
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

December 1971

An Approach to Data Description and Conversion An Approach to Data Description and Conversion

Diane P. Smith
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Diane P. Smith, "An Approach to Data Description and Conversion", . December 1971.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-72-20.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/831
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F831&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/831
mailto:repository@pobox.upenn.edu

An Approach to Data Description and Conversion An Approach to Data Description and Conversion

Abstract Abstract
Currently, the structure of stored data is determined implicitly by the software which accesses and
processes it. This data structuring technology has given rise to two outstanding problems in data
processing. First, there is the communication of the exact structure of data to users and machines, and
secondly, the interchange of the data itself.

This work contributed to overcoming these problems by developing a technique for describing the
structure of data explicitly and independently of machines and software. This aim is reflected in the
following objectives:

1) To understand data structures by developing a model which not only characterizes current data
organizational techniques, but also provides a framework within which new data structures can be
defined.

2) To use this model to develop a language which can explicitly describe the organization of data.

3) To use this model to study how data can be converted from one structure to another, with a view
towards developing a method for describing data conversions.

This model unifies the diverse area of data structures by including the record, file and storage
organizations of data. Furthermore, the model clearly separates at each level the conceptual part, which
is the logical structure imposed by a user, from the implementation part, which is the method by which the
logical structure is I encoded as a binary representation. This separation leads to n straightforward
mapping of a file onto storage. From an analysis of the state-of-the-art in data organization, it is shown
that the model can express not only the data structures of current systems, but also certain useful
generalizations which might well be produced by future systems.

The model treats records as hierarchies of data items. These hierarchies are expressed by production
systems based on a generalized notion of attribute-value pairs. Files are treated as graphs whose nodes
are records. The connections between the nodes are expressed using a powerful production system
which generates criteria for determining when any two records are to be linked. The structure of storage
is generalized as a hierarchy since this structure is common to all storage media. The mapping of files
onto storage is expressed in terms of rules for distributing the records of the file within the slots provided
by the storage structure.

The language, called Generalized Data Description Language (GDDL) is a realization of the model, and
thus possesses all its capabilities . In particular, the language can describe the implementation of any
aspect of a file as being dependent on any other aspect. The language is presented in an appendix in the
form of a user's manual.

Data conversion is studied in terms of transforming data in one structure to another, where both
structures are expressed in the model. This study shows that to fully specify a conversion the relationship
between the components of the two structures must be specified. In certain cases, such as the
reorganization of a file, this relationship can be very elaborate. A method is developed for specifying such
relationships, and a corresponding capability is built into GDDL. Thus, WDL has the ability not only to fully
describe data structures, but also to specify data conversion.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-

CIS-72-20.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/831

https://repository.upenn.edu/cis_reports/831

University of Pennsylvania
THE MOORE SCHOOL OF EI;ECTRICAL ENGINEZRING

ECHNICAL REPORT

AN APPROACH TO DATA DESCRIPTION

AND CONVERSION

by

Diane Pirog Smith

Project Supervisor
Noah S. Prywes

December 1971

Prepared f o r the
Off i ce of Naval Hesearch

Information Systems
Arlington, Va. 22217

under

Contract ~00014-67-A-0216-0007
Project No. 049-272

Reproduction i n whole o r i n part i s permitted for
any purpose of the United S ta tes Government.

Moore School Heport No. 72-20

Spctirity C l a s s i f i c a t i o n

I DOCUMENTCONTROLDATA- R L D 1

I AN APPRWCH TO DAT4 DESCRIPTION AND CONVERSION I

(Security c laaai l i ra l ion of t i t lo, body o f abstract and indexing ennolalion must be enlered when the overall report i s c lassi f ied)

4 O E S C H l P T l V P N O T E S (5 p O of repor1 and.inclueive dalea)

Technical Report
5 . A U T H O R I S) (Firs1 name. middle In i t ia l , l aa t name)

Diane Pirog Smith

r . O R I G I N A T I N G A C T I V I T Y (C0rp01010 author)

University of Pennsylvania
The Moore School of E lec t r i ca l Engineering
Philadelphia, Pa. 19104

-. --

6 . R E P O R T D A T E

December 1971
Ba. C O N T R A C T OR G R A N T NO.

~00014-67-A-0216-0007
b. P R O J E C T N O .

NR 049-272
C .

2.. R E P O R T S E C U R I T Y C L A ~ S I F I C A T I O N

UNCLASSIFIED
zb. GROUP

d.

10. D I S T R I B U T I O N S T A T E M E N T

3 H t P O H T 1 1 1 1 I.

7a. T O T A L N O . O F P A C E S 17b. NO. O F R E F S

328 20
Pa. O R I G I N A T O R ' S R E P O R T N U M B E R I S)

Moore School Report No. 72-20

9b. O T H E R R E P O R T NO(S) (Any other numbera that may be assigned
lhim mporl)

Reproduction i n whole o r i n par t i s permitted f o r any purpose of the United
S ta tes Government.

Office of Naval Research
Information Systems

Currently, the s t ructure of stored data i s determined implic i t ly by the software
which accesses and processes it. This data s t ructur ing technology has given r i s e
t o two outstanding problems i n data processing. F i r s t , there i s the c o m n i c a t i o n
of the exact s t ructure of data t o users and machines, and secondly, the interchange
of the data i tself .

This work contribute@ t o overcoming these problems by developing 8 t echnaue
f o r describing the s t ructure of data exp l i c i t l y and independently of machines and
software. This aim i s ref lected i n the following objectives:

1) To understand data s t ructures by developing a model which not ordy
characterizes current data organizational techniques, but a l so provides
a framework within which new data s t ructures can be defineti.

2) To use t h i s model t o develop a language which can exp l i c i t l y describe
the organization of data.

3) To use t h i s model t o study how data can be converted from one s t ructure
t o another, with a view towards developing a method f o r describirle; ciata
conversions.

n ~ e model un i f ies the diverse area of data s t ructures by inc:ludirlg the record,
f i l e and storage organizations of data. Furthermore, the model c lear ly separates
a t each l eve l the conceptual par t , which is the log ica l s t ructure imposed by a user.,
from the implementation par t , which is the method by wl.llch the logical ctructur-c is I
errcoded a s a binary reprecentat ion. Thio oeparation leads t o n straigti tf orp&&iIIUeLi

1473 (PAGE 1) DD NOV e s

Security C l a s s i f i c a t i o n
A - 3 1 4 0 8

Securltv Clarrlflcrllon

S / N 0 1 0 1 - 0 0 7 - 6 8 2 1 Security Classification A - 3 1 4 0 9

DD FORM 1473

Abst rac t (continued)

mapping of a f i l e onto s torage . From an ana lys i s of t h e s ta te-of- the-ar t i n
da ta organizat ion, it i s shown that t h e model can express not only t h e data
s t r u c t u r e s of current systems, but a l s o c e r t a i n use fu l genera l iza t ions
which might we l l be produced by f u t u r e systems.

The model t r e a t s records a s h ie ra rch ies of da ta items. These h ie ra r -
chies a r e expressed by production systems based on a general ized not ion of a t h r i -
tu te-value p a i r s . F i l e s a r e t r e a t e d a s graphs whose nodes a r e records. The
r:onnections between t h e nodes a r e expressed using a powerful productiorl system
which generates c r i t e r i a f o r determining when any two records a r e t o be l inked.
The s t r u c t u r e of s torage i s general ized a s a hierarchy s ince t h i s s t r u c t u r e i s
common t o a l l s torage media. The mapping of f i l e s onto storage is expressed i n
terms of r u l e s f o r d i s t r i b u t i n g t h e records of t h e f i l e within t h e s l o t s pro-
vided by the s torage s t r u c t u r e .

The language, c a l l e d Generalized Data Descript ion Language (GDDL) is
a r e a l i z a t i o n of t h e model, and thus possesses a l l i t s c a p a b i l i t i e s . I n p a r t i c u l a r ,
t h e language can descr ibe t h e implementation of any aspect of a f i l e a s being
dependent on any o the r aspect . The language i s presented i n an appendix i n t h e
form of a u s e r ' s manual.

Data conversion i s studied i n terms of transforming da ta i n one s t ~ u c t u r e
- t o another, where both s t r u c t u r e s a r e expressed i n t h e model. This study shows

t h a t t o f u l l y specify a conversion t h e re la t ionsh ip between t h e components of t h e
two s t r u c t u r e s r rmst be speci f ied . I n c e r t a i n cases, such a s t h e reorganizat ion
of a f i l e , t h i s r e la t ionsh ip can be very e labora te . A method i s developed f o r
specifying such re la t ionsh ips , and a corresponding capab i l i ty i s b u i l t i n t o GDDL.
Thus, WDL has t h e a b i l i t y not only t o f u l l y describe da ta s t ruc tu res , but a l s o
t o specify data conversion.

I would l i k e t o express q y grat i tude t o my two supervisors:

D r . David K. Hsiao who f i r s t introduced me t o t h i s a rea of research and

who provided invaluable help and careful cr i t ic ism, and D r . Grace Murray

Hopper whose conviction of the importance of the topic provided the

encouragement I needed and whose vas t experience i n the area helped me

t o recognize many of the c ruc ia l aspects of t he problem. I would a l so

l i k e t o thank D r . Noah S. Prywes and D r . James Emery f o r t h e i r support

and guidance.

The Ford Foundation and the U.S. Army Electronics Command, Avionics

Project , supported me a t various times during my graduate s tudies . I

a m par t icu la r ly gra te fu l t o the Information Systems Branch of the Office

of Naval Research f o r supporting t h i s research under contract ~~00014-

67-A-0216-0007.

INDM

access method 4, 32, 158-159

i ~ c c e c s paths 107

d i r e c t 85

implementa t i o n 8 3

length of 86, 87

addressing scheme 109, 120, 125

alignment s e t 120, 122, 125

assembly languages 21

assoc ia t ion l i s t 12, 21, 128

d e f i n i t i o n 139

examples 141, 144

a t t r i b u t e 5'7, 58, 111

data item a t t r i b u t e 64

encoding 62, 67

group a t t r i b u t e 64

a t t r i b u t e marker 62, 67, 73

bas ic block 108, 110, 116, 124

block 108, 124

block riame 110, 116, 124

c torage Itern block name 111

ch:~ rav tc r code 5 9

COI3OL 9, 2'7-31, 36, 71, 296

INDEX (continued)

COD AS^ 6, 44-48

compound value 63, 64

conceptual part 7, 8

file structure 84

record structure 65

storage structure 110

connection set number 96, 105

conversion (see data conversion)

criteria

conversion selection 133-140

file 87

value 32

criterion production system 88-90, 102, 105, 133, 134, 140

data base management systems 39

data conversion 3, 5, 128-158, 160

definition 129

process 148-155

data description language 2, 156-157

applications 3, 4

data items 58, 111

data structure 4, 7-12, 157

data type 61, 77

delimiter 60

direct access path 85

INDM (continued)

embedded pointers 82, 83

encoding 95

example 98

encoding

of a t t r i b u t e s 62, 67

of f i l e s t ructures 95

of record s t ructures 67

of storage items and storage s t ructures 116

of values 5 9

encoding method 96

exp l i c i t description 2

f i e l d 71

f i e l d type 7 1

f i l e 79

f i l e re la t ion 85, 95

def in i t ion 85

f i l e s t ruc ture 7, 84

def in i t ion 88

encoding 35

FOliTRAN 23-27

group 6 3

group type 70

head record 85

v i i

INDEX (continued)

higher-level programming languages 36

implicit specifications 2

labe ls 108, 116, 121, 124

length

basic block 116, 121, 124

path 86, 87 96, 105

value 60, 72, 77

length uniformity

basic block 116, 121, 124

value 60, 72, 77

l ink number 96, 99, 100, 105

linkage uniformity 96, 99, 100, 105

l is t structure 85

machine languages 15

occurrence

group 68, 73, 78

sssi 117, 121, 124

operating system 18

order

group 68, 73, 78

S S S ~ 117, 121, 124

path (see access path)

path length 96, 105

v i i l

INDEX (continued)

pointer form 120, 125

pointer in te rpre ta t ion ru les n8, 123

pointer mode 120, 125

pointer t ab le 82, 83

encoding 95, 96

example 100

pointer type 120, 125

record 63

record d i s t r ibu t ion r a t i o 118~ 121, 124

record posit ioning ru les l l O ? 118, 124-128

record s p l i t s e t 119, 121, 124

record s t ruc ture 7, 56

def in i t ion 65

encoding 67

record type 70

repe t i t ion number

group 68, 78

~ s s i 117, 124

repe t i t ion order 69, 73, 78

repet i t i o n uniformity

group 69, 78

sssi 117, 121, 124

r ing s t ruc ture 86

ix

INDEX (continued)

sequencing position 82

sequential encoding 95

example 98

source f i l e 129

SSDL 6

csci (see structured se t of storage items)

s t a r t record oet 119) 121, 125

storage c e l l 110

storage item 111

storage structure 7, 108, 112, 116

structured se t of storage i tens (s s s i) 111

subordinate group 64

t a i l record 85

target f i l e 129

t r ee structure 85

value 58, 59, 111

compound value 63, 64, 111

value alignment 61, 77

value c r i t e r i a 62, 69, 77

CHAPTER 1 INTRODUCTION

1.1 Background and Objectives

1.2 The Development of the Models, the
Design of the Language, and the
Study of Conversion

1 . 3 Organization of the lieport

CHAPTER 2 M I S T I N G RAW STRUCTURES AND M'W DESCRIPTION
LANGUAGES

2 .1 Introduction

2.2 Data Structures i n Machine Languages

2.3 Data Structures i n Early Operating Systems

2.4 Data Structures i n Assembly Languages

2.5 Data Structures i n Early Higher-Level
Programming Languages

2.6 Data Structures i n Third-Generation
Operating Systems

2.7 Data Structures i n Current Versions
of Higher-Level Programming Languages

2.8 Data Structures i n Data Base Management
Systems

2.9 Die Data De~cript ior i Language of the
COIASYL Data Base Task Croup

2.10 Summary

Page

1

1

6

3.1 Introduction

!MILE OF CON!JENTS (continued)

3.2 A Model of Record Structures

3.2.1 The Model of Data Items

3.2.1.1 The Concept of Data Items

3.2.1.2 Encoding Values

3.2.1.3 Encoding Attributes

3.2.2 The Model of Records

3.2.2.1 The Conceptual Record Struc-
ture

3.2.2.2 Encoding the Record Struc-
ture

3.2.3 The Specification of the Encoding
Characteristics

3.3 Interpretation of Common Data Processing
Concepts in Terms of the Model of Record
Structures

3.4 An Application of the Model of Record
Structures

3.5 The Completeness and Generality of the
Model

3.6 Tne Relationship Between the Model and
GDDL

3.7 Demonstrations of GDDL ' s Completeneos

CHAPTER 4 FILE DESCRIPTTON

4.1 Introduction

4.2 A Model of File Structures

4.2.1 The Conceptual File Structure

4.2.2 Encoding the File Structure

xii

Page

56

58

58

59

62

63

BIBLE OF CONTENE (continued)

4.3 Applications of the Model of File Structures

4.4 The Completeness and Generality of the Model

4.5 The Relationship Between the Model and GDDL

4.6 Demonstrations of GDDL ' s Completeness

CHAPTER 5 STORAGE DESCRIPTION

5.1 Introduction

5.2 A Model of Storage Structures

5.2.1 The Conceptual Structure of Storage

5.2.2 Encoding Storage Items and Storage
Structure

5 .2 .3 Record Positioning and Pointer
Interpretation Rules

5.3 An Application of the Model of Storage
Structures

5.4 The Completeness and Generality of the
Mode 1

5.5 The Relation~hip Between the Model and
GDDL

5 -6 Medium Dependent Encoding Characteris-
tics

5.7 Demonstrations of GDDL's Completeness

CHAPTER 6 mm CONVERSION

6.1 Introduction

6.2 The Concept of the Association List

6 . 3 A Model of the fl~~ociation List

Page

98

101

104

106

xlii

'2UI;E OF CONTENTS (continued)

Page

6.4 Applications of the Model of the Association
L i s t

6.5 The Relationship between the Model and GDDL

6.6 m e Conversion Process

CHAPTER 7 CONCLUDING REMARKS

APPENDIX A REFERENCE MANUAL FOR GDDL

APPENDIX B EXAMPLES OF GDDL DESCRIPTIONS

APPENDIX C RELATIONSHIP OF GDDL TO COBOL

xiv

LlST OF FIGURES
Page

Figure 1-1. The Components of a Data Structure and
t h e i r Interre la t ionships

Figure 2-1. IBM 7040 Data Description Statements

2-1, a . The IBM 7040 $PILE Statement
2-1, b . The IBM 7040 $LABEL Statement

Figure 2-2. The ANSI COBOL Statement f o r Describing
a Data Item o r a Group i n a COBOL Record

Figure 2-3. The ANSI COBOL Statement f o r Describing
a COBOL F i l e

Figure 2-4. The ANSI COBOI; Statement f o r Deccribing
the Storage Convention of a COBOL F i l e

Figure 2-5. Enhanced COBOL Description Statements

a . The COBOL Statement f o r Declaring Data Types
2-5, 2-5' 'b . The COBOL Statement f o r Specifying Repeti t ion

Figure 4-1. Implementation of Access Paths

4-1, a . By Sequencing
4-1, b. By Embedding Pointers
4-1, c. By Using D b l e s of Pointers

Figure 4-2. B i t S t r ing Representation of F i l e Sequen-
t i a l l y Encoded

Figure 4- 3. B i t S t r ing Representation of F i l e Encoded
by Embedded Pointers

Figure 4-4. F i l e Linked by Embedded Pointers

Figure 4-5. B i t S t r ing Representation of F i l e Encoded
by a Pointer Tuble

Figure 4-6. F i l e Linked by a Pointer %b le

F i p r e 5-1. Formatted Tape

Figure 5-2. SSSI f o r Disk F i l e

LIST OF FIGURES (continued)

Figure 5- 3. Bit Str ing Representation of B p e F i l e X 122

Figure 6-1. Simplified Conversion Process 132

Figure 6-2. An Bample of Source Record Selection f o r
the Formation of Target Records 135

Figure 6- 3. The Use of Descriptions and the Association
L i s t i n Data Conversion 150

6-3? a . m e Extraction of Data Items from Source F i l e s
6-3, b . The Formation of Target Data Items from Source

Data Items
6-3, c. Creation of Target F i l e s from Trlrget Data Items

Figure 7-1. The Trichotomy of Information Processing 158

xvi

LIST OF 'IYIBLES

Table 2-1 Summary of Data Representation Characteristics

Table 3-1 The Relationship Between the Model and GDDL

Table 4-1 Characteristics for each Encoding Method

mble 4-2 The Relationship Between the Model and GDDL

Table 5-1 Characteristics Required for Encoding

Table 5-2 The Relationship Between the Model and GDDL

Page

5 0

77

95

105

116

124

xvi i

BIBLI OGRAPHY

Birkhof f , G., Lattice Theory,
Society, 1948.

American Mathematical

(~ h 1968) Chapin, N. , "A Deeper Look a t Data," Proceedings 1968,
ACM National Conference, 1968, pp. 631-638.

(CO 1971) CODASYL Data Base Tbsk Group, Data Base %sk Group Report
t o the CODASYL Programming Language Committee, April 1971.

(CO 1969) CODASYL Systems Committee Technical Report,
p n e r a l i z e d Data Base Manaaement Systems,

(CO 1970) Codd, E.F., "A Relational Model of Data for Large Shared
Data Banks," Comrunications of the ACM, Volume 13, Number 6
June, 1970, PP. 377-387.

(Ga 1970) Galler, B .A. and Perl is , A. J . , A View of Programming
Languages, Addison-Wesley, 1970.

(HS 1970) Hsiao, D. and Harary, F., "A Formal System f o r Information
Retrieval from Files," Communications of the ACM, Vol. 13,
No. 2, February 1970, pp. 67-73.

(HS 1971) Hsiao, D. , "A Generalized Record Organization, - IEEE
Transactions on Computers, December 1971.

(IBM 1965) IBM syst em/360 Operating System, PL/I Language Spec if ica-
t ions, F i l e NO. ~360-29, ~ o r m ~28-6571-4, 1965.

(~ a 1968) Lancaster, F.W., Evaluation of the MEDLARS Demand Search
Service, U.S. Department of Health, Education and Welfare,
Public Health Service, National Library of Medicine, Bethesda,
Maryland, January 1968.

(Ma 1971) Manola, Frank, "An Extended Data Management Faci l i ty fo r a
General Purpose Time Sharing System," M.Sc. Thesis, The
Moore School of Electr ical Engineering, University of
Pennsylvania, 1971.

(Ma 1$9) Marden, E. , "Statement of Need f o r a Data Descriptive
I,anguage," Statement prepared f o r USA Slandard.~ X 3 A d Hoc
Committee, 1969.

(~ e 1967) Mealy, C., "Anotkier Look a t I)ata,If F;JCC, 1$)'1, pp. >?>-1,311.

x v i i i

BIBLIOGRAPHY (continued)

(~ a 1971) Ramirez, J., and Solow, H . , "The Design and Implementation
of the DDL Processor," The Moore School of E lec t r i ca l
Engineering, University of Pennsylvania, work i n progress.

(RCA, 1969) RCA Information Systems, COBOL Reference Manual, 70-00-607,
May 1969.

(HCA, 1970) RCA Time Sharing Operating System, Data Management System
Reference Manual, DJ-001-2-00, June 1970.

(~ a 1969) Sammet, Jean E . , Programming Languages: IIistory and
Fundamentals, Prenkice-Hall, 1969.

(st 1967) Standish, T.A . , "A Data Definition Fac i l i t y f o r Programming
Languages," Carnegie I n s t i t u t e of Technology, 1967.

(SSDL 1970) Storage Structure Definition Language Task Group,
"Storage Structure Definit ion Language, SSDL," Record
of the 1970 ACM SICFIDET Workshop on Data Description and
Access, Rice University, Houston, 1971.

(US 1968) U .S. Navy Programming Languages Group, mdsmen ta l s of
COBOL, NAVSO P-3063, 1968.

CHAPTER 1 INTRODUC!EON

1.1 Background and Objectives

Computer technology i s a f i e l d which has experienced a rapid and

uneven evolution. This evolution has seen computer users develop

techniques and conventions appropriate only t o t h e i r own needs and data

processing environments. This has l ed t o the inabi l i ty of d i f fe rent

user groups t o communicate information about, and t o exchange algorithms

and data effectively. The problem of user and machine dependent

algorithms has received considerable at tent ion, resul t ing i n the develop-

ment of widely accepted and largely machine independent programming

languages such a s ALGOL. However, the severity of the problems of

user and machine dependent data organization has only been realized

*
comparatively recently , and a s yet l i t t l e has been done t o a l lev ia te

t h i s s i tuat ion.

Traditionally data i s organized e i ther by developing special soft-

ware or by specifying i t s structure i n exis t ing programming languages,

operating systems or data management systems. I n e i the r case, the

exact data organization can only be understood by analyzing and inter-

preting several complex and interacting programs wri t ten i n a variety

of languages. For example, t o understand the data structures produced

*
"It has been estimated that the lack of an adequate data descrjp-
t i on language i s costing the Department of Defense alone millions
of dol la rs annually because of the inabi l i ty t o exchange data
effectively." (~ a 1969, pg. 1)

by a par t icu la r COBOL program, it i s necessary t o analyze and in te rpre t

the following programs:

(i) the COBOL program i t s e l f ,

(i i) the COBOL compiler, and

(i i i) the data management system of the machine being used.

This e f f o r t i s necessary because the fac tors which determine the

organization of data a r e implic i t i n the programs and software used

t o process and s t ructure the data. Consequently, such pract ices i n

data organization have hampered not only the communication of data

s t ructures but a l so the interchange of the data i t s e l f . When data is t o

be interchanged, it is necessary t o know f i r s t whether the exis t ing

organization i s compatible with the new software which i s t o use it,

and secondly, how the organization can be converted t o make it com-

pa t ib le when t h i s i s not the case. m e implic i t nature of data organi-

zation can make t h i s an onerous task.

A solution t o these problems of c m i c a t i o n and data in te r -

change i s t o make the organization of data exp l i c i t and i t s understanding

independent of machines and software systems. !Phis can be achieved by

developing a language f o r expl ic i t ly specifying data s t ructures which

i s separate from the languages used t o process that data. 'Ilo under-

stand a data structure, it is then only necessary t o in te rpre t a

~ p e c i f i c a t i o n which i s expressly intended t o communicate data s t ructure

information, ra ther than t o in te rpre t a program one of whose side

e f fec t s i s the s t ructur ing of data.

- 3 -

Such a data description language (ddl) would have many applica-

t ions . One important application i s t o provide a means of c o m n i c a -

t i n g data s t ructures among users. For example, using a ddl a creator

of a data base can describe precisely t o an applications programmer the

exact s t ructure of the data t h a t the programer wants t o use. Jus t a s

ALGOL i s now used t o communicate algorithms so can a ddl be used t o

communicate data s t ructures .

