
University of Pennsylvania
ScholarlyCommons

Departmental Papers (ESE) Department of Electrical & Systems Engineering

October 2007

Optical Realization of Bio-inspired Spiking
Neurons In Electron Trapping Material Thin
Ramin Pashaie
University of Pennsylvania, raminp@seas.upenn.edu

Nabil H. Farhat
University of Pennsylvania, farhat@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/ese_papers

This paper was published in Applied Optics and is made available as an electronic reprint with the permission of OSA. The paper can be found at the
following URL on the OSA website: [article URL]. Systematic or multiple reproduction or distribution to multiple locations via electronic or other
means is prohibited and is subject to penalties under law.
Postprint version. Published in Applied Optics, Document ID: 84018, October 2007, 27 pages.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/ese_papers/308
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Ramin Pashaie and Nabil H. Farhat, "Optical Realization of Bio-inspired Spiking Neurons In Electron Trapping Material Thin", .
October 2007.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76361649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fese_papers%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese?utm_source=repository.upenn.edu%2Fese_papers%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers/308
mailto:repository@pobox.upenn.edu


Optical Realization of Bio-inspired Spiking Neurons In Electron Trapping
Material Thin

Abstract
A thin film of electron-trapping material (ETM), when combined with suitable optical bistability, is
considered as medium for optical implementation of bio-inspired neural nets. The optical mechanism of ETM
under blue light and NIR exposure has the inherent ability at the material level to mimic the crucial
components of the stylized Hodgkin-Huxley model of biological neuron. Combining this unique property
with high resolution capability of ETM, a dense network of bio-inspired neurons can be realized in a thin film
of this infrared stimulable storage phosphore. The work presented here, when combined with suitable optical
bistability and optical interconnectivity, has the potential of producing an artificial nonlinear excitable
medium analogue to cortical tissue.
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A thin film of electron-trapping material (ETM), when combined with suit-

able optical bistability, is considered as medium for optical implementation of

bio-inspired neural nets. The optical mechanism of ETM under blue light and

NIR exposure has the inherent ability at the material level to mimic the crucial

components of the stylized Hodgkin-Huxley model of biological neuron. Com-

bining this unique property with high resolution capability of ETM, a dense

network of bio-inspired neurons can be realized in a thin film of this infrared

stimulable storage phosphore. The work presented here, when combined with

suitable optical bistabillty and optical interconnectivity, has the potential of

producing an artificial nonlinear excitable medium analogue to cortical tissue.

c© 2007 Optical Society of America
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1. Introduction

Neurons are the cells responsible for gathering, processing and storing information. Most

neurons commonly function by integrating and transferring information via generation and

transmission of action potentials, the so-called neuronal spikes [1]. By controlling a nonlinear

ion-exchange process, a stimulated neuron can encode the information in the mean firing

rate or in the precise timing of action potentials. [1, 2]. As a result, biological neurons are

functionally and structurally complex processing elements (CPEs) in contrast to simple

models (e.g. sigmoidal neurons) that are employed in the architecture of most artificial neural

nets. It is reasonable to expect that the higher-level computational power of the biological

neural networks partly stems from the functional complexity of their processing elements.

This functional complexity should be preserved in bio-oriented models that emulate neuronal

information processing. Beside this complexity, it has been argued that integration of a large

number of massively interconnected CPEs in a VLSI chip can be difficult even when the

submicron complementary metal-oxide semiconductor technology is utilized [3]. Here in this

paper, we show that both problems can be solved by employing the salient features of the

optical mechanism of electron-trapping materials (ETMs).

Dynamics of ETMs under blue light and near infrared (NIR) exposure has been used to

produce optoelectronic neurons that imitate the dendritic response [5] and the pulsating

behavior [6] of biological neurons. Pursuing the previous research, in this paper, we reveal

a certain duality between the optical mechanism of ETM and the dynamics of biological

neurons. We show that a thin film of ETM, when combined with suitable optical bistable

device, has the essential mechanisms, at the material level, for duplicating the complexity

of neural processing. This model would be able to mimic the dynamics of biological neurons

during different phases of the generation of the action potentials. Taking this unique property

together with the high-resolution capabilities of ETMs, dense arrays of CPEs can be formed

in a thin film of this infrared stimulable storage phosphore.

