
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Technical Reports (CIS) Department of Computer & Information Science 

September 1989 

The Relevance of Connectionism to AI: A Representation and The Relevance of Connectionism to AI: A Representation and 

Reasoning Perspective Reasoning Perspective 

Lokendra Shastri 
University of Pennsylvania 

Follow this and additional works at: https://repository.upenn.edu/cis_reports 

Recommended Citation Recommended Citation 
Lokendra Shastri, "The Relevance of Connectionism to AI: A Representation and Reasoning Perspective", . 
September 1989. 

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-89-05. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/774 
For more information, please contact repository@pobox.upenn.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76361708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F774&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/774
mailto:repository@pobox.upenn.edu


The Relevance of Connectionism to AI: A Representation and Reasoning The Relevance of Connectionism to AI: A Representation and Reasoning 
Perspective Perspective 

Abstract Abstract 
It is generally acknowledged that tremendous computational activity underlies some of the most 
commonplace cognitive behavior. If we view these computations as systematic rule governed operations 
over symbolic structures (i.e., inferences) we are confronted with the following challenge: Any generalized 
notion of inference is intractable, yet our ability to perform cognitive tasks such as language 
understanding in real-time suggests that we are capable of performing a wide range of inferences with 
extreme efficiency - almost as a matter of reflex. One response to the above challenge is that the 
traditional formulation is simply inappropriate and it is erroneous to view computations underlying 
cognition as inferences. An alternate response - and the one pursued in this paper - is that the traditional 
account is basically sound: The notion of symbolic representation is fundamental to a computational 
model of cognition and so is the view that computations in a cognitive system correspond to systematic 
rule governed operations. However, there is much more to a computational account of cognition than 
what is captured by these assertions. What is missing is an appreciation of the intimate and symbiotic 
relationship between the nature of representation, the effectiveness of inference, and the computational 
architecture in which the computations are situated. We argue that the structured connectionist approach 
offers the appropriate framework for explicating this symbiotic relationship and meeting the challenge of 
computational effectiveness. 

Comments Comments 
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-89-05. 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/774 

https://repository.upenn.edu/cis_reports/774


The Relevance Of 
Connect ionism to AI: 

A Representation and Reasoning Perspective 

MS-CIS-89-05 
LINC LAB 140 

Lokendra Shastri 

Department of Computer and Information Science 
School of Engineering and Applied Science 

University of Pennsylvania 
Philadelphia, PA 19104-6389 

September 1989 



The Relevance of Connectionism to AI: A 

Representation and Reasoning Perspective 

Lokendra S hastri* 

Computer and Information Science Department 

University of Pennsylvania 

Philadelphia, PA 19 104 

Abstract 

It is generally acknowledged that tremendous computational activity underlies some of 

the most commonplace cognitive behavior. If we view these computations as systematic 

rule governed operations over symbolic structures (i.e., inferences) we are confronted with 

the following challenge: Any generalized notion of inference is intractable, yet our ability 

to perform cognitive tasks such as language understanding in real-time suggests that we 

are capable of performing a wide range of inferences with extreme efficiency - almost as 

a matter of repex. One response to the above challenge is that the traditional formulation 

is simply inappropriate and it is erroneous to view computations underlying cognition as 

inferences. An alternate response - and the one pursued in this paper - is that the traditional 

account is basically sound: The notion of symbolic representation is fundamental to a 

computational model of cognition and so is the view that computations in a cognitive system 

correspond to systematic rule governed operations. However, there is much more to a 

computational account of cognition than what is captured by these assertions. What is 

missing is an appreciation of the intimate and symbiotic relationship between the nature of 

representation, the effectiveness of inference, and the computational architecture in which 

the computations are situated. We argue that the structured connectionist approach offers the 

appropriate framework for explicating this symbiotic relationship and meeting the challenge 

of computational effectiveness. 

"Supported by NSF grants IRI 88-05465, MCS-8219196-CER, MCS-83-05211, DARPA grants N00014-85-K- 

0018 and N00014-85-K-0807, and ARO grant ARO-DAA29-84-9-0027 



1 Introduction 

It is generally acknowledged that tremendous computational activity underlies some of the most 

commonplace cognitive behavior. For example, language understanding - a task that we perform 

effortlessly most of the time - requires solving several subtasks such as recognizing phonemes, 

disambiguating word senses, parsing, resolving anaphoric references, imposing selectional restric- 

tions, recognizing speaker's plans, and performing various predictive and explanatory inferences. 

These tasks are fairly complex and in turn require the integration of a wide range of knowledge 

pertaining to phonetics, prosodics, syntax, semantics, pragmatics, discourse structure, and that 

nebulous variety conveniently referred to as common sense knowledge. 

Within a traditional formulation of A1 and cognitive science most of the above computations 

are viewed as inferences, i.e., systematic rule govemed operations over symbolic structures*. 

However, if one accepts such a view of cognition one is immediately confronted with the 

following puzzle: 

Any generalized notion of inference is intractable, yet our ability to perform 

cognitive tasks such as language understanding in real-time suggests that we are 

capable of perfomling a wide range of inferences with extreme efficiency. 

One response to the above puzzle is that the traditional formulation is simply inappropriate 

and it is erroneous to view computations underlying cognition as systematic rule govemed 

operations over symbolic structures. 

An alternate response - and the one pursued in this paper - is that the traditional account 

is basically sound: The notion of symbolic representation is fundamental to a computational 

model of cognition and so is the view that computations in a cognitive system correspond to 

systematic rule governed operations. However, such an account is grossly incomplete: There is 

much more to a computational account of cognition than what is captured by these assertions. 

What is missing is an appreciation of the intimate and symbiotic relationship between .the nature 

of representation, the effectiveness of inference, and the computational architecture in which 

the computations are situated. We argue .that the structured connectionist approach offers the 

appropriate framework for explicating this symbiotic relationship and meeting the challenge of 

computational effectiveness. 

'This is not to say that inference and systematic rule govemed operations are the same - inference presupposes 

the existence of some semantic justification that dictates which operations constitute correct inference. In the present 

context however, the nature of inference is not an issue and what is being said applies to deduction, probabilistic 

inference, default reasoning, analogical reasoning, etc. 



2 Reflexive inference 

To underscore the extreme efficiency with which certain inferences need to be drawn in order 

to support cognitive behavior in real-time, we label such inferences reflexive. In the following 

section we characterize reflexive inferences in terms of their time complexity but informally, 

these inferences are performed extremely fast - in the range of a few milliseconds to a few 

hundred milliseconds, they are computed effortlessly, spontaneously, and without deliberation, 

and the agent does not even become aware (conscious) of the steps involved in arriving at the 

conclusion. It is as if these inferences are a reflex response of the agent's cognitive apparatus - 
hence the name, reflexive inference. 

Reflexive inferences may be contrasted with reflective inferences which are relatively slow, 

and deliberate. In particular, when performing reflective inferences the agent is aware (conscious) 

of the reasoning process. The surface complexity of the task is not a good indicator of the type 

of reasoning. Thus a simple task such as "add 391 and 427" requires reflective inferences2 

whereas a complex task such as understanding spoken language (under ordinary circumstances) 

only requires reflexive inferences. 

It may be suggested that reflexive inferences constitute an unusual sort of reasoning, and 

hence, need not be accounted for in a first pass at developing a computational model of cognition. 

However, far from being unusual, reflexive inferences make up an overwhelming fraction of all 

the inferences canied out by human agents (to wit language understanding, vision, and common 

sense reasoning) and therefore an account of reflexive inference should play a central role even 

in a preliminary computational model of cognition. At stake here are not efficiency, architecture 

issues, or implementation detail but rather the very viability of the model. 