Not only can a ddl be used t o communicate with users, but by

constructing a ddl interpreter , the ddl can be used t o communicate with

machines. Using such an interpreter , a computer could use the informa-

t i o n contained i n any f i l e when it i s provided with a ddl description

f o r t ha t f i l e . Users would then be f r e e t o s t ructure t h e i r data i n

whatever manner they deem appropriate, without being constrained by the

data s t ruc ture specif icat ion f a c i l i t i e s available i n operating systems

and programming languages. Thus, a ddl could be used i n es tabl ishing

automatically the s t ructure of data bases. A data base creator would

provide a ddl description and h i s data t o the in te rpre te r which would

s t ructure the data according t o the description.

Furthermore, we could apply a ddl t o the problem of mechanizing

the conversion of data from a current s tmc tu re t o a new st ructure .

It would only be necessary t o input t o a converter the data, a ddl

description of i t s current s t ructure , a ddl description ol' i t s new

s t ruc ture and a ddl description of the re la t ionship between elements

i n one s t ructure and the other. By InLerpreting these descriptlonc

the converter could output the data i n i t s new st ructure . Thus, the

user i s released from writing special conversion programs. In t h i s

way f i l e s could be interfaced across programming language, operating

system, data management system and hardware barr iers .

A fur ther application is i n the design and operation of data and

data base management systems. For example, a ddl can be used t o create

new data structures which can then be tested f o r effect ive storage u t i -

l i za t ion and other efficiency considerations.

A t t h i s point we should make clear what we mean by the term "data

structure". We use the term t o refer t o the structure of data a s it i s

t o appear on a storage medium, including both the conceptual organiza-

t i on imposed by the user and the implementation of t h i s conceptual organi-

zation. Some research groups, par t icular ly those i n programming lang-

uages (st 1967, ~a 1970), often use data structure t o re fer t o not only

the structure of data (as we use the term) but a l so the access method

by which t h i s data i s used. To these groups a pushdown, f o r example,

i s a data structure, whereas we would say tha t a pushdown is a data

structure together with an access method which controls storage and

r e t r i eva l on a l a s t i n - f i r s t out basis. An access method i s a pro-

gram which i s designed t o store and retr ieve data from a data structure.

It follows from our diccussion above tha t we need t o separate out data

structures from the programs which uce them, so we can describe the

data structures independently and expl ici t ly . Furthermore, any appro-

p r i a t e access method can be designed once the data structure has been

specified.

With t h i s background i n mind, we s t a t e three objectives fo r t h i s

dissertation:

1) To understand data structures by developing a model which

not only characterizes current data organizational techniques,

but a l so provides a framework within which new data structures

can be defined.

2) To use t h i s model t o develop a language which can expl ic i t ly

describe the organization of data.

3) To use t h i s model t o study how data can be converted from one

structure t o another, with a view towards developing a method

f o r describing such conversions.

It i s anticipated tha t data description languages w i l l contribute

a s much a s programming languages towards the evolution of information

processing. Jus t a s the current s t a t e of programming languages i s the

accumlation of many ef for t s , it i s expected tha t much research and

development w i l l be needed t o f u l l y understand tlie power and applica-

b i l i t y of data description languages. The development of the ddl i n

t h i s disser tat ion is perhaps analogous t o the development of tlie f i r s t

programming language. Different programming languages usually have

different models of algorithms on which they a re based. For example,

ALGOL i s based on recursive procedures with arithmetic operations,

whereas LISP i s based on the lambda-calculus and s t r ing manipulations.

Similarly, we provide our own model of data organization on which our

data description language i c based.

There a re other studies i n progress which r e l a t e t o the design of

a ddl, specif ical ly the studies being made by the COREXI, Storage Struc-

tu re Description Language Task Group (SSDL 1970) . However, t h i s group

so f a r has mainly addressed i t s e l f t o techniques f o r mapping records

onto storage, which i s jus t a subset of the problem we have tackled here.

The language given here i s the f i r s t one t o be completely developed and

specified. In addition, we are the f i r s t t o study and propose a general

solution fo r the problem of using data descriptions f o r converting data

from one structure t o another.

1.2 The Development of the Model, the Design of the Language, and the
Study of Conversion

We w i l l now discuss the development of the model and i t s use in

the design of the ddl (called GDDL f o r Generalized Data Description

~anguage) which i s presented i n t h i s report.

The development of data description from its f i r s t primitive forms

i n machine languages t o i t s current forms i n data management systems has

been based on ad hoc changes triggered by user needs and new technology.

This has led t o a (ride variety of methods f o r describing data, without

any general concept or comprehensive model. For example, COBOL (US

1968) i s based on highly developed record concepts, whereas ~6 (~ a

1969) i s based on cer tain aspects of l i s t structures, and i n operating

system design, systems programmers have b u i l t up a body of expertise

on storage structures and f i l e implementation techniques. However, the

common concepts underlying these and other aspects of data structures

have not been extracted and formulated into a comprehensive model.

Therefore, a thorough study of the data desc r ip t ion elements i n

software systems and programing languages was undertaken, with a view

towards ex t rac t ing those common elements t o include i n a comprehensive

model of data s t ruc tu res .

Tbls model of data s t ruc tu res i s divided i n t o th ree l a rge ly inde-

pendent l eve l s , namely, the record, f i l e and s torage l eve l s , and each

l e v e l i s fu r t he r subdivided i n t o a conceptual p a r t and implementation

p a r t . The conceptual p a r t i s t he l o g i c a l s t ruc tu re which i s imposed on

t h e data . The implementation p a r t i s t he way i n which t h i s s t ruc tu re

i s t o be represented o r encoded. The components of t h i s subdivision

of data s t r uc tu r e s a r e i l l u s t r a t e d i n Figure 1-1.

CONCEPTUAL
PART

I M P m N m T I ON
PART

FESULTING
BIT STRING

REPRESENWTION
MAPPING

data (B.s.R.)

B.S.R.
of

I S t ructure I \structure] L Data 1teml

Logical Encoding
Record Record

Structure St ructure
OUT

t
Encoding F i l e i n B.S.li.

F i l e of Storage
.rl a,
L 4 Structure St ructure 1 F i l e Format

A
a, ~ o g i c a l ' Encoding B.S.13.

Storage Storage of
0 a, S t ructure St ructure Storage -

Figure 1-1. The Components of a Data St ructure and t h e i r
In te r re la t ionsh ips

These subdivisions provide a valuable vantage point for understand-

ing data structures. Let us look first at the implications of the

division into conceptual and implementation parts.

The nature of the conceptual part is quite distinct from the imple-

mentation part, even though most systems do not make this distinction.

The conceptual part is the machine-independent structure which is imposed

on the data by the user. He conceives of the data as being organized in

this fashion, and this is the form in which his programs expect to find

the data. The implementation part, which is machine-dependent, is the

way in which the logical structure is encoded as a bit string representa-

tion which can be stored on a storage medium. In our model we will see

that specifications which relate to the conceptual part have the nature

of production systems, whereas, specifications which relate to the

implementation part have the nature of certain characteristics of

character strings like length or character code.

In addition, this subdivision yields a valuable insight which has

not been noted in other work. This insight is based on the observation

that if a person intends to organize certain entities into a structure,

he may want that organization to depend on any property of those enti-

ties which are available to him. In particular, if a person wanto to

organize record6 into a file, he may apecify thio organization in terms

of any available properties of thoce records. 'Phcce properties can in-

clude the valueo of data items in recordc, the logical structure of the

records and the implementation of the record structure. Thus we can

see tha t t o describe f i l e organization we have t o provide more than

the capabili ty of just specifying abstract graphical structures.

Now we look a t the implications of dividing the model in to record,

f i l e and storage levels .

The concept of a record i s common t o a l l data storage and re t r ieva l

systems, ye t it i s usually overlooked i n theoret ical studies of data

structures. The structure of records is an important consideration i n

tha t it is the basic organization of data items which i s t reated a s an

en t i ty f o r storage and re t r ieva l . Thus f a r a hierarchic organization f o r

records has proven adequate, a s it provides a structure which i s rela-

t ive ly easy t o encode and decode without the need f o r extended scanning

operations. I n t h i s work, therefore, we only allow hierarchic structures

a t the record level . In our model t h i s hierarchic organization i s

generalized i n tha t it allows f o r leve ls of the hierarchy t o occur

optionally or t o repeat a number of times. This conceptual structure of

records has not been modelled expl ic i t ly before, although it i s

essent ial ly the logica l organization of records which i s implicit i n

COBOL. COBOL, however, i s quite r e s t r i c t ive on the ways i n which the

implementation of records may be specified. In t h i s work we allow each

implementation character is t ic t o be specified e i ther d i rec t ly or

dependent on other character is t ics .

Records a re the elements which are organized in to f i l e s . There

is great f l e x i b i l i t y i n dis t r ibut ing the overall organization of a se t

of data items between the record and f i l e levels . On one hand, wc can

specify a record t o consist of a tingle data item, and, i n e f fec t ,

specify the overall organization of the data a t the f i l e leve l . In

f a c t we can specify hierarchies a t the . f i l e leve l and thus a l l the

conceptual structure f o r records can i n principle be moved t o the f i l e

level . However, while the conceptual structure of the data might remain

the same, the - use of the data f o r storage and r e t r i eva l has been changed.

On the other hand, we can specify a record t o be a complex hierarchic

structure and possibly make the f i l e structure simple. The dis t r ibut ion

of structure between the f i l e and record levels depends on the intended

use of the data. Therefore, by distinguishing record structure from

f i l e structure we are able t o include these aspects of data structures in

our model.

Our concept of a f i l e structure i s more general than others be-

cause, a s previously mentioned, we allow the specification of graphical

structures which depend on data and record properties. Btis requires

a more elaborate specification method than the usual methods based on

pure graph-theory.

The specification of the structure and encoding of records, and

the specification of how these records a re structured and implemented

a s a f i l e determine a b i t s t r ing representation of the f i l e . 7his i s

the b i t s t r ing which i o actually mapped onto a storage s t ructure.

Our division of storage structure in to conceptual and implementa-

t i on parts is the key t o both simplifying the mapping of the b i t string

representation of a f i l e onto a storage structure, and a l so simplifying

the specification of storage structures by extracting the structure

common t o storage media independent of physical considerations. m e

conceptual s t ructure of storage i s based on generalized hierarchies

which a re common t o a l l storage media. The implementation of these

hierarchies i s based on encoding charac te r i s t ics which a r e a l s o inde-

pendent of the storage media. To bind a storage s t ructure t o a particu-

l a r medium, we have only t o r e l a t e the leve ls of the hierarchy t o the

ac tua l physical l eve ls of a storage medium.

It i s over such a storage s t ructure t h a t the b i t s t r i ng representa-

t i on of a f i l e i s dis t r ibuted. A r e s u l t of our subdivision of data

s t ructures has been t o make the ac tua l mapping of data onto a storage

medium comparatively straightforward, It i s only necessary t o decon-

catenate the b i t s t r i n g representation of the f i l e a t appropriate points,

and in se r t these component s t r ings without disturbing t h e i r order in to

the s l o t s already provided by the storage s t ructure .

These a r e the ins igh ts and advantages which a re obtained by sub-

dividing our model i n t he above way. From the study of data descrip-

t i o n elements i n software systems and programming languages we can

ensure t h a t we a t l e a s t included the data description capabi l i t i es of

every current system t h a t was considered. A G each of the clacscs ol'

software i n the study include0 the most sophisticated representative oL'

that class , it i s l i k e l y that we have i n f a c t included the capabil-

i t i e s of a l l current systems. From t h i s model the requirements f o r

a data description language a r e immediately apparent. This allows

GDDL i t s e l f t o be very closely re la ted t o the model.

When the data description capabili ty of the language had been

designed, the problem of using descriptions t o convert data from one

s t ructure t o another was studied. Using d d l t s f o r data conversion

i s one application t h a t has been widely suggested, but never actually

investigated. With our model of data structure, we could study the

conversion process itseli?. In t h i s study it w i l l be shown t h a t addition-

a l information i s required t o completely describe a conversion. This

additional information specifies a relationship, which can be quite

elaborate, between names i n one description and names i n the other.

To model t h i s relationship the concept of an association l i s t was

developed. GDDL capabi l i t ies fo r describing data conversion relation-

ships a re incorporated d i rec t ly from the association l i s t concept.

1 .3 Organization of the Report

The GDDL language i t s e l f i s presented i n Appendix A i n the form

of a self-contained reference manual. The body of t h i s report

therefore i s concerned with presenting the model and i t s relationship

t o the language. It a lso shows tha t GDDL can describe any data organi-

zation tha t can be obtained with current systems. Further, because the

model allows generalizations of current data description capabi l i t ies ,

GDDL can describe data organizations tha t a re beyond these present

capabi l i t ies but might well be incorporated into future systems. The

generality of GDDL re la t ive t o current systems i~ diccucsed i n terms

of the model.

Chapter 2 presents the study of the development of data descrip-

tion in programming languages and software systems. The table at the

end of this study ('Table 2-1) provides the basis for showing that the

models and thence GDDL include all current data structure capabilities.

This study is quite long and the details are not essential for under-

standing the remaining chapters. &e reader is therefore advised to

skip to Chapter 3 should the detail become too oppressive.

Chapters 3, 4 and 5 develop the record, file and storage levels

of the model respectively. Each chapter shows the relationship between

the model and the GDDL language at that level. The material in these

chapters provides an excellent way of visualizing the structure of GDDL

and its description capabilities.

Chapter 6 discusses the ways of using data descriptions to convert

data from one structure to another. m e concept of an association list

is introduced and it is shown how an association list can be used to

complete the specification of data conversion.

Chapter 7 summarizes the contributions of this report and

suggests directions for future research.

Appendix B contains examples of GDDL descriptions of' some real-

world files and of data conversl.on from one structure to another. 'Ihcuc

examples are chosen to further demonstrate the ability of GDDL to

describe current data organizations.

Appendix C contains a proof that GDDL can indeed describe all

the COBOI2 record features. COBOL is the prototype for the most advanced

record level data representations. It is shown that each COBOL record

- 14 -

description clauee can be expressed in GDDL.

CHAPTEX 2 MISTING DA'IYI STRUCTURF,S AND
DA'B DESCRIPTION LANGUAGES

2 . 1 Introduction

The object of t h i s chapter i s t o provide an ana lys i s of data

s t ruc tu res i n contemporary computer software with a view towards obtain-

in/-: a romprek~en~ive summary of data s t ruc tu re clharacterict ics. This

cummary provides the ba s i s f o r demonstrating i n l a t e r chapters t h a t the

CDDL i s complete.

The software systems covered by t h i s ana lys i s a re :

(i) machine languages,

(i i) e a r l y operating systems,

(iii) assembly languages,

(iv) e a r l y higher-level programming languages,

(v) current operating systems,

(v i) current higher-level programming languages,

(v i i) da ta base management systems, and

(v i i i) t he CODASYL Data Description Language.

The cha rac t e r i s t i c s of each of these systems a r e analyzed i n a

separate sect ion of t h i s chapter. The f i n a l sec t ion combines the

r e s u l t s of these analyses i n t o a tab le .

2.2 Data St ructures i n Machine Languages

I n machine languages, there a r e four ways t h a t data s t ruc tu re

ckiaracterist ics a r e spec i l i ed :

1) hardware specifications f o r conventions such a s the code f o r

representing characters, the base f o r representing numbers, and the length

of the eglelleet addressable un i t of storage. These conventions a re

Fixed For a given computer but may vary from machine t o machine. To use

a par t icu la r machine, a system programmer has t o know these conventions.

Thus, deecriptions i n the form of specifications i n manuals a r e usually

provided,

2) machine language inst ruct ions t ha t specify the data type

(e . g., character or number), the scale of numbers (e. g., f ixed point or

f l oa t ing point) , and the precision of numbers (e . g . , single o r double) .
These descriptive elements a r e implicit i n data manipulation inst ruct ions

ra ther than exp l i c i t a s declarations. They a re i l l u s t r a t e d by the

following examples.

a) To specify t h a t a character s t r i ng i s t o be placed i n the

accumulator of the computer, the machine language inst ruct ion CAL (c lear

and Add Logical word) would be used instead of the inst ruct ion CLA f o r

placing a number i n the accumulator.

b) To specify t h a t a f loa t ing point number i s t o be added

t o t he accumulator, the inst ruct ion FAD (~ l o a t i n g ~ d d) would be used

instead of the fixed point ins t ruct ion ADD.

c) lb specify double precision f o r addition, t h e instructi.011

DFAD (~ o u b l e Precision Floating A ~ O) would be used in1;tead of the sinflc

p r e c i ~ i o n i n ~ t r u c t ion ADD.

3) machine language inst ruct ions tha,t specify locations of data

items. These descriptive elements a r e a l so implicit i n data manipula-

t i o n ine t ruc t ione r a t h e r than e x p l i c i t a s declara t ions . For example,

t h e ST0 (s to re) i n s t r u c t i o n both declares that a p a r t i c u l a r l o c a t i o n

i s t o be used f o r s torage and s p e c i f i e s that a d a t a item is t o be

s to red i n t h a t loca t ion .

4) machine language ins t ruc t ions t h a t speci fy which devices a r e

t o be used f o r input and output, and how da ta would be organized on t h e

device medium. These desc r ip t ive elements a r e a l s o impl ic i t i n data

manipulation ins t ruc t ions r a t h e r than e x p l i c i t a s declara t ions . They

a r e i l l u s t r a t e d by t h e following examples.

a) To speci fy that a p a r t i c u l a r I/O device i s t o be used f o r

output, t h e machine language i n s t r u c t i o n WRS (write s e l e c t) is used t o

prepare t h e appropr ia te channel.

b) To specify that a p a r t i c u l a r block of da ta items is t o be

copied onto an output medium, t h e i n s t r u c t i o n RCH (~ e s e t and Load channel)

i s used t o send t o t h e channel a channel command word which gives t h e

s i z e of t h e block of d a t a t o be copied and i t s loca t ion .

c) To speci fy t h a t t h e l a s t block of data has been reached

on a magnetic tape , t h e i n s t r u c t i o n WEF (wr i t e ~ n d - o f - ~ i l e) i s used t o

w r i t e an end-of-f i le gap followed by a tape mark on t h e t a p e .
*

The c h a r a c t e r i s t i c s of da ta s t r u c t u r e s provided by machine

languages can be grouped i n t o two categor ies . One includes t h e charac-

t e r i s t i c s of individual d a t a items, and t h e o ther t h e c h a r a c t e r i s t i c s

*
A t the end of each sec t ion of t h i s chapter a l i s t of t h e character is -
t i c s of t h e system under d iscuss ion w i l l be presented. Whenever a
new character . i s t ic (not appearing i n previous sec t ions) i s in t ro -
duced, it w i l l be underlined.

of storage media.

1. The character is t ics of individual data items consist of:

(i the hardware ~ r o v i d e d character code.

(ii) length,

(i i i) data type:

a) character s t r ing ,

b) numbers:

1) binary base,

Sign - radix o r diminished radix complement

(depending on the hardware),

3) fixed or f loating-point scale.

2. The character is t ics of storage media consist of:

(i) block s ize ,

(i i) end-of -f i l e labels , and

(i i i) device assignment.

We note t ha t machine inst ruct ions a r e seldom used or made available

t o describe exp l i c i t l y the s t ructur ing of s e t s of data items. Such

s t ructures a r e created and maintained by machine language programs.

2 .3 Data Structures i n Early Operating Systems

With the development of Operating Systems (os's), more complex

data s t ructures on storage devices were provided d i rec t ly t o the pro-

gramer . They a r e described by statements of the OS job control lan-

guage (JCL). Previously, these f i l e and storage s t ructures had t o be

implemented as par t of user-written machine language programs.

Examples of such statements a r e the $FILE and $LABEL statements

provided by the IBM 7040 JCL. These a r e i l l u s t r a t e d i n Figure 2-1.

The $FILE statement i s used t o describe the charac te r i s t ics of the

f i l e s t ructure and the posit ioning of the records on magnetic tape, the

s t ructure of the t ape ' s physical blocks and the tape un i t .

1. The f i l e s t ructure and implementation charac te r i s t ics consist

of :

(i) ordering the records i n t h e i r input sequence, and

(ii) implementing t h i s s t ructure by scqueniiial storage.

2 . The record positionirlg charac te r i s t ic .is .the rccorri Lo tape

block r a t i o ; t ha t is, the number of records per tape block.

3. The storage s t ructure and implementation charac te r i s t ics are:

(i) tape naming,

(i i) tape block s ize ,

(i i i) labels :

a) header and t r a i l e r l abe ls f o r tape r e e l s and f i l e s ,

b) count f i e l d s f o r tape blocks,

(i v) f ixed ordering of tape blocks and labe ls on the tape,

(v) f ixed occurrence of a l l blocks and l abe ls specUied,

(v i) repe t i t ion of r e e l s - given a s number of r ee l s .

4. The device charac te r i s t ic i s read/write density.

The remaining parameters of the statement a r e used t o describe

buffers and ac tua l processing.

The $LABEL statement i s used t o describe the information i n a

label . 1,abels a r e used t o implement storage s t ructures .

$FILE deck name ' f i l e name ' , [primary unit], [secondary un i t]

PRINT

SCRTCH

Figure 2-1 a) The IBM 7040 $FIU Statement

16

$LAB- e m , [a number] , [] number , [{z::}] ,
iden t i f i ca t ion

Figure 2-1 b) The IBM 7040 $LABF;L Statement

Figure 2-1. IBM 7040 ?hta Description Statements

. I Data Structures i n At3~embly Languages

Assembly languages were primarily designed t o enhance data handling

and t o a l e s se r degree, t o provide mnemonic machine inst ruct ions . The

data-oriented pseudo-instructions provided by assembly languages s ign i f i -

cantly increase the var ie ty of data s t ructures made d i r ec t ly available

t o the user. Thus, many complex data s t ructures t h a t had previously

been created and maintained by user programs, can now be declared explic-

i t l y .

I n Assembly Languages, elements and statements which deal with

data s t ructures a r e typ i f ied a s follows:

1) Symbolic rlames assigned t o data items. These names may be

used t o access the data items d i r ec t ly without referr ing t o the address

of the data items. For example, i n the IBM 7040 Macro-Assembly Language

MAP, the statement DlXT% DEC 1 3 r e su l t s i n the name DM% being assigned

t o the locat ion i n which a decimal number 13 i s stored.

2) Pseudo-instructions t h a t declare data types. For example,

i n IBM 7040 MAP, data items may be declared t o be octal , OCT; decimal,

DEC; binary coded information, BCI; and variable f i e l d data, VFD. This

i s i l l u s t r a t e d by the following examples:

a) To specify that a data item named DMM i s to be in te r -

preted a s the decimal integer 13, the following MAP statement i s used:

DINT% DEC 1 3

b) To specify t ha t a data item named ENTHY i n t o contain the

character C i n the f i rs t 6 b i t s of the data item, the following MAP

statement is used:

ENTRY VFD H~/C

3) Pseudo-instructions that describe the structure of data items.

For example, in IBM 7040 MAP, to specify that a block of 6 consecutive

storage locations are to be reserved for storing data items, the follow-

ing statement is used:

BSS 6

4) Pseudo-instructions that describe input/output characteristics

of particular media. For example, in IBM 7040 MAP such statements are

of the form:

name FILE option, . . . , option
LABEL option, . . . , option

where the options for the FILE statement and LABEL statement are the

same as the options for the IBM 7040 Job Control Language $FILE and

$LABEL described in the previous section.

Thus, the following characteristics of individual data items,

sets of data items and storage media are made accessible to programmers

in Assembly Language.

1. The characteristics of individual data items consist of:

(i) symbolic namine,

(il) the hardware provided character code,

(iii) length,

(I v) data type:

a) character &ring,

b) numbers:

1) binary, decimal or oc t a l base,

2) character sign f o r decimal numbers and radix

and diminished radix complement f o r binary

numbers,

3) f ixed or f l oa t ing point scale,

(v) data items ident i f ied by posit ion.

2. The charac te r i s t ics of s e t s of data items consist of:

(i) f ixed order,

(i i) f ixed occurrence, and

(i i i) s e t s of data items ident i f ied by t h e i r posi t ion

3. Assembly languages depend on t h e i r underlying operating system

f o r storage s t ructure .

2.5 Data Structures i n Early Higher-Level Programming Languages

I n developing higher-level languages such a s FOREUN and COBOL,

appropriate data s t ructures were provided. For example, FORTRAN, which

was designed f o r s c i en t i f i c computing, provides array accessing f o r

handling homogeneous data (i . e . , data of the same type).

