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A Spectral Conversion Approach to Feature Denoising and Speech
Enhancement

Abstract
In this paper we demonstrate that spectral conversion can be successfully applied to the speech enhancement
problem as a feature denoising method. The enhanced spectral features can be used in the context of the
Kalman filter for estimating the clean speech signal. In essence, instead of estimating the clean speech features
and the clean speech signal using the iterative Kalman filter, we show that is more efficient to initially estimate
the clean speech features from the noisy speech features using spectral conversion (using a training speech
corpus) and then apply the standard Kalman filter. Our results show an average improvement compared to the
iterative Kalman filter that can reach 6 dB in the average segmental output Signal-to-Noise Ratio (SNR), in
low input SNR's.
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where the state vector x(n) is given by

xT (n) = [sT
p−1(n − 1) s(n) dT

q−1(n − 1) d(n)]

sT
p (n) = [s(n − p + 1) s(n − p + 2) · · · s(n)]T

dT
q (n) = [d(n − q + 1) d(n − q + 2) · · · d(n)]T . (3)

The state transition matrix Φ can be easily found from the AR
speech and noise models, and contains the AR coefficients of
the speech and noise processes. Finally, G is a matrix contain-
ing

√
gs and

√
gd, h is a vector of p+q zeros with 1 placed only

in the pth and (p + q)th places, and r(n) = [u(n) w(n)]T . If
the parameters ai, bi, gs and gd were known, then matrices Φ
and G would be known and the standard Kalman filter would
be obtained, that provides the optimal MMSE (minimum mean-
squared error) estimate of the state vector (and thus the clean
speech signal). In practice, however, these parameters are not
available. The KEMI algorithm of [6] estimates these parame-
ters iteratively, within the Kalman filter algorithm.

The Kalman EM Iterative (KEMI) algorithm, uses the Ex-
pectation Maximization (EM) algorithm for iteratively esti-
mating the speech and noise AR model parameters, apply-
ing the Kalman filter at each iteration. We use the notation
a = [ap ap−1 · · · a1]

T , b = [bq bq−1 · · · b1]
T , θ =

[aT gs bT gd]T . Also, θ̂
(l)

denotes the estimate of θ after
the lth iteration. We denote y = [y(1) y(2) · · · y(N)]T as
the vector of measurements for the current analysis frame. We

denote as (̂·) = E
θ̂
(l)(·|y). To obtain the parameter estimate at

iteration l+1 we use the following two-step iterative procedure:
E-STEP: We denote the current state estimate and state covari-
ance estimate respectively as

µ(n|N) = x̂(n), P(n|N) = ̂x(n)xT (n) − x̂(n)x̂(n)
T

.
(4)

These can be found using the well-known Kalman filter re-
cursion, followed by the smoothing recursion. We omit the
equations here due to lack of space, the interested reader is re-
ferred to [6]. The estimation equations are similar to the stan-
dard Kalman filter, with the difference that matrices Φ and G
are only estimates (from the M-Step of the previous iteration),
which is the reason that this iterative EM procedure is needed.
The E-Step is followed by the M-Step providing the parameter
estimates for the next iteration:
M-Step: The parameter estimates are given by:

â(l+1) = −
[

N∑
i=1

̂sp(n − 1)sp(n − 1)T

]−1 N∑
i=1

̂sp(n − 1)s(n)

b̂
(l+1)

= −
[

N∑
i=1

̂dq(n − 1)dq(n − 1)T

]−1 N∑
i=1

̂dq(n − 1)d(n)

ˆ
g
(l+1)
s =

1

N

N∑
i=1

[ŝ2(n) + (â(l+1))T ̂sp(n − 1)s(n)]

ˆ
g
(l+1)
d =

1

N

N∑
i=1

[d̂2(n) + (b̂
(l+1)

)T ̂dq(n − 1)d(n)]. (5)

All the various estimates that are necessary in the above

equations can be obtained as submatrices of ̂x(n)xT (n) =
P(n|N) + µ(n|N)µT (n|N). It is of interest to note the sim-
ilarity of the above equations with the Yule-Walker equations.
For the remainder of this paper, we use the delayed Kalman
filter estimate (fixed-lag smoothing) for reducing the compu-
tational complexity of the algorithm. This means that we use
ŝ(n− p+1) as the current signal estimate (delay of p− 1 sam-
ples), which is the first entry of µ(n|N), and similarly for the

noise estimate. The advantage of fixed-lag smoothing is that
the smoothing equations need not be computed, which results
in significantly less computations, while good performance is
retained. Note that an initialization of the speech and noise AR
parameters is required, which can be simply obtained from the
noisy speech. Higher-order statistics can alternatively be used
for the initialization [6]; in our experiments this procedure did
not offer any advantage and thus was not applied.

In the next two sections we provide an alternate approach to
the initialization of the AR speech parameters needed in KEMI.
In Section 3, we present an estimation procedure of the clean
speech AR parameters based on the noisy parameters, using a
parallel training corpus, while in Section 4 a similar procedure
is applied, which does not require a parallel speech corpus.