There is one other point that must be clarified. It may be claimed that 'inferences' character- 

ized as reflexive inference are really not inferences. They are either table look-ups or single step 

inferences with no chaining (i.e., they either correspond to a simple retrieval or can be derived 

by a single rule-application without any chaining). As the following example will illustrate, 

such a view underestimates the richness of reflexive inference3. Consider a person reading a 

variation of the Little Red Riding Hood (LRRH) story in which the wolf intends to eat LRRH in 

the woods. The reader is at the point in the story where the wolf, who has followed LRRH into 

the woods, is about to attack her. The next sentence reads: "The wolf heard some wood cutters 

nearby and so he decided to wait." It seems reasonable to claim that the reader will understand 

this sentence spontaneously and without deliberate thought. However, a careful analysis of this 

20n the other hand adding two single digit numbers may correspond to a reflexive step. 

3 ~ h i s  example is based on [Schubert 891. 



sentence makes it apparent that even though the reader does not become aware of it, under- 

standing this sentence requires fairly elaborate reasoning. This reasoning may (very) informally 

be described as follows (the 'rules' are in parentheses): To eat LRRH the wolf will have to 

approach her (because to eat something you have to be near it), if the wolf approaches LRRH 

she will scream (because a child is scared by an approaching wild animal), if LRRH screams, 

the wood cutters will hear her (because a loud noise can be heard at a distance and screaming 

generates a loud noise), if the wood cutters hear the scream they will know that a child is in 

danger (because a child's screaming suggests that the child is in danger) the wood cutters will 

come to the location of the scream (because people want to protect children in danger and in 

part, this involves determining the source of the danger), when the wood cutters see the wolf 

they will try to prevent it from attacking LRRH (because people want to protect children) in 

doing so the wood cutters may hurt the wolf (preventing an animal from attacking a child may 

involve physical force ...) so the wolf will decide to wait (the wolf does not want to get hurt). 

Clearly, the above chain of reasoning does not constitute a 'canned' response and in addition 

to the retrieval of meanings of lexical items, parsing, and resolution of pronominal reference, 

something equivalent to it must be taking place during the understanding of the sentence in 

question. 

2.1 Time complexity of reflexive inference 

Assuming that the number of 'rules' and 'facts' required to encode all relevant aspects of the 

domain of common sense will easily run into the millions4, the extremely tight constraint on 

the time available to carry out reflexive inference entails that the running time of any inference 

algorithm for performing reflexive inferences can be no worse than sublinear in the size of 

the knowledge base. Such a tight constraint introduces a very strong notion of computational 

effectiveness. Typically, a polynomial time algorithm is considered to be quite 'tractable' in the 

context of knowledge representation and reasoning [Levesque 89].5 However, even a polynomial 

time algorithm is not good enough for modeling reflexive inference - an order n2, or even an 

order n algorithm would take far too much time to be of any relevance. 

4The choice of terminology is not critical and the reader may replace 'rules' and 'facts' by scripts, schemas, 

frames, constraints, or whatever that might happen to be the readers' favorite way of describing a chunk of 

knowledge. 
51n addition to requiring polynomial time, most formulations of limited inference in artificial intelligence preclude 

the use of modus ponens and chaining thereof Lakerneyer 871 Frisch & Allen 821. We consider such an exclusion 

to be unwarranted: as evident from the LRRH example discussed above, the use of chaining underlies causal and 

predictive reasoning, and therefore, must be included in an account of reflexive inference. 



3 Towards a computational account of reflexive inference 

In this section we outline how one can systematically work towards a computational account of 

reflexive inference. We conclude that a computational account of reflexive inference is one in 

which inferences can be drawn in a constant number of passes (preferably one or two) of flow 

of information in a directed acyclic graph where each node in the graph is a processing element 

and each arc is a hardwired link. This assertion - though straightforward - has a significant 

impact on the nature of representations and leads to the identification of important constraints 

on the conceptual structure. 

In the following discussion we will often allude to the following three points. These points 

may be obvious but are, nevertheless, stated here because they are critical to our argument. 

1. The notion of a representation is meaningful only in the context of the operations it is 

capable of supporting. In the case of knowledge representation, any representation must 

be accompanied by a specification of the retrieval and inferential operations it is expected 

to support. Unless this is done, one cannot establish the correctness of the representation 

- let alone judge its goodness. 

2. Any computational model of intelligence must be computationally effective, i.e., it should 

be capable of performing the specified tasks in a specified time frame (which in the case 

of building cognitve agents is real-time). 

3. In view of 2, the specification referred to in 1 must also specify the limits of acceptable 

performance for the retrieval and inference operations the representation is intended to 

support. Thus, a specification of the operations that a representation must support and the 

time frame within which these operations must to be performed, together constitute the 

design constraints for developing a representation. 

3.1 Significance of organization: relating structure and inference 

The most important step in tackling the problem of reflexive inference (and tractable inference 

in general) is to: 

Augment the syntax of the representation language so that the form (i.e., the 

syntactic structure) of the representation directly mirrors the inferential structure of 



the knowledge6. 

A representation that naturally provides the requisite coupling between the syntactic struc- 

ture of the representation and the inferential structure of domain knowledge is a graph whose 

nodes correspond to 'units' of information (constants, predicates, concepts, properties, features, 

frames, or whatever) and whose arcs correspond to inferential dependencies between these units. 

Adopting such a graphical representation has the interesting consequence that inference reduces 

to search in a physically instantiated graph. This in itself, of course, does not solve the problem 

of effectiveness because searching arbitrary graphs is a costly operation. However, once we 

identify inference with graph search it becomes possible to relate the efectiveness of the infer- 

ence process (search) with the structural properties of the representation (graph). For instance, 

searching a tree or a directed acyclic graph (DAG) is cheaper than searching a general graph - 
especially if the search can be performed in parallel. This suggests that if we desire computa- 

tional effectiveness our representation should map the domain knowledge into a graph with the 

following property: 

Portions of the graph that are relevant to the solution of a reflexive inference 

problem must be trees or DAGs. 

The direct relationship between the structural properties of the representation and the ef- 

fectiveness of inference reduces the problem of reflexive inference to the problem of choos- 

ing appropriate representational primitives; primitives that would impart the required structural 

properties to the graph encoding the domain knowledge. Within such an approach, answers 

to questions such as: "Should our epistemological primitives be undifferentiated predicates or 

should we distinguish between 'concepts', 'relations', and 'attributes' ? 'and "Should we use a 

typed (sorted) logic or not?", depend upon - and follow directly from - a detailed specification 

of the types of inferences that need to be computed reflexively. 

In order to illustrate how the choice representational primitives affects the structural properties 

of a representation consider two different ways of representing the following knowledge: 

Persons are non-pacifists, 

Republicans and Quakers are persons, 

Quakers are pacifists, and Republicans are non-pacifists. 

6The above notion is not new and underlies semantic networks, frame languages, scripts, etc. The idea of 

'vividness' Levesque 881 is a special case of this general notion. 



First consider a 'class-only' system in which everything is expressed in terms of monadic 

predicates. Next consider a 'class-property system' which makes a distinction between classes 

(concepts) and properties. These two representations are illustrated in Fig. 1. Notice how the 

second representation leads to a DAG whereas the first one does not. This is significant because 

it illustrates that depending on the choice of representational primitives the same underlying 

knowledge may either lead to an acyclic structure that is amenable to effective inference, or 

result in a cyclic structure that is not. We are glossing over a number of problems here such as 

treatment of negation, quantification, necessary versus default properties, to name a few. Our 

intent here is just to point out that choosing a different set of epistemological primitives (class 

on the one hand and class and property on the other) can change the structural properties of the 

representation in ways that significantly impact computational effeciency. 

