, we
simulatebursty lossesby having � C ��H and � � ��H%' � , while still
keepingtheaveragelossrateequalto 4% by selectingappropriate
valuesfor � C and � � . Fromthesimulationresults,we observe that
packetization, specifically the numberof packets per frame (

\
),

hasan importantimpacton video quality. As mentionedearlier,
this is becausedifferentpacketizationschemesresult in different
mappingsfrom packet lossesto slicelosses:� The performanceof the MPEG-2 codecdegradesas

\
in-

creases.This is becausea packet lossaffectsnot only the
slicesin thatpacket, but alsoall theotherslicesin thesame
frame. Accordingto Eq. (7), this effect becomesmorepro-
nouncedas

\
increases.This can be observed from both

Tables1 and2.� For H.264,varying
\

hasonly a minor effect on videoqual-
ity, asshown in Tables1 and2. This is becausethemapping
from packet lossesto slicelossesis independentof

\
.

Theeffect of losspatternsis alsodifferentacrosscodecs:� ForH.264,burstylossestypicallydegradeitserror-concealing
capability. Thisis becausewith isolatedlosses,it is easierfor
the decoderto extrapolatethe lost slicesfrom the received
ones.Moreover, losingconsecutive slicescausesgreaterdis-
tortion thanthedistortioncausedby losingthesamenumber
of slicesindividually. This is becauseof thecrosscorrelation
betweentheerrorsignalsin differentframeswhenlossesare
bursty[2].� For MPEG-2,thelattereffectstill exists,but is dominatedby
the multiplicative effect that its frame-basederror conceal-
mentmechanismhason losses.Specifically, a singlepacket
losscan translateinto a much larger numberof lost slices,
i.e.,all theslicesof thecorrespondingframe,sothatatequal
lossrateit is betterto concentrateall the lost packetsin the
sameframe.As a result,unlike H.264,MPEG-2videoqual-
ity is betterin the presenceof bursty lossesthanBernoulli
losses.Theonly exceptionis when

\ ��4 , sincein this case
eachframeis encapsulatedin a singlepacket, so that each
lost packet correspondsto a lost frame. Hence,the cross-
correlationof errorsignalsin differentframesbecomesagain
thedominantfactorwhenlossesarebursty.

By comparingthe datain the above tablesandEq. (9), we can
seethatourmodelcanindeedcharacterizethegeneralrelationsbe-
tweenpacket lossesandvideodistortions.However, our ability to
estimatevideoquality is predicatedon anaccurateestimateof : �
in Eq. (9). As mentionedearlier, this canbe doneby monitoring
losseventsandmeasuringtheresultingvalueof : �

. This is, how-
ever, challengingin practicebecausethelossprocessonapathmay
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Figure 2: Thevalueof : �
for slicesin QCIF videoForemanand

Mother& Daughter. Eachframeis segmentedinto 2 slices.Both
videosequencesareencodedwith anINTRA periodof 15 frames.
Theresultsfor 50 frames(100slices)areshown in theplot.

not bestationary. As a result,theestimatedvalueof : �
will often

varyovertimeaspathconditionschange.For instance,curvefitting
thedatain Table1 andTable2 yieldsvery differentvaluesfor : �

.
Fromthedatain Table1, theQCIF videoencodedwith theH.264
codecandusing ay��d and

\ ��4 hasa valueof : �
of ��f�d , while

we have : � ������f from thecorrespondingdatain Table2. This
indicatesthat relying on Eq. (9) for gaugingvideoquality without
continuouslyupdatingour estimatesof : �

mayresultin relatively
pooraccuracy of ourqualityestimates.

2.4 The impact of videocharacteristics
In ourmodel, : � �NQ � �G is a factorthatis afunctionof boththe

implementationof thedecoderandvideocharacteristics.As shown
in [5], the valueof � �G dependson thepower spectrumdensityof
theerrorsignalcausedby a slice loss,andon thestrengthof loop
filtering in thedecoder[5]. Therefore,it is importantto understand
how video characteristicsaffect the resultingvideo quality under
givenlossconditions.