The data description statements of ANSI FOl?Tl&CIN have four for.ms:

1) Declaration statements t h a t describe the s t ructure of indi-

vidual data items. In FORTRAN, charac te r i s t ics such a s scale and

precision a r e t rea ted a s addi t ional data types. For example, i n FOHTliRN

I V , the following "type" declarations a r e provided:

INTEGER DOUBLFt PFaCISION

REAL LOGICAL

COMPLEX EXTERNAL

where LOGICAL data items a r e the values T (or TRUE) and F (o r FALSE),

and EXTERNAL data items a re data items which a r e defined externally t o

the FORTRAN program. To specify the ty-pe of a data item, the name of

the item i s l i s t e d a f t e r the ty-pe i n a declaration statement, e.g. ,

INTEGER CVAL, A, B

2) The declaration statement which describes the s t ructure of

s e t s of data items (groups). In ANSI FOR!IBAN, individual data items can

be grouped together i n hierarchic s t ructures which a r e interpreted by

the processor a s arrays. For example, the t r e e i l l u s t r a t e d below can be

interpreted as a 2 x 3 array:

That is, the pa i r s of data items < a11,a21 >, < a21,a22 > and < a31,a32 >

a r e interpreted a s rows. Arrays a r e l imited t o a maximum of three

dimensions. The DIMENSION statement i s used t o describe such groupings.

The statement has the following format:

DlMENSION array name (nl,n2), . . . , ar ray name (n1,n2,n3)

where: a r ray name i s the name used t o r e f e r t o the array, and

n n , n a r e the number of elements i n each of the 1' 2 3

dimensions of the array, allowed i n ANSI FORTRAN.

For example, the statement:

DIMENSION ~ (2 . ~ 3) describes a 2 x 3 array cal led A.

Data items i n the vectors a r e accessed by array indexing.

3) the FORMAT statement which describes input and output data

s t ructures . The statement i s used t o describe data type and lerlgth

f o r each data item i n a record t o be input o r output. For example,

i n ANSI FORTRAN, the statement has the followirg format:

FORMAT (data item specification, ..., data item specification)

where a data i t e m specification consis ts of two par ts : a data type

and a data length pa r t . These types are:

F r e a l with no exponent

E r e a l with exponent

D r e a l with double precision exponent

I integer

L log ica l (character s t r i n g T o r 11')

A character s t r i n g

H ho l l e r i t h (character s t r i n g used f o r output only)

Length i s given a s number of characters per data item. For

example, ~6 describes a data item which i s a strjrq of 6 characters.

For r e a l data items, i n addit ion t o length, the number of d i e i t s Lo the

r igh t of t he decimal point i s specified. For example, ~ 8 . 2 describes a

data item which i s a r e a l number with a maximum length of i j characters

and which has 2 digits following the decimal point.

4) 1nput/0utput statements that describe the order of the data

items to be input or output, and the device to be used. The statements

have the following format:

(device number, format statement number)

data name, . . ., data name
where: device number refers to a specific device,

format statement number refers to the format statement

describing the data items being input or output,

data name refers to the data item or group (array values)

being input or output.

Thus, the following characteristics of data structures are

made accessible to programmers by the data description statements of

FORTRAN:

1. The characteristics of individual data items consist of:

(i) symbolic naming,

(ii) the hardware provided character code,

(iii) fixed lengths as specified by the user,

(iv) data type :

a) character string,

b) number:

1) binary or decimal base,

2) radix or diminiohed radix complement depending

on hardware for binary numbers, character sign

or no sign for decimal numbers,

3) f ixed o r f l oa t ing point scale,

(v) data items ident i f ied by t h e i r posit ion.

2. The charac te r i s t ics of records consist of:

(i) a r ray access in^ (balanced t r ee s) ,

(i i) f ixed ordering,

(iii) f Fxed occurrences,

(iv) groups of data items ident i f ied by t h e i r posit ion.

3. FORTRAN depends on i t s underlying Operating System f o r i t s

storage s t ructure .

Because the COBOL language was designed f o r handling large quanti-

t i e s of data, more importance was given t o the data description s ta te -

ments of the language than i n FOR'IRlN. These statements a r e wri t ten i n

separate sections of a COBOL program. The Data Division i s the section

for describing the data items, records, f i l e s , working storage and pro-

gram constants. Another section, cal led the Environment Division, i s

f o r describing t h e storage media. I n it, information concerning f i l e

select ion i s given, and the equipment configuration (tape s ta t ion , prin-

t e r , e tc .) i s described.

1) I n COBOL's Data 1)ivision there is one statemerlt l o r describint:

tjle organization of ds ta items i n records and one statement lor. descriL)-

ing the organization of records i n t o f i l e s ;

a) Each data item or group of data items t h a t i s t o appear

i n a record i s described by a statement of the form i l l u s t r a t e d i n

Figure 2-2. This statement i s used t o describe:

i) the l eve l a t which the data item or group of data

items is t o occur i n the hierarchic record,

i i) the data type (e . g., character s t r ing = DISPLAY,

numeric s t r ing = CW),

i i i) the length of the data item,

iv) the number of times the data item or group of data

items is t o occur in each record,

v) the alignment of the data item i n respect t o

word boundaries and t o fixed length s t r ings of

character positions.

level- COMPUTATIONAL
numbe { ~ ~ ~ ~ ~ c - l } [; REDEF INES date-name-21

DISPLAY

S Y N C H R O N l Z E D) { , W ,)] [; jm
[PICTURE

character-string
RIGHT 1 I / [JJU~T IF IED} ;(JUST RIGHT] [; VALUE IS literal] I; BLANK WHEN ZERO].

Figure 2-2 The ANSI COBOL Statement For Describing
a Data Item or a Group in a COBOL Record
(us 1968)

b) The organization of COBOL records i n a COBOL f i l e i s

described by a statement of the form i l lu s t r a t ed i n Figure 2-3. This

statement is used t o describe

i) the s ize of storage blocks,

ii) the s ize of the records stored i n the blocks,

iii) any labe ls t o appear on the storage tape,

iv) the names of records appearing i n the f i l e .

file-name ; BLOCK CONT AlNS [integer-1 TO] intcgcr-2. (RECORDS
\CHARACTERS

J
[; R E C O R ~ CONTAINS [integer-3 integer-4 CHARACTERS]

STANDARD RECORDS ARE

date-name-1 [, data-name-21. . .
t- i

Figuree :'-3 DIG AN:;] COJiOL Statement Tor-
?)csr.ribirly rr. C0130L Vilc (11:; 1()6(:)

2) In COBOL's Environment Division, there is one section that

is used to describe input and output conventions. In it, equipment

assignments and certain physical characteristics of each file to be used

by the program are described by a statement of the form illustrated in

Figure 2-4. This statement is used to describe the device on which

the file is stored.

FILE-CONTROL

FILE-CONTROL. SELECT [OPTIONAL] l i la -name
t

ASSIGN TO [integer-11 implementor-name-1 [,implementor-name-21 . . .

[FOR MULTIPLE
in teger-2 ALTERNATE [{ AREA }]I .). . .

AREAS

Figure 2-4. 'I'he ANSI COBOL Statement for Describing
the Storage Convention of a COBOL File
(us 1968)

Thus, the data structures that are made accessible to programmers

by COBOL can be characterized in the following way.

1. The characteristics of individual data items consist of:

(i) symbolic naming,

(ii) the hardware provided character code,

(iii) fixed lengths aE specified by the user,

(lv) data types:

a) character etring,

b) number:

1) binary o r decimal base,

2) sign - radix or diminished radix complement

(depending on the hardware) f o r binary numbers,

and character sign o r no sign f o r decimal

numbers,

3) f ixed o r f l oa t ing point scale,

(v) value alignment (j u s t i f i ca t ion) with blank or zero

padding,

(v i) value s t r i ng alignment (synchronization) with respect

t o computer words with blank o r zero padding,

(v i i) data items ident i f ied by t h e i r posi t ion.

2. The charac te r i s t ics of records consist of:

(i) hierarchic s t ructure ,

(i i) f ixed order,

(i i i) f ixed occurrences,

(iv) f ixed repe t i t ion ordered a s input,

(v) groups of data items ident i f ied by t h e i r posit ion.

3. COBOL depends on i ts underlying Operating System f o r i t s

storage s t ructures .

2.6 Data Structurer; i n Third- Generation Ope~atinr: Syctcms

In t h e i r current stage of development, Opcratirlg :;ystcm:: ((1; ' ::)

art. provldirlg more f i l e and ctorage stmc-L;urc uptlo~~:; tklurl curly 01;'::.

Wle creat i on and maintenance of these s t ructurcc a r e trcatcti a:: a

s e t of services separate from those involved i n sct-leduling programs.

The pa r t of an OS which supports these services i s referred t o as the

data management system (DMS) of the operating system. Among these

services a r e the moving of data between storage devices and main memory,

and the accessing of data i n DMS maintained s t ructures . Additional JCZ

statements, known a s DMS statements, a re provided t o evoke DMS services.

I n general, DMS1s provide t h e i r users with a number of f i l e and

storage s t ructures . To s tore data i n such structures, the user proceeds

a s follows:

(i) he names the par t icu la r s t ructure i n a DMS statement,

(i i) he l ists the parameters which se lec t those options provided

by the DMS (if any), and

(i i i) he enters h i s data.

The data management service so evoked moves the data from the input

device t o the appropriate storage devices and s tores it i n the described

s t ructures .

For example, the DMS I1 of the RCA SPECTRA 70/46 B O S (RCA 1971)

provides i t s users with f i ve s t ructures and rela ted input/output con-

ventions. Collectively, these s t ructures and conventions a r e called

access methods. They are:

1) PAM (primitive Access ~ e t h o d) . !This method provides only a

par t icu la r record format (fixed i n length) and storage on e i the r direct-

access devices or on single ree l , standard blocked tape. PAM creates

and accesses f i l e s only i n random order. The user must himself handle

the blocking and deblocking of records.

2) SAM (sequential Access ~ e t h o d) . This method provides e i ther

fixed length, variable length or undefined record formats (where records

with undefined formats a r e stored one t o a block). SAM creates and

accecsec f i l e s i n sequentlal order only. S t performs a l l blockirg,

dei~locking and buffering f o r the user.

3) ISAM (1ndex Sequential Access ~ e t h o d) . It provides e i ther

fixed or variable length record formats and storage on direct-access

devices only. Records a re maintained by means of a directory whose

ent r ies point t o the records t o r e f l ec t the correct sequence. In other

words, records may not be i n sequential order physically. The f i e l d

whose values determine the sequence i s called the key. Thus, ISAM can -
access f i l e s i n a sequential or non-sequential order. In terms of

storage structure, an ISAM f i l e is made up of data blocks (2048 bytes)

and directory blocks. Data blocks contain the use r ' s records which a re

ordered i n i t i a l l y according t o the values of the key f i e l d . Directory

blocks contain pointers t o data blocks. ISAM performs a l l blocking,

deblocking and buffering for the user.

4) RTAM (~ a s i c mpe Access ~ e t h o d) . This method provides e i ther

fixed length or undefined record formats (where records a re stored one

per block) and storage on tape only. BmM i s used t o provide e f f i c i en t

accessing of tape blocks.

5) EAM vanesc scent Access ~ e t h o d) . 1:t provides fixed length

record formats and storage on direct-access devices only. creates

and accesses temporary f i l e s only i n a random ortic r . Because they a re

temporary, EfU4 f l l e s have no label^ and require no c:ataloe;uing or

secur i ty checks.

Data s t ructures i n these f i ve access methods a r e s imilar i n several

respects. In f ac t , only three s t ructures a r e provided f o r records:

1) Fixed length - i n which each record contains exactly the same

number of bytes. Standard format i s known t o a l l DMS access

methods.

2) Variable length - i n which each record may contain a dif ferent

number of bytes. In each variable length record, the f i r s t

two bytes of the record contain the characters "11" , and

the second two bytes contain the length of the record.

3) Undefined - i n which records a r e iden t ica l i n length t o the

input/output buffers defined f o r the access method.

There a r e three ways of organizing records i n to f i l e s :

1) random organization,

2) sequential, and

3) indexed sequential.

For storage, records may be blocked and unblocked automatically,

devices may be tape o r direct-access, and blocks may be standard (2064

bytes) or nonstandard (< 4096 bytes) . Control codes such as tapemarks,

count f i e ld s , e tc . a r e handled automatically and may not be specified

by the user.

Thus, the following character is t ics of f i l e and storage s t ructures

a r e made accessible t o programmers by the DMS data description statements

1. The characteristics for organizing records into files and

implementing the structure consist of:

(i) structuring records by input sequence,

(ii) structuring records by value (key),

(iii) implementing structures by

a) sequential positioning, and

b) by pointers :

1) stored in tables or embedded in records,

2) given as absolute address or relative to some

origin.

2. The characteristics for positioning records in device blocks

consist of:

(i) the record-to-block ratio, and

(ii) the distribution of records such that records either

are maintained whole or are split between blocks.

3. The characteristics for organizing storage blocks and imple-

menting this structure consist of:

(i) block naming,

(ii) formatting for the following supported devices:

magnetic tape, mgnetic disk, cards, and printer,

(ili) block length specif ica1;ion Tor cupportcd d.cviccs ,

(lv) labels for cupported dcvicec,

(v) fixed order of device formats,

(vi) fixed occurrences of device formats,

(vii) repetition of formats for tape reels, disk levels,

cards and pr in ter pages.

2.7 Data Structures i n Current Versions of Higher-Level Programming

Languages

Current higher-level programming languages have been developed t o

take advantage of the data management services provided by operating

systems and t o sa t i s fy user requirements f o r more complex working struc-

ture s .
For example, RCA SPECTRA 70/46 ANSI COBOL (RCA 1969) has statements

t o evoke SAM and ISAM and the i r related data structures.

The COBOL Data Division has been enhanced: new in terna l formats

have been added, repeating groups can be ordered, and repet i t ion num-

bers can vary f o r different record occurrences. The clauses used t o

specify these options a re i l l u s t r a t ed i n Figure 2-5.

USAGE IS [
Figure 2-5, a. The COBOL Statement f o r Declaring Data 'Sypes

[integer-1 - TO] integer-2 TIMES

[D E ~ I N G ON hta-name-l]

[{~DE,"~) KEY IS data-name-2

C , data-name- 31 . . .]
[INDEXED BY index-name-1 [, index-name-21 . . .]

Figure 2-5, b. !The COBOL Statement fo r Specifying Repetition

Figure 2-5. Enhanced COBOL Description Statements

PL/I i s an example of a higher-level programing language t h a t

was designed t o incorporate a la rger number of record s t ructures than

other languages available a t the time of i t s conception. It provided

array accessing, hierarchic s t ructur ing and s t r i r l t l , processirtg f o r data

items and group6 of data itemc.

PL/I provides a r i ch se t of character is t ics l o r s t ructur ing nrlci

implementing data items (IBM 1965):

(i) symbolic naming,

(i i) t he hardware provided character code,

(i i i) f ixed and varying lengths a s specified by the user,

(i v) data types:

a) character s t r ing ,

b) number:

1) binary or decimal base,

2) sign - radix o r diminished radix complement

(depending on the hardware) f o r binary numbers, and

character sign or no sign f o r decimal numbers,

3) fixed or f l oa t ing point scale,

(v) value alignment with zero or blank pad characters,

(v i) data items ident i f ied by posit ion.

These data descr ipt ive elements a r e combined i n cleclarat i o r ~ statemelks

of the form:

i) DECLAIiE data item name (n) [VAllY
PI C'IUliE p ic ture s t r i ng

ii) DECZARE data item name FIXED

To group data items into hierarchic structures and structures

accessible by array indexing, PL/I provides the following elements :

1) a clause which is used to specify the dimensions for array

accessing. It has the form:

(5, ... , m) for an n dimensional array, where the
n

ith dimension has mi elements. This clause is used in a

DECLARE statement:

DECLARE data name (y . . . , mn) . . .
2) a clause which is used to describe hierarchic relationships

between data items. It has the same form as the level number

clause in COBOL. It is used in a DECLARE statement:

DECL4RE level number data item ...
level number data item ...

Such hierarchic structures may also be accessed by array

indexing .
For file and storage structures, PZ/I provides statements which

are used to invoke the DMS access methods of its. underlying operating

system.

The characteriotics of data structures that are made acce~sible

to the programmer by the data description elementc of many cvrrcnt t~ighcr-

level languages are summarized in Section 2.10.

2.8 Data Btructures i n Data Base Management Systems

Data Base Management Systems a r e an outgrowth of Information

Storage and Retrieval (ISR) systems. ISR systems a r e designed t o manage

la rge quant i t i es of a par t icu la r ty-pe of data. For example, one ear ly

system, MEDURS, was created t o manage documents f o r the National Library

of Medicine (~ a 1968).

I n these systems, since only one type of information was t o be

used, only one type of f i l e s t ruc ture was required. Also, input and

output routines were specialized t o handle the f i l e s t ructure most

effect ively. A s a whole, ISR systems were individually t a i l o red f o r

appl icat ions such a s text-handling and record-keeping.

The development of more generalized text-handling and record-keep-

ing systems l ed t o today's generalized Data Base Management Systems

(DBMS' S) (CO 1969).

Every DBMS has a language. The data description statements of

the language specify the ctructure of data maintained by the DBMS. I n

general, the data description statements form the la rges t pa r t of a

DBMS's language.

For example, i n the MARK I V DBMS developed by Informatic Inc.

(CO 1969)~ raw data must be input i n the format i n which it i s t o be

stored. MARK I V formats can be characterized i n the following way.

1. The charac te r i s t ics of individual data items corlsist of:

(i) cymbolic r l sming ,

(11) t h e hardwa tne provided charac: ter. ceodc,

(i i ~) f ixed lengths a s specified by the user,

(iv) data types:

a) character s t r ing,

b) number:

1) binary o r decimal base,

2) Sign-radix or diminished radix complement

(depending on the hardware), and

character signs o r no signs f o r decimal numbers,

3) f ixed o r f loa t ing point scale,

(v) data items ident i f ied by t h e i r posit ion.

2 . The charac te r i s t ics of records consist of:

(i) hierarchic structure,

(i i) f ixed order,

(i i i) f ixed occurrences,

(iv) f ixed or varying repet i t ions ordered as input,

(v) groups of data items ident i f ied by t h e i r posit ion.

3. MARK I V depends on i t s underlying Operating System f o r i t s

storage s t ructures .

MARK IV's language i s a tabular language. Forms a r e provided i n

which a user se lec t s options provided by the system.

MARK I V i s a self-contained DBMS. It is not embedded i n any

higher-level programming languages. DBMS's which a re embedded i n some

higher-level languages a r e called host-language DBMS's. They a r e

designed t o enhance t h e i r host language. This development combines the

record s t ructures provided by the host languages with the f i l e and

storage s t ructures provided by the DBMS. COBOL and the ~oneywell-

General E lec t r ic Co.'s Integrated Data Store (IDS) together form an

example of t h i s type of system (CO 1969).

I n COBOL-IDS, COBOL s t ructures a r e used a t the data item and

record leve l . These s t ructures a r e described by the standard COBOL

statements. The enhancement comes a t the f i l e l eve l . IDS adds the

capabi l i ty t o describe network relationships among records. IDS networks

can be viewed a s interconnecting r ing s t ructures . The .interconnections

a r e maintained by embedded pointers . Each record i n I D S may par t ic ipa te

i n more than one ring. Thus, a single record may be associated w i t h

marly other records. In each IDS r ing there i s one record which i s

treated a s a master record. It contains control information. The

remaining records i n the r ing a r e called d e t a i l records. Any record

may be master i n one r ing and d e t a i l i n another. The data description

statements used t o describe the charac te r i s t ics of these r ings a r e i n the

form of addi t ional clauses i n the COBOL record statement. Each r ing

re la t ionship i s defined a t l eve l 98 i n a record description. I n IDS

terminology a r i ng i s cal led a CHAIN. The clause f o r declaring a record

t o be a chain master has the form:

98 chain-name CHAIN MRSTZlI.

The clause f o r declaring a record t o be a chain d e t a i l has the form:

98 chain-name CHAIN DEMIL

; SELECT UNIQUE MASTEX]

[MATCH-KEY IS data-rfime]

[; CHAIN-OIIDER IS SOE~'ZED]

SORT-KEY 1S dats-name] '; (,SCENDIIUG)

[; RANDOMIZE ON data-name]

; DUPLICA!ES NOT ALLOWED] .
This clause specifies the chain i n which the record i s t o be a de ta i l ,

the order i n which d e t a i l records a re t o occur (i f they a re t o be ordered),

and the f i e l d from which a hashed address of the record i s t o be derived

(i f t h i s i s desired).

MARK I V and COBOL-IDS represent two different classes of DBMS.

However, they a re both implemented a s application programs and a re not

pa r t s of the operating systems. Many system resources a re thus unavail-

ab le t o the user. Furthermore, privacy protection and access control

which a re v i t a l t o DBMS users a re d i f f i c u l t t o enforce. Therefore, a

d i f fe rent approach t o building a DBMS was taken by the designers of

the Extended Data Management Fac i l i ty (EDMF) implemented a t the Moore

School of Elec t r ica l Engineering a t the University of Pennsylvania

(Ma 1971). The EDMF was implemented a s a par t of the RCA SPECTRA 70/46

Time Sharing Operating System ('23%). Statements of the EDMF a re i n

the form of e i ther 150s Commands, macro-calls which may be used by the

regular applications programmer i n assembly language programs, or bui l t -

i n functions f o r the FORTRAN and COBOL languages.

m e se t of record and f i l e structures provided by the EI)MF a re

one of the most extensive that has been Implemented. EDW provides

record structures which a r e beyond the COBOL structurec (H S 19'71) . It

provides the following characterictics.

1. The charac te r i s t ics of individual data items consist of:

(i) symbolic naming,

(i i) the hardware provided character code,

(i i l) f ixed or variable lengths a s specified by the user,

(iv) data types:

a) character s t r ing,

b) number:

1) decimal or binary base,

2) sign - radix o r diminished radix complement

(depending on the hardware) f o r binary numbers,

and character sign o r no sign f o r decimal

numbers,

(v) value alignment - l e f t f o r character s t r i ngs and

r igh t f o r numbers, with zero or blank pad characters,

(v i) data items ident i f ied by posit ion and by a t t r i b u t e

i names used a s delimiters.

2 . The charac te r i s t ics of records consist of:

(i 3 hierarchic s t ructure ,

(ii) fixed order,

(i i i) f ixed o r optional occurrences of data items and groups,

(i v) f ixed and variable repe t i t ion of data items and groups

ordered a s input,

(v) groupe ident i f ied by p o ~ i t i o n and by using ut t r . ibuix

names as markers.

A t the f i l e level, the EDMF allows records t o be linked together

in to lists, when the records contain the same data items (cal led key-

words). A record may be linked in to any number of l i s t s . Pointers t o

the heads of the l ists a re stored i n directories (tables) i n ascending

lexicographical order. By se t t ing limits on l ist lengths, f i l e s may

be implemented completely with pointers embedded i n records or with

tab les of pointers or some combination of the two. This i s under the

user ' s control, and allows him t o organize h is data i n a wide range of

structures, including inverted, multilist, and indexed random organiza-

t i o n (HS 1970). EDMF seems t o be the only existing DBMS t o allow the

user t h i s kind of control over the implementation of h i s f i l e .

Each one of the above DBMS's was designed t o enhance various

character is t ics a t e i ther the data item, record or f i l e level , or a t

a l l three. The leve l and degree of enhancement vary from DBMS t o DBMS.

A summary w i l l be provided i n Section 2.10 of the most advanced DBMS

features.

2.9 The Data Description Language of the COaClSYL Data Base Task Group

-%
The CODASYL Data Base B s k Group (DBTG) w a s organized t o unify

work done on current DBMS data description languages. The goal of the

DBTG i s t o produce a single data description language (DDL) i n which

a l l current data structures a t the ' data item, record and f i l e levels

can be described. This DDL (CO 1971) includes:

-* CODASYL (conference on Data Systems ~anguages) i s a group originally
formed t o create a business-oriented language. It produced COBOL and
has now extended i ts in teres ts t o DBMS's.

1) the COBOL Data Diviulor~ which allows tihe user t o specify

record f o m t s . Unlike t h e EDMF, the COIlASYL UDL does not allow varying

length data i t e m s , varying repet i t ions , o r optional occurrences of data

items.

2) statements describing network s t ructures . The concept of a

SEThas been developed t o describe f i l e s t ructures . A SET i s a sequen-

t i a l l y ordered se t of records. Each SET has one "owner" record and

several "member1' records. The concept of "owner" record is similar t o

t ha t of "master" record in IDS. Member records of SET'S a r e ordered

i n e i t h e r of two ways:

(a) Records may be ordered by ascending o r descending

sequences based on specif ic keys.

(b) Records msy be ordered i n r e l a t i on t o ex is t ing members

of the SET a s they a re input. m a t is, when a new record

i s input, it can be automatically placed a s the l a s t or

f i r s t record of the SET.

The SET concept is similar t o the IDS chain.