In section 2 of this paper, the optical mechanism of ETMs under blue light and NIR
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illumination is reviewed. Section 3 is dedicated to the discussion of the functional and the

structural duality of these two dynamics: neuron and ETM plus optical bistability. The

experimental results are presented in Section 4 and the concluding remarks are summarized

in Section 5.

2. Dynamics of ETM under Blue Light and Near Infrared Illumination

Electron-trapping materials, which are employed in the structure of optical computational

machines [4, 7, 8], associative memories [9, 10], optical data storage [11, 12], and biological

models [5,6,13,14] are alkaline-earth sulfides doped with rare-earth luminescence centers [11].

These rare-earth doped elements add trap energy level within the host band-gap. The atomic

band structure and the optical mechanism of ETM is displayed in Fig. 1. Illumination of ETM

with blue light (wavelength around 450nm) excites some of the electrons of the valance band

and sends them to the conduction level. Part of these excited electrons tunnel to the trap

energy level and become trapped-electrons. Blue photons also have enough energy to detrap

some of the trapped-electrons and produce orange luminescence. Under constant blue light

exposure, the generation and recombination processes of electrons balance and the orange

luminescence reaches a saturation level. In addition, in a complete dark room without optical

excitation, trapped-electrons remain in the trap energy level for a long time.

The charging characteristic curves of ETM are displayed in Fig. 2(a) where a partially

erased ETM is exposed to blue light pulses of different intensities [15]. As the curves indicate,

before saturation, the ETM responds almost linearly to a constant blue light illumination.

Consequently, before saturation, the intensity of orange luminescence is proportional to the

temporal integral of the charging intensity. This functionality is reminiscent to the membrane

passive response in a biological neuron [16] and can be used in the modeling of neuron’s

synapto-dendritic responses, which will be discussed further in next section.

Exposing the ETM to near infrared (NIR) laser (wavelength around 1310nm) de-traps

some of the trapped-electrons, some of which return to the ground state by releasing their

3



OSA
Published by

extra energy as orange light luminescence at a wavelength around 650nm. The discharging

characteristic curves of ETM are shown in Fig. 2(b) where a precharged ETM thin film

is exposed to NIR pulses of different intensities. The NIR illumination causes an abrupt

jump in the level of orange luminescence; however, the process of discharging becomes slower

eventually. When the ETM is simultaneously exposed to the blue and NIR light the intensity

of orange luminescence converges, after a short transient response, to a constant value known

as the equilibrium-state luminescence of ETM [15]. The intensity of orange luminescence

in the equilibrium-state is a function of the intensities of the blue and NIR exposures. An

equilibrium-state plane of ETM where contours of constant intensities of orange luminescence

are plotted as a function of the blue light and NIR intensities is illustrated in Fig. 3 [15].

We will use the equilibrium-state luminescence of ETM to model the resting potential of

biological neurons.

Few mathematical models that govern the dynamics of ETM have been described in the

literature [17, 18]. Extending these previous works, we have recently proposed an improved

mathematical model for describing the dynamics of ETM under simultaneous blue light and

NIR illumination [15]. In this model, evolution of the ETM’s luminescence is given by the

nonlinear differential equation.

dn

dt
=

4ξ

η
IB sinh2

(
ns − n

2ξIB

)
− 4ξ′

η′ INIR sinh2

(
n

2ξ′INIR

)
. (1)

and the intensity of orange light luminescence by,

IO = αn(t)IB + βn(t)INIR. (2)

In these equations IB and INIR represent the intensities of blue and NIR light respectively.

The IO is the intensity of orange luminescence. The quentities ξ, η, ξ′, η′, α and the β are

wavelength dependant parameters of the material, n(t) is the instantaneous density of the

trapped-electrons, and ns is the saturation level of n(t) [15]. For any specified values of
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the blue and NIR exposures, the intensity of the corresponding orange luminescence can be

calculated by these two equations. The equilibrium-state occurs when dn/dt = 0 that gives:

4ξ

η
IBsinh2

(
ns − n∗

2ξIB

)
=

4ξ′

η′ INIR sinh2

(
n∗

2ξ′INIR

)
, (3)

I∗
O = αn∗IB + βn∗INIR. (4)

The n∗ and I∗
O are respectively the density of trapped-electrons and the intensity of orange

luminescence in the equilibrium-state. This set of equations can be used for the design

and simulation of optical arrangements that utilize ETMs including the bio-inspired optical

spiking neuron.