In general,video with higher motion makes it more difficult
to infer the missing data and therebyconcealthe losses. Con-
sequently, the distortion causedby a slice loss also tendsto be
higher for high-motionvideo. For example,Figure 2 shows the
total distortioncausedby losingeachslice( : �

) in videoForeman
andMother & Daughter. It is obvious that : �

is typically higher
for Foremanthanfor Mother & Daughter, asthe former contains
highermotions.It canalsobeobservedthat : �

alsovarieswithin
a videosequence.For instance,theerrorsignalcausedby theloss
of anI-slice(e.g.,slicenumber15,45,and75) is strongerthanthat
causedby the loss of a P-slice. Furthermore,slicesin the same
framemay alsohave differentimportancein videodecoding.For
instance,in theMother& Daughtervideo,losingthefirst slicein a
frametypically causesmoredistortionthanlosingthesecondslice,
sincethereis typically moremotionin thetophalf of eachframe.

Theseobservationsclearly indicatethat videoquality estimates
dependon the specificvideocharacteristics. Hence,on the same
path,differentvideosmaydisplaydifferentqualitiesfor thesame
losspattern. Moreover, for the samevideo sequence,even if the
pathconditionremainsunchanged,itsqualitycouldvarywith scene
changes.In orderto estimatetheabsolutevideoquality on a path,
weneedto dynamicallyestimatetheimpactof videocharacteristics
( : �

), which is nontrivial [2] andonly feasiblewhenonecanparse
or decodethetransmittedvideobit streamsoffline. For somereal-
time applications,suchas video conferencing,this processingis
very difficult. Therefore,it is desirableto developa videoquality
metricthatis independentof videocharacteristics.
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Figure 3: The robustnessof the rPSNRmetric in video quality
estimation:Foreman, H.264coding(left), andMother& Daughter,
MPEG-2coding(right).

3. ESTIMATING PATH QUALITY
Using themodeldevelopedin theprevious section,theaverage

distortion( : ) in a videosequencecanbeestimated.Thus,we can
furthercomputethevideoquality on a pathusingtheconventional
measureof PeakSignal-to-NoiseRatio(PSNR),i.e.,

PSNR ��4�HK��j@� � C d@�@� �: ' (10)

However, asdiscussed,estimatingtheabsolutevalueof PSNRre-
quiresnot only loss statisticsand applicationconfigurations,but
theknowledgeof contentcharacteristics,i.e., : �

is neededto de-
termine : . In this section,we introducea relativequality metric,
rPSNR,thatcanbeevaluatedwithoutestimating: �

, yetstill quan-
tifiesvideoqualityvariationsonnetwork paths.

3.1 Relativevideoquality metric
Thefirst stepis to definea referencenetwork paththatdelivers

pre-definedlossperformance,i.e., R���R C and Z*_]��Z C_ . This
would typically bebasedon somelower boundof thepathquality
thatanetwork serviceproviderexpectsto offer its customers.Con-
sidernext thatthelossperformanceon thepathis actually R��XRD�
and Z*_t��Z �_ . Therelative pathquality, or rPSNR,is thendefined
as the differencebetweenthe actualPSNRand the target PSNR
(thePSNRof thetransmittedvideoon thereferencepath).In other
words, rPSNRmeasureshow far we are, quality-wise, from the
quality targetof thereferencepath. Let :��c: � representtheac-
tual video distortionon the currentpath,and :;��: C the video
distortionon thereferencepath.Then,rPSNRis givenby

rPSNR � 4�H|��j@� � C d@��� �: � �z4�HK��j@� � C d@�@� �: C (11)

� �� � 4�H|��j@� � C � V@  LD¡ ? � !$¢  £¤ V@¥ LU¡ ? �,¦ ¢ ¥£ �
MPEG-24�HK�§j�� � C V�  ¢  £V�¥ ¢ ¥£ �
H.264/AVC

Fromtheaboveequation,wecanseethattherelativequalitycanbe
estimatedusingonly thevaluesof R C , Z C , \ , R0� , and Zt�_ . Thequan-
tities R C and Z C arepredefined,thevalueof