Structural constraints required for supporting reflexive inference may not be as stringent as 

they might appear. This is because the complete graph need not satisfy these constraints, only 

subgraphs relevant for solving particular problems need do so. A concrete example of this may 

be found in the connectionist realization of semantic networks described in [Shastri 881. There it 

is shown that property inheritance may be computed extremely efficiently - in time proportional 

to the depth of the conceptual structure - provided the following requirement is satisfied: 

In order to inherit the value of a property P of a concept C effectively, concepts 

that lie above C and that have information about P attached to them, must form a 

tree 

In general, information about every property is not attached to every concept and hence, 

the above constraint may be satisfied for a large class of inheritance queries even though the 

complete IS-A hierarchy may not be a tree. As an example, consider the IS-A hierarchy shown 

in Fig. 2. Assume that the property has-belief - with values pacifist and non-pacifist - applies to 

the concepts shown in the Fig. 2 and that information pertaining to this property is attached to 

concepts enclosed in a dark box. Even though the concepts form a tangled IS-A hierarchy, the 

inheritance question: "Is Dick a pacifist or a non-pacifist?" can be answered efficiently because 

the relevant portion of the graph - consisting of all concepts that lie above DICK and that have 

information about the property has-belief attached to them - form a tree (see Fig. 3). 

Cyclic inferential dependencies can also be reduced by using an extremely fine-grained 

decomposition of terms so as to reduce the density7 of inferential dependencies in the knowledge 

71.e., the ratio of the number of dependencies to the number of terms in the knowledge base. Here 'term' is 
used in a general sense and includes - predicates, concepts, properties, features, microfeatures, etc. 



base. This suggests that the number of nodes in our graphs will, in general, be extremely large 

and may run into the millions for any non-mvial domain. 

3.2 The Role of Architecture 

Once we identify inference with graph search the significance of architecture also becomes 

obvious. Consider searching a DAG with n nodes. A serial search algorithm will take O(n)  

steps to complete the search. However, if we assume that each node is an active processor that 

can communicate with all its neighbors then the graph search will only take time equal to the 

diameter of the graph. Thus the parallel search will be sublinear in the size of the graph. In 

fact, it will be quite reasonable to assume that the diameter of the graph will only be O(1ogn). 

Based on the above observation we assert that a computational account of reflexive inference 

would involve 

mapping domain knowledge onto a graph whose nodes correspond to 'units' of information 

and arcs to inferential dependencies between these units. 

mapping the graph onto a parallel machine by assigning a processor to each node and 

creating a hardwired link for each arc. 

making appropriate epistemological and ontological choices so that the projection of the 

graph with respect to a reflexive query (i.e., the subgraph relevant to solving the query) is 

always a DAG so that the answer to the query can be computed in a sweep of information 

flow through the parallel machine. 

3.3 Other desirable architectural properties 

In Section 3.1 we observed that in order to support efficient inference the relevant parts of the 

graph must be acyclic, and to minimize acyclic dependencies the 'units' of information must be 

extremely fine grained. As a result, the number of nodes in the graph can easily run into the 

millions. The parallel encoding proposed in Section 3.2 requires that a processor be assigned to 

each node in the graph. Consequently, the number of processors in the system will also run into 

the millions giving rise to a massively parallel system. 

Besides massive parallelism, what other desirable features should such a computer have? 

First, in order to fully exploit its massive parallelism, the system must operate without a central 

controller. Other features that will help in an optimal use of parallelism may be identified by 

recognizing that the computing resources of any parallel system are used in two ways: i) for task 



related information processing and ii) communication. The first of these involves computations 

directly relevant to the task at hand, while the second - the use of resources for communication 

- constitutes an overhead that does not contribute directly to the task. Clearly, minimizing 

communication costs would help in maximizing the use of parallelism. 

Communication costs have two components: encoding/decoding costs and routing costs. The 

sender of a message must encode information in a form that is acceptable to the receiver who 

in turn must decode the message in order to extract the relevant information. This constitutes 

encoding/decoding costs. Sending a message also involves decoding the receiver's address and 

establishing a path between the sender and the receiver. This constitutes routing costs. 

One may minimize routing costs by positing jixed connections between processors and stip- 

ulating that any message sent by a processor will always be transmitted along all - and only all 

- links emanating from the processor. This would reduce routing costs to zero because sending 

a message would require neither the decoding of an address nor the setting up of a path. Stip- 

ulating fixed connections, however, would require that processing elements have a high degree 

of connectivity. 

But how can the decodinglencoding costs be minimized? A trivial way of reducing these 

costs to zero would be to stipulate that messages shall not have any content - if there is no 

content, there will be nothing to encode or decode and therefore the associated cost will be 

zero. Such a suggestion may sound frivolous but one can come very close to reducing the 

encodingldecoding costs to zero by restricting all messages to be scalars, i.e., by requiring that 

a message not have any internal structure, its only information content being its magnitude. 

To summarize, an appropriate computational architecture for efficient inference should have 

the following features: 

massive parallelism - a node for each unit of information 

no central controller 

hard wired links and a high degree of connectivity 

scalar messages with no internal structure, only a magnitude 

each processor need only compute a scalar output based on the magnitudes of input mes- 

sages and transmit it to all the processors it is connected to. 

The features listed above directly correspond to the core features of connectionism. 

The most compelling argument put forth in favor of connectionism is that it is neurobiolog- 

ically plausible. However, we arrived at the core features of connectionism - without appealing 



to the architecture of the animal brain - by simply recognizing the characteristics of information 

processing that underlies intelligence. That nature has produced a computational device with 

a similar set of features is clearly not an accident. The above list of features does not make 

any reference to an important feature of connectionist models, namely, learning. The arguments 

offered above are independent of the question of learning and would hold even if learning were 

an issue. The point we wish to make is that there exists a strong case for connectionism even if 

learning is not a major issue. 

4 Impact of the core features of connectionism 

In designing any massively parallel system that operates without a central controller one has to 

address the problems of control and convergence. In the connectionist model we have also placed 

the additional constraint that messages be simple scalars (this was done to reduce encoding and 

decoding costs). On the face of it, it appears that this makes the problem of representation and 

reasoning even more difficult. We argue, however, that the constraint on the nature of mes- 

sages is a blessing disguise! It forces us to face up to the really hard problem in knowledge 

representation and reasoning that must be addressed if we are to arrive at a computational ac- 

count of reflexive inference. This problem being the determination of appropriate organizational 

principles, the choice of right epistemological primitives and the indentification of important 

ontological distinctions. 

In this section we discuss the impact of the core features of connectionism on the nature of 

representation and reasoning. This impact may broadly be summarized as follows: 

Connectionism offers an extremely efficient metaphor for reasoning where inference is 

reduced to spreading activation in a parallel network. (We discussed this in Section 3.) 

Restricting messages to only being scalars entails that messages do not have any direct 

symbolic content; the information content of a message is not in "What is being said?" but 

rather in "Who is saying it?" This requires that representations be explicit, multi-faceted, 

and fine grained. 

In a connectionist system there is no distinct interpreter that mediates retrieval and rea- 

soning. The connection pattern, the weights on links, and the computational characteristics 

% message has a magnitude and therefore it actually encodes "Who is saying it and how loudly?". The 

magnitude does play an important role in encoding constraint strengths and evidential/probabilistic knowledge but 

is not critical to our discussion here. 



of nodes not only represent domain knowledge but also encode the retrieval and inferential 

processes that operate on this knowledge. This state of affairs forces a strong coupling 

between a representation and the inferences that the representation is expected to support. 

It also requires that representations be vivid and directly mirror the inferential structure of 

the domain. 