3. Bio-Inspired Neuron in a Thin Film of Electron Trapping Material

The dynamics of a biological neuron consist of five discernable phases: Resting state, initial

depolarization, depolarization, repolarization, and hyperpolarization [1,2]. These five phases

are produced by the functionality of three different ion channels scattered across the cell

membrane: leaky ion channels, neurotransmitter gated ion channels (Ligand ion channels),

and voltage gated ion channels. These five phases and the states of the gated ion channels

in each phase are displayed in Fig. 5. Comparing the ETM’s dynamics with the dynamics

of a biological neuron reveals a certain structural and functional parallels that can be used

to optoelectronically produce several neuron like functions in an ETM thin film. We study

these dualities in the current section.

3.A. Structural Dualities

To draw an analogy a small patch of a biological neuron membrane and a simplified model

of the ETM’s atomic band structure are shown in Fig. 4. Signaling capabilities of a neuron

originate from its ability to vary its membrane potential. The membrane potential is the

difference between the electric potential within the cell and the surrounding [2]. This potential
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difference is a result of the different concentrations of the potassium and sodium cations in

the cell’s cytoplasm and the surrounding fluid. The neuron’s membrane is not permeable

to the ions except through some special proteins embedded in the membrane known as ion

channels. The ion channels are selective gates that control the concentration of cations within

and outside the cell.

A similarity can be drawn to the energy level structure of ETM. The valance band and the

trap energy level are isolated from each other by a potential barrier such that no electronic

communication can occur in the medium without optical stimulation. The blue and the NIR

photons provide a selective mechanism for transporting electrons between two energy levels.

Under simultaneous illumination, the intensity of orange luminescence is a function of the

density of electrons in two energy levels and can be controlled by the blue light and NIR

exposure. Consequently, in our optical model, the trap energy level and the valance band

play the role of the cytoplasm and the surrounding fluid, respectively. Instead of the selective

ion channels we take advantage of the blue and NIR wavelengths, and the intensity of orange

luminescence is the dual of the membrane potential. The concentration of the sodium ions

in the surrounding fluid and the concentration of the potassium ions inside the cell’s body

are replaced by the density of electrons in the valance band and the density of electrons in

the trap energy level, respectively.

3.B. Resting state

Without any external stimulation, the membrane potential of a biological neuron is at the

resting potential. The value of the resting potential is determined by the concentration of

the potassium and sodium ions inside and outside the cell. The leaky ion channels in the

membrane of a neuron are the channels that are permanently open (Fig. 5(a)). The potassium

ions that have higher concentration inside the cell diffuse outside through the leaky ion

channels. Diffusion of potassium cations changes the membrane potential and produces an

electric force against the diffusion force. These two opposing forces move the potassium
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ion concentration and the corresponding membrane potential toward the potassium balance

value. Sodium ions follow a similar process. Each of these two ions pushes the value of

the resting potential toward its own balance value and the neuron resting potential is the

equilibrium state of this ionic process that can be theoretically determined by the Nernst

equation [1, 2].

In the optical model the role of two types of ionic channels is replaced by the ETM

sensitivity to two different wavelengths. Leaky ion channels can be modeled by two constant

continuous-wave (CW) blue light and NIR illuminations. Blue wavelength plays the role of

the sodium ion channels. Illumination of the ETM with the blue light, stimulates electrons of

the valance band and sends them to the trap energy level. At first, the blue light illumination

decreases the density of the electrons in the valance band and increases the density of the

trapped electrons. However, when the population of the trapped electrons increases, the

probability of interaction between the blue photons and the trapped-electrons increases as

well. Such interactions can transfer enough energy to the electrons to elevate them out

of the trap energy level and produce the orange luminescence. As a result, similar to the

diffusion and electric forces in biology, two opposing mechanisms are involved in this process:

the interaction of the blue photons with the electrons in the valance band which generates

trapped-electrons (generation), and the interaction of the blue photons with the trapped-

electrons that returns electrons to the valance band (recombination). A constant blue light

illumination pushes the intensity of the orange luminescence toward a balance value, which

is a function of the intensity of the blue light (saturation levels of the charging characteristic

curves in Fig. 2(a)). Same thing happens during the NIR illumination of ETM. The NIR

photons can also interact with the electrons in the valance band and trap energy level.