\
is easyto determine

basedon applicationconfigurations.Therefore,it only remainsto
estimateR and Z �_ that representthe lossprocessseenby individ-
ual video streams.The mostaccuratemeansfor obtainingthese
valuesis throughmeasurement.For instance,thenetwork provider
caninstall monitoringsoftwareat theclient to collect therequired
lossstatistics.If it is infeasibleto directlymonitorindividualvideo
streams,probing-basedmethodscanbeusedto infer the lossper-
formanceexperiencedby differentvideostreams.For example,in
[7], we developedan approachthat canbe usedfor this purpose.
We assumein this paperthat accurateestimatesof

\
, R � , and Z �_

areavailablefor videoqualityestimation.
Weusesimulationsto demonstratetherobustnessof rPSNRasa
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Figure 4: Theestimationerror for rPSNRasa functionof packet
lossrateandaveragelossburstlength( R ).

metricthatrepresentspathqualityunderdifferentlosspatterns.We
simulatepathperformancevariationsusingaGilbertmodel[1], and
simulateda total of 340 distinct lossprocesses.The averageloss
rateon the simulatedpathsrangesfrom 1% to 15%. The bursti-
nessof the loss processwas also varied for eachloss rate. We
useda Bernoulli processwith a loss rateof 1% asour reference
path.For eachlossmodel,includingthereferencemodel,we sim-
ulatedthetransmissionof 3000framesandmeasuredthePSNRof
eachdecodedframesequence.Thisallowsusto computetheexact
value of rPSNRfor eachlossmodel, which we thencompareto
thevalueobtainedfrom Eq.(11)usingthemeasuredlossstatistics.
Thiscomparisonallowsusto assesstherobustnessandaccuracy of
theproposedapproachin estimatingrelative videoquality.

In Fig. 3, weshow theresultsof theabove comparisonfor QCIF
versionsof thevideosForeman(H.264coding)andMother& Daugh-
ter (MPEG-2coding).Eachencodedframeis encapsulatedin two
packets ( a¨��4@I \ ��d ), andthe framerateis 30 frames/second.
For mostof thesimulatedlossmodels,theestimatedrPSNRis very
closeto the actualvalue. We also repeatedthe simulationusing
videosin CIF formatandwith otherapplicationconfigurations,the
resultsconsistentlyshowed that our estimatesfor rPSNRcan in-
deedcapturevideoqualityundervariouslossconditions.

In Fig. 4, we plot therPSNRestimationerror (theestimatedrP-
SNRminusthemeasuredrPSNR)asa functionof packet lossrate
andaveragelossburst length. Theplot is basedon thesimulation
datafor ForemanandH.264coding. As shown in the figure, rP-
SNRestimationusingEq.(11)is moreaccuratewhenthe lossrate
is relatively low. For instance,theaverageestimationerror is 0.64
dB whenthe lossrateis 1%, while this valueis 0.78dB whenthe
lossrateis 15%. This is becausewhenpacket lossrateincreases,
videodistortionscausedby differentlosseventsbecomelessinde-
pendent,makingthemodelingbehindEq. (6) lessaccurate.It can
alsobeobserved thatthevarianceof theestimationerror is bigger
when loss rate is low. In thesecases,the simulatedlossprocess
consistsof very few lossevents,whichincreasesthelikelihoodthat
thelosseventsaffectslices/framesof differentimportanceto video
decoding.Thefigurealsoshows thatour estimateis lessaccurate
when lossesare bursty. This is mainly due to the simplification
in the loss-distortionmodeldiscussedin Section2.3. In anactual
network, we expectthatpacket lossrateswould be relatively low
(typically lessthan10%),andtheactuallossburstinessat thetime
scaleof an individual videostreamshouldnot beexcessive. As a
result,we expectour modelto generatereasonablyaccuratereal-
time videoquality estimates.
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Figure5: Estimatingvideoquality in rPSNRonthetestedpath.Referencepathcondition:1%Bernoulli loss.(a)MPEG-2codec,10second
estimationinterval (left); (b) H.264codec,10secondestimationinterval (middle);(c) H.264codec,100secondestimationinterval (right).