Working within a massively parallel computational architecture helps in identifying novel 

classes of limited inference that can be performed with extreme efficiency and aids in 

discovering constraints that must be placed on the conceptual struture in order to support 

extreme efficiency. 

The connectionist approach suggests alternate formulations of information processing. 

Thus instead of viewing a knowledge base system as a theorem prover or a produc- 

tion system, one may view it as a system that performs constraint satisfaction, energy 

minimization, or evidential and probabilistic reasoning. This encourages the use of al- 

ternate reasoning formalisms that have not received due attention within A1 but may be 

appropriate for modeling a range of cognitive functions. 

4.1 Scalar messages and the absence of an interpreter 

The scalar nature of messages in a connectionist network entails that the messages have no direct 

symbolic content: the information content of a message is not "What is being said" but rather 

"Who is saying it?"9 lo. 

The above restriction on the information content of a message does not pose a problem if 

one is only interested in encoding associations between concepts - storing associations simply 

requires spreading activation, for which scalar messages suffice. This restriction, however, 

becomes critical if one wishes to represent structured knowledge and perform retrieval and 

inference on this knowledge. It requires that all distinctions - no matter how subtle - must be 

represented explicitly. Thus, every relevant facet of a concept and every role that a concept 

may play has to be distinguished and represented explicitly. l1 It also requires that concepts be 

9A message has a magnitude and therefore it actually encodes "Who is saying it and how loudly?". The 

magnitude does play an important role in encoding constraint strengths and evidential/probabilistic knowledge but 

is not critical to our discussion here. 
''The statement "messages do not have symbolic content" should be distinguished from the statement "connec- 

tionist systems do not have symbolic content". In our view, connectionist systems do have symbolic content, only 

the messages don't. 

''This corresponds to the idea of "exploded cases" discussed in [Cotuell 851. 



represented at multiple levels of granularity (resolution) including extremely fine grained levels 

as well as coarse grained ones. For example, the concept "chair" must be represented at various 

levels of granularity including a level of detail that would be appropriate for inclusion in the 

description of a living room ("a chair',), a finer level of detail that would be appropriate if we 

were describing the chair itself ("an antique leather upholstered ..."), and an even finer level 

where the details about the arm of the chair would become relevant, and so on. The concept 

"red" cannot be represented as a unitary concept and it must be represented using exploded 

values such as "apple red", "rose red", "brick red" etc. Similarly, a role such as "patient" 

must be represented in an exploded manner by positing distinct roles such as "love-patient", 

"hit-patient", "give-patient", etc. In traditional knowledge based systems, such distinctions do 

not have to be represented explicitly as this burden may be shifted to the interpreter which may 

treat the role "patient" differently depending upon the action the role is associated with. 

When knowledge is encoded in a connectionist network the usual distinction between the rep- 

resentation (knowledge base) and the processes that operate on it (the inference engine) becomes 

blurred: the connection pattern, the weights on links, and the computational characteristics of 

nodes not only represent domain knowledge but also encode the retrieval and inferential pro- 

cesses that manipulate this knowledge. In a connectionist system there is no distinct interpreter 

that mediates the retrieval or reasoning process - the interactions among the nodes directly cause 

changes in the states of nodes that produce the appropriate results. 

The absence of an interpreter and the restriction on the nature of messages forces a strong 

coupling between the nature of representation, the nature of inference that the representation is 

expected to support, and the degree of efficiency with which these inferences have to be carried 

out. This is not always the case in traditional approaches to knowledge representation where 

there is a tendency to isolate control issues (also referred to as perforrnance/implementation 

issues) from issues of representation and expressiveness. 

The coupling of issues related to content, organization, and inference, that results from adopt- 

ing the connectionist framework, may seem misguided and at odds with conventional wisdom. 

Why should one conflate issues that have been decoupled - especially when the decoupling leads 

to a neat division of problems. It is indeed true that decoupling of issues serves an extremely 

important pedagogical and analytical purpose. Our goal however, is not simply to understand 

such systems, but to produce a detailed computational account of such systems. And in order 

to achieve this goal it may be essential to blur these distinctions and adopt an unified approach. 

Any representation is there for a purpose and the notion of a representation is meaningless unless 

accompanied by the specification of the operations it supports and the acceptable complexity of 



these operations. Thus understanding which inferences have to made efficiently - i.e., focusing 

on performance issues - is essential for discovering the principles underlying the organization of 

knowledge, and for making the correct ontological distinctions and choices. 

A coupled approach to choosing representations is commonplace in computer science where 

it is clearly understood that the development of eficient algorithms for solving a problem cannot 

be decoupled from the development of associated data structures. In fact, the design of an 

appropriate data structure is often the central step in the process. Once the "correct" data 

structure is discovered, the algorithm follows by fiat. 

4.2 A simple example to illustrate some issues in representation 

We now consider a simple example that illustrates how the restriction on the nature of messages 

and the absence of an interpreter affects the choice of representations. 

Let objects in the domain we wish to represent have two intrinsic properties: color (with 

values red and blue) and shape (with values square and circle), and let left-of be a binary relation 

defined between objects. Let obj-1 and obj-2 be two objects in the domain such that obj-1 is a 

red square, obj-2 is a blue circle, and obj-1 is to the left of obj-2. 

For simplicity we assume that the representation is only expected to support the following 

simple operations: 

Retrieve an object given its (partial) description. For example, retrieve "obj-1" given "red 

color" or given "red color and square shape". 

Retrieve the value of a specific property of a specified object. For example, retrieve the 

color of obj-1 as "red". 

Test whether a given relational tuple is true or false. For example, test whether l e f t -  

of (obj-1, obj-2) is true or false. 

Let us develop a simple connectionist representation for this domain. We begin by assuming 

that the four property values red, blue, square, and circle are grounded in perception, and hence, 

are primitive concepts (or microfeatures). Thus we represent each of these property values 

with a distinct node (Fig. 4a). Each node is a processing element and sends out activation when 

in an active state. One might suggest that the representation of obj-1 may be taken to be the 

pattern 1010 - this being the pattern of activation over the set of property values (microfeatures) 

corresponding to obj-1, and similarly, the representation of obj-2 may be taken to be the pattern 



0101. Such a representation, however, is inadequate for a number of reasons that are outlined 

below. 

First, the proposed representation does not really represent the objects obj-1 and obj-2; the 

representation does not distinguish between patterns such as 1010 that correspond to objects 

explicitly represented in the system, and patterns such as 1001 (a red circle) that correspond 

to potential objects as yet unrepresented in the system. Moreover, the representation does not 

provide any way of associating a name with a stored object. For example, it is not possible to 

state that the pattern 1010 corresponds to the object obj-1. These are serious limitations because 

given the description "red square" - i.e., given the pattern 1010 - the system will be unable to 

recognize this pattern as being that of an existing concept - let alone recognize it as being the 

object obj- 1. 

Another problem with the current representation is that it makes the representation of com- 

posite concepts particularly difficult - if not impossible. The representation does not allow the 

system to refer to objects except by their full descriptions and therefore the representation of a 

composite object must include the full description of all its component parts. For example, as 

the system can only refer to obj-1 and obj-2 by their complete descriptions, the representation of 

left-oflobj-1, obj-2) will have to be lefi-ofired square, blue circle). Such a representation would 

soon become untenable as one tries to describe progressively complex structures - specially, if 

concepts have many more property values than two. l2 

A simple solution to some of the problems listed above can be obtained by using the basic 

idea of abstraction. This involves positing a separate node for each object explicitly represented 

in the system and connecting such a node to all the property values of the corresponding object. 