3) statements describing f i l e implementation. The COaASYL DDL,

a t the f i l e l eve l , allows the user t o specify whether a SET of records

i n t o be implemented e i the r with embedded pointers or with tab les of

pointers. However, these cannot be combined a s i n the EDMF, and the u s e r

kfic no control over the pointers or t ab le s t ructure .

I n summary, the following character is t ics of data s$ructures

a r e made available t o the user by the C O a A S n DDL.

1. m e character is t ics of individual data items consist of:

(i) symbolic naming,

(i i) f ixed lengths a s specified by the user,

(i i i) data types:

a) character s t r ing,

b) number:

1) binary or decimal base,

2) sign - radix or diminished radix complement

(depending on hardware) f o r binary numbers,

and character sign o r no sign f o r decimal

numbers,

3) fixed or f loa t ing point scale,

(iv) value alignment with blank or zero padding,

(v) data items ident i f ied by t h e i r posit ion.

2. The charac te r i s t ics of records consist of:

(i) hierarchic structure,

(i i) f ixed order,

(i i i) f ixed occurrences,

(iv) f ixed and dependent repet i t ions ordered a s input,

(v) groups ident i f ied by t h e i r posit ion.

3. The s t ructure and implementation charac te r i s t ics of f i l e s

consist of:

(i) s t ructur ing by input sequence,

(i i) s t ructur ing by c r i t e r i a on keys (values):

a) c r i t e r i a comparisons: 5, 2, =,

b) con junctions of c r i t e r i a ,

(iii) implementation:

a) by embedaed pointers,

b) by table% of pointers.

4. The COIlASYL DDL w i l l depend on i ts implementation f o r storage

s t ructures .

The COIlASYL DDL i s an attempt t o create a common front-end lan-

guage f o r describing data s t ructures t o DBMS's. There i s therefore a

degree of overlap between the CODASYL DDL and GDDL developed herein.

Before t h i s overlap i s discussed, it should be pointed out again t h a t

GDDL i s designed t o be a language f o r completely describing data

s t ructures and f o r data conversion. The CODASYL DDL i s not intended

t o specify data conversion. Furthermore, GDDL provides the capabi l i ty

of describing storage s t ructures , whereas CODASYL DDL does not. A t

the record level , CODASYL DDL i s based on COBOL and we show i n Appen-

dix C t h a t GDDL has more descriptive power than COBOL a t the record

l eve l . This addi t ional power i s obtained by providing more general

capabi l i t i es f o r specifying record implementation. A t the f i l e

l eve l , UODASYL DDL i s des i~med , to describe jus t tlr~ouc I i l e structures

ex i s t i ng i n current systems. GDDL is designed t o provide much greater

descriptive power a t the f i l e leve l . The power i s provided by general-

iz ing current f i l e s t ructur ing technology essen t ia l ly by allowing

the dependency of f i l e s t ructure on data values, record structure, and

record implementation t o be described.

2.10 summary

Wo trends have appeared i n the handling of data by software

systems. F i r s t , the data s t ructures provided have become increasingly

elaborate, and secondly, the user has been given more arid more expli-

c i t control over s e t t i ng up the data structures required.

The e a r l i e s t systems provided the user with cer ta in s t ruc tura l

options a t the data item leve l . These options were, however, pro-

vided implic i t ly through a select ion of machine inst ruct ions . Suc-

cessive systems provided more capabi l i t i es a t the record level , and

allowed these t o be declared expl ic i t ly . It was f i r s t i n operating

systems t h a t s t ructur ing f a c i l i t i e s were offered a t the f i l e l eve l .

Typically, the s t ructures provided were l imited t o a few options

which frequently included sequential and indexed sequential struc-

tu res .

With the development of DBMS's, users were given more control

over the implementation and s t ructure of both records and f i l e s .

However, they s t i l l have no control or even knowledge of the storage

s t ructures used.

The ddl presented herein takes these two trends towards t h e i r

log ica l conclusion. F i r s t , the ddl can describe a more general c l a s s

of data s t ruc tures than t h a t provided by current data processing

technology. Secondly, the ddl allows every aspect of a data s t ructure

a t each l e v e l t o be described exp l i c i t l y .

Those aspects of data s t ructures which have been ident i f ied i n

the preceecling sections have been summarized i n Table 2-1. This

t ab le i s organized t o provide a convenient means of evaluating the

ddl and i t s underlying model i n l a t e r chapters.

Table 2-1. Summary of Data Structure Characteristics

e

Record

Characteristics

Fixed by hard-

Diminished

Structure
Character-
istic

l a 3

Symbolic
Naming X X X X X

3.ecord Characteristics

Implementation Characteristics Structure Char-

* EDMF only

r

F i l e

Character is t ics

I

FI d

I
rn
.rl
r4
Q)
.IJ
0

2
al *

.
S - P
c,

E
c,
v2

L
Q) ::
oj
k
oj

8
!3 m

.rl U
c, ad
aJ c,
m c 4
Q)
El
a,
d

B
H

X

X

Structur ing by input
Sequence

6'
t:
*
3
.ti
c,
f!
B

3
d ". k
4
5
a
0
cn
2

$,
P

3.8 .
k . 9
I
c, k

2
c,
v2

8
%
+a *
2f
.rl
c,
Z
B

5
k

8

f3
111

%

Cr i t e r i a
on

Value s
(~ e y s)

,

>

s -
2

-

Implementing by
Sequential Storage

X

X

X

$ X

X

Cr i t e r i a on
Paths

Conjunction
of C r i t e r i a

P

8 m
ad k

3.2 c .rl

1 "
d

8

X

X

X

X

x*

X

x

X

X*

Method

Path
Length

Limit

X

X

X

X

X

x

X

Embedded
i n

Record

Stored
i n

m b l e

Upper
Bound

Storage

Characteristics

10

Block Naming X X

* Reel Formatting of
0 d X

St orage

Characteristics

(continued)

%' Tbpe Bytes/Block X X X ' ' Disk Bytes/Block

m
m
0

a , m m
C

Storage
cl

Characteristics
R

(continued)
a3 cd
2 I3 $ 4 3

X

X

Record
Split
Set

Whole

Split

CHAPTER 3 RECORD DESCRIPTION

3.1 Introduction

I n t h i s chapter we begin our t a sk of showing how the organization

of data can be e x p l i c i t l y described. We present t he model f o r record

s t ruc tu re t h a t i s the foundation f o r t he design of GDDL's record

descr ip t ion fea tu res . We show t h a t the model i s complete f o r record

desc r ip t ion i n the sense t h a t record s t ruc tu res of Table 2-1 can be

described i n the model. We a l s o discuss how the model can describe

c e r t a i n general iza t ions of present record s t ruc tu res . Then we show

t h a t the record descr ip t ion statements of GDDL a r e based on t h i s model.

I n t h i s way we show t h a t GDDL i s a l s o complete and generalized i n the

above senses. We fu r t he r demonstrate the completeness of GDDL by noting

t h a t t he COBOL record descr ip t ion fea tu res a r e properly contained i n

GDDL and by providing a s e t of examples which i l l u s t r a t e the a b i l i t y

of GDDL t o describe ex i s t ing record organizations.

3.2 A Model of Record Structures

We begin t h i s sect ion by providing an i n t u i t i v e introduction t o

t he model.

The smallest meaningful piece of information we w i l l c u l l a

"data item". Data items a r e the components which are organizctl irito

r e cordc .
Conceptually, a data item is a ~ t r i n g of charrrctcrc, which pro-

vide a value f o r the data item, together with an i den t i f i c a t i on of the

- 56 -

type or c l a s s of information t o which the value belongs. This type

o r c lass of information we c a l l the a t t r i b u t e of the data item.

When a data item i s represented on a storage medium, there must

be rules which determine how t h i s data item is implemented a s a b i t

s t r ing .

When a user i s organizing data items f o r storage and r e t r i eva l

from a computer medium, he iden t i f i e s a par t icu la r l eve l of organization

which i s t o be stored and retrieved as a single urnit when the data i s

being used. This l eve l of data item organization we c a l l the record

leve l . A convenient way t o conceptualize the organization of data items

a t the record l eve l is a s a hierarchy. It i s cer ta in ly the case t h a t

ex is t ing software systems (e -g . , COBOL, MARK I V , IDS , EDMF, and the

CODASYL DDL) provided hierarchies f o r organizing data items i n t o records.

The records a r e themselves f i n a l l y represented on a storage medium a s a

b i t s t r ing . So again there must be ru les f o r specifying how a par t icu la r

organization conceived by a user is t o be represented a s a b i t s t r i ng .

There a r e then the following components t o t h i s process of data organi-

zat ion:

f o r data items:

(1) the conceptual s t ructure of data items,

(2) the encoding of t h i s c tmc tu re in%o a b i t st r i ng , UIKJ

(3) the resul t ing b i t s t r i ng representation;

f o r records:

(1) the conceptual s t q c t u r e of the recortis,

(2) the encoding of the record s t ructure i n to a b i t s t r ing, and

(3) the resu l t ing b i t s t r i ng representation.

We therefore have t o model each of these components. The conceptual

s t ructure of data items and records i s modelled i n terms of the ideas

of a t t r i b u t e and value by generalizing the work of (~ e 1967), (~ h 1968),

(lin 1970) , and (HS 1971) . The b i t s t r i ng is simply a sequence of 0 ' s and

1 ' s . The encoding of the conceptual structure is modelled d i r ec t ly i n

terms of character is t ics f o r encoding a t t r i bu t e s and values a s b i t

s t r i ngs . The complete model w i l l be presented i n two steps. F i r s t the

model of data items w i l l be described and then the model of records.

3.2.1 The Model of Data Items

3.2.1.1 The Concept of Data Items

The concept of a data item can be described i n terms of two primi-

t i v e s - a t t r i b u t e and value, and a def ini t ion of data item based on

these primitives.

In tu i t ive ly , an a t t r i bu t e i s a quali ty, such a6 s ize , or weight

t h a t i s ascribed t o an object . For each a t t r i bu t e , there i s a s e t of

measures or quant i t ies , known a s values. A single value t o be

associated with the a t t r i b u t e i s selected from t h i s s e t . For example,

a measure f o r the a t t r i b u t e weight i s selected from the s e t of r e a l

numbers.

Definition 3-1. A data item is an ordered pa i r of the form < a, v >

where a i s an a t t r i b u t e and v i s a value.

For example, the p a i r s < name, JONES >, < age, 32 >, < sex, M >,

4 school, NEWTOWN HIGH SCHOOL >, < school, UNIVERSITY OF PENNSYLVANIA >

a r e data items.

I n representing a data item on a computer medium (such a s cards,

tape, e t c .) both t he a t t r i b u t e and t he value must be encoded. We s h a l l

consider t he ru l e s f o r each kind of encoding separately.

3.2.1.2 Encoding Values

A value i s encoded i f it i s transformed i n t o a b i t s t r i n g accordint:

t o the following encoding rule'. Such a s t r i n g w i l l be c a l l ed a value

s t r i ng . The r u l e f o r encoding a value i s simply a de t a i l ed spec i f i ca t ion

of t he s i x cha r ac t e r i s t i c s l i s t e d below:

1. Character codes. S t r ings of binary d i g i t s a r e used t o encode

characters such a s l e t t e r s , numbers and punctuation signs. Character

codes have been standardized t o t h e extent t h a t a l l new computers use

e i t h e r of two codes: USASCII (o r ASCII) and EBCDIC. However, it i s

not s u f f i c i e n t t o be ab le t o specify e i t h e r ASCII o r EBCDIC a s the re

a r e o ther codes which a r e i n use on e a r l i e r computers. Also, users of

l a rge data bases employ what a r e , i n e f f e c t , new character codes t o

compress data . Thus, t o be completely general, it must be poosiblc to

describe any character code. One way t o describe a character code i s

t o l i s t f o r each character the code i n terms of i t s b i t s t r i n g

representa t ion.

A:;sociated with a character code i s a s o r t order. To describe

the s o r t order, the characters of t he code can be l i s t e d i n L k l c caret

order.

When values a r e t o be t ransla ted from one character code t o a

second character code, it i s necessary t o indicate f o r every character

i n the f i r s t code i t s image i n the second code. This can be specified

by l i s t i n g the characters of the second code i n the same s o r t order a s

the f i r s t code.

An example of encoding the characters of a value i n EBCDIC i s

presented below. For the data item < name, JONES >, we have

J -, 11010001

0 4 11010110

N -, 11010101

E -, 11000101

S + 11100010

2. Length. The length of a value s t r i ng i s the number of b i t s

i n the s t r ing .

For example, the value s t r i ng of the a t t r i bu t e name i n the

previous example may be specified t o be of length 64 b i t s , where unused

b i t s may be f i l l e d a r b i t r a r i l y .

3. Length Uniformity. If the value s t r ings f o r an a t t r i b u t e a r e

always of uniform length, then the lengths of the value s t r i ngs car1 be

described simply by giving the length. However, if the length of value

s t r ings f o r an a t t r i b u t e a r e not uniform, then e i the r the length of

each value s t r i ng muct be given and ~to rec l ac a data item, or the vuluc

s t r i n g must be dellmlted by special characters. Thus, value s t r ings

may be specified ao being e i the r uniform or varying.

4. Value alignment. When the lengths of the value s t r ings f o r

an a t t r ibu te a r e t o be uniform, the number of characters needed t o

represent the value may be l e s s than the a l lo t t ed length. In such cases,

it i s necessary t o specify whether the value i s aligned t o the r ight

or t o the l e f t and t o specify the characters t o be used t o pad out the

unused positions.

For example, consider the data item 4 name, JONES >. The value

length of the a t t r ibu te may have been specified a s 64 b i t s and the

character code a s EBCDIC. To specify tha t the value i s t o be

aligned t o the l e f t with blank'characters used f o r padding, resu l t s i n

the following encoding of the tialue JONXS:

J -, 11010001

0 -, 11011001

N -+ 11010101

E -, 11000101

S -, 11100010

)d -, 01000000

)d -t 01000000

j4 -, 01000000

5 . Data type. Value s t r ings may be interprctcti u s e i ther c:li:~r*ac--

t e r s or as numbers. Numbers are e i the r o-lgned or urlsi(y~cd ctringc uf

d ig i t s . Signs nay be denoted by the plus 0.r. mir~uc, by radix rornplc.ruenl;,

or by diminiskled radix complement. Numbers may be orgar~ized e i the r a:;

f ixed point, o r a s f loa t ing point numbers with the number of signil'icant

d i g i t s and the length of the mantissa specified.

6. Value c r i t e r i a . Numeric and set- theoret ic c r i t e r i a may be

used t o define the s e t of acceptable values f o r a given a t t r i b u t e . For

example, values of the a t t r i b u t e age may be r e s t r i c t ed t o numbers between

21 and 65 f o r a given s e t of data items. O r values of the a t t r i b u t e c i t y

may be r e s t r i c t ed t o a par t icu la r s e t of c i t y names.

3.2.1.3 Encoding Attr ibutes

We have seen how the value of a data item is encoded. To encode

the e n t i r e data iten1 we must now provide a way of identifying the a t t r i -

bute t o which tha t value belongs.

This can be achieved i n two ways. The f i r s t way is t o d i r ec t ly

encode the a t t r i bu t e a s a b i t or character s t r ing, and then posit ion

t h i s s t r i ng re la t ive t o the value. This way of encoding an a t t r i b u t e

can be made t o f u l f i l l a second role . We saw i n the discussion of

length uniformity i n the section on encoding values, t h a t i f a value i s

specif ied a s having varying length, then it must be delimited by charac-

t e r s which s ignify the end of the value s t r ing . The a t t r i b u t e encoding

can serve a s such a delimiter fo r the value s t r ing. We w i l l c a l l the

s t r i ng which d i r ec t ly encodes an a t t r i bu t e , an a t t r i b u t e marker.

The following charac te r i s t ic i s used t o specify an a t t r i b u t e

marker:

7. At t r ibute marker. At t r ibute markers can be c i t h c r chax*acter

or b i t s t r i ngs which a r e poaitioned d:Lrectly i n f rorlt of or d.lrectly

behind a value s t r ing .

The second way i n which the a t t r i b u t e of a p a r t i c u l a r value can

be i d e n t i f i e d i s by knowing t h a t it always occurs i n a c e r t a i n pos i t ion

r e l a t i v e t o o t h e r values. That is, i f a s e t of da ta items a r e organized

i n such a way t h a t the pos i t ion of t h e value corresponding t o a given

a t t r i b u t e can be i d e n t i f i e d , then t h e a t t r i b u t e has been i n d i r e c t l y

encoded by posi t ioning. A s t h s encoding of a t t r i b u t e s by posi t ioning

depends on t h e organizat ion of s e t s of data items, t h i s way oS encoding

a t t r i b u t e s w i l l be dlscusoed i n the next sec t ion .

3.2.2 The Model of Records

3.2.2.1 The Conceptual Record S t ruc tu re

I n t h i s sec t ion we want t o model t h e conceptual s t r u c t u r e of

records. F i r s t , however, we must p in down exact ly what we mean by a

record i t s e l f . Then, we can go on t o obta in the s t r u c t u r e of such

records.

I n t h e data processing f i e l d , a u s e r of COBOL conceives of a

record d i f f e r e n t l y than say, a ,user of MAW I V . I n t h e d e f i n i t i o n of

records below, w e attempt t o give an exact formal iza t ion of t h e notion

of record which i s independent of any p a r t i c u l a r software system.

Def in i t ion 3-2. A record i s a s e t of da ta items which a r e structut:ed

according t o the following ru les :

record -. group

group -, < a t t r i b u t e , {compound. value)>

compound value -, compound value, (:ompound value

compound value -. group

compound value -. data item

We use the symbols < > t o denote an ordered se t and the symbols {] t o

denote an unordered se t .

For example, the data items < name, JONES >, < age, 32 >, and

< sex, M > can be organized into the following record:

< person, {< name, JONES >,

< age, 32 >,

< sex, M >]>

A s another example, the data items < name, JONES >, < name, MARY >,

< age, 6 >, < name, JOHN >, < age, 10 > can be organized in to the record:

< family, {< name, JONES >,

< child, {< name, MARY >,

< age, 6 >]>,

< child, {< name, JOHN >,

< age, 10 >]>I>

I n t h i s case < child, [< name, MARY >, < age, 6 >)> and

< child, {< name, JOHN >, < age, 10 >]> a re groups.

It should be noted tha t a data item i s simply an attribute-value pair,

whereas a group is an attribute-compound value pair . When it i s

necessary t o distinguish the a t t r ibutes associated with compound values

from the a t t r ibu tes associated with values, we w i l l r e fer t o them a s

group a t t r ibu tes and data item a t t r ibu tes respectively. In the example

above, "name" and "age" a re data item a t t r ibutes whereas "family" and

"child" a r e group a t t r ibutes . Compound values a re actually groups or

data items. The groups forming a group are called subordinate groups.

We note t h a t a s a consequence of the above de f in i t i on the s t ruc-

t u r e of a record is a hierarchy which has an a t t r i b u t e asso-

c ia ted with each pa r t of t h e hierarchy. We can thus abs t r ac t a

notion of record s t ruc ture based on these a t t r i b u t e s which i s independent

of t h e values. This i s done i n Def ini t ion 3-3.

Def ini t ion 3-3. A record s t ruc ture i s a re la t ionship over data item

a t t r i b u t e s produced according t o t he following s t ruc ture productions:

1. record s t ruc ture -, s t ruc ture

2. s t ruc ture -, < group a t t r i b u t e , {substructure]>

3. sub s t ruc ture -, hubstructure, substructure

4. substructure -, s t ruc ture

5 . substructure -, data item a t t r i b u t e

6. substructure -, nul l

For example, the data item a t t r i b u t e s "name" and "age" may be

re la ted by s t ruc tures obtained from the following s t ruc ture productions:

family record s t ruc ture + s t ruc ture F1

s t ruc ture F1 -, < family, {substructure ~ 1 ~ 1) >

substructure FlFl 4 substructure F1, substructure F2

substructure F1 -) name

cuhstructure 2'2 + [lull

:;ubutructure F'2 4 cubs t~uc tu rc la':', ::ubstr.uc.Lur.e 11':'

cubstructure F2 s t ruc ture P2

s t ruc ture F2 < chi ld , [substructure l?l'%l~l]>

substructure F21F1 -, substructure F1, substructure F2'12

substructure F212 age

Two par t icu la r s t ructures of these a t t r i b u t e s are:

(i) < family, {name]>

(i i) < family, {name, < child, {name, age] >, < child,

{name, age] >] >

Note: i) Production 3 i n def ini t ion 3-3 allows a par t icu la r sub-

s t ructure t o repeat an a rb i t ra ry number of times, (e.g., i n

the above example -
substructure F2 -4 substructure F2, substructure ~ 2) .

ii) Production 6 allows the occurrence of a par t icu la r substruc-

tu re t o be optional, (e.g., i n the above example -
substructure F2 -) n u l l) .

If we are given a s t ructure , then we can obtain records from it

simply by subst i tut ing a data item f o r each data item a t t r i b u t e i n the

s t ructure .

For example, i f w e make the following subst i tut ions i n t h e struc-

tures above:

< name, JONES > f o r name

<name,MARY> f o r name

< a g e , 6 > f o r age

< name, JOHN > f o r name

< age, 10 > f o r age

we obtain the following records:

i) < family, {< name, JONES >]>

i i) < family, {< name; JONES >,

< chiild, {< name, MARY >, < age, 6 >I>,

< chi ld , {< name, JOHN >, c age, 10 >I>]>

In a previous sec t ion w e s a w how data items were encoded. Now

w e must consider how the s t r uc tu r e of a record is encoded.

3.2 2.2 Encoding the Record Structure

The s t ruc tu re of a record i s a re la t ionsh ip over Lhe data item

a t t r i b u t e s i n the record speci f ied by s t ruc tu re productions. 'Blese

productions ac tua l l y produce a h ie ra rch ic s t r uc tu r e which has the data

item a t t r i b u t e s on t he lowest l eve l s and each higher l e v e l i den t i f i ed

by a group a t t r i b u t e . Therefore, t o encode t he s t r uc tu r e of a record

it i s only necessary t o ensure t h a t the a t t r i b u t e which is associa ted

with each compound value can be i den t i f i ed .

We have seen that the a t t r i b u t e of a data item can be i den t i f i ed

by put t ing a marker adjacent t o i t s value, o r , when t he data item

appears i n a group, t he a t t r i b u t e can be i den t i f i ed by t he positiori of

i ts value r e l a t i v e t o t he values of o ther a t t r i b u t e s .

The a t t r i b u t e associa ted w i t i - i a compouncl value c-a11 be iderjtified

i n s imi la r wayc:. Markers can ,be placed ad,jacent Lo Lhc c-ornpourrcl v: i luc

ur:ing the same " a t t r i b u t e marker'" r-haractcrj cL i c . as t~el'orc. A l L e l . ~ i : l L i vc-

IY, t k~e a t t r i b u t e f o r a compourltl value can bc irlcr~l il ' iud b y L l ~ c po:: i L i c) l ~

in which t he compour~d value occ-wr:: r e l a t i ve t o Lhc votnpou~al v:llucc ol'

other a t t r i b u t e s .

We will now discuss what characteristics must be specified to

identify an attribute from the position of the compound value or value.

For convenience in this discussion, we will just use the term compound

value to refer to both compound values and values.

The attribute associated wlth a compound value can be identified

if the compound value occurs in a particular order with respect to the

compound values of other attributes in the same substructure. In this

case, the order can be specified by listing the attributes of the

compound values in the appropriate order. Further, if one of the attri-

butes in this list corresponds to a substructure which is optional,

then it must be specified that this attribute may not appear. Also,

if one of the attributes in the list corresponds to a substructure

which repeats, then the number of repetitions must be given.

The characteristics required to identify the attribute of a com-

pound value (or value) from the position of the compound value (or

value) are given below:'

8. Order. The order of compuund values can be specified by

listing their attributes in the appropriate order. If the attributes

are allowed to appear in any order, then the encoding must be done by

markers.

9. Occurrence. The occurrence of an attribute may be either

mandatory or optional within a substructure.

10. Repetition number. The repetition number is the number of

times an attribute may occur consecutively in a substructure.

11. Repet i t ion uniformity. If t h e number of times a n a t t r i b u t e

repea t s i s always t h e same (i . e . , t h e r e p e t i t i o n of t h e a t t r i b u t e i s

uniform), then t h e r e p e t i t i o n number can be spec i f i ed simply by giving

t h e number d i r e c t l y However, i f the r e p e t i t i o n of t h e a t t r i b u t e i s]lot

uniform, then e i t h e r t h e r e p e t i t i o n number must be encoded and s tored

as a data item, o r t h e encoding of t h e values o r compound values f o r

t h e a t t r i b u t e must be delimited.