3.2 Experimental validations
To further validateour methodfor pathquality estimation,we

conductedextensive experimentsonrealnetwork pathsoverwhich
for eachtransmittedvideostreamwe recordedtheresultingpacket
trace.The traceswereusedto reconstructthevideosequencethat
would have actuallybeenseenby the user. The rPSNRwasthen
computedfrom Eq. (11) usingthelossstatisticsmeasuredon each
path,andcomparedto the rPSNRobtaineddirectly from the de-
codedvideo sequences.Figs.5(a) and(b) reporton this compar-
ison for the QCIF video Highway, usingthe MPEG-2codecand
theH.264codec,respectively. Thepathusedin theexperimentsof
Fig. 5 wasbetweentheUniversityof MinnesotaandtheUniversity
of Pennsylvania,andwe focusedon a periodof time duringwhich
thepathexperiencedqualityvariations.TherPSNRestimationand
measurementwereperformedevery 4�H secs.As shown in thefig-
ure, theproposedmethodgeneratesreasonablyaccurateestimates
of qualityvariationsof thevideotransmittedon thepath.

Fromthederivation of our loss-distortionmodel,it is clearthat
therPSNRestimateis moreaccuratewhentwo conditionsaremet.
First,whenthedistributionof losseson thepathis stationary. Sec-
ond, when the characteristicsof the video contentare relatively
constant.Clearly, thesetwo conditionsarenot alwayssatisfiedin
practice.This is evidentfrom Figs.5(a)(b)whichdisplayinstances
wheretheactualrPSNRexhibit significantfluctuationsthat trans-
lateinto greaterdifferenceswith theestimatedvalue.Thisbehavior
is partially causedby therelatively shortdurationof theestimation
interval ( 4 H secsor ª@H�H frames). The small numberof framesor
slicesin eachinterval makesit morelikely thatdifferentsetsareof
different importancewhenit comesto video quality. This would
thentranslateinto differentrPSNRvaluesdependingonwhichsets
areaffectedby lossesduringtheexperiments.BecausetherPSNR
estimatescomputedbasedonourmodelrepresenttheaveragequal-
ity differencebetweenthevideotransmittedon theactualpathand
onetransmittedon thereferencepath,theactualrPSNRvaluesfor
a specificpacket losspatternafflicting a specificsetof framesor
slicesmay deviate above or below the averagerPSNRestimates.
Nonetheless,the predictedrPSNRvaluestrack the actualrPSNR
valuesasshown in the Figs.5. Oneoption for further improving
the accuracy is to increasethedurationof the estimationinterval,
althoughincreasingit too muchwould obviously affect the real-
timeresponsivenessof thevideoqualityestimates.Fig. 5(c)shows
for thesameexperimentasthatof Figs.5(a)(b),the impacton the
accuracy of rPSNRestimatesof increasingtheestimationinterval
to 4 H@H secs( ª@H�H@H frames),which we believe representsa reason-
ablecompromisebetweenresponsivenessandimproved accuracy.
Thefigureshowsaclearimprovementin accuracy. Similarfindings
wereobservedacrossseveralotherexperiments.

4. CONCLUSION
This paperintroducedanapproachfor on-lineestimationof the

quality of video transmittedover network paths. Our goal wasto
devisea lightweightsolutionthatwouldallow thelarge-scalemon-
itoring of video quality using only simple measurementsof net-
work performance.In particular, we wantedto avoid solutionsthat
requiredetailedknowledgeof video characteristics.In that con-
text, our first contribution is thedevelopementof a loss-distortion
modelthat accountsfor the impactof variousnetwork-dependent
and application-specificfactorson the quality of decodedvideo.
Our secondcontribution is in usingthis modelto definea relative
video quality metric, rPSNR,that canbe evaluatedwithout pars-
ing or decodingthetransmittedvideobit streamsandalsowithout
requiringknowledgeof : �

– therebyleadingto significantreduc-
tionsin complexity. Therobustnessandreasonableaccuracy of our
rPSNRestimatewerethendemonstratedthrougha broadrangeof
simulationsandexperimentsconductedover realnetworks.
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