Thus we would augment the representation of obj-1 by adding a node 'obj-1 ' and connecting it 

to the nodes 'red' and 'square'. The same can be done for obj-2 (Fig. 4b). However, it must be 

remembered that the node 'obj-1' does not in itself represent the red square: obj-1. It represents 

obj-1 only by virtue of being connected to the nodes 'red' and 'square'; if we disconnect the 

node 'obj-1' from the nodes 'red' and 'square', it ceases to represent obj-1 (or for that matter 

anything else). 

The above needs to be emphasized because a lack of appreciation of this point lies at the heart 

of prevalent misconceptions about so called "localist" representations. The presence of a node 

such as 'obj-1' provides a simple but effective way of distinguishing between the representation 

of explicitly represented (memorized) concepts such as "the red square: obj-1" and potential 

12We discussed the above representation in spite of its serious limitations because such "distributed representation" 

schemes have been proposed and defended as viable representations Bumelhart & McClelland 861. See Section 7 



objects such as "a red circle". It also makes it possible to recognize and name the description 

"red square" as "obj-1". All we need to assume is that giving the description "red circle" amounts 

to activating the nodes 'red' and 'square' which - by virtue of their connections - will activate 

' obj- 1 ' but leave 'obj-2' inactive. 

Our design, however, is still incomplete. The representation in Fig. 4b does not allow us 

to distinguish between a "red colored square shaped" object and a "red shaped square colored" 

object. As far as the representation is concerned both are equivalent. Making this distinction is 

crucial, particularly, as we expect the representation to handle the task of answering questions 

such as "What is the color of obj-l?" (this is one of the tasks we set for the representation). In 

response to this question we would like the system to say "red" (i.e., have the node 'red' active 

without the node 'square' also becoming active). However, the system cannot do so with the 

proposed representation. Starting with 'obj-1' there is simply no way of activating 'red' without 

'square7 also becoming active. 

In a traditional semantic network the above problem does not arise because the links in the 

network can be labeled. In a semantic network, the link between 'obj-1' and 'red' would be 

labeled "has-color" and the link between ' obj- 1 ' and 'square' would be labeled "has-shape" 

(refer to Fig. 4b). During retrieval, an interpreter will read these labels and decide which link 

is appropriate for the given task. If the task is to find the color of obj-1, the interpreter would 

follow the link labeled "has-color7' and arrive at the node 'red'. 

In a connectionist network, however, we cannot have labels on links: this would amount 

to sending messages that encode more than a strength of activation Yet we need a mechanism 

that would allow messages from 'obj-1' to selectively reach 'red' - and not 'square' - whenever 

the focus of attention is the color of 'obj-1'. This can be done in a straightforward manner 

by introducing an extra node that would associate 'obj-1' and 'red' only in the context of the 

property color, and 'obj-1' and 'square' in the context of the property shape. 

A possible solution along the above lines is given in Fig. 5 (c.f. [Shasm 881). The triangular 

nodes - called binder nodes - provide the required context. Each binder node associates an object, 

a property and a property value and becomes active on receiving simultaneous activation from a 

pair of nodes. To find the color of obj-1, one would activate the nodes 'has-color' and 'obj-1'. 

The binder node linking 'has-color' and 'obj-1' to 'red' will receive coincident activation along 

two of its links and become active. As a result, it will transmit activation to 'red' which will 

then become active. If we need to find an object that is red in color we would activate the 

nodes 'has-color' and 'red'. This will cause the appropriate binder node to become active and 

transmit activation to 'obj-1' which will become active, thus completing the retrieval. Finding 



a "red square object'' will involve activating the nodes 'red' and 'has-color' and 'square' and 

'has-shape' which would also cause 'obj-1' to be become active. 

Even the simple example being discussed here illustrates how the restriction on the nature 

of messages and the absence of an interpreter forces certain ontological choices. For instance, 

it becomes necessary to represent attributes of objects as property value pairs instead of as 

features .  Such a decision is not critical in an interpreted system; in such a system the fact 

"obj-1 is red in color" could have been represented by encoding "red" as a feature of "obj-1" and 

the information that "red is a color" could have been recorded separately. These two "isolated" 

pieces of information could have put together by an interpreter during processing to ascertain 

that the object is red in color. 

The representation of relations can be derived by applying techniques - similar to those 

outlined above. Fig. 6 illustrates how le f t-of (obj 1-obj2) may be represented. We posit a 

generic node labeled 'left-of' connected to two role nodes - one for each role of the relation(ro1e 

nodes are depicted as diamond shaped nodes). The actual instance of le f t -of  is represented 

using the hexagonal instancer node labeled 'left-of-1'. This instancer node receives inputs from 

the role nodes of 'left-of' and the corresponding fillers of the roles - in this case 'obj-1' and 

'obj-2'. There is a link from 'left-of-1' to 'left-of'. The instancer node performs the function 

of associating the correct role filler pairs. One can see how activating the two roles of 'left-of' 

and the nodes 'obj-l'and 'obj-2' will lead to the activation of the node 'left-of-1' and in turn 

of 'left-of' indicating that le f t-o f (obj-1,obj-2) has been asserted as an instance of the relation 

l e f t - o f .  

So far we have only considered the representation of relatively stable (long term) knowledge. 

It is reasonable to assume that nodes such as 'obj-1' and 'left-of-1' exist (for example, they 

might be learned over time) in order to represent stable grouping of constituents. However, 

such a scheme is entirely inadequate if such groupings have to be created dynamically for short 

durations. The need for establishing such dynamic short-term bindings clearly arises in language 

understanding, vision, and reasoning. In fact it arises in any situation that involves reasoning 

with representations that include the use of variables. In connectionist circles this problem is 

referred to as the variable binding problem. l3 Consider the following example involving a 

simple reasoning step. Assume that a network encodes the rule: 

and facts such as HIT(John,Susan) and HIT(Tom,John) among others. HURT(John) clearly 

13Some researchers have argued that it may be possible to exhibit interesting cognitive behavior without solving 

the variable binding problem. For example see [Agre & Chapman 881. 



follows from the above knowledge by instantiating the rule with the bindings "Tom" for "x" and 

"John" for "y" and applying modus ponens. If a connectionist network is to infer HURT(John) 

it must carry out an equivalent computation. In generic terms, it must have a way of activating 

the representation of HURT() given the activation of the representation of HIT(). Furthermore, it 

must have a mechanism for establishing bindings for variables 'x' and 'y' in the representation 

of HIT() and ensuring that the same bindings are induced in the representation of HURT(). The 

problem gets even more confounded if we wish to chain such inference steps and the bindings 

have to be propagated faithfully along the chain. 

Note that any solution that requires such bindings to be pre-wired is unacceptable: prewiring 

these bindings would correspond to explicitly representing all possible instantiations of the rule. 

This is not feasible because the number of instantiations may be too numerous - potentially 

unbounded. Thus we need the ability to set up these bindings on the fly. As we cannot use links 

or nodes, it seems natural that we may have to use the temporal dimension to solve this problem, 

and indeed, we have solved an interesting subclass of this problem using time multiplexing (see 

Section 6). 

The examples discussed above are simple and serve to point out how the restriction that all 

messages be scalar and the absence of a distinct interpreter, requires that representational and 

inferential issues be coupled. In the Section 5 and 6 we look at two connectionist systems that 

perform quite complex reasoning tasks over structured information. 