3. Spectral Conversion
From the reference and target training waveforms, we extract
the parameters that model their short-term spectral properties
(here we use the line spectral frequencies - LSF’s - due to their
desirable interpolation properties [1]). Note that LSF’s have
a 1-1 correspondence with the AR filter coefficients that are
needed for the Kalman filter. The objective of spectral conver-
sion methods is to derive a function F(·) which, when applied
to spectral vector xk, produces a vector close in some sense to
vector yk. For the noise enhancement problem, the vector se-
quence xk corresponds to the spectral vectors of noisy speech,
while the sequence yk corresponds to the spectral vectors of
clean speech. Gaussian mixture models (GMM’s) have been
successfully applied to the voice conversion problem. Here we
follow the approach of [1].

Assuming that x and y are jointly Gaussian for each class
ωi, in MS sense the optimal choice for the function F is

F(xk) =

M∑
i=1

p(ωi|xk)
[
µy

i + Σyx
i Σxx−1

i (xk − µx
i )

]
, (6)

where the conditional probabilities p(ωi|xk) are given from

p(ωi|xk) =
p(ωi)N (xk; µx

i ,Σxx
i )∑M

j=1 p(ωj)N (xk; µx
j ,Σxx

j )
. (7)

All the parameters in the two above equations are estimated us-
ing the EM algorithm on the joint model of x and y. This means
that the EM algorithm is performed on the concatenated vector
sequence [xT

k yT
k ]T . A time-alignment procedure is required in

this case, which is only possible when a parallel corpus is used.
We use a diagonal covariance implementation, as in [2].

4. Constrained GMM Estimation
We assume that a parallel speech corpus is available for a dif-
ferent speaker and noise conditions (reference pair), in addition
to the particular pair of speaker and noise for which only a non-
parallel corpus exists (target pair). The random vector x

′
rep-

resents the spectral vectors of the noisy speech of the target pair,
while random vector x corresponds to the noisy speech of the
reference pair. Consider that these are related by a probabilistic
linear transformation [7], for each Gaussian class ωi of x

x
′
= Ajx + bj with probability p(λj |ωi), j = 1, . . . , N .(8)

In the above equations Aj is a K ×K matrix (K is the dimen-
sionality of x), and bj is a vector of the same dimension with x.
Random vectors y

′
and y correspond to the clean speech of the

target and reference pairs respectively, and are related by an-
other probabilistic linear transformation, similar to (8), where
matrix Aj is now substituted by Cρ, vector bj becomes dρ,
and p(λj |ωi) becomes p(κρ|ωi), for ρ = 1, . . . , L. Note that
classes ωi are the same for x and y by design in Section 3. All



the unknown parameters can be estimated by use of the non-
parallel corpus and the GMM of the parallel corpus, by applying
the EM algorithm. It can be shown that the conversion function
for the non-parallel case becomes [2]

F(x
′
k) =

M∑
i=1

N∑
j=1

L∑
ρ=1

p(ωi|x
′
k)p(λj |x

′
k, ωi)p(κρ|ωi)[

Cρµy
i + dρ + CρΣ

yx
i Σxx−1

i A−1
j(

x
′
k − Ajµ

x
i − bj

) ]
,

p(ωi|x
′
k) =

p(ωi)
∑N

j=1 p(λj |ωi)g(x
′
k|ωi, λj)∑M

i=1

∑N
j=1 p(ωi)p(λj |ωi)g(x

′
k|ωi, λj)

, (9)

p(λj |x
′
k, ωi) =

p(λj |ωi)g(x
′
k|ωi, λj)∑N

j=1 p(λj |ωi)g(x
′
k|ωi, λj)

, (10)

g(x
′ |ωi, λj) = N (x

′
;Ajµ

x
i + bj ,AjΣ

xx
i AT

j ). (11)

5. Simulation Results
In this section we measure the performance of our two pro-
posed algorithms (parallel and non-parallel conversion) as an
improvement to the Kalman filter for speech enhancement. We
use a clean speech corpus named VOICES, available from OGI’s
CSLU [8, 9]. This is a parallel corpus and is used for both the
parallel and non-parallel training cases that are examined in this
section, in a manner explained later in this section. The back-
ground noise, added artificially to the speech signals, is car inte-
rior noise (with constant acceleration). This type of noise is col-
ored with a low degree of nonstationarity. The noise and speech
signals were downsampled to 8 kHz for reducing the implemen-
tation demands of the various methods. We implemented and
tested, in addition to our two proposed algorithms, the original
KEMI algorithm of [6], as well as the LSAE algorithm of [10],
for comparison. The latter has been shown to exhibit very de-
sirable performance in [6] compared to the KEMI algorithm in
output signal-to-noise ratio (SNR) sense.