However, the NIR photons do not have enough energy to excite the electrons of the valance

band up to the conduction energy level. Consequently, the balance value of the orange

luminescence during NIR illumination is zero. When the ETM is under constant simultaneous

blue light and NIR illumination, the intensity of the orange luminescence converges to the
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equilibrium-state of these two processes. The equilibrium-state luminescence of ETM,which

can be theoretically determined by equations (3) and (4), is the dual of the resting potential

in a biological neuron.

3.C. Initial Depolarization

In contrast to permanently open leaky ion channels, gated ion channels open in response

to chemical or electrical stimulations and produce the dendritic response and the neuronal

firing. An external stimulation originated from other neurons or sensory system excites the

synapse sites that are distributed throughout the dendritic arbor, and depolarizes the neu-

ron by triggering the neurotransmitter gated ion channels. Opening of these ion channels

causes influx of positive sodium ions (Fig. 5(b)), and the result is the generation of an exci-

tatory postsynaptic potential (EPSP) that increases the membrane potential. Most neurons

produce a significant postsynaptic depolarization by taking the temporal integral of all EP-

SPs originated from different dendritic synapses; the process known as the spatial-temporal

integration.

In the optical model, depolarization is modeled by blue light illumination. The area of

ETM under illumination is the place where the optical neuron receives external stimuli in

form of blue exposures. Any part of this region can be stimulated to produce the orange

luminescence. As a result, the area of ETM under illumination is reminiscent to the spatial

distribution of the dendritic tree. When ETM is exposed to a blue light pulse, the density of

trapped electrons increases and in a complete dark medium, as mentioned earlier, trapped

electrons remain in the trap energy levels. If one exposes the ETM to another blue light pulse,

the density of the trapped electrons increases further. Hence, for low blue light exposures

the density of trapped electrons and the intensity of orange luminescence of ETM is propor-

tional to the temporal integral of the illumination. This behavior is similar to the temporal

integration in biological neurons. Consequently, when the emitted orange light is collected

by a single detector, the area of ETM under illumination responds as a spatial-temporal
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integrator to blue light excitation.

3.D. Depolarization

When a neuron is sufficiently depolarized, its membrane potential passes the threshold volt-

age which causes opening of sodium voltage-gated ion channels. Opening of sodium voltage-

gated ion channels leads to a strong influx of sodium ions (Fig. 5(c)). As a result, the

membrane potential of the neuron increases abruptly and the neuron fires. After a limited

period of time, in the order of milliseconds, some particular proteins undergoes some confor-

mational change and block the voltage-gated sodium ion channels. The opening and closing

of sodium voltage-gated ion channels during depolarization can be modeled by a gaussian

shaped pulse.

Similar to the initial depolarization, influx of sodium cations is modeled by blue light

photon flux (illumination) which increases the density of trapped-electrons. Higher density

of trapped-electrons increases the chance of interaction between trapped-electrons and blue

photons which increases the intensity of orange luminescence. Consequently, the depolariz-

ation phase can be modeled by exposing ETM to an intense blue light gaussian pulse. In

order to compare the level of luminescence with the threshold level, an optical bistable device

(such as self-electrooptic effect device (SEED) [19] in an all optical design or a programmable

unijunction transistor (PUT) combined with a photodetector in an optoelectronic realiza-

tion [6]) should be utilized. When the level of the luminescence crosses the threshold level this

bistable device produces the required signals to initiate the depolarization and repolarization

phases.

3.E. Repolarization and Hyperpolarization

Opening of the sodium voltage gated ion channels follows by opening of the voltage-gated

potassium ion channels, leading to an efflux of potassium cations that repolarizes the cell

(Fig. 5(d)). Finally hyperpolarization of the neuron relative to the resting potential causes the

voltage-dependent potassium channels to close and the voltage-dependent sodium channels
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to deactivate so that the normal resting potential of the neuron will eventually be reinstalled

(Fig. 5(e)). Opening and closing of the potassium ion channels during the repolarization

phase has the form of α-function [24].

In the optical model, repolarization is modeled by NIR pulse that has the form of α-

function. This NIR pulse depletes the trap energy level and reduces the probability of in-

teractions with trapped electrons. Consequently, the intensity of the orange luminescence

drops to a level that could be even less than the equilibrium emission. When this NIR pulse

is damped, the intensity of orange luminescence once again returns to the equilibrium state

emission.