12. Repet i t ion order. When t h e same a t t r i b u t e repeats , then t h e

encoding of t h e val-ues o r compound values f o r it may e i t h e r be s tored

d i r e c t l y i n any order o r i n some order described by c r i t e r i a on t h e

values .
13. C r i t e r i a . Numeric and se t - theore t i c c r i t e r i a may be used t o

dePine t h e s e t of acceptable values o r compound values f o r each

a t t r i b u t e .

3 .2 .3 The Spec i f i ca t ion of t h e Encoding Charac te r i s t i c s

I n t h e previous sec t ions we have seen t h a t records a r e encoded by

specifying c e r t a i n c h a r a c t e r i s t i c s . We w i l l a l low each c h a r a c t e r i s t i c

t o be spec i f i ed e i t h e r :

1) d i r e c t l y - by specifying e x p l i c i t l y the c h a r a c t e r i s t i c , o r

2) i n d i r e c t l y - by specifying a func t ion which must be computed

t o determine t h e c h a r a c t e r i s t i c . The furlctiorl rmy be defineti

over t h e values of data items or over o the r char.acter.istic.s

using the usua l ar i thmet ic operators.

For example, t h e length q h a r a c t e r i s t i c can be spec i f i ed d i r c r t l y

as a number of b i t s , o r it can be ~ p e c i f i e d i n d i r e c t l y as perimps

(i) being equal t o the value of some par t icu la r data item, or

(i i) being equal t o the number of repet i t ions of some par t icu la r

a t t r i bu t e .

3 . 3 Interpreta t ion of Common Data Processing Concepts i n Terms of the

Model of Record Structures

A s e t of s t ructure productions together with a specif icat ion of

the ru les f o r encoding the s t ructures determines a par t icu la r type of -
record, or record type. Two records a r e of the same record type if

and only i f they can both be obtained from the same s t ructure produc-

t ions and they both have the same encoding character is t ics .

Note t h a t the term record i s sometimes used i n data processing .
l i t e r a t u r e t o re fe r t o what we c a l l a record type.

Note t h a t the production rules of Definition 3-2 make it possible

t o dist inguish eas i ly between a data item and a record consisting of a

single data item, even though the both contain a s ingle value. For

example, < name, JONES > i s a data item, whereas < person, {< name,

JONES >I> i s a record. This d i s t inc t ion r e f l ec t s the f a c t t h a t a data

item i n i t s e l f i s only a basic un i t of information i n some data organi-

zation, whereas a data item structured a s a record i s i n addit ion the

basic un i t which is stored o r retrieved when t h a t data organization i s

used.

Two groupo a re of the same Broup type if and only if Lhey (!an

both be obtained from the came s t ructure prod.uctlons and. they both

have the oame encoding character iot ics .

A data item corresponds t o t he i n t u i t i v e idea of a f i e l d .

Two f i e l d s a r e of t h e same f i e l d type if and only i f they both

have t h e same a t t r i b u t e and a r e both encoded i n t he same way.

In ea r ly versions of COBOL and i n some Dm's only one type of

record i s allowed per f i l e . I n these systems there was therefore no

need t o r e f e r t o pa r t i cu l a r types of records. However, t h e model allows

f o r the appearance of more than one type of record i n a. f i l e . Therefore,

some means of re fe r r ing t o par t i cu la r types of records must be provided.

Similarly, it w i l l be useful t o be able t o r e f e r t o par t i cu la r types

of groups and f i e l d s . We w i l l use t h e a t t r i b u t e A of a record (group,

f i e l d) < A, ... > t o name t he type of' t h a t record (group, f i e l d) . Thus,

a record < person, { . . .]> i s of type person, and a f i e l d < age, 10 > i s

of type age. To ensure t h a t t h i s way of re fe r r ing t o types of records

(groups, f i e l d s) i s unambiguous, we must make the followirlg convention:

Within a f i l e , a given a t t r i b u t e i s associated with only one

s t ruc ture and only one s e t of encoding charac te r i s t i cs .

I n pa r t i cu l a r t h i s requires:

(1) A given a t t r i b u t e can occur i n only one production of the

f om:

c1;ructure -, < a t t r i b u t e , { ~ u b c t r u c turc]>

(:!) If A occurs i n a protiuc8t.i.on of the l'orm:

c t ructure -. < A, {substructure]>

then R cannot occur i n t he substructure.

We w i l l see i n Section 3.5 t h a t t h i s convention erlsures t h a t

t he s t ruc ture productions produce only hierarchic organizations.

3.4 An Application of the Model of Record Structures

An example of using the model t o completely encode a s e t of data

items i n a given otructure a s a b i t s t r i ng i s given below:

Consider the data items - < name, JONES >, < age, 32 >, and

< sex, M > and the s t ructure specified by the s t ructure productions:

person record s t ructure -, s t ructure P1

s t ructure P1 .-. c person, {substructure ~ 1 ~ 1] >

substructure PI21 -, substructure P11, substructure PIP2

substructure PlP2 substructure P12, substructure P13

substructure P11 -, name

substructure P12 -, age

substructure P13 -, sex

The following record i s obtained from these s t ructure productions:

< person, {< name, JONES >,

< age, 32 >,

< sex, M >]>

The b i t s t r i n g representation of t h i s record i s produced using

the following encoding character is t ics :

(1) The character code f o r the values of name, age and sex i s

EBCDIC .
(2) The length of values of name i s 64 b i t s , of age i s 16 b i t s ,

and of sex i s 8 b i t s .

(3) The lengths of values of name, age and sex a r e uniform.

(I t) !The values of name a re l e f t aligned and padded with blanks.

(5) m e values o f name, age and sex a r e t o be interpreted a s

character strings.

(6) There a r e no r e s t r i c t i ons defined by c r i t e r i a on t he values

of name, age and sex.

(7) No a t t r i b u t e markers a re used with value s t r i ngs of name,

age and sex.

The otructure i c encoded according t o the following character ic t icc:

(6) The attribute^ name, age and sex appcar i n l;hc order i n which

they a r e named by the s t ruc ture produc.tior~s.

(9) An occurrence of each a t t r i b u t e i s mandatory.

(10) Each a t t r i b u t e occurs once i n a s t ructure .

(11) The repe t i t ion f o r each a t t r i b u t e i s uniform.

(12) Since there may be only one occurrence of the a t t r i b u t e s name,

age and sex, t he repe t i t ion order c r i t e r i o n does not apply.

(13) There a r e no r e s t r i c t i ons defined by c r i t e r i a on t h e compound

values of person.

Applying these encoding ckarac te r i s t fcs , the followirq rccaor.cj raepr.csenta-

t i o n resu l t s :

110100011101011011010101110001011110001001000~0001000100ooo0

11110011111100101101Ol00

Igor every dif ferent s e t of da ta i t e m s which are substituted i n the

s t ruc ture obtairlecl. from the above s e t 01 ztr-uc.1;ur.c PI-oclu~'tior~:;, i r

r j if ferc.rit b i t r;tr i.rg is produc.erl by these c.nc:odir~ ca1itr r.ncsLc t ' i L:L i (.:;.

3.5 l%e Completeness and Generality of the Model

To be complete, the model must incorporate i n i t s e l f a l l of the

c b r a c t e r i s t i c e of record structures derived i n Table 2-1. This i s

done f o r the data i t e m character is t ics a s follows:

By'rnbolic naming appears i n the model a s the concept of an

a t t r ibute .

'Phe implementation characteristics f o r data items appear i n the

model d i rec t ly as encoding characteristics.

The character is t ics relat ing t o the structure of records are

incorporated i n the model as follows:

The structuring characteristics of records appear i n the model

a s the concept of record structure.

The implementation character is t ics a re incorporated direct ly as

encoding characteristics.

Thus, the model includes each of the record leve l character is t ics

appearing i n B b l e 2-1. In t h i s sense, the model i s complete.

We fur ther note tha t the structure productions and the convention

of Section 3 . 3 impose a p a r t i a l ordering on the a t t r ibu tes of a struc-

ture . This i s proved a s follawa:

Theorem: The structure productiono and the convention of Scctior~ 3 . 3

lmpone a p a r t i a l orderira over the a t t r l b u t e ~ ; of a teecord structulwc.

IJroof: A pa r t i a l ordering i s a relat ion which i s

1) reflexive ,
2) antisymmetric

3) t rans i t ive .

1,c.t uc clef ine 2 t o be a re la t lon over a t t r i b u t e s ac follows: -
for attributes a and b, a 3 b If arid only i f u = b, o r < a , { . . . b . . .)> -
i~ s structure, where b may appear i n any depth of { , 3 or < , > brackets

We will now show - 3 i s a p a r t i a l ordering.

1) By decini t ion - 3 i s reflexive.

2) Assume t ha t a - 3 b and b 3 a and t h a t a # b. -
T h i ~ means < a, { . . . b . . . 3 2 and < b, [. . . a . . . 3 > a r e s t ructures .

But by (I) of the convention, the a t t r i b u t e b can only be associated

with one substructure which must therefore be { . . . a . . . 3 . Thus,

<: a, [. . . b . ..) > i s ac tua l ly /, a, { . . . < b , { . .. a . . .) >. This

I e not allowed by (2) of the conventi on. 'Riuc, a - 3 b arid b 3 a implies -
a = b, Hence - 2 i s antisymnzetric.

3) Assume a 2 b and b 3 c. - -
I f a = b and/or b = c, then a 3 c. -
If < a, { , . . b . . .) > and < b, (. . . c . . .] > a r e s t ructures ,

then by (1) of the convention < a, { . . . b , . . 3 > i s ac tua l ly

< a , { ... cb, ... c . . .) > . . . I > . T h u s , a 3 c , a n d s , i s - -
t r ans i t i ve .

Therefore, - 2 i s a p a r t i a l ordering.

Mathemtically, any hierarchy can be real ized by a p a r t i a l

ordering (131 1948) . From the above proof, it Sollows tha t the struvtu r.c

productions and conventions can rea l ize any hierarchic record s t ructure .

The charac te r i s t ics of m b l e 2-1 a r e incorporated i n more

generalized forms i n the model t o allow f o r the description of varia-

t ions of ex is t ing data structurec. This general i ty is provided i n

t he following ways:

1) The model provides a more generalized way t o describe the

order of data i t e m and groups. A s we have seen i n Pable 2-1, current

systems only provide f o r the specification of fixed ordering. However,

the ordering character is t ic of the model allows order t o be specified

a s ffxed or 8 6 arbi t rary re la t ive t o the groups. For example, consider

the following group -
< X , b y , [< z , a > , < t , b >] > ,

< U) c >,

c v , c < ~ , d > , e s , @ > I >] >

with the following order characteristic:

m e ordering f o r the compound values of a t t r ibu te x i8 fixed, and

the ordering f o r the compound values of a t t r ibu tes y and v

i s arbi t rary.

mis re su l t s i n the following valid orderings of the values a , b, c ,

d, e:

abcde, bacde, abced, and baced.

Such variable orderings a r e not permitted i n current systems.

2) The model provides a more generalized way t o specify the

encoding character is t ics than i s required t o describe the char.acteristics

of mble 2-1.

I n Table 2-1, we saw tha t the character is t ics length and repetit ion

could be specified a s depending on some single other data i t e m . I n the

model, a l l character is t ics can be specified as depending on other data

items, other characteristics and f'unctions of these. This greatly in-

creases the variety of' encodings which can be specified.

In theee ways, the model allows generalizations of current data

representations at the record level to be specified.

3.6 The Relationship Between the Model and GDDL

GDDL has been explicitly decigned in terms of the model. A CDDL

statement consists of an identifying name and a string of parameters.

m e FIELD and GRmP statements are used to describe the conceptual

organization of data items and groups. Each encoding characteristic of

data items and the structure of records can be specified by one or more

parameters in GDDL statements. The parameters and statements for these

characteristics are listed in Table 3-1 given below:

Value
Characteristics

Character
Code

Length

Length
UniPormity

Value
Alignment

Data
m e

Value
Criteria

4

Specified in
Section in
Appendix A

1.1
1.ic.l
2.1.2.1

1.1

1.1

1.1

1.1

1.2

2.1

Statements and
Parameters

FIELD statement
parameter (ii)
CHAR statement
SET statement

FIELD statement
parameter (iii)
parameter (iv)

FIELD statement
parameter (v)

FIELD statement
parameter (lx.)

F I E L D statemerit
parameter (vi)

GRCUP statement
parameter (iii)f
Criterion statements

Remarks

U)
U . -
C V, . -
L
w
C

U

2 o
r
U

E
Q,
C . -
o
C

o
n

Wble 3-1. The Relationehip Between the Model
and. GDDL

.

Inaigl~t into the relationship between the model and. GDDL can

beat be obtained by comparing the format of the GDDL FIELD and GROUP

statements with the definitions of field ty-pe and group ty-pe (see

Section 3.3 and Definitions 3-1 and 3- 3) .

Section in
Appendix A

1.4.3

2.1

2.1

2.1

1.2

1.2

1.2

2.1

Section in
Appendix A

1.4.4

Attribute
Characterieties

Attribute
Marksre

Order

Occurrence

Repetition
Number

Repetition
Unif ortnity

Repetition
Order

Criteria

Specification of
Characteristics

Direct

Indirect

Statement s and
Parameters

CONCODE state-
ment

GRWP statement
parameters (ii)
and (11l)a

GROUP statement
parameter (if i)b

GROUP statement
parameter (iii) c

GROUP statement
parameter (iii)d

GROUP statement
parameter (iii)e

GROUP statement
parameter (iii) f
Criterion statements

Statements and
Parameters

By listed
parameters

Parameter
statements

Remarke

>

d

J

m
@rl o
.t:
.rl $4

t
4

?I o
o
8

The FIELD statement has the following format:

FIELD (field name, encoding characteristics)

This corresponde to the specification of a Iield type in the followi~g

way. 'Phe attribute corresponds to the field riame, arid cncodirlg

characteristicc appear directly. Thus, we Gee t h a t the FIELD statement

specifies data items.

The G R W P statement has the following format:

G R O (group name, . . . ; (list), . . . , (list) . . .) .
This corresponds to the specification of a group type in the following

way. Compare the structure productions of Definition 3-3 with this

format. The production of the type:

structure < attribute, { substructure] >

corresponds to the format of the GROLTP statement, with the attribute

corresponding to the group name, and with all the substructures that

can be obtained using the remaining types of productions corresponding

to (list), . . . , (list). The encoding characteristics for each sub-

structure are included in each list. Thus, we see that the G R W P state-

ment specifies the structure for groups. To specify that a particular

group is to be treated as a record, the IiECOliD statemerlt is used (cce

Section 1.3 in Appendix A) .
From the above table, we note that every chatmac*tcr.ist,ic. ol' Lhc

moclel is included in GDDL. Since the complete sct of characteristic::

can encode the structure and values of data items, CalDL therefore has

the same capability. This, in effect completes the ar&-u~nerit that GDL)L

can specify any record level structures which can be described in

the model.

3.7 Demonetrations of GDDLts Completeness

In the greviour~ ~ection we ohowed that GDDL is complete for record

de~crlption by ~howirq that the model on which it was based i~ complete.

We now provide eeveral practical examples of its completeness.

me first of these examples is a demonstration that GDDL contains

the COBOL record description features as a proper subset. COBOL was

chosen because it Is the prototype for almost every DBMS DDL and for the

CODASYL DDL effort. It has the most highly developed record description

capabilities currently available. The demonstration is given in Appendix

C, part 1. In Appendix C, part 2 three examples are given of record

characteristics describable in GDDL but not in COBOL.

The remaining examples demonstrate the use of GDDL in describing

real-world records. These record descriptions are part of larger

examples of complete conversions of data f r m one structure to another.

They are given in Appendix B.

CHAP'ER 4 FUE DESCRIPTION

4.1 Introduction

This chapter is devoted t o the study and description of organiza-

t ions of records called f i l e s . W e develop a model of f i l e structures

which i a a very general extension of current concepts of f i l e s a s

analyzed i n Chapter 2. Thin model leads t o the technique fo r describing

f i l e structureo that i s incorporated i n GDDL. This technique i s i l l u s -

t ra ted i n a ser ies of examples which show tha t GDDL can describe several

well-known f i l e structures.

4.2 A Model of F i l e Structures

In Chapter 3, we developed a model of records. In t h i s chapter,

we a re concerned with the record a s a basic uni t of storage and re t r ieva l .

When large numbers of records a re t o be stored and retrieved, a problem

of e f f ic ien t u t i l i za t ion ar i ses . For example, s tore time i s consergved

If data need not be rearranged each t i m e a new record i s stored. And

search time i s concerved if records can be GO arranged t h a t each record

i s stored physically next t o the record tha t i s needed next. Then, when

the first record t o be used i s found, succeeding records can be d i rec t ly

accessed i n the order of usage. However, when access t o two or more

record8 from a single record l a required, a sequential ordering of

records doeu not in l t a e l f provide the m o ~ t e f f i c i en t u ' t i l ization.

A uaer, then, should conceive of the record^ as bcing conx1ecetcd

together i n fiome way by acceat: paths. These pal;hc make a record at

- 81 -

one point on a path accessible t o records which occur a t points previous

t o it on the path. n e y represent connections among the records i n

question t h a t the user wants t o exploit f o r storage and r e t r i eva l . We

c a l l such an organization of records the conceptual f i l e s t ructure . When

t h i u s t ruc ture l o implemented on a ctorage medium, it must be represented

i n gome way by a otr ing of b i t s .

A s seen i n Chapter 2 , there a re currently three ways i n which the

access paths of a f i l e s t ructure a r e implemented. If there i s t o be an

access path from a record (say, A) t o another record (say, B) , it may be

implemented by:

(1) sequencing posit ion - the b i t s t r ing representation f o r B

i s concatenated a f t e r the b i t s t r i ng representation f o r A

(see Figure 4-1, a) ;

(2) embedding pointers i n the records - a pointer t o B (i . e . ,

an encoding of the posit ion tha t the b i t s t r i n g representation

of I3 occupies i n the record sequence) i s included as a f i e l d

i n A (see Figure 4-1, b);

(3) arranging pointers i n tab les - a pointer to B i s concatenated

a f t e r the pointer t o A i n a sequence of pointerSs (ca l led a

table) which i o maintained separately from the records them-

 elves .
Ultimately, a pointer t o B w i l l give the phycical address of the

b l t &r ing repreccntation of B when it Is stored on n cl;oragc medium.

Ilow the ac tua l h l t a t r ing fo r ci pointer can be obtuined i s discussed in

Chapter 5 , a f t e r we have considered the organization of storage media.

bsr b s r
A A

where bsr means: b i t
string reprccenta-
t i o n 01'

Figure 4-1, a. By Sequencing

bsr A and
pointer

bs r B and
pointer

Figure 4-2, b. By Embedding Pointers

b s r pointer
to R to R -

' b s r b c r

Figure 4-1, c . By Using Tables of Pointers

Figure I t - 1 . ImplemeriLatjon oi' Access I'IiLhs

We saw i n Chapter 3 how the records themselves a r e encoded as b i t

s t r ings. Now we must consider the rules f o r encoding the f i l e structure

in to a b i t str ing. If the f i l e structure i s t o be implemented by

sequencing, the rules muet determine the sequence i n which the b i t s t r ings

roproosntlng the rucordo occur. I f the f i l e structure ic t o be imple-

mented by pointere, the ru le6 must determine how the p o i n t e r ~ a r e encoded

into b i t atrings, where these b i t s t r ings must be positioned i n relat ion

t o the b i t s t r ings of the records, and the sequence i n which the b i t

s t r ings of the records must occur. These rules w i l l then determine a

b i t s t r ing which represents the f i l e structure.

There a re thus three components of t h i s process:

(1) the conceptual f i l e structure,

(2) the f i n a l b i t string, and

(3) rules fo r encoding the conceptual f i l e structure of records

a s a b i t s t r ing .

We therefore have t o model each of these components. m e modelling of

the conceptual s t ructure i s influenced by (Co 1970). 'Phe rules f o r

encoding a re modelled a f t e r the work of (HS 1970). The b i t s t r i n g '

is simply a sequence of 0 ' s and 1's.

F i r s t , the conceptual f i l e structure w i l l be deccribed. And

secondly, the rules f o r encoding the f i l e structure w i l l be specified.

4 .2 .1 Ihe Conceptual F i l e Structure L

We noted In the previous ~ e c t i o n that thc f i l e s tmcturc cletcr-

mlr lcc whlch rccords a re connected by acceao pathr;. In other words, J t

determines a re la t ion (ca l led a f i l e re la t ion) among records on the

basis of access paths. Consider two records which we w i l l c a l l A and

B, such that e i t h e r

(I) the b i t s t r i n g representation of B i s concatenated a f t e r

the b i t s t r i n g representation of A, o r

(i i) there i s a pointer from A t o B.

Then we say t h a t there i s a d i r ec t access path fromA t o B . lielative

t o t h i s path we c a l l record A the head of the path and record B the t a i l - -
of the path. This terminology allows us t o refer t o records connected by

access paths without naming the specif ic records.

Definit ion 4-1. The f i l e r e l a t i on determined by access paths through a

s e t of records consis ts of the s e t of ordered pa i r s < head record,

t a i l record > f o r each d i r ec t access path.

A s examples, consider t h a t we a re given a s e t of records,

S = {rl, ... r) where r is a record f o r 1 i g n.
n i

(1) The access paths of the l i s t structure:

-, r2 -3 -) ..* I- n-1 -, 'n

give the re la t ion I - < rlr rg 2, < r.,, r3 >, , 1 - 1 .

< r n- 1 9 rn '1 .
(2) Vie access path:: of the t r e e structure:

give the re la t ion I2 = {< r r >, < r ,r >, < r2,r4 >, 1' 2 1 3

< r ,r >, * * * ? < rn-prn > 1) 2 5
(3) The access paths of the r ing structure:

give the re la t ion Ig = [< r r >, ...?
1' 2

< r i + l >, ..., < rn-l,rn>) < r r >] nJ 1

It w i l l be convenient t o introduce the following terminology:

a) If the pa i r of records < r r > is i n a f i l e r e l a t i on
1' J

R, then we say t h a t there i s a path of length 1 from ri t o

'I
f o r re la t ion R. Therefore, a d i r ec t access path has length

one.

b) J : i the pair of recorrlr; < ri,rJ > i s not in a f i l e re la t ion -
R, w e say there i n a path of length 0 from r. t o r . for

1 J

re la t ion 13.

c) If the pa i r s of records

a r e i n a f i l e r e l a t i on Ii, then we say t h a t there i s a path -
of length n from rl t o r f o r r e l a t i on Ii. n+l

lb model t he corlceptual f i l e s t ruc ture w e must have a way t o

specify any f i l e r e l a t i on t h a t a user may require. In general, there

my be an a r b i t r a r i l y large number of records t h a t can be included i n

a f i l e s t ruc ture . Therefore, it i s not p r ac t i ca l f o r a user t o s t a t e

the f i l e r e l a t i on extensively by l i s t i n g a l l the pa i r s of records.

Instead, he can specify c r i t e r i a over the records which w i l l determine

when two such records a r e t o be i n the re la t ion . Thus, f o r two records

A and B, < A , B > i s a member of a f i l e r e l a t i on if and only i f A and B

s a t i s f y t he c r i t e r i a f o r the re la t ion . Such c r i t e r i a can describe

e x p l i c i t l y the conditions which must be met f o r two records t o be

connected by a d i r ec t access path.

We provide below a s e t of production ru les f o r specifying c r i t e r i a .

A t t h i s point it is worth noting t h a t i n Chapter 3, we were only

concerned with hierarchic organizations and so simple production rules

were a l l t h a t was necessary t o specify record s t ructures . lIowever,

t o organize records i n t o f i l e s , a f a r wider var ie ty of organizations i s

required and, therefore, a more elaborate way ol' opeciL'ying them j c

Definition 4-2. A file structure is a file relation determined by

criteria obtained from the following production system:

Criterion Production System:

Primitives: attribute, bit string, character string, characteristic,

integer, arithmetic relations (=, .g, etc.), arithmetic operators

(+, -, etc .), set membership relation (e)

Rules to produce the names of records, fields, characteristics and paths:

index -, (integer)

record-modif ier -, HEAD

-, X integer

attribute-f o m -, attribute

attribute index

record-attribute -, attribute record-modifier

-r attribute

attribute-modifier -, attribute-form

-, attribute-form OF attribute-modifier

.-, attribute record-modifier

record-reference -, record-attribute

-, record-attribute criterion

field-reference -. attribute-modifier

characterictic-reference characteristic

path-reference -. PA'IH (record-reference, record-reference, crite-

rion)

Piules to produce set-theoretic criterion:

constant -, character string

-, bit string

~et-member -, field-reference

4 constant

-. set-member, set-member

set - {set-member]
set-criterion .-, field-reference e set

-+ characteristic-reference c set

Ifules t o produce arithmetic criterion:

term -. VAWE (f ield-reference)

-. PARAMETER (characteristic-reference)

-. LENGTH (path-reference) relation-symbol -, =

4 constant 4 #

arithmetic-operator 4 * <

4 - 4 5

- x 4 >

-,I + 2

arithmetic-expreacion -, term

4 (arithmetic-expr.ecciorl) a r i L11niel;ic:-opc r.uto I.