4.3 Convergence 

Parallelism does not guarantee speed. In order to support extremely efficient inference, the 

spreading activation process must converge extremely fast. The computation performed by 

many connectionist systems corresponds to a relaxation process wherein activation circulates in 

a network until finally a stable network state is obtained. It is difficult to place an upper bound 

on the convergence time of such systems and even in cases where it is possible to do so, it often 

turns out to be polynomial in the size of the knowledge base [Derthick 881. As explained in 

Section 3.1, however, we require our encoding to be such that subparts of a connectionist network 

that participate in the solution of a reflexive inference problem correspond to DAGs. Therefore, 

it can be guaranteed that the system will converge in a constant number of sweeps of spreading 

activation across the network. Thus the solution would be computed in time proportional to the 

diameter of the network which in most cases will be logarithmic in the size of the knowledge 



base1*. An example of such a system is the connectionist semantic network reported in [Shastri 

881 and the connectionist system for rule-based reasoning described in [Shastri & Ajjanagadde 

891. 

5 A connectionist semantic memory 

Reasoning that may be characterized as inheritance and recognition (classification) within a 

semantic network plays a central role in language understanding, visual recognition, and com- 

monsense reasoning. Inheritance and recognition are also significant because humans can perform 

these inferences effortlessly and extremely fast - to wit language understanding in real-time. A 

connectionist semantic memory that can solve the inheritance and recognition problems with the 

desired degree of efficiency has been proposed in [Shastri 881. This work prescribes a mapping 

from a formal specification at the knowledge level to a connectionist network that can solve 

an interesting class of inheritance as well as recognition problems in time proportional to the 

depth of the conceptual hierarchy. As the response time is only proportional to the depth of the 

hierarchy, the system scales gracefully and can deal with large knowledge bases. 

In addition to achieving efficient performance, adopting a connectionist approach to the 

design of a semantic memory leads to two other advantages. 

Attempts at formalizing inheritance and recognition in semantic networks have been con- 

founded by the presence of conflicting property-values among related concepts which gives 

rise to the problems of exceptions and multiple inheritance during inheritance, and partial 

matching during recognition. Several formalizations of inheritance hierarchies have been 

proposed but none of them offer a uniform treatment of multiple inheritance as well as par- 

tiawest matching based recognition. The connectionist approach suggested an evidential 

formalization of conceptual knowledge that lead to a principled treatment of exceptions, 

multiple inheritance, and recognition based on best/partial match. 

The work resulted in the identification of constraints on the conceptual structure that lead 

to efficient solutions. One of these constraints was mentioned earlier in Section 3.1. (The 

constraint specified that in order to inherit the value of some property P of a concept 

C effectively, concepts that lie above C and that have information about P attached to 

14For example, in the context of inheritance and recognition in a semantic network, the diameter corresponds to 

the number of levels in the conceptual hierarchy, and is logarithmic in the number of concepts in the knowledge 

base. 



them, must form a tree.) Another constraint imposes a uniformity requirement on property 

value attachments in the conceptual structure and suggests that the conceptual hierarchy 

must comprise of several alternate "views" of the underlying concepts if information about 

property values is to be used efficiently during recognition. 

A detailed description of the system may be found in [Shastri 881, a brief specification of 

the representation langauge is given below. 

5.1 An evidential representation language 

The knowledge in the semantic memory is expressed in terms of a partially ordered set of 

concepts (i.e., a IS-A hierarchy of concepts) together with a partial specification of the property 

values of these concepts. The set of concepts is referred to as CSET,  the partial ordering as 

<, and the information about property values of a concept is specified using the distribution 

function S, where, 6(C, P) specifies how instances of C are distributed with respect to the 

values of property P. For example, S(APPLE,  has-color) may be {RED = 60, GREEL1' = 

55, Y E L L 0  W = 23.. .). Note that S is only a partial mapping; an agent may not know S for 

many concept property pairs. In general, for a given C and P ,  an agent may know S(C, P )  only 

if this information may prove useful in making inferences about C. In terms of a traditional 

representation language, knowing S(C, P )  amounts to knowing - explicitly - the values of P 

associated with C. For convenience we also make use of the # notation. Thus, #C[P, V] equals 

the number of instances of C that are observed by the agent to have the value V for property P 

and #CIPl, Vl] [P2, V2]. . . [P, , V,] = the number of instances of C observed to have the value Vl 

for property PI, .. . and value Vn for property P,. 

In terms of the above notation, the inheritance and recognition problem may be stated as 

follows: 

Inheritance: Given a concept C, a property P ,  and a set of property values X = {Vl , V2, . . .V,}, 

find a T/; that is the most likely value of property P for concept C. In other words, find V,  such 

that the most likely value of #C[P, 'lr,] equals or exceeds the most likely value of #C[P, 

for any other Vj in X. The inheritance problem: C = BIRD,  P = mode-of-transportation, 

and X = {FLY, S W I M ,  WALK), may be paraphrased as: Is the mode of transportation of a 

bird most likely to be flying, swimming, or walking? 

Recognition: Given a set of concepts, Z = {Cl, C2, ... C,), and a description consisting of 

a set of property value pairs, i.e., D I S C R  = {[PI, &I, [P2, V2], ...[ Pm, Vm]}, find a Ci such that 

relative to the concepts specified in 2, C; is the most likely concept described by DISCR. 

In other words, find C; such that the most likely value of #C;[Pl, &I, [P2, V2], . . . [P,, , I  k] 



exceeds the most likely value of #Cj [PI, Vl], [P2, V2], .. . [P,, V,] for any other Cj. If Z = 

{APPLE,  GRAPE),  D I S C R  = {[has-color, RED],  [has-taste, SWEET] )  then the recog- 

nition problem may be paraphrased as: "Is something red in color and sweet in taste more likely 

to be an apple or a grape?" 

The proposed connectionist system solves such inheritance and recognition problems in time 

proportional to the depth of the conceptual hierarchy. 

5.1.1 Constraints on the Conceptual Structure 

The following terms will be used in stating the constraints: 

Relevance: Given a concept C and a property P, a concept B is relevant to C with respect 

to P ,  if and only if i) C << B (i.e, B lies "above" C in the partial ordering), ii) 6(B, P )  is 

known (i.e., distribution of instances of B with respect to values of property P is known) and 

iii) there exists no other concept A between C and B for which 6(A, P )  is known. 

Projection: Given a concept C and a property P ,  CSETIC, P, the projection of C S E T  

with respect to C and P ,  is defined to be the set of all concepts Xi such that C << Xi and 

&(Xi, P )  is known. (I.e., the projection CSETIC,  P is the set of all concepts above C whose 

distribution with respect to the property values of P is known.) 

I 
The first constraint on the conceptual structure restricts the nature of the partial ordering 

I of concepts. This restriction is predicated by the nature of property-value attachment in the 
I 

I conceptual structure. 
I 

I 
Constraint-I: The conceptual structure must be such that the ordering induced by << on the 

I projection CSETIC,  P results in a tree. 
I 
I The above constraint does not require that all concepts be organized as a tree. It only requires 
I 
I that given a property P, all concepts that have values of property P explicitly associated with 
I 
I them should form a tree. 
I 
I Before we state the second constraint we describe a particular conceptual structure that allows 
I 

I this constraint to be expressed in a relatively simple manner. The proposed conceptual structure 
I 
I also (trivially) satisfies Constraint-1 mentioned above. 
I 

I In the proposed scheme (see Fig. 7) ,  concepts are organized in a three tier structure. The top 
I most tier consists of a pure taxonomy that classifies the domain concepts into several distinct 
I 
I ontological categories. Such categories are derived using the principle of predicability, [Keil 
I 
I 79, Sommers 651 which says that different sorts of things have different sorts of properties 
I 
I applicable to them, and one may classify things according to the predicates that apply, or do not 
I apply, to them. Sommers has argued that ontological categories should form a strict taxonomy. 
I 



The third or the lowest tier of the conceptual structure consists of instances. The second tier 

consists of a number of taxonomies called views. The root of a view is a leaf of the ontological 

tree, and the leaves of a view are instances. Multiple views may be defined with the same 

leaf of the ontological tree as their root and therefore, there may be multiple views that have 

the same instance as one of their leaves. Thus instances may have multiple parents, however, 

each parent must lie in a distinct view. The above organization offers advantages permitted by 

tangled hierarchies by allowing instances to have multiple parents, but retains certain tree like 

characteristics that helps in simplifying the interactions between information represented in the 

conceptual structure and eventually leads to a parallelizable solution. 