Repeated generation of action potentials causes repeated efflux of potassium ions and influx

of sodium ions which unbalances the ionic concentration of the cell. However, the membrane

of a biological neuron contains special trans-membrane proteins, called ionic pumps that

maintain the appropriate ion concentrations across the membrane by transferring specific ions

against their concentration level. Unlike biology where two cations are involved in the process,

the only mobile particles in the optical model are electrons. Consequently and fortuitously,

in the optical model there is no need for a mechanism duplicating the function of ion pumps.

The dualities that are studied in this section are summarized in table 1. The dynamics of

ETM under blue light and NIR light illumination combined with suitable optical bistabil-

ity provide mechanisms for: generating an equilibrium state during resting, computing the

spatial-temporal integral of the afferent stimulation, and producing a spike when the level

of excitation crosses the threshold level.

4. Experimental Results

In order to verify the above observation, an experiment is carried out. Schematic of the

optical arrangement is given in Fig. 6. A thin layer of ETM ( SrS : Eu2+, Sm3+ in this

report [20]) deposited on a 25mm × 25mm substrate of quartz is exposed by five different

light sources: RB, R-NIR, DB, H-NIR, and EB. The light sources RB, DB, and EB are
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bright blue LEDs, and the R-NIR and H-NIR are 1310nm fiber coupled laser diodes. The

light sources RB and R-NIR are driven by DC voltages to provide the constant equilibrium

state emission that resembles the resting potential. External excitations are applied by blue

illumination using the blue LED EB, and the light sources DB and H-NIR are employed to

produce the depolarization and hyperpolarization signals.

A mask with a centered aperture covers the ETM panel to define the exposed area of

ETM during this experiment. Blue optical filters are placed in front of the blue LEDs to

block any possible infrared radiation. Drivers of all light sources are precisely controlled by a

microcontroller board (Cygnal 8051F124). An orange optical filter (Semrock LP01-633Rs-25)

is placed in front of a cooled avalanche photodiode (APD) module (Hamamatsu CA4477-

01) that measures the intensity of orange luminescence. The output voltage of the APD

module is connected to a comparator in the microcontroller board and an oscilloscope for

display. This comparator compares the level of the orange luminescence to the threshold

voltage that is produced by a signal generator. The threshold voltage could be a DC voltage

or an alternating signal with a DC offset. Such a neural model can produce a variety of

different firing patterns including periodic and chaotic patterns [21,22]. The microcontroller

controls drivers of all light sources and simulates the functionality of an optical bistable

device. A thermo-electric cooler decreases the temperature of ETM in order to increase the

luminescence of the phosphore [23].

During experiment, the blue LED RB and the NIR laser diodes R-NIR are biased to

provide the simultaneous constant CW illumination of intensities IB = 30μW/cm2 and

INIR = 5mW/cm2 form in a kind of ”optical bias”. These illuminations, in the equilibrium-

state, produce a constant orange luminescence, which is detected by the APD module to

generate a constant 1V output. Once in the equilibrium-state, the external excitation is

applied by a sequence of narrow gaussian blue pulses with peak intensities and half-amplitude

durations of IB = 10μW/cm2 and 5ms, respectively, which are 30ms apart that are generated

by the blue LED EB. Each pulse increases the population of the trapped-electrons and the
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corresponding orange luminescence. As a result, the output voltage of the APD increases

and moves toward the threshold level. Fig. 7 illustrates the oscilloscope’s screen when ETM

is stimulated by a sequence of 3 gaussian blue pulses. As shown in Fig. 7, the excitation

level of the 3 gaussian pulses is insufficient for the intensity of orange luminescence to cross

the threshold level. Therefore, the intensity of orange luminescence returns to the resting

state after the last pulse. On the other hand, exciting the ETM with a sequence of 4 similar

gaussian blue pulses produces enough trapped-electrons to enable the intensity of orange

luminescence to reach the threshold. When the APD voltage crosses the threshold level the

depolarization process begins by exposing ETM to an intense gaussian blue light pulse of

peak intensity and half-duration of IB = 25μW/cm2 and 5ms, respectively, using the blue

LED DB. After a small delay of few milliseconds the repolarization process starts by exposing

the ETM panel to an α-function shaped NIR pulse of peak intensity INIR = 5mW/cm2 and

time constant τ = 20ms [24] produced by the NIR laser diode H-NIR (Fig. 8). After firing,

the resting state is eventually reinstalled and the intensity of orange luminescence returns to

that of the equilibrium state which was set by light sources RB and R-NIR. As the curves in

Fig. 8 implicate, if one stimulates the ETM sufficiently, the ETM fires same as a biological

neuron.