(aritl~metic-exprccsior~)

arithmetic-cr i ter i on -, arlthmet.Lc-expression rclutiorl-symbol

aritk~metic-exprcc siou

Rules f o r quantifying and combining c r i t e r i a :

quantifier 4 ALL (X integer)

4 SObP: (X integer)

cr i te r ion -(arithmetic-criterion

-, set-cr i ter ion

q,uantif i e r (cr i ter ion)

" NOT (cr i ter ion)

(cr i ter ion) AND (cr i ter ion)

(cr i ter ion) OR (cr i ter ion)

Note: A quantifier is required i n a cr i te r ion only when a record-

modifier contains a s t r ing of the form: X integer. mere w.uust

be one quantifier of the form: ALL or SOME (X integer) f o r

each unique s t r ing X integer i n the cr i ter ion.

This production system i s used t o specify c r i t e r i a which deter-

mine wheri Lhere i s t o be a direct access path from one record t o another.

W e iaagine a proceeeor which i s compiling a f i l e re la t ion over a

aet of recorda. For any two records tha t the processor picks up

(poten-tial head and t a i l records), we deocribe t o the processor

c r i t e r i a which determine whether the two records a re t o be linked. The

c r i t e r i a can be over:

(i) the values of data items i n the records,

(li) the s t ruc tura l propertiea of the records,

(i l l) the implementation of the records, and/or

(IV) any linkages already compiled.

The f i r s t three fac tors produce data and record dependent f i l e

structures, and the l a s t factor produces purely graph-theoretic struc-

tures . These c r i t e r i a a re expressed a s arithmetic and set-theoretic

expressions. The values and character is t ics being tested i n c r i t e r i a

may occur i n head or t a i l records or i n any number of d i s t inc t records

other than the head or t a i l records; and d i rec t access paths may similarly

ex i s t between head, tail and arb i t ra ry records. Wheu c r i t e r i a a re speci-

f i e d f o r records other than head or t a i l records, record-modifiers of

the form X integer a re used i n referr ing t o these records. For each

unique reference of t h i s kind, there must be a quant if ier which

indicates whether the c r i te r ion i n which the reference appears must

hold f o r a l l , o r a t l e a s t one, of the records of the type i n question.

A s examples, consider the following se t of records:

S = {rl = < person, {< name, JOHN DOE >,

< soc. sec. no., 073028556 > 3 >,

= < person, {< name, JAMES DOE >,

c soc . sec . no., 029110076 >,

< spouse, MAFU BROWN >,

< child, JOHN DOE >] >,

r3
= < person, {< name, MARY BRWN >,

< soc. sec. no., 00041263'{ >,

< spouse, JAMES DOE >,

< child, ,JOlIN DOE > 1 >,

r4 = < person, {< name, MARK BRCWN >,

< SOC. sec. no., 214325629 >,

< epouse, ALICE BRaWN >,

< child, lvlAIiY BRWN > 3 >,

r5 = c person, (< name, ALICE JONES >,

< soc . sec. no., 345291102 >,

< spouse, MRK BROWN >,

c child, MARY BRCKJN > 3 >

(1) Consider now a c r i t e r ion which orders the records by soc. sec.

no. The c r i te r ion which determines when there i s a d i r ec t access path

from a HEAD record of ty-pe person t o a lWIL record of ty-pe person can

be s ta ted i n English as:

The value of soc. sec. no. i n the HEAD record i s l e s s

than the value of soc. sec. no. i n the 'PAIL record;

and there i s no other record of type person having

a soc. sec. no. between the one i n the HEAD record

and the one i n the TAIL record.

This c r i t e r ion i s expressed using the Criterion Production System as:

(soc. sec. no. OF person HEAD < soc. sec. no. person 'DAIL) AND

(ALL (XI) (NOT (soc. sec. no. OF person HEAD < rioc. oec. no. aZll

person ~ 1) AND (8oc. aec. no. Ok' peraon X 1 < soc. ~ c c . no. 011'

person 'NIL)))

'Phi5 determines the following f i l e structure:

r3 -, r2 -, rl -, r4 -, r5

Note: I n t h i s exaurple - soc. sec. no. OF person HEAD

soc. sec. no. OF person TAIL

soc. sec. no. OF person X 1

a r e a l l value-referencec.

(2) Consider a cr i ter ion, which arranges the records in to a

family t ree . The cr i te r ion which determines when there is a d i rec t access

path from a HEAD record of type person t o a TAIL record of type person

can be s tated i n English as:

The value of name i n the HEAD record equals the value of chi ld

i n the !BIL record.

This c r i te r ion i s expressed using the Criterion Production System as:

name OF person HEAD = child OF person ?AIL

This d e t e d n e n the following f i l e structure:

MAEIKBIiCRJN r4 ALICE JONES

Note: In t h i s example, name OF person HEAD and child OF person 'PAIL

a re value-ref erences .

(3) Finally, consider a c r i te r ion which, combined with the c r i -

t e r ion of example (l) , creates a r ing s t ructure . The c r i t e r ion which

determfnes when there i s a d i rec t access path from a HEAD record of

type person t o a ?1ZIL record of type person can be s ta ted i n English as:

There i s a path of any length determined by the c r i t e r ion of

example (1) from the 'IIAIL record t o the HEAD record; and there

i s no path determined by the c r i te r ion of example (1) e i t he r

from the HEAD record o r t o the lYlIL record.

This c r i t e r ion i s expressed by the Criterion Production System as:

(LENG'M (PABI (percon 'MIL, person HEAD, c r i t e r ion (1))) 2 1)

AND (ALL (X ~) ((L ; E N U ; ' ~ PA^ (person HERD, person X 1 , c r i t e r ion

(1))) = 0) AND (E~NCTII PAD^ (person X 1 , person TAIL, c r i -

t e r ion (1))) = 0)))

where c r i t e r ion (1) is the c r i t e r ion of example (1) . This, together

with c r i t e r ion (1)) determines the following f i l e structure:

where access paths of the form --t

a r e determined by the c r i t e r ion of

example (1) and access paths of the

r4 - form --;i, a re determined by the

above c r i te r ion .

In representing a f i l e on a computer medium both the records and

the f i l e s t ructure must be encoded. The records a r e encoded in to b i t

s t r i ngs a s discucced i n the previous chapter. The next section dis-

cusses the encoding of the f i l e s t ructure .

We s h a l l consider each of these encoding charac te r i s t ics separately.

1. Encoding method. The encoding method i s e i t h e r sequential,

embedded pointer, or pointer t ab le encoding.

2. Link number. The l i n k number i s the number of t a i l records

t o which any head record i s connected by a d i r ec t access path. I n

encoding embedded pointers, t h i s i s the number of pointers t ha t may be

ctored i n a single head record t o encode a par t icu la r f i l e re la t ion

(o r the maximum such number). In pointer tab1.e encoding, the l i n k

number is the number (or maximum number) of en t r i e s i n the tab le fo r a

s ingle head record.

3. Linkage uniformity. If the l i n k number i s t o be always the

same f o r each head record (i .e., the number of access paths s t a r t i n g

from any record i s uniform), then the l i nk number gives the ac tua l number

of those access paths. Otherwise, the l i n k number gives an upper bound

on the ac tua l number.

4. Path length. Path length gives an upper bound on the length

of a path encoded by embedded pointers. For example, f o r a t r e e struc-

tu re , path length s e t s the maximum depth of the t r ee s . If the maximum

i s reached and more records remain t o be connected by paths, a new

st ructure containing these records i s s ta r ted .

5. Connection s e t number. The connection s e t number gives tkic

maximum number of records t h a t are comcctcd togctkmr by accScs:: path::.

For example, in a t r e e ctructure the connection s c t r~uulbcr ~:ivc:: Ll lc

wxlmm rrumber of records in the t r e e . li' the r n w t i r m ~ m i c 1.ca~klctl.

more records remain t o be connectecl by paths, ti new ~ t r z l c tu rc j.2 c t a r ' k t l .

4.2.2 Encoding the Fi le Structure

When a f i l e s t ructure i s encoded, it i s the ac tua l ordered pa i r s

i n the f i l e re la t ion t h a t a r e encoded and not the c r i te r ion determining

the f i l e re la t ion. It is understood tha t the ordered pa i r s of the f i l e

re la t ion have been compiled f i r s t from the c r i t e r ion by some mechanical

process. The user, however, i s only required t o supply the c r i te r ion .

A f i l e re la t ion can be encoded i n e i ther one or i n a combination

of the three ways discussed above. 'That is:

(1) sequential encoding - the b i t s t r i ng representing the t a i l

record i s concatenated a f t e r the b i t s t r i ng representing the head record;

(2) embedded pointer encodinq - a pointer t o the t a i l record i s

encoded a s a value i n the head record; and

(3) pointer t ab le encodiq - a pointer t o the t a i l record i s con-

catenated a f t e r a pointer t o the head record i n a table .

The par t icu la r method is chosen t o optimize the processing of data.

The ru l e s f o r encoding f i l e re la t ions a re simply a de ta i led specifi-

cation of cer ta in character is t ics t h a t determine the above three encoding

methods. The character is t ics required t o completely specify each encoding

method a r e l i s t e d i n Table 11-1.

Wble 4-1. Characterist ics for Each Encoding
Method

Encoding Method

Sequential

Jibbedded Pointers

Pointer Table

Required Characterist ics

1

1 ~ ~ , 3 , 4 , 5

1,293

This now completes the character is t ics which must be specified t o

determine the rules f o r encoding a f i l e relat ion.

A s f o r the encoding character is t ics f o r record description, we

allow each character is t ic t o be specified ei ther :

1) di rec t ly - by specifying expl ic i t ly the character is t ics , o r

2) indirect ly - by speciPying a function which must be c-omputed

t o determine the character is t ic . The function rnay be defir~ccl

over the values of data items o r other character is t ics using

the usual arithmetic operators.

For example, the l ink number character is t ic can be specified direct-

ly , o r it can be specified indirect ly as , perhaps, being equal t o the

value of some data item i n the head record i n question.

We w i l l now show how these character is t ics a re used t o encode a

f i l e using the embedded pointer or pointer tab le methods:

(1) When using e i ther of these methods t o crlcode a f i l c , allother

c r i te r ion must be defined t o determine the sequence of the records.

(2) When a f i l e re la t ion i s encoded by embedded pointers, a f i e l d

i s specified a t the record leve l t o contain the poirlters. This f i e l d

forms a part of the actual record and i s i t s e l f encoded i n the usual way.

(3) When a f i l e relat ion is encoded by pointer tables, the

encoding of the tab le must a l so be described. This is doric by treatin[:

the tab le a s a f i l e whose records contain the poiriteru.

4 . 3 Applications of the Model of F i l e Structures

We w i l l now i l l u s t r a t e how the model i s used t o encode a f i l e

otructure i n to a b i t s t r ing . We w i l l take the f i l e s t ructure specified

i n Example (1) snd encode it in to a b i t s t r i ng f o r each of the sequen-

t ia l , embedded pointer and pointer t ab le methods.

(1) Sequential encoding.

The charac te r i s t ic specified below:

1. encoding method i s sequential;

applied t o the f i l e s t ructure r e su l t s i n the b i t s t r i ng i l l u s t r a t e d i n

Figure 4-2.

b i t s t r i ng b i t s t r i n g b i t s t r i n g b i t s t r i n g b i t s t r i ng ,

encoding encoding encoding encoding encoding
of r 3

of rg of rl of r4 of r5

Figure 4-2. B i t St r ing Representation of
F i l e Sequentially Encoded

(2) Embedded pointer encoding.

Let us assume tha t a f i e l d k&s been specified at the record l eve l

that is t o contain the pointer. A ~ ~ u m e t h i s f i e l d i s positioned a t the

end of the person record. Let uc a l s o assume that the record sequence

i s t o be a rb i t ra ry . Then the following charac te r i s t ics applied t o the

f i l e s t ructure of Bample (1) r e su l t s i n the b i t s t r i ng i l l u s t r a t e d in

Figure 4-3.

1. encoding ic by embedd.ed pol.nter,

:!. the l i n k number i s 1,

3. the l i n k number i s uniform,

4. no l i m i t s a r e put on path length, and

5 . no l i m i t s a r e put on the number of records l inked together.

b i t s t r i ng b i t s t r i ng
of e of d

b i t s t r i n g b i t s t r i n g
of c of b

b i t s t r i ng b i t s t r i ng b i t s t r i ng b i t s t r i n g b i t s t r i n g
encoding encoding encoding encoding encodirlg

of r 3
of rl of r of r4 of

5

Figure 4-3. Bi t Str ing Representation of F i l e
Encoded by Embedded Pointers

I n t h i s b i t s t r i n g the order of the records i s r3, rl, r5, r4, and re.

a , b, c, d, and e a r e the posi t ions of each record i n the s t r ing . These

appear i n each record a s pointers. '1Pr1is i s i l l u s t r a t e d i n Figure 4-11.

Figure 4-4. ~ i i e Linked by Embedded Pointers

(3) Pointer t ab le encoding.

Let us assume tha t each record of the tab le i s t o contain only a

s ingle f i e l d f o r each pointer and t h a t the sequence of the person records

is t o be a rb i t ra ry . The following character is t ics specifying the organi-

zation of person records and the organization f o r records of the table,

applied t o the f i l e s t ructure of Example (1) resu l t s i n the b i t s t r i ng

i l l u s t r a t e d i n Figure 4-5.

a) t ab le specification -
1. encoding of the tab le i s sequential.

b) f i l e specification -
1. encoding i s by a pointer table ,

2 . the l i n k number i s 1,

3. the l i n k number i s uniform.

a b c d e

I I -----
b i t s t r i ng b i t s t r i ng b i t s t r i ng b i t s t r i n g b l t s t r l ng

4 f o r r
5

f o r rl f o r r f o r rk f o r r2 3
b i t s t r i n g f o r a

, b i t ot r lng f o r d a , b, c, d, rind c are the
b i t s t r ing f o r L

Y posltionc of each record i n
b i t strlng f o r e the s t r ing .

h i t s t r l r ~ g fore c

Figure 4-5. B i t S t r ing Representation of F i l e Encoded
by a Pointer Table

The first f i v e b i t s t r ings represent pointers t o the records, a s i l l u s -

t r a t ed i n Figure 11-6.

Figure 4-6. F i l e Linked by a Pointer mb le

4.4 The Completeness and Generality of the Model

We w i l l now show t h a t the model of f i l e s t ructures i s complete.

We w i l l do t h i s by showing tha t the s t ructur ing charac te r i s t ics a t the

f i l e l eve l of Table 2-1 a r e properly contained i n the conceptual pa r t

of the model and tha t the implementation charac te r i s t ics a r e contained

i n the encoding ru les of the model. The s t ructur ing charac te r i s t ics

of each software system are ac tua l ly arranged t o provide a highly

r e s t r i c t ed means f o r specifying c r i t e r i a f o r connecting records. rR~e

c: r i t e r ion protluctiorl nystem fo r the model. allow:: l;hc c. r i t e r ia cpecil' iat)lc.

by each software system t o be exprccsed . The implement& Lion c:haracl;er.ia-

tics of every software system a s derived i n mb le 2-1 a r e specified

d i rec t ly by the encoding charac te r i s t ics of the model. Thus, every

f i l e t h a t can be specified i n the software systems 02 Chapter 2 can be

specified i n the model. In t h i s senue, the model is complete.

We w i l l now show how the model i s generalized.

The cr i te r ion production system which i s the basis of the concep-

t u a l par t of the model i s more general than any means of specifying

c r i t e r i a by an exis t ing software system i n three ways:

(1) it allows c r i t e r i a t o be defined on the actual encoding

characteristics, a s well a s on values or paths,

(2) it allows c r i t e r i a t o be defined over arithmetic and set-

theoretic functionn of values, character is t ics and paths, and

(3) it allows a c r i te r ion t o be defined in terms of more than

one cr i ter ion where the c r i t e r i a a re connected by the connec-

t ives: AND, OR and NOT.

The use of the c r i te r ion production system (cps) t o describe f i l e

structures i s intended t o avoid the deficiencies inherent i n cer tain

other approaches. We f i r s t note that we re jec t the implicit approach,

where f i l e structures a re given implicit ly by programs used t o access

data i n the structures, because such programs tend t o obscure rather

than emphasize the logical and graphical basis of the f i l e structure.

We need t o d e ~ c r i b e f i l e structures so tha t they are eas i ly understood

by humans a s well a s machines. A second, and apparently straightforward,

approach would be t o name expl ic i t ly what linkages a re required i n terms

of common graphical structures such a s t rees and rings. This approach i s

inadequate f o r two reasons. F i r s t , there a re many ways i n which such

linkages a re determined. For example, the linkages between records i n

a sequential structure may be determined on the basis of the values

occurring i n some part icular type of f i e ld , or they may be determined by

a par t icu la r record encoding charac te r i s t ic such a s the length of a

f i e l d . It i s inadequate t o specify a type of f i l e s t ructure without

specifying what properties of records a r e used t o determine t h a t struc-

tu re . Secondly, there is no capabi l i ty f o r describing new f i l e s t ructures .

A t h i r d approach, which l i e s a t the opposite extreme t o the one above,

was suggested but not provided i n (CO 1970). Codd suggests using an

applied predicate calculus t o define how linkages a r e constructed

from cer ta in primitive relation^ and functions. This approach provicies

generali ty, but doe:: not provide a description which i s immediately

i n t e l l i g i b l e t o a user i n terms of accepted data processing concepts

such a s f i e l d , record and f i l e . Furthermore, the predicate calculus

alone does not provide the methods f o r encoding the data and the means

fo r implementing the description.

Our approach i n the cps is t o provide as much of the exp l i c i t

information provided by the second approach as possible while preserving

the general i ty inherent i n the t h i r d approach. The primitives of the

cps include only data-related concepts l i k e a t t r i b u t e anti charac te r i s t ic

~ r ~ r l ar i thmetic re la t ions l i k e "greater than" and "not equal to". Critct.ia

produced by the cps a r e i n t e l l i g i b l e and re fe r exp l i c i t l y t o re la t ions

over records, values and character is t ics . This can be seen by comparirig

t h e English and cps ways of expressing c r i t e r i a i n the examples giver1

a f t e r Definition 4-2. The cps expressions largely r e t a in t h e in tu i t ive

concepts of the English expressions. 'The cps has quant i f ie rs l i k c tllc

ones i n the predicate calculus, but these quar1tiYicrs apply or11.y to

predicates which a r e i n tu i t i ve ly mearlingful c r i t e r i a . The (.or~cept 01'

variable appears as a general name f o r a record t o be used when a l l or

some records are t o be tes ted f o r a par t icu la r property. It is not a

variable i n the algorithmic sense. I n summary then, the cps allows data

s t ructure terminology t o be used expl ic i t ly i n a very general way of

describing f i l e s t ructures .

The implementation methods included i n the model a r e a generaliza-

t i on of the work of (HS 1970). In t h i s paper, Hsiao shows how d i f fe ren t

common f i l e s t ructures a r e special cases of a generalized way of imple-

menting f i l e s using tab les of pointers (called director ies) and embedded

pointers t o create access paths between records. The generali ty of t h i s

work i s increased by extending it t o include the sequencing of records.

Finally, the model provides a more generalized way t o specify

encoding character is t ics th+n i s necessary f o r describing the characteris-

t i c s of Table 2-1. The encoding character is t ics f o r f i l e description

a s well a s those f o r record description can be specified a s depending on

data items, other character is t ics andsfunctions of these. This greatly

increases the var ie ty of encodings which can be specified.

In these ways, the model allows generalizations of current f i l e

s t ructure technology t o be described.

4.5 The Relationship Between the Model and GDDL

GDDL has been exp l i c i t l y designed i n t e r n of the model. The LI.NK

and c r i t e r i a ~ t a t e m e n t ~ a r e used t o descrlbe the conceptual r i l e ctruc-

t u re and the LINK and FILE otatements a r e used t o dcscribe the lmplctnenta-
t

t i on of f i l e s . The exact re la t ionship between G2DL and the model lc
1

described by Table 4-2.

Table 4-2. The Rclationohip Uctween the Model and (;lIIIL

Conceptual Part
of the Model

Criterion
Production
System (CPS)

Encoding
Characteristics

Encoding
Method

Link Number

Link Uniformity

Path Lengkh

Connection
Set Number

Specification of
Character i stics

Ilirect

Indirect

..

Statements and
Parameters

LINK Statement

Criterion
Statements

Statements and
Parameters

LINK statement
parameter (v)

LINK statement
parameter (vi)

LINK statement
parameter (vii)

LINK statement
parameter (v)

LINK statement
parameter (v)

Statements and
Parameters

By licted
parameter::

Parameter
ztatcmerk c

Remarks

used to name
the head
and tail
records,
and the
criterion
for linking
them

- -

Section in
Appendix A

2.2

2.1

Section in
Appendix A

2.2

2.2

2.2

2.2

2.2

Sect i or1 i l l

Appendix A

1.11 .]I

This completes the argument that GDDL can describe any file

representation which can be specified in the model. Therefore, GDDL is

complete and general in the sense described above.

4.6 Demonstrations of GDDL' s Completeness

In the previous sections we showed that GDDL is complete for file

description by showing that the model on which it was based is complete.

We now provide practical examples of its completeness. These examples

demonstrate the use of GDDL in describing real-world files. The file

descriptions are part of larger examples of complete conversions of

data from one structure to another. These examples are given in Appen-

dix B.

CHAPTER 5 STORAGE DESCRIPTION

5 . 1 Introduction

I n t h i s chapter we complete our t a sk of showing how the organiza-

t i o n of data can be e x p l i c i t l y described. We now present a f i n a l model

t o show how a b i t s t r i n g representat ion of a f i l e , produced by the

models of Chapters 3 and 4, i s transformed t o i t s f i n a l physical

representat ion (e.g. , a sequence of appropr ia te ly posit ioned magnetic

spots on a t ape) . This model of storage s t ruc tu res i s shown t o be

c:omplete by demonotrating t h a t it incorporates a l l of the storage l e v c l

character ic t icr ; derived in Table 2-1. We a l s o discuss how the model

includes ce r t a i n general iza t ions of some of these cha r ac t e r i s t i c s . Then

we show t h a t t he storage l e v e l GDDL i s based on t h i s model. I n t h i s

way we can show t h a t GDDL i s a l s o complete and generalized i n the above

sense. We f'urther demonstrate the completeness of GDDL by providing

a s e t of examples which i l l u s t r a t e t he a b i l i t y of GDDL t o describe data

s t r uc tu r e s on pa r t i cu l a r devices.

5.2 A Model of Storage Structures

In the previous chapters we followed t he procesc by which a usc r

organize:: h i s data i n to records, ericodes thece ~$cc:ord:: a:: a b i t strir~l;,

then s e t s up access paths between records arid f i r l a l ly encodes these

access paths t o produce a s ingle b i t s t r i n g represent in^ h i s data.

Now the user must specify how t h i s b i t s t r i n g i s t o be d i s t r i bu t ed over*

.
t h e physical storage medium, taking in to account the physical constraints

of the medium (e.g., t rack size, tape blocks) with a view t o obtaining

e f f i c i e n t usage. Normally a user wants t o posit ion the b i t s t r i ngs

corresponding t o h i s records re la t ive t o the physical boundaries of a

medium (e.g., tape gaps, beginning of t racks) . These boundaries of a

medium can occur a t several levels . For example, i n the case of a

magnetic disk, the leve ls from lowest t o highest are: blocks on a track,

t racks on a cylinder, cylinders i n a disk pack, one disk pack from the

number available. These boundaries can be organized i n a hierarchy,

with each l eve l i n the hierarchy s p l i t up in to several lower leve ls .

We w i l l c a l l the un i t of storage a t the lowest l eve l of a device (e.g.,

blocks f o r a disk track) a basic block; and the un i t of storage a t each

of the higher leve ls a block. Thus, blocks can contain other blocks

and/or basic blocks. We c a l l t h i s structuring of the blocks the storage

s t ructure .

Once a user has specified the storage structure, he must specify

how the blocks a r e t o be encoded. This is done by specifying encoding

charac te r i s t ics such a s lengbh of basic blocks, and the labe ls t h a t a r e

used t o indicate the beginning and end of blocks.

Once the storage s t ructure and i t s encoding have been specified,

the uGer muct specify how he wants h l s records t o be positioned r e l a t i ve
I

:' t o the basic blockf; i n the storage ctructure. IIe may specify, f o r -.

example, whether there i s t o be a maximum number oP records which a!.;.

t o be positioned within a block; whether records must be maintaineq

whole, o r can be s p l i t across blocks; whether any record or only cer ta in

record types can be positioned f i r s t i n a block. H e must a l so specify

how any pointers contained i n t h e f i l e a r e t o be interpreted i n terms

of such charac te r i s t ics a s addressing schemes and mode. The ru les fo r

positioning records within blocks and the pointer charac te r i s t ics deter-

mine the addresses which a re encoded in to b i t c1;rings and then used a s

polntcrc t o encode the ctructurt. 01 the f i l e (see Chapter 11) . There

must be a mechanized process which, usirlg a description of tile f i l e

s t ruc ture and of the record s t ructures , and the record positioning ru les

and addressing schemes, obtains the ac tua l b i t s t r i ngs fo r the pointers.