Constraint-;?: If 6(Ci, P )  - i.e., distribution of instances of C; with respect to property P - 
is known for some concept C; in view H ,  then S(C7 P) should be known for as many concepts 

in H as may be necessary to ensure that given any token Tj under H ,  there exists a concept Bj 
in H that is relevant to Tj with respect to P. 

Constraint-2 requires that if information about some property is stored within a view then such 

information must be stored at a sufficient number of concepts (sufficient in the sense specified 

in the constraint). This constraint also suggests that if a property value (or a cluster of property 

values) can be used to discriminate among a set of instances but is of no special significance as 

far as members outside this set are considered, then one must define a distinct view over this set 

of instances so that information about this property value may be used efficiently. 

If either of the constraints mentioned above is violated, the system will produce anomalous 

results. These and other issues are discussed at length in [Shastri 881. 

6 A connectionist system for rule-based reasoning 

The connectionist semantic network described above is capable of representing long term and 

stable relationships and bindings. However, it does not address the problem of maintaining and 

propagating dynamic or short-term bindings. For the sake of clarity if we suppress the evidential 

aspect of reasoning in the system, the system deals with rules of the form 

and 

V(x>P(x> * Q(x7 a> 

Although multiple rules participate in a derivation, it is always the case that all variables are 

bound to the same individual and thus the system can get by without actually solving the dynamic 

binding problem. 



The need for establishing dynamic and temporary bindings clearly arises in inference that in- 

volves variables and multi-place predicates. Consider the following example. Assume that a net- 

work encodes the rule: V x ,  y [ H I T ( x ,  Y )  + H U R T ( Y ) ]  and facts such as H I T ( J o h n ,  Mary) 

and H I T ( T o m ,  John)  among others. H U R T (  John)  clearly follows from the above knowl- 

edge by instantiating the rule with the bindings John for y and applying modus ponens. If the 

network is to infer H U R T ( J o h n )  it must carry out an equivalent computation. In generic 

terms, it must have a way of activating the representation of H U R T  given the activation of the 

representation of H I T .  Furthermore, it must have a mechanism for establishing bindings for 

variables x and y in the representation of HIT and ensuring that the same bindings are induced 

in the representation of H U R T .  The problem gets even more confounded if we wish to chain 

such inference steps and the bindings have to be propagated faithfully along the chain. 

Any solution that requires that such bindings be pre-wired is unacceptable: prewiring these 

bindings would correspond to explicitly representing all possible instantiations of the rule (this 

would also mean that the system is only dealing with propositions not with quantified sentences 

involving variables!). This is not feasible because the number of instantiations may be too many 

- potentially unbounded. Thus we need the ability to set up these bindings on the fly. This 

problem has received considerable attention recently (see [Touretzky & Hinton 881 [Smolensky 

87][Dolan & Dyer 881 [Shastri & Ajjanagadde 891). The latter have suggested a connectionist 

system that can perform a broad class of deductive inference involving variables and multi-place 

predicates with extreme efficiency. Specifically, the system can represent knowledge expressed 

in the form of rules and facts and determine whether a given query follows from the facts and 

rules encoded in the system. If the argument structure of the rules satisfies certain constraints 

(these are specified in [Shastri & Ajjanagadde 89]), the system responds to queries in optimal 

time, i.e., the time taken to draw an inference is just proportional to the length of the proof. 

The system maintains and propagates several variable bindings over long chains of inference by 

using a phased clock. 

Rules in the system are assumed to be sentences of the form 

where arguments for Pi's are subsets of { x l ,  x 2 ,  ... x,), while the arguments of Q may consist 

of any number of arguments from among the xi's and any number of constants besides the 

universally and existentially quantified arguments introduced in the consequent. Notice that the 

more commonly occurring rules of the form 



- where every variable occurring in a rule is universally quantified with the scope of quantifi- 

cation being the entire implication - are just a special case of the more general form specified 

above. Facts are assumed to be atomic formulas of the form P ( t l ,  t2...tk) where t i ' s  are either 

constants or (existentially or universally) quantified variables. A query is an atomic formula 

whose arguments are either bound to constants or are existentially quantified variables. Some 

examples of rules, facts, and queries follow: 

Rules: 

V x ,  y, z  give(x, y, z )  -+ owns(y,  z )  

V x ,  y  owns(x ,  y )  + can - sell(x, y )  

V x  omnipresent(x)  t Vy, t present(x, y, t )  

V x ,  y born(x, y )  -+ 3t present(x, Y ,  t )  

V x  tr iangle(x)  -+ number-o f -sides(x, 3 )  

V2 ,  y si bling(x, y )  A born-at-the-same-time(x) y )  -+ tw ins (x ,  Y) 

Facts: 

give(John, Mary ,  Book l ) ;  John gave Mary Bookl. 

give(x ,  Susan,  Ba112); Someone gave Susan Bal12. 

omnipresent(x);  There exists someone who is omnipresent. 

triangle(A3); A3 is a triangle. 

Queries: 

1. owns(Mary ,  Bookl) ;  Does Mary own Bookl? 

2. owns(x ,  y); Does someone own something? 

3. can-sell(x, BaEE2); Can someone sell Ba112? 

4. present ( x ,  Nort  hpole, 1/1/89);  Is someone present at the north pole on 1/1/89? 

5. number-o f -sides(A3,4); Does A3 have 4 sides? 

6. can-sell(Mary, Ba112); Can Mary sell Ba112? 

All queries except 5 and 6 follow from the rules and facts and the system answers yes to 

these queries. 

As discussed in Section 3.1, the efficiency requirement imposed by reflexive reasoning entails 

that the inferential dependencies in the knowledge base be acyclic. In graphical terms what this 

means is that if we depict each predicate by a unique node and for every rule 

in the knowledge base, if we draw directed arcs from the nodes Pis to the node Q, then the 

resulting graph must be acyclic. This restriction - although quite strong - does allow us to 

capture a broad range of common sense reasoning situations. For example, it admits restricted 



types of causal reasoning - reasoning about actions and events wherein there is no circular 

causality. It also admits terminological reasoning, i.e., reasoning with definitional knowledge of 

concepts/terms [Ajjanagadde 901. 

7 Distributed v/s localist representations 

Most of the discussion in this paper was carried out in the context of a particular brand of 

connectionism, namely, structured connectionism (aka the localist approach to connectionism). 

The structured approach is to be contrasted with other brands of connectionism that subscribe 

to the view that intelligent behavior is an emergent property of a large (unstructured) ensemble 

of simple processing elements. Distributed representation schemes (as against localist schemes) 

represent a concept as a pattern of activity over a large number of nodes (microfeatures). In 

[Feldman et al. 881 it has been pointed out that distributed representations suffer from several 

problems: "cross-talk, communication, invariance, and the inability to capture structure". We 

faced several of these problems in the process of developing the representation of a simple domain 

in Section 4.2 and it is clear that truely distributed representation schemes are inadequate. Some 

distributed representation schemes such as those proposed in [Rumelhart & McClelland 861 work 

fine for representing an unstructured set of (unstructured) objects. However, from the point of 

view of AI, the problem of representing a set of entities is of minimal interest. At the least, we 

require that a knowledge representation system be capable of representing a set of (structured) 

entities together with some relations defined over these and also support limited retrieval and 

inferential operations on this knowledge. 