5. Discussion and conclusion

The science of artificial neural networks was developed over the last few decades with the

hope of building brain-like machines that can imitate the intelligence and other higher-level

information processing of brain such as perception and cognition. The extensive endeavors

to unravel the mysteries of brain have proved that the computational power of brain is the

product of the complex dynamics of a large number of its interconnected processing units

(neurons). However, implementation of a microscopic model of brain that incorporates small

details of neurons, synapses, dendrites, axons, nonlinear dynamics of membrane patches

and ionic channels is prohibitively difficult even with the computational resources and the
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nanofabrication technologies available today or predicted for near future. The message con-

veyed in this article is that we could have a better chance to realize a brain-like machine if we

seek for a similar dynamics, for example, in the atomic structure of a material. We studied

the optical mechanism of ETMs and the dualities between ETM’s dynamics and dynamics of

neurons. In order to test our hypothesis, we also performed few experiments. Our experimen-

tal results convincingly prove the potential advantages of ETM for duplicating the different

phases of the neuronal information processing. Large arrays of optical spiking neurons can be

integrated in an ETM thin film by exploiting the high resolution capability of ETM (<100

lp/mm for optically clear polycrystalline ETM thin film) combined with the advantages of

recently developed state-of-the-art technologies such as high-speed spatial light modulators

and optical bistable devices. Such computing machines can be employed for investigation

of a variety of neuronal activities including synchronicity, bifurcation and chaos in the high

level cortical processes.
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Biological Neuron Optical Neuron in ETM Thin Film

Inside the cell Trap energy level
Outside the cell Valance band
Dendrites Area of ETM under illumination
Sodium and Potassium ions Electrons
Concentration of Potassium ions inside the cell Density of Electrons in the trap energy level
Concentration of sodium ions outside the cell Density of electrons in the valance band
Membrane potential Intensity of the orange luminescence
Leaky sodium ion channels CW constant blue light illumination (RB)
Leaky potassium ion channels CW constant NIR illumination (R-NIR)
Chemically gated sodium ion channels Blue light illumination (EB)
Voltage gated sodium ion channels Blue light illumination (DB)
Voltage gated potassium ion channels NIR light illumination (H-NIR)
Axonal hillock Bistable optical device (e.g. SEED)
Diffusion and electric force Generation and recombination

Table 1. Summary of dualities between descriptive entities.
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List of Figure Captions

Fig. 1. Optical mechanism of the charging and discharging of ETM. Interaction of blue

photons and electrons of valance band excites electrons and sends them to the communication

band. Those excited electrons will tunnel to the trap level and become trapped-electrons. NIR

photons give sufficient energy to the trapped-electrons to elevate them out of the trapping

level, allowing them to return to the valance band and release the stored energy in the form

of orange luminescence. [12]

Fig. 2. Experimental and theoretical results of (a) Charging characteristic curves of electron

trapping material under different levels of constant blue light illumination. (b) Discharging

characteristic curves of electron trapping material under different levels of constant NIR

illumination.

Fig. 3. The equilibrium-state plane of a typical ETM sample. Numbers on the contours

indicate the intensity of the orange luminescence in nW/cm2.

Fig. 4. Structural dualities, simplified models of the (a)Neuron membrane, and (b) Energy

levels of ETM.

Fig. 5. Status of the ion channels during five different phases of neuron. Leaky ion channels

are permanently open. (a) Resting state: All gated ion channels are closed (b) Initial depolar-

ization: neurotransmitter-gated ion channels are open and positive sodium ions penetrate the

cell body and increase the membrane potential (c) Depolarization: sodium voltage-gated ion

channels are open and sodium ions diffuse to the cell body. (d) Repolarization: sodium volt-

age gated ion channels get closed eventually when the potassium voltage gated ion channels

are open and potassium ions diffuse out of the cell body. (e) Hyperpolarization: The voltage-

gated potassium ion channels get closed eventually and the membrane potential returns to

the resting potential.