This specif icat ion determines the b i t s t r i n g representation of

the f i l e i n i t s storage s t ructure .

To encode t h i s b i t s t r i n g onto a par t icu la r storage medium, the

user must specify medium dependent character is t ics , such a s t o which

physical l eve ls of the medium the blocks correspond and the ac tua l

physical encoding (e.g. , tape densi ty) .

We can ident i fy five parts i n t h i s process:

(1) The specif icat ion of the storage s t ructure;

(2) The encoding of the storage s t ructure;

(3) Rules f o r f i t t i n g records in to blocks and implemeritin~

pointers;

(4) lY'he resul t ing b i t s t r i ng represeritatiorl of' L i ~ c l ' i lc i r r it::

 tora age structure; anti

(5) Medium deperder~t cncotling of' t h i s t) i L sLr.irlg.

We w i l l model here the first four pa r t s only. The transformation

t o the f i f t h pa r t from the fourth part i s qui te straightforward, though

hardware dependent, and w i l l be discussed separately i n Section 5.6.

We model the storage s t ructure by a s e t of production ru les f o r

specifying the s t ructure of the blocks i n terms of basic blocks and

block names. The encoding rules of the storage s t ructure a r e modelled

d i r ec t ly by giving the character is t ics which must be specified t o encode

basic blocks and block names. The ru les fo r positioning records and

implementing pointers a r e a l so modelled d i r ec t ly by giving the necessary

character is t ics .

The model w i l l be presented by f i r s t giving the storage s t ructure

par t , then the encoding character is t ics , and f i n a l l y the ru les f o r

positioning records and implementing pointers.

5.2.1 The Conceptual Structure of Storage

The conceptual s t ructure of storage w i l l be described i n terms ot'

storage c e l l , basic block and block name. A def in i t ion of storage item

based on these concepts i s given.

A storage c e l l i s the basic un i t wri t ten o r read by a storage

device a s a s ingle character. For example, on tape, t h i s is e i t h e r

a 7- o r 9-b i t column.

In tu i t ive ly , a basic block is a s t r i ng of consecutive storal:e

ce l l c which a re ~ e p a r a t e d from other ntorage cellr : by physical delirnitcrc

(c . ~ . , tape When ceveral ' b a ~ i c blocks arc t o 'be pr.occocell l r l

the same way (1. e . , they have the same length constraints and conbairi

records positioned i n similar ways), each of these basic blocks i s

assigned the same block name.

Definit ion 5-1. A storage item i s an ordered p a i r < n, b > where n i s a

block name and b i s a basic block.

For example, the pairs :

< basic block A, tape block 1 >

< basic block A, tape block 2 >

< basic block E, tape block 3 >

a r e storage items.

-x
Definition 5-2. A structured se t of storage items (sssi) i s any se t

of storage items which a re structured according t o the following

rules:

s s s i < block name, {block') >

block -, block, block

block -) sssi

block -, storage item

*
Throughout t h i s discussion, it w i l l be useful t o note the a r la lo~y
between the conceptual organization of s s s i ' s and the conceptual
organization of groups (chapter 3) . Both s s s i ' s and groups a r e
given a hierarchic organization, so one should expect a strong
correspondence between how they a r e modelled. The correspondence -

here is a s follows:

block name E a t t r i b u t e
basic block = value

block E compound value
stora@;e item r data item

c s s i z group.

For example, the following s s s i represents a magnetic tape con-

ta in ing n physical blocks of the same kind:

< tape f i l e X, {c basic block A, tape block 1 >,

< basic block A, tape block 2 >,

...
c basic block A, tape block n >) >

This sssi represents the physically formatted tape i l l u s t r a t e d

i n Figure 5-1.

0 . .

v -
tope block 1 tape block n

\ '

V /

tape file X

Figure 5-1. Formatted Tape

We now abs t rac t a notion of storage s t ructure f o r s e t s of storage

items based solely on block name.

Definit ion 5-3. A storage s t ructure f o r a s e t of storage items i s a

relationship, over the block names of the storage items, which

can be produced by the following block productions:

1. storage s t ructure -. s t ructure

2 . s t ructure -. c sssl block name, (substructure]>

3 - oubstructure -, subotructure, tiubstruc:ture

) I . substructure -, s t ructure

5 - substructure -. storage item block name

6. substructure -r nu l l

For example, the block names block I, block J, block K, and block

L may be related by structures obtained from the following block pro-

duction~ :

storage ctructure -, disk structure

d i s k s tmc tu rc -+ < disk f i l e Y, {substructur-u Yl)>

sutctruclure Y 1 -, substructure Y 1 , substructurc Y 1

substructure Y1 -+ cylirlder structure

cylinder c tmcture -+ < cylinder, { s s ~ l ~ l] >

s s Y l Y l ' ssY11, ssYlYYY2

ssYlYYY2 -, ssYl2, ssYlW2

ssYlYY2 ' ssY12, ssYlYP

ssYlY2 ' ssY12, ssY13

ssY13 -, ssY13, ssY13

ssYll -, track structure Y 1 1

ssY12 -, track s t ructure Y12

csY13 3 track structure Y13

track s t ructure Y 1 1 -, < t rack A, s s ~ l l ~ l] >

t rack s t ructure Y 1 2 -. < t rack B, {ss~lZ?Yl') >

t rack structure Y13 --, < track C, { s s ~ 1 3 ~ 1 ') >

csY11Y1 4 ssYIlY1, s s Y l l Y l

csYllYl -(block I

csYl:'Y1 -4 t)lock ,J

C O Y ~ P ~ Y ~ -+ G U Y I ; ~ ~ , ~ 0 ~ 1 3 ~ 1

osY13Y1 -r block K

s s Y 1 3 Y 1 -. block L

One par t icu la r s t ructure of block names is:

< disk f i l e Y,

{ < cylinder,

{ < t rack A, {block I, block I, . . . , block I] >,

< t rack B, [block J] >,

< t rack B, {block J] >,

< t rack B, {block J] >,

< t rack C, {block K, block K, . . . , block L] >,

< t rack C, iblock L, block K, . . . , block L] >,

< t rack C, {block L, block L, . . . , block K] >,

< t rack C, {block K, block L, . . . , block K] >,

< t rack C, {block L, block K, . . . , block L] >,

< t rack C, {block L, block K, . . . , block L] >I>]>

Replacing block names block I, block J, block K, and block L with s tor-

age items, we obtain the s o s i f o r a disk f i l e i l l u s t r a t e d i n Figure 5-2.

This complete^ the discussion of the modelling of the conceptual

s t ructure of storage. We w i l l now discuss the storage item and storagc

s t ructure encoding.

i r e - 2 . :;S:;.I. L o r l ~ i c k F'ile

5.2.2 Encoding Storage Items and Storage Structure

This section is analogous t o those sections i n Chapter 3 on the

encoding of values, a t t r i b u t e s and structure. We w i l l therefore

abbreviate t h i s section by simply l i s t i n g the charac te r i s t ics which

have t o be specified. Storage s t ructure is encoded by encoding block

names, i n the same way tha t record s t ructure is encoded by encoding

a t t r i bu t e s . The following table , Table 5-1, indicates the characteris-

t i c s required t o encode basic blocks and block names.

basic block

Table 5-1. Characterist ics required f o r
Encoding

X X

block name

1. Length. The length of a basic block i s the number of un i t

storage c e l l s t h a t it contains (e.g., a column of 7 o r 9 b i t s on a tape) .

2. Length Uniformity. If the basic blocks corresponding t o a

par t icu la r block name a re always of uniform length, then the length can

be clescribed simply by giving the number d i rec t ly . However, 1.t' thc

lerlgth of the basic blocks corresponding t o a par t icu la r block name

a re not uniform, then the length i s specified as varying.

3. Labels. Labels a t the beginning and end of a basic block

o r block provide one way t o encode the block mme. Labels can be

described simply a s a character o r b i t s t r ing .

X X X X X

4. Order. The order of block names can be specified by l i s t i n g

them i n the appropriate orcer. This order can be used t o iden t i fy the

block name of the basic block or block being processed. This provides

arlother way t o encode block names.

5 . Occurrence. The occurrence of par t icu la r kirids of blocks

or basic blocks may be mandatory or optional within a substructure.

6. Repetition number. The repe t i t ion number i s the number of

times a block name may occur consecutively i n a substructure.

7. Repetition uniformity. I f the number of times a block name

repeats i s always the same (i . e . , the repe t i t ion of the block name i s

uniform), then the repe t i t ion number can be specified simply by giving

the number d i rec t ly . However, i f the repe t i t ion of the block name i s

not uniform, then e i t h e r the repe t i t ion number must be encoded and

stored i n a labe l , or the storage items or s s s i ' s containing the block

name must be delimited by labe ls .

This now cumpletes the charac te r i s t ics which must be specified

t o determine the ru les f o r encoding storage items and storage s t ructure .

A s f o r the encoding charac te r i s t ics f o r record and f i l e descrip-

t ions , we allow each charac te r i s t ic t o be specified eiLher:

1) d i rec t ly - by cpecif'yir~g exp l i c i t l y t h e c.hurac*l;er.i:;-l;ic-, or

7) ind i rec t ly - by cpecifylr~g a I'unctlon wh L(*h mu:: t bc (.oxr1~)11 Lcll

t o determine t h e cklaracter*istic:. The I'ur~c.Lior~ m y L)c l i e l ' i l ~ u d

over the valuec of' data items o r other ck~arac te r i s t ics using

the usual ari thmetic operators.

For example, the length of a basic block can be specified direct ly ,

or it can be specified ind i rec t ly a s , perhaps, being equal t o the length

of another kind of basic block.

5.2.3 Record Positioning and Pointer Interpreta t ion Rules

We have now seen how storage i s structured and encoded. The

storage s t ructure is the framework within which the user d i s t r i bu te s the

b i t s t r i n g representation of h i s f i l e . The user must specify character-

i s t i c s which determine how h i s records a r e positioned r e l a t i ve t o the

basic blocks, and how the storage addresses of the records a r e t o be

determined t o produce the pointers f o r h i s f i l e .

The user specif ies how h i s records a r e t o be positioned re la t ive

t o the basic blocks i n terms of character is t ics which apply t o a l l

records (e.g. , the number of records per block) and charac te r i s t ics which

apply t o par t icu la r record tries (e.g., whether or not a record of a

given type can be s p l i t across a block boundary; whether o r not a record

of a given type can occur f i r s t i n a block). It is understood t h s t a

mechanized process, using the descriptions of the f i l e and record struc-

tu re , i s available which appl ies these ru les t o d i s t r ibu te the b i t s t r i ng

representations of the records appropriately. The charac te r i s t ics which

specify record positioning are:

1. Record d is t r ibu t ion r a t i o . The number of records stored i n

ba6.i~ blocks can be d e ~ c r i b e d ac a r a t i o of records per basic blocks.

'Rlree example5 of' ~ u c h rat lo^ are i l l u s t r a t e d below:

1 record : 2 blocks

3 records : 1 1jloc:k

2. Record s p l i t s e t . The record s p l i t s e t i s the s e t of those

record types whose b i t s t r i n g representa t ions may be s p l i t between bas ic

blocks.

When t he space remaining i n a bas ic block i s not enough t o contain

t he complete b i t s t r i n g of a recortl type which m y not be s p l i t , the11

that b i t c t r i r t ~ muct be put i n to the next bas ic block. 'Pkic rcmair~i~lg

L;IJUC(: i n t he I i r c t b a s i c block i c c:onuidered. t o 'bc ur .bi truri ly l ' i l lcti .

The contentc of such unuccri sp&ce i.c callcci I ' i l lcr . .

3. S t a r t record s e t . The s t a r t record s e t i:; thc set ol' t t ~ u s c

record i;,ypec t h a t may occur f i r s t i n a basic: b1or.k. F'or cxurr~plc, i l ' L11c

b i t c t r i r ~ g c representing r-cc:ord.:: ol' two types, X nncl Y , n t t Lo bc po::i-

t ioncd i n bas ic t1or:ks such thaL only records of ty-pe X m;~y occ-ur. :r::

t h e f i r s t record i n a bas ic bloc:k, then t he ctc~r1; rccotmtl :;c1; is { X 1.

4. Alignment se t . The alignment se t gives, f o r each type of

record, the s e t of f i e l d s and groups which must be aligned with respect

t o storage c e l l boundaries, whether the alignment i s t o the l e f t or t o

the r ight , and the padding characters,

Tho user specifies how poLnters i n h i s f i l e a re t o be interpreted

111 t e ~ n o of the following clmracteriotics:

5. Pointer type. Pointers may give the main memory addresses

or device addresses.

6. Pointer mode. Pointers may be interpreted a s giving the

absolute address of a record, or the address re la t ive t o some fixed

or igin (for example, the f i r s t record i n the f i l e or a part icular block

i n the storage s t ructure) .

7. Addressing scheme. The addresses of blocks may be represented

by numbers i n ascending or de~cending order beginning with a par t icular

number. A l l blocks of the same kind may be numbered sequentially or

a l l blocks within a part icular substructure may be numbered sequentially.

!This character is t ic must be specified when pointers give device addresses.

8. Pointer form. When the pointers give device addresses the

levels of block addressing used t o form each pointer must be specified.

For example, a pointer for a disk may consist of just a cylinder number

or of a cylinder number and a track number.

This now complete8 the character is t ics which must be specified t o

encode a f l l e i n i t s storage ctructure.

5.3 An Application of the Model of Storage Structures

We w i l l now i l l u s t r a t e how the model is used t o encode the s tor-

age s t ructure of a f i l e in to i t s b i t s t r ing representation. We w i l l

take the f i l e of sequentially ordered person records given i n Example

1 of Chapter 4, and posit ion these records re la t ive t o the basic blocks

i n the sssi - tape f i l e X of the above example.

Applying the following encoding character is t ics t o the storage

structure, we obtain the b i t s t r ing representation i l l u s t r a t e d i n

Figure 5-3.

1. The length of basic block A i s 200 bytes (9 b i t columns).

2. The length i s unif om.

3. There a re t o be three ident ica l labels , i n t h i s case tape-

marks: one a t the beginning of tape f i l e X, and two a t the

end of tape f i l e X .
4. Since there is only one kind of block i n tape f i l e X, no

order i s specified.

5 . An occurrence of basic block A i n tape f i l e X i s mandatory.

6. There may be any number of occurrences of basic block A i n

tape f i l e X.

7. The number of occurrences of basic block A i s not uniform

among occurrences of tape f i l e X.

The record positioning rules are:

1. The b i t s t r ing may be s p l i t only between records.

2. The d is t r ibut ion r a t i o i s - 1 record : 1 block.

3. The s t a r t record se t f o r basic block A i s {~erson ') .

4. The alignment s e t is empty.

Pointers were not used t o implement the f i l e s t ructure so no

pointer character is t ics a r e specified.

b i t s t r i ng b i t s t r i n g b i t s t r ing b i t s t r i n g b i t s t r i n g
encoding encoding encoding encoding encoding

tape-
mark tape-

marks

Figure 5-3. B i t St r ing Representation of Tape F i l e X

5.4 The Completeness and Generality of the Model

We w i l l now show t h a t the model of storage s t ructures is complete

i n the sense t h a t it incorporates a l l of the storage l e v e l characteris-

t i c s derived i n Wble 2-1. We w i l l do t h i s by showing t h a t the struc-

tu r ing character is t ics a t the storage l eve l of Table 2-1 a r e properly

contained i n the conceptual pa r t of the model and t h a t the implementa-

t ion character is t ics a r e contained i n the encoding ru les of the model.

The s t ructur ing charac te r i s t ics f o r devices supported by software

systems allow the user varying degrees of freedom i n specifying storage

s t ructure a t the dif ferent device levels . The storage s t ructure permits

the description of the organization of such devices a t every level .

D-le implementation character is t ics and record positioning and pointer

Interpreta t ion ru les a r e specified d i rec t ly by the encoding characteris-

t i c s of the model. Thus, the model is complete i n the above sense.

The storage l eve l character is t ics of mble 2-1 a r e incorporated i n

more generalized forms i n the model t o allow f o r the description of

var iat ions on exis t ing data structures. This generali ty i s pro-

vided i n the following ways:

1) The record positioning and pointer interpretat ion rules provide

greater user control than i s provided by current software systems.

2) The block productions permit the description of blocking a t

every device level , instead of adhering t o the res t r ic t ions imposed by

current systems.

3) The model provides a more generalized way t o specify character-

i s t i c s . The encoding character is t ics f o r storage description a s well a s

those fo r f i l e and record descriptions can be specified a s depending

on data items, other character is t ics and functions of these. !This

greatly increases the variety of encodings which can be specified.

4) The model can be used t o describe storage s t ructures on any

device tha t r e l i e s on the basic concepts of blocking and label l ing.

In these ways, the model allows variations of current data

wtmctures a t the storage leve l t o be described.

5.5 The Relationship Between the Model and GDDL

GDDL has been expl ic i t ly designed i n terms of the model. The

BBLOCX and BLOCK otatements a re used t o describe the conceptual storage

structure of the model. Each encoding character is t ic of t he basic

blocks and block names can be speclfied by one or more parameter:: i n

GDDL statements. The parameters and statements f o r these characteris-

tics are listed in Table 5-2 given below:

Statements and
Characteris- Parameters

BLOCK Statement

BLOCK Statement
parameter (iii)

Occurrence BLOCK Statement
parameter (iii) b

BLOCK Statement
parameter (iii) c

Record Positioning
Ckmracteristlcs

Record split set

Record distribu-
tion ratio

Statements and
Parameters

BBLOCK Statement
parameter (vii)

BBLOCK Statement
parameter (iv) ,
(v) and (vl)

Remarks Section in
Appendix A

3 - 2

3.2

1

Table 5-2 The Relationship Between the Model
and GDDL

The way i n which BBLOCK and BLOCK sta-bernents a r c l~sctl t o dcsc tsil)c

storage s t ructures may be seen by comparing thc format of these ol;ni ;~.-

mcnts (see Section 3.1 and 3.2 of Appendix A) with the dcf ir l i t ions

of storage item and storage s t ructure (~ e f i n i t i o n o 5-1 and 5 - 3) .

'

Statements and
Parameters

BBLOCK Statement
parameter (v i i i)

FIELD Statement
parameter (v i i)

Statements and
Parameters

POINTER statement
parameter (ii)

POIN'IIER statement
parameter (iii)

BLOCK statement
parameter (ii)

POINTER statement
parameter (i v)

Statements and
I'u rameters

By l i s t e d param-
e t e r s

Parameter and
PARAMFROG State-
ment s

t
.Record Positioning
Characterist ics (cont'

S t a r t record s e t

Alignment s e t

-
Poirite r Character-

i s t i c ~

,Pointer type

Pointer mode

Addressing
s c heme

Pointer form

I

Spec if i ca t ion of
Characterist lcc

.Direct

Indirect

Remarks

m
U
.rl

w UI
-1 -I
7 I
e,
-P

C>
a

,G 2
U

J
M
C
.d
(Ir
PI

2

Section i n
Appendix A

3 2

1.1

3.3

3.3

3.2

3.3

-- -

1.4.4

The BBLOCX statement has the format:

BBLOCK (block name, encoding and record positioning

characteristics)

This corresponds t o the defini t ion of storage item.

The BLCCK statement has the format:

BLOCK (block name, . . . ; (list), .. . , (l i s t) , . . .)

This corresponds t o the block production rules, with (l i s t) , ... , (l i s t)

corresponding t o a l l the substructures t h a t can be contained i n the

given structure. Each l is t may re fer t o e i ther another block or t o a

basic block.

Since GDDL i s based on the model, GDDL i s complete and general

i n the same way a s the model.

5.6 Medium Dependent Encoding Characteristics

So f a r i n t h i s chapter we have shown via the model tha t GDDL can

describe storage structures and t h e i r encodings. Now we must consider

how such storage structures a re t i e d down t o par t icular media. We must

show how the storage structure i s related t o the various physical levels

of a storage medium.

The defini t ion of basic block i n Section 5.2.1 requires that a

basic block always correspond t o the lowest specifiable leve l of a

medium. However, a block may correspond t o one of several physical

levels of a medium. In a disk pack for example, a block may correspond

t o a track, oeveral tracks, a cylinder, several cylinders, o r a pack.

Therefore, each block must be t i ed down t o a par t icular physical level.

This i s achieved by specifying, f o r each l eve l of a medium, the names

of the blocks which correspond t o that level . I n GDDL t h i s specification

is called a device statement (see Appendix A, Section 3.4). A device

statement a l so specif ies other medium dependent character is t ics such

a s tape density f o r tapes. A s different media have d i f fe rent numbers of

leve ls and other characteristics, a device statement i s needed for each

storage medium.

For example, the DISK statement required f o r the above disk

example i s :

DISK (... , pack: 'disk f i l e Y'; cylinder: 'cylinder ' ;

track: track A ' , ' t rack B' , ' t rack C ')

The device statements then supply a l l the medium dependent informa-

t ion that i s necessary t o physically encode f i l e s onto storage media.

5.7 Demonstrations of GDDL's Completeness

In the previous section we showed tha t GDDL is complete f o r

storage description by showing t h a t the model on which it i s based i s

complete. We now provide severalpract ical examples of i ts completeness.

The~e examples demonstrate the use of GDDL i n describing real-world

f i l e s . The storage descriptions a r e par t of larger examples of complete

conversions of data from one structure t o another. These examples a re

given i n Appendix B.

6.1 Introduction

I n previous chapters we have seen how t o model a f i l e , which i s

encoded a s a b i t s t r i n g on a storage medium, and how such a f i l e may be

exp l i c i t l y described. Thus, the f i r s t two objectives of t h i s disser ta-

t i o n have been achieved. Now we w i l l show how such descriptions can

be used when data i n one s t ructure i s t o be converted in to another

s t ructure . This i s our t h i rd and f i n a l objective.

I n the f i r s t section below, the conversion process i s discussed

in general terms, and it i s shown that addit ional information i n the

form of an association l i s t i s required t o describe data conversion.

Section 6.3 gives a model of the concept of an association l i s t which

s a t i s f i e s the requirements discussed i n the previous section. Section

6.4 i l l u s t r a t e s the model by giving some applications of it i n examples

of data conversion. Section 6.5 shows how GDDL1s a b i l i t y t o describe

t h i s aspect of data conversion i s based d i r ec t ly on the model of the

association l i s t . Finally, Section 6.6 t i e s a l l the previous work

together by showing how and where each par t of the necessary descriptions

i s used during the conversion of data from one s t ructure t o another.

6.2 The Concept of the Association L i s t

The present discussion apparently marks the f i r s t time that any-

one has considered precisely what information must be made exp l i c i t t o

use data descriptions f o r data conversion. merefore, we must develop

our ideas from basic concepts, and so a longer i n t u i t i v e discussion w i l l

be needed. This i n tu i t i ve discussion w i l l be organized as follows.

F i r s t we w i l l specify exactly w h a t data conversion is, using terms

developed i n previous chapters. Then we w i l l take a rather- simplil'icd

view of data conversion t o introduce our basic no ti or^ - that of uri

asoociation l ist . Finally, we w i l l show how t h i s rlotion of an association

l i s t needs t o be made more elaborate so t h a t a l l the requiremer~ts f o r

specifying data conversion a r e met. We begin then by providing a

def in i t ion of data conversion.

Definition 6-1. Data Conversion i s a process which, given the b i t

s t r i n g representation of a f i l e (or s e t of f i l e s) on a storage

medium, produces the b i t s t r i n g representation on a (different)

storage medium of a f i l e (or s e t of f i l e s) whose data items contain

values from the data items i n the f i r s t f i l e (or s e t of f i l e s) .
The s t ruc ture of the f i r s t f i l e (s) i s d i f f e r en t i n general from the

s t ructure of the second f i l e (s) .

A t t h i s point, it w i l l be convenient t o introduce some new tcrminol-

o w

r;iven a ce t of' i'llcr: X . . . , X whocc t1tiL.u. arc Lo t ~ c c .o r rvc t .Lc~l 1 ' n

in to a ce t of f i l c s Y1, . . . 9 ym; wc c a l l the file:; X . . . , X t11c
1' I1

source f i l e s and the f i l e s Y1, . . . , Y the target; l ' i lez . m

Note t h a t from the above def ini t ion, the value of a target data

item must always be the value of some source data item. As the data

I

item i~ the moot primitive s t ructure i n the model, we do not provide I

I

the capabi l i ty f o r decomposing a Gource value in to smaller components I

l

and using these components f o r target values. For example, i f "WJONES" I

I

is a source value, t h e only t a rge t value tha t may be obtained from t h i s I

I

value i s a l so "TOWONES" and not jus t "TOM" or "JONES". This i s not I

l

a serious r e s t r i c t i on a s a user would normally form a separate data I

I

item f o r each type of value t o be processed independently. Thus, i n the I

I

above case, "TaM" might be the value of one data item and "JONES" the I

value of another data item, and both data items would be structured a s

a source group.