Imagine a distributed representation of a domain consisting of the entities: a and by and 

relation: same defined by the tuples (a,a) and (b,b). Compare the representations of a, b, and 

same(a,a) in such a distributed representation. Clearly, we cannot have the representation of 

a be a pattern ranging over the entire set of nodes and at the same have the representation of 

same(a,a) also be a pattern ranging over the entire set of nodes. It turns out that a meaningful 

representation would require a four way partitioning of nodes: one group (ROLEl) to represent 

the first role of a relation, another (ROLE2) to represent the second role of a relation, a third 

(REL) to represent the different relations defined over the set of entities, and a fourth to control 

the association of patterns between the other three groups of nodes [Hinton 811. However, 
there are problems even with the above semi-distributed scheme. Consider the representation 

of same(a,a). For complete generality, let us assume that same(a,a) is represented by a pattern 

a' in partition ROLEl, pattern a" in partition ROLE2 (the patterns in the other two partitions 



are not important here). How should the patterns a' and a" compare among themselves and 

with the representation of a in other parts of the system? Should a' and a" be identical? If so 

how does the system enforce that these two representations of a - occurring in different parts of 

the network - are identical? If not, how does the rest of the system understand that these two 

patterns refer to the same entity and how does the system relate these two different patterns to 

the representations of a in other parts of the network. Finally, is there a canonical representation 

of a somewhere in the system? Questions such as those raised above need to be answered 

carefully. 

At one level, the only difference between a distributed representation and the localist rep- 

resentation is that localist representations use abstraction - a fundamental notion in computer 

science. Thus for every concept, localist representations posit an additional 'focal' node that is 

connected to all the microfeatures of the concept. The 'focal' node in itself does not represent the 

concept, in fact, by itself it does not represent anything. A 'focal' node acquires meaning solely 

by virtue of its connections to the nodes representing the microfeatures of the associated concept 

and to the 'focal' nodes of other concepts the associated concept is related to. This difference 

may seem unimportant but turns out to be critical for representing structured knowledge. 

8 Conclusion 

In this paper we have argued that one can offer a computational account of reflexive inference 

while working within the traditional framework by properly understanding the coupling between 

representation and inference, determining appropriate organizational principles for structuring 

knowledge, and identifying the features required of an architecture appropriate for realizing 

the required representation and computations. Connectionism appears to be the appropriate 

computational framework for achieving this goal. Some tangible progress towards this end has 

been made and it appears that connectionism will play a key role in the development of a detaiIed 

and computationally effective model of reflexive inference. 



1 References 

[Agre & Chapman 88]Agre, P.E. & D. Chapman. lndexicality and the Binding Problem. 
Presented at the Symposium "How Can Slow Components Think So Fast?" Stanford, 
1988. 

[Ajjanagadde 901 Ajjanagade V. Forthcoming Ph.D. dissertation. University of 
Pennsylvania, 1 990. 

[Cottrell 851 Cottrell, G.W. A connectionist approach to word-sense disambiguation. 
Ph.D. Dissertation, Dept. of Computer Science, University of Rochester, 1985. 

[Derthick 88]Derthick, M., Mundane reasoning by parallel constraint satisfaction, Ph.D. 
thesis, CMU-CS-88-182, Carnegie Mellon University, Sept. 1988. 

[Dolan & Dyer 88]Dolan, C., and Dyer, M., Parallel retrieval and application of 
conceptual knowledge, Technical Report TR UCLA-AI-88-3, University of California, Los 
Angeles, Jan. 1988. 

[Fodor & Pylyshyn 881 Fodor J.A. and Pylyshyn Z.W. Connectionism and cognitive 
architecture: A critical analysis. In Connections and Symbols Steven Pinker and 
Jacques Mehler (eds.) The MIT Press, Cambridge, MA. 1988. 

[Frish & Allen 821 Frisch, A.M. and J.F. Allen, Knowledge retrieval as limited inference in 
D.W. Loveland (Ed.), Lecture Notes in Computer Science: 6th Conference on 
Automated Deduction, Springer-Verlag, New York, 1 982. 

[Hinton 811 Hinton, G.E. Implementing Semantic Networks in Parallel Hardware. In 
Parallel Models of Associative Memory G. E .  Hinton and J.A. Anderson (Eds.). Lawrence 
Erlbaum Associates, Hillsdale, NJ, 1981. 

[Keil 791 Keil, F.C. Semantic and conceptual development. Cambridge, MA: Haward 
University Press. 

[Levesque 891 Levesque, H. Logic and Complexity of Reasoning. KRR-TR-89-2, 
Computer Science Department, University of Toronto. 

[Lakemeyer 871 Lakemeyer G. Tractable meta-reasoning in propositional logics of 
belief. In Proc. IJCAI-87 Milano, Italy, 1987. pp. 402-408. 

[Rumelhart & McClelland 86]Rumelhart, D.E. & J.L. McClelland, (Eds.) Parallel 
Distributed Processing: Explorations in the Microstructure of Cognition. Vo l 
I. Cambridge, MA: Bradford BooksIMIT Press. 

[Schubert 891 Schubert, L.K. An Episodic Knowledge Representation for Narrative 
Texts. To appear in Proc. KR-89, Toronto, Canada. 

[S hast ri 881 S hastri, L. Semantic Networks: An evidential formalization and its 
connectionist realization. London: Pitman/Los Altos: Morgan Kaufman. 1988. 



[Shastri & Ajjanagadde 891 Shastri, L. & V. Ajjanagadde. "A connectionist system for 
logical inference with multi-place predicates and variable bindings". Technical Report 
MS-CS-89-06. Computer and Information Science Department, University of 
Pennsylvania, Jan. 1989. 

[Smolensky 871 Smolensky, P., On variable binding and the representation of symbolic 
structures in connectionist systems, Technical Report CU-CS-355-87, Department of 
Computer Science, University of Colorado at Boulder, Feb. 1987. 

[Sommers 651 Sommers, F. (1965). Predicability. In Philosophy in America (ed.) 
M. Black. Ithaca, NY: Cornell University Press. 

[Touretzky & Hinton 881 Touretzky, D. and Hinton, G., A Distributed Connectionist 
Production System. Cognitive Science 12(3), pp 423-466. 



- 
is-a link 

+ti+ 
is-not-a link 

+ 
property attachment 

u 
property-value 

- - 

Fig. 1 Two representations: A "class-only" system and a "class-property" system. 



I REL-PER I 

Fig. 2 A tangled conceptual hierarchy 



I DICK I 

Fig. 3 The subgraph relevant to the inheritance problem: Is Dick a pacifist or a 

non-pacitist? 



Fig. 4 a  An unstructured representation of obj-1 and obj-2 

obj- 1 : 'red square' 

obj-2: 'blue circle' 

Fig. 4 b Grouping properties of objects using focal nodes. 



Triangular nodes such as b l  are binder nodes. 

obj- 1: 'red square' 

obj-2: 'blue circle' 

Fig. 5 Representing structured objects using binder nodes. 



Fig. 6 A representation of left-of(obj- 1 ,obj-2) 



n root 

tll ..., trim, are tokens. 
A token may have multiple parents but a t  most one parent per view. 
wl, ..., w, are leaves of the ontological tree. 
Hil, ..., Hi,, are qi views defined over tokens of ontological type wi. 

Fig. i 7 The multiple views organization 


	The Relevance of Connectionism to AI: A Representation and Reasoning Perspective
	Recommended Citation

	The Relevance of Connectionism to AI: A Representation and Reasoning Perspective
	Abstract
	Comments

	tmp.1196971881.pdf.Tvl1E