Fig. 6. Schematic of the experimental setup. A thin film of ETM deposited on a thin quartz

substrate is exposed by five different light sources: RB, R-NIR, EB, DB, and H-NIR. Among

these light sources RB, DB, and EB are blue LEDs and H-NIR and R-NIR are NIR fiber cou-
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pled semiconductor lasers. The light sources RB and R-NIR are DC biased to generate the

equilibrium state luminescence in the resting state, EB produces signal of the external exci-

tations. Other light sources DB and H-NIR are responsible for producing depolarization and

hyperpolarization signals. In the figure acronyms O.F., B.F., and NIR.F stand for Orange,

blue and NIR optical filters, respectively.

Fig. 7. Spatio-Temporal integration in ETM. A sequence of 3 gaussian blue light pulses

stimulate ETM. Still the level of stimulation is not sufficient to cross the threshold level

and the intensity of orange luminescence merges to the resting state after the last blue light

pulse.

Fig. 8. Optical spiking neuron. A sequence of 4 gaussian blue light pulses stimulate the ETM.

This stimulation is strong enough and the optical neuron fires. After firing, the resting state

is reinstated eventually. Two signals on the top are the gaussian shaped blue pulse and the

α-function shaped NIR pulse that are dual of opening and closing of sodium voltage gated

ion channels during depolarization and opening and closing of the potassium ion channels

during repolarization process, respectively.
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Fig. 1. Optical mechanism of the charging and discharging of ETM. Interaction
of blue photons and electrons of valance band excites electrons and sends them
to the communication band. Those excited electrons will tunnel to the trap
level and become trapped-electrons. NIR photons give sufficient energy to the
trapped-electrons to elevate them out of the trapping level, allowing them to
return to the valance band and release the stored energy in the form of orange
luminescence. [12]
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Fig. 2. Experimental and theoretical results of (a) Charging characteristic
curves of electron trapping material under different levels of constant blue
light illumination. (b) Discharging characteristic curves of electron trapping
material under different levels of constant NIR illumination.
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Fig. 3. The equilibrium-state plane of a typical ETM sample. Numbers on the
contours indicate the intensity of the orange luminescence in nW/cm2.
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Fig. 4. Structural dualities, simplified models of the (a)Neuron membrane, and
(b) Energy levels of ETM.
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Fig. 5. Status of the ion channels during five different phases of neuron. Leaky
ion channels are permanently open. (a) Resting state: All gated ion channels
are closed (b) Initial depolarization: neurotransmitter-gated ion channels are
open and positive sodium ions penetrate the cell body and increase the mem-
brane potential (c) Depolarization: sodium voltage-gated ion channels are open
and sodium ions diffuse to the cell body. (d) Repolarization: sodium voltage
gated ion channels get closed eventually when the potassium voltage gated ion
channels are open and potassium ions diffuse out of the cell body. (e) Hyper-
polarization: The voltage-gated potassium ion channels get closed eventually
and the membrane potential returns to the resting potential.
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Fig. 6. Schematic of the experimental setup. A thin film of ETM deposited
on a thin quartz substrate is exposed by five different light sources: RB, R-
NIR, EB, DB, and H-NIR. Among these light sources RB, DB, and EB are
blue LEDs and H-NIR and R-NIR are NIR fiber coupled semiconductor lasers.
The light sources RB and R-NIR are DC biased to generate the equilibrium
state luminescence in the resting state, EB produces signal of the external
excitations. Other light sources DB and H-NIR are responsible for produc-
ing depolarization and hyperpolarization signals. In the figure acronyms O.F.,
B.F., and NIR.F stand for Orange, blue and NIR optical filters, respectively.
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Fig. 7. Spatio-Temporal integration in ETM. A sequence of 3 gaussian blue
light pulses stimulate ETM. Still the level of stimulation is not sufficient to
cross the threshold level and the intensity of orange luminescence merges to
the resting state after the last blue light pulse.
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Fig. 8. Optical spiking neuron. A sequence of 4 gaussian blue light pulses
stimulate the ETM. This stimulation is strong enough and the optical neuron
fires. After firing, the resting state is reinstated eventually. Two signals on the
top are the gaussian shaped blue pulse and the α-function shaped NIR pulse
that are dual of opening and closing of sodium voltage gated ion channels
during depolarization and opening and closing of the potassium ion channels
during repolarization process, respectively.
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