Note a l s o tha t from the above definit ion, data conversion i s not

necessari ly a reversible process. !lhat is, if f i l e A i s converted in to

f i l e B, it does not follow t h a t f i l e B can be converted back t o f i l e A.

A simple counter-example i s when f i l e B only contains a subset of the

values of data items i n f i l e A.

We w i l l now develop the basic idea of the process of data con-

version. Consider the case of a user who wishes t o convert data from

a single source f i l e t o a single ta rge t f i l e . We w i l l assume t h a t the

user has the b i t s t r i n g representation of the source f i l e stored on a

storage medium, and that he has descriptions of the source and ta rge t

f i l e s . The object i s t o form the b i t s t r i ng representation of the

t a rge t f i l e .

'Rlis object can be achieved i n essent ia l ly the following way:

1) Use the description of tkle source r i l e t o break down the b i t

s t r i n g representation so t h a t the ac tua l data items (attr ibute-value pa i r s)

a r e obtained.

2) Provide a specif icat ion of how the values of source data item

a t t r i b u t e s a r e t o be combined with ta rge t data item a t t r i b u t e s f o r the

t a rge t f i l e .
3) Form the t a rge t data items acc:ording t o th i s specification.

4) Structure and encode these data items according t o the descrip-

t i on 01 the t a rge t f i l e t o obtain the b i t s t r i ng representation.

We see t h a t the only addi t ional information t h a t the user needs

t o provide i s a l i s t (corresponding t o item 2 above) which gives, f o r each

t a rge t a t t r i bu t e , the source a t t r i b u t e which i s t o provide i t s value.

We w i l l c a l l such a l i s t an association l i s t because it associates each

ta rge t a t t r i b u t e with a source a t t r i b u t e . Thus, an association l i s t i s

a s e t of ta rge t at tr ibute-source a t t r i bu t e pa i r s .

The essence of t h i s conversion process i s i l l u s t r a t e d i n Ficure 6-1.

l+kphasis ic placed here on the ro le of the association l i s t , berauce it

i s t h i s concept t ha t we now want t o rievelop. We w i l l wait u n t i l Secbtiorl

6.6 t o give a detai led treatment of how the various parts of t he source

and t a rge t descriptions r e l a t e t o the conversion process.

With t h i s concept i n mind, we can go on t o a more clcrt)or-ai;e

discussion of the requirements f o r an association l i s t to oomplctely

describe acaociations between source and target a t t r i b u t c c .

Source
Description

Target
Description

Figure 6-1. Simplified Conversion Process

. + I r + C

The above view of an association l ist , a s a s e t of t a rge t a t t r i -

bute-source a t t r ibu te pairs, i s adequate only if a l l the data items of

a ta rge t record a re obtained from a single source record. However, i n

general, the value f o r a data item of a target record may be obtained

from any data item i n any record i n the source f i l e . mere a r e two cases

t o consider. F i r s t we consider when the data items of a given target

record a r e obtained from several different source records. In t h i s case

we must identify which source record contains the appropriate value of

the source a t t r ibu te .

Build up t a r -
get f i l e from
data items

Breakdown
source f i l e
t o data
items

< AT' AS >
. . .

T

lbrget
Data

Items '
< A , v >

Source
Data _

' A

Items
c AS,v >

Association
L i s t -
...

Secondly, consideration must be given t o repeating groups and

f i e l d s wLthln the source record. It may be rlecessary t o iden t i fy from

wklich occurrence of the repeating group or f i e l d the value of t he source

a t t r i b u t e i s t o be taken. If it i c known t h a t the ,jth occurrcrlce i s t o

provide the value, t h i s can be specii'ied by indexing the source a t t r i .bute

appropriately i n the associat ion l ist . Otherwise, we must develop n

fu r the r means f o r ident i fying appropriate occurrences.

We can summarize t he requirements a s follows. To properly iden-

t i f y the source a t t r i b u t e f o r a t a rge t a t t r i b u t e - source a t t r i b u t e pa i r ,

the associat ion l i s t must include the capabi l i ty of identifying:

1) the required source record, and

2) the required occurrence of a repeating group o r f i e l d i n the

source record.

We w i l l f i r s t consider how the required record can be iden t i f i ed .

The problem here i s s imilar t o the one i n Chapter 4 f o r specifying which

records a r e connected by access paths. I n t h a t chapter t he solut ion was

t o provide c r i t e r i a which determine t h a t two records a r e t o be l inked i f

they s a t i s fy the c r i t e r i a . We can use a s imilar solut ion here. We (.an

specify c r i t e r i a which se lec t a record t o aupply a value f o r a sourc!e

a t t r i b u t e If t h a t record s a t i s f i e s the c r i t e r i a . I n t h i s way wc can usc

the power of' the c r i t e r i on production system (cps) which wc already huvc

avai lable , and avoid corlstruc-tirs addi t ional rr~ecklanisms .
Wc s a w i n Chapter 4 t h a t the cps i s a general cystcm f o r protluciri~

any c r i t e r i a over records i n termc of values, charac te r ist ic:s arid paths.

However, the recorda which could be named (ooe record-modifier i n cps)

i n these c r i t e r i a were only head record, t a i l record, and arb i t ra ry

(variable) records. To use t h i s c r i te r ion production system f o r present

pur*poses, we eha l l see tha t th ree extra productions must be added t o pro-

vide new ways of naming records which a re involved i n c r i t e r i a . In the

following discussion we w i l l deternine what source records need t o be

named, and develop a way t o name them appropriately. It w i l l turn out

tha t there a re occasions when the names we develop can be used by them-

selves t o identify d i rec t ly appropriate records i n the association l i s t .

We f i r s t observe t h a t the data i n the source f i l e i s organized

i n some way which i s meaningful t o the user. This i s very apparent from

the models of record and f i l e description i n previous chapters. Similar-

l y , the ta rge t f i l e w i l l be another meaningful organization of t h i s same

data. Consider the implications of t h i s observation f o r the c r i t e r i a

tha t the user w i l l want t o introduce in to the association l is t t o iden-

t i f y par t icular records. Let us assume the user needs t o write c r i t e r i a

fo r some ta rge t record t h a t is t o contain a t t r ibu tes A and A . He
T1 T2

has decided that the source a t t r ibu tes which are t o provide the verlues

w i l l be A and AS . The association l i s t w i l l therefore contain the
S1 2

 pair^ < A , A > a n d < A , A >. Let us assume fur ther t h a t the
T1 S1 T2 S2

record containing the occurrence o f A which provides the value f o r

A has been selected. Now the user wants t o specify c r i t e r i a f o r
T1

selecting the record containing the occurrence of A, which provides the
O2

value f o r A . Because the data items i n the ta rge t record a re supposed
T2

t o be related t o each other, he may want t o use the values of some data

items i n the source record, which provides the value f o r A , i n
T1

select ing the record containing the occurrence of A .
s2

For example, assume each source record contains an a t t r i b u t e A .
'i

The user may want the record which contains the occurrence of A (pro-
' 2

viding the value f o r A) t o have the same value f o r A a s the value
T2 i

f o r AS i n the record which provides the value f o r A . This i s i l l u s -
i T1

t r a t e d i n Figure 6-2.

Source Records of m e X

The occurrence of A

i n t h i s record pro-

vides the value f o r A T1 . r\ . . . Vi

. * .

... Target Record vi T2

. . .
In t h i s record, the value

of As i~ equal t o vi.
i

Thuc, the occurrence of

A, in thlu record pro-
1 JP

v ides the value f o r A .
T2

...

Figure 6-2. An Example of Source Hecord Selection f o r
the Formation of Target Records

- -

A , v f f
S 1
1

A,, iJ , v2!'
: '
...

v " As > r
1
...

Asuumc: v " L - v
1 i

The above example i l l u s t r a t e s the case when the target record contains

two a t t r ibu tes , In the general carle when the target record contains n

a t t r ibutes , A , A .. . , A , . . , A the selection of the source
T1 T2' Ti Tn'

record which provides the value f o r A (2 5 i n) may depend on values
Ti

i n those eource records which provide the values f o r A , ... , A
T1 Ti-l'

We w i l l see an example of such a case i n Section 6.4.

We must, theref ore, provide the c r i te r ion production system (cps)

with the capability of referring t o a record t h a t has already provided a

value f o r some target a t t r ibute . Let us introduce the terminology

SOURCE (A ~) t o mean the source record which provides the value f o r A
T'

Now we can say the selection of the record providing the value f o r A
Ti

may depend i n general on the values of data items i n SCURCE (A), . . .
T1

Y

SWRCE (A) . Using t h i s terminology we can express the c r i te r ion i n
Ti-l

the Example of Figure 6-2 f o r selecting the source record containing the

occurrence of A which provides the value f o r A as: AS OF' X = AS
s2 T2 i i

OF SCURCE (AL).

We have thus determined a way of naming a source record relat ive

t o the ta rge t a t t r ibu te f o r which it contributes the value. This way of

naming source records provides a method for obtaining c r i t e r i a t o identify

appropriate source records i n the association l i o t . I n addition, if the

record which contains a source a t t r ibu te i s required t o be SOURCE (A ~) ,

fo r some A we can use t h i s name i t s e l f f o r identifying the appropriate
T'

record. This is the case i n the association l is t provided f o r Bample 1

i n Section 6.4. These c a p a b i l i t i e ~ sa t i s fy the f irst requirement above.

We now consider the second requirement when the value f o r a

target a t t r ibu te i s t o come from a source a t t r ibu te i n a repeating group

or f i e ld (see Section 3.3). The naming problem here i s analogous t o

the above case when a value f o r a target a t t r ibu te comes from a par.tic.u-

l a r source record. That is, the user may want subsequent values for

other target a t t r ibu tes e i ther t o come from the same group or t o be

determined by other values i n tha t group, or t o be determined by encoding

character is t ics of that group or f i e l d . Thus, we need a way of referr ing

t o source groups or f i e l d s tha t have already been used t o supply values

t o the ta rge t record. We can name them by appending the a t t r ibu te of

the group or f i e l d i n question t o our previous term SOURCE (A) . For T

example, t o re fer t o a repeating group of type X which was the source

of' the value fo r target a t t r ibu te A we say X-SOUIiCE (A). I f we w i s h
T " T

t o re fer only t o a higher leve l group of type Y which contains X, we

say Y-SOURCE (A ~) . We have thus determined a way t o name a repeating

source group or f i e l d re la t ive t o the target a t t r ibu te f o r which it

contributes the value. Again t h i s name may e i ther be used a s par t of

c r i t e r i a which identify the required occurrences of the repeating

group or f i e ld , or the name may be used by i t s e l f when it happens t o

name the required occurrence. These capabi l i t ies aa-l;i:;f'y the ccc:orl(l

rcqu i remerit above.

There 1s one additional s i tua t ion t o considcr that i s rsclutcd t o

the two rcqulrement:: above. This situatiorl occurs when n t a rge t a t t r i -

bute happens t o be the a t t r ibu te of a repeating target i'ield or group.

We may Lave t o identify the part icular occurrence of a ta rge t ut1;ributc

A when it appears i n names of the form SCURCE (A ~) . TO do t h i s we T

must make our naming method a l i t t l e more elaborate. If the number of

the occurrence i s known, then the a t t r i b u t e A can simply be indexed.
T

However, i f the number of the occurrence i s not known we must make

provision fo r a c r i t e r ion which ident i f ies A Thus, t o r e f e r t o the
T'

source of the value fo r a ta rge t a t t r i b u t e AT i n a repeating (target)

group or f i e l d , we use e i t he r the name SOURCE (A index) o r the name
T

SOURCE (AT, cr i te r ion) .

We have thus seen how t o name records, and thence groups and

f i e l d s which may be used i n defining c r i t e r i a t o se lec t par t icu la r

occurrences of source a t t r i bu t e s . This naming method together with the

cps of Chapter 4 allows c r i t e r i a t o be specified which meet the two

requirements fo r properly identifying source a t t r i bu t e s appearing in

the association l is t .

So f a r we have only considered conversion of a s ingle source

f i l e t o a single ta rge t f i l e . I n the general case of converting

several source f i l e s t o several t a rge t f i l e s , the association l i s t must

specify f o r each ta rge t at tr ibute-source a t t r i b u t e pair, the f i l e t o

which the ta rge t a t t r i b u t e and the f i l e t o which the source a t t r i b u t e

belong.

I n the next section w e w i l l present a model of the concept of

association l i s t based on the discussion above. We w i l l then give

some examples of the application of t h i s model i n data conversion.

6 . 3 A Model of the Asoocirztlon L i s t

Definit ion 6-2. An association l i s t i s a s e t of six-tuples of the

f om:

< t a rge t a t t r i bu t e , t a rge t f i l e name; source a t t r i bu t e , source

f i l e name; record ident i f icat ion, a t t r i b u t e repe t i t ion iden t i f i -

cation >

where: 1) targe t a t t r i b u t e is the a t t r i b u t e i n the t a rge t

record t o be provided with a value,

2) t a rge t f i l e name i s the name of the t a rge t f i l e i n

which the ta rge t a t t r i b u t e occur.^,

3) cource a t t r i b u t e is the a t t r i b u t e i n the source record

which i s t o provide the value f o r the ta rge t a t t r i bu t e ,

4) source f i l e name i s the name of the source f i l e i n

which the source a t t r i b u t e occurs,

5) record ident i f ica t ion i s optional; it i s e i the r a

name f o r a record or a c r i t e r ion which can be expressed

using the c r i t e r ion production system specified below,

and which i s used t o ident i fy the source record . i l l

which the source a t t r i b u t e occurs,

6) a t t r i b u t e repe t i t ion ident i f ica t ion is optiorial; i t

i s e i t h e r a name f o r a group or f i e l d or a cri te.r ion

wh.ich i s used, when the source u t t r i bu te oc:cur.o i r l u

repeating group or f i e l d , t o ident i fy the par t icu la r

occurrence i n which the source a-LtribuLe occurs.

When the par t icu la r repe t i t ion i s always uniform and

mandatory, the source a t t r i b u t e i s simply indexed;

otherwise, the c r i te r ion i s expressed using the

c r i t e r ion production system specified below.

Cri ter ion Production System:

This system contains the productions of the system i n Chapter 4,

and, i n addition, the productions:

source-reference SOlTRCE (attribute-modif i e r)

SWRCE (attribute-modif i e r , c r i t e r ion)

record-modifier source-reference

attr ibute-modifier + a t t r i bu te - source-reference

These productions allow a record, group or f i e l d t o be named a s

t h a t record, group o r f i e l d i n the source f i l e which provides the

values f o r the given a t t r i b u t e i n the ta rge t f i l e .

The following convention i s t o be observed i n specifying an

association l i s t : When a source a t t r i b u t e A repeats and
S

1) when a ta rge t a t t r i b u t e A does not repeat, then specifying T

a) <AT; AS; ... > implies t h a t one ta rge t record i s t o

be formed f o r each value of A (i. e . , i f there a r e n
S

such values of A then n ta rge t records a r e formed);
S '

b) < AT; ~ ~ (i) ; . . . > implies t ha t only one ta rge t record

i s t o be formed and the remaining values of AS a r e t o be

discarded (i . e . , a r e not t o be used as values f o r A i n
T

other ta rge t records);

2) when a ta rge t a t t r i b u t e AT repeats an unlimited number of

times, then specifying < A AS; . . . > implies t h a t A w i l l
T

repeat exactly a s many times as AS repeats;

3) when a ta rge t a t t r i b u t e A repeats e i t h e r a f ixed or bounded T

number of times, say m, then specifying

a) < AT; AS; . . . > implies t h a t whenever the number 02 A, r
repe t i t ions i s l e s s than the number of A repe t i t ions ,

S

then t a rge t records a r e t o be formed such t h a t each

value of A appears i n some ta rge t record;
S

.. .
< ~ ~ (r n) ; ~ ~ (m) ; . . . > implies t h a t whenever the number

of A repe t i t ions i s l e s s than the number of AS repe t i - T

t ions , then only one t a rge t record i s t o be formed with

the i t h value of A a s the i t h value of A, and the remain- s I'

ing source values of A a r e t o be discarded. s
6.4 Applications of the Model of the Association L i s t

Example 1. Extraction of a New F i l e from an Exist ing F i l e

Consider a source f i l e F1 whose records a r e described i n the

following way:

i) The s t ruc tures of the records a r e described by the s e t of

productions P1:

record s t ruc ture -, s t ruc ture R 1

s t ruc ture R 1 --, < person, {substructure ~ l l i l] >

substructure R l R 1 -, substructure R l l , substructure L I R 2

substructure 1(1[9 -. substructure 1112, substruc'Lurc flll13

oubutructure lilR3 -r ~ubc t ruc tu re IU3, substruc:Lurc 1t14

substructure It11 -, rmme

substructure R12 -, age

substructure R13 -* sex

substructure ~ 1 4 -4 null

substructure R14 --, substructure ~14, substructure Rl4

substructure ~ 1 4 -* structure ~ 1 4

structure R14 -* < book, {substructure ~14~13 >

substructure ~ 1 4 ~ 1 -4 substructure ~141, substructure ~ 1 4 ~ 2

substructure ~ 1 4 ~ 2 4 substructure ~142, substructure ~ 1 4 3

substructure ~141 -4 tltle

substructure ~ 1 4 2 4 pages

substructure ~143 4 date

ii) The encoding of the records is specified by a set of

characteristics C1 (the exact specification of these

characteristics is not required for the purpose of this

example) .
Consider a target file F2 whose records are described in the

following way:

i) The structures of the records are described by the set of

productions P2:

record structure 4 structure R2

structure R 2 -4 <person, {substructure ~2~1') >

substructure R 2 R l -r substructure R21, Gubstructure II2H2

substructure R2R2 -4 substructure R 2 2 , ~ub~tructure 103

~ubotructure Hz1 4 name

substructure I322 4 age

substructure R23 sex

ii) The encoding of t he records i s speci f ied by a s e t of character-

i s t i c s , C2 (omitted here) .

To convert data i n source f i l e F1 t o the form of t a rge t f i l e P2,

t h e following associat iorl l i s t I s provided:

< name, E'2; riamc , Ii'l >

< age, F2; age, F1; SWNCE (name) >

< sex, F2; sex, F1; SCURCE (name) >

Given a record: *
JONES

32

M

SCIENCE I

384

1958

SCIENCE I1

501

196 3

it is converted a s follows:

__t JONES

32

M

SCIENCE I

-

A l l the source records of F1 are converted i n t h i s way.

Example 2. Reorg&nization of EL F i l e

Consider the same source f i l e F1, described i n Example 1, and a

ta rge t f i l e F3 whoee records a re described i n the following way:

i) the structures of the records of F3 a re described by the se t

of productions P3:

record structure -, structure H3

structure R3 -, < book, {substructure ~ 3 ~ 1) >

substructure R3R1 -, substructure R31, substructure R3R2

substructure R3R2 -, substructure R32, substructure R3R3

substructure R3R3 + sub structure R33, substructure ~ 3 4

substructure R31 + t i t l e

substructure R32 + substructure R32, substructure R32

substructure R32 -) author

substructure R33 -+ date

substructure ~ 3 4 + pages

i i) the encoding of the records i s specified by a se t of character-

i s t i c s C 3 (omitted here).

To convert data i n source f i l e F1 t o the form of target f i l e F3

such tha t there i s one target record for each value of ' t i t le ' i n a

source record and each target record contains the'author'from a l l

source records containing the same ' t i t le : the following association

l i s t is needed:

< t i t l e , F3; t i t l e , F1 >

< author, F3; name, F1; c r i te r ion >

i n a new t a rge t record. To f i n d values f o r the ta rge t a t t r i b u t e 'auth-

o r ' a l l records a r e checked t o see i f they contain a value of ' t i t l e '

equal t o the value of ' t i t l e ' obtained f o r the ta rge t a t t r i b u t e ' t i t l e '

(i n t h i s case SCIENCE 11). The two records shown above contain suck1 n

value. Therefore, they a re used a s sources f o r the values of the ta rge t

a t t r i b u t e 'author' . In t h i s way, the values JONES and liOE a r e obtairled.

Finally, the values f o r 'date ' and 'pages' a r e obtained from the same

group 'book' i n the same record which was the source of the value SCI-

ENCE 11. I n t h i s way, the ta rge t record f o r SCIENCE I1 i s formed.

6.5 The Relationship Between the Model and GDDL

The model of an association l ist defined i n the previous section

provides a means f o r exp l i c i t l y s t a t i ng how ta rge t data items a r e

formed from source data items during conversion.

GDDL's a b i l i t y t o describe data conversion has been defined i n

terms of t h i s model and thus provides similar capabi l i t i es .

We w i l l now show how the model and GDDL a r e re la ted . GDDL's

ASSOCIATE statement (see Appendix A, Section 2.3.1.1) i s an exact

image of the association l i s t six-tuples. Target and source f i l e

names appear a s pa r t of the ta rge t and source names (parameters i) and

ii)) . The :;WIICE (attribute-modif i c r , c r i t e r ion) rnrniri(< sc-heme appear::

explicitly a:: CDDL' s SOJl{CE statemerlt (see Appendix A , Sect ion :' .3.1.3) .
Thus, we conclude t h a t GDDL can specify any :~ssociai;iorl l i s t

t ha t can be defined using the model.

6.6 m e Conversion Process

The association l i s t completes the information needed t o describe

exp l i c i t l y how data i s t o be converted from one organization t o another.

In t h i s section we w i l l see how and where each component of the descrip-

t i o n f o r the source and ta rge t f i l e s together with the association l i s t

i s used during the conversion process.

In Figure 6-1, w e showed t h a t the conversion process consists of

essen t ia l ly three par t s . F i r s t , the source f i l e i s broken down in to

i t s component data items using the source description, the ta rge t data

items a r e formed using values obtained from source data items, and

l a s t l y the ta rge t data items a re structured and encoded according t o

the t a rge t description, Figure 6-3, which i s a detai led treatment of

the conversion process, essen t ia l ly r e f l ec t s these same three stages i n

the instance of conversion from several source f i l e s t o several t a rge t

f i l e s .
Figure 6-3(a) shows how source descriptions a r e used t o read the

source f i l e s from the storage media and break the b i t s t r i n g representa-

t i on down in to data items, and how the association l is t controls the

process.

Figure 6-3(b) shows how the ta rge t data items a r e formed, and

Figure 6-3(c) shows how these data items a re organized in to a t a rge t

f i l e and wri t ten onto the storage media.

Figure 6-3 i s not an algorithm f o r converting data. It only

shows the order i n which description components a r e used f o r extract ing

a single data item from a source f i le , and f o r converting the value of

t h i s data item in to par t of the t a rge t f i l e . I n conversion proper,

when large numbers of data items must be extracted, much of the pro-

cessing f o r each data item w i l l be done i n pa ra l l e l with t h a t f o r other

data items f o r eff ic iency considerations.

Let uo follow the conversion process using Figure 6- 3.

We w i l l assume t h a t the process i s underway and several records

f o r a par t icu la r t a rge t f i l e have already been constructed. Some of

the data items f o r the next t a rge t record have already been formed

and we w i l l now follow the formation of the next data item.

The ta rge t record s t ructure determines the a t t r i b u t e f o r t h i s

next data item. We must now begin a t the top of Figure 6-3(a).

The association l i s t 1 iden t i f i e s which source f i l e contains 0
the a t t r i b u t e whose value w i l l be combined with the ta rge t a t t r i bu t e .

The storage s t ructure description 2 f o r t h a t source f i l e i s 0
used t o determine which blocks must be read (i .e . , which blocks contain

records of the f i l e) .
The storage encoding charac te r i s t ics @ a r e needed t o read these

blocks off the storage medium and t o remove any labels .

Once the b i t s t r i ng representation of the f i l e i s obtained, the

association l i s t @ iden t i f ies which source record i s needed. 'R,

locate and ex t rac t the b i t s t r i ng representation of the rsecorri, the

r:r.itcriorl u ~ c d f o r oequencing blre records (j) :rnd t l ic r i l e C I I (. O ~ ~ ~ J U <
/

[:r..i.ter.ion Lor identify:ir~g the source record, mrlrry r.ec.or.cls rrm.;y huvc kc.)

t)e extracted and tes ted against t h i s c r i t e r ion . 1.f the f i l e c:ontairls

	An Approach to Data Description and Conversion
	Recommended Citation

	An Approach to Data Description and Conversion
	Abstract
	Comments

	tmp.1201118774.pdf.arB9X