In our implementation we use a 32 msec. analysis frame
and (for the Kalman-based methods) LSF vectors of 22nd order
for the speech signal (4th for the noise). The noise parameters
were initialized (noise estimation for LSAE) using very few sig-
nal segments that did not contain any speech (initial segments
of each recording). The error measure employed is the output
average segmental SNR,

ASSNR(dB) =
1

n

n∑
k=1

10log10

(
xT

k xk

(xk − x̂k)T (xk − x̂k)

)
,

where xk is the clean speech signal for segment k, and x̂k is
the estimated speech signal for segment k (batch processing).
We test the performance of the algorithms using the ASSNR for
various values of input (global) SNR. We test the performance
of the two algorithms proposed here (one case (6) for parallel
training and one (9) for non-parallel training), in comparison
to the original KEMI algorithm and LSAE. The ideal error for
both our methods (the desired LSF’s with zero prediction error,
only available in the simulation environment) is also given. It is
important to note that the corpus used contains a total of 50 sen-
tences, of which a total of 40 is used for training purposes (as
explained next) and the remaining 10 are used for testing. All
the results given in this section are averaged over these 10 sen-
tences, with different noise segments added to each sentence.

In Fig. 1, the ASSNR is given for the five cases tested,
for various values of input SNR. The five cases are: the two
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Figure 1: ASSNR (dB) for different values of input SNR, for
the five cases tested, i.e. perfect prediction (Ideal Error), the
Iterative Kalman filter (KEMI), Spectral Conversion followed
by KEMI (SC-KEMI, parallel corpus), Spectral Conversion by
adaptation followed by KEMI (SC-KEMI-Adapt, non-parallel
corpus), and Log-Spectral Amplitude Estimation (LSAE).

proposed algorithms for parallel and non-parallel training as an
initialization to the KEMI algorithm (SC-KEMI and SC-KEMI-
Adapt respectively), the KEMI algorithm (iterative Kalman fil-
ter), the Log-Spectral Amplitude Estimation (LSAE) algorithm,
as well as the theoretically best possible performance of our two
proposed methods (desired LSF’s with zero prediction error). It
is important to mention that the results for both our methods,
as well as their ideal error performance, were obtained with-
out use of the iterative Kalman procedure. In other words, the
results were obtained by LSF estimation followed by the stan-
dard Kalman filter. We found that further iterations did not offer
any significant improvement. For the KEMI algorithm we ob-
tained good results after 15 iterations. For the results in Fig. 1,
we used around 20,000 training LSF vectors, which correspond
to 40 sentences of the corpus. Later in this section we discuss
the effect of the size of the training corpus to the final results.
Also, the number of (diagonal) GMM classes used for both the
parallel and non-parallel methods is 16 (M = 16 in (6) and
(9)), while the number of adaptation parameters is 4 for both
the source and target speech (L = N = 4 in (9)). For this
figure, we plot the performance of the SC-KEMI-Adapt algo-
rithm based on adaptation of the GMM conversion parameters
of a different speaker from our corpus, in car interior noise of
10 dB SNR (i.e. the SNR is accurate only for the 10 dB input
SNR case). From Fig. 1, we can see that the improvement in the
KEMI algorithm using both the methods proposed in this paper
is significant, especially for low input SNR’s. For input SNR
of -5 dB for example, the improvement is almost 6 dB for both
methods, which is perceptually significant. A very important
observation is that the adaptation algorithm performs almost as
good as the parallel algorithm. This was not expected, given
that we have previously explained (for voice conversion) that
adaptation will always perform worse than the parallel method
since in parallel training we exploit an additional property of
the corpus in an explicit manner. In [2], we have shown that the
variations in the estimation error are small between these two
algorithms when compared to the distance between the initial
and desired parameters. We can conclude that the Kalman filter
does not exhibit much sensitivity to the small variations in the
estimation error for the initialization parameters in contrast to
the case of large estimation errors that are encountered in the
original KEMI algorithm (i.e. estimating the clean parameters
directly from the noisy speech) This is also encountered later



GMM’s 2 4 8 16 32
ASSNR 8.1769 8.1338 8.1564 8.1329 8.0073
Vectors 500 1000 2000 5000 20000
ASSNR 7.9333 7.9784 8.0715 8.0611 8.1329

Table 1: Resulting ASSNR in dB (parallel training, 0 dB input
SNR), for different numbers of GMM parameters (for 20,000
vectors) and training vectors (for 16 GMM parameters).

in this section, when comparing the ASSNR when fine-tuning
the GMM and adaptation parameters (Tables 1 and 2). In high
input SNR’s the algorithms perform similarly (with the LSAE
resulting in the best estimation results for 15 dB SNR), which
is sensible since in high SNR’s the speech initial parameters es-
timation from the noisy speech is very close to the desired.

In Table 1, the ASSNR is given for the parallel case (SC-
KEMI) for 0 dB input SNR, for various numbers of GMM
parameters and training vectors. When comparing the perfor-
mance of the various numbers of GMM parameters, the vectors
in training are 20,000. The number of GMM parameters does
not have an influence on the performance of the algorithm. For
the second case examined in this table, namely the effect of the
training dataset size on the algorithm performance, we use 16
GMM parameters. We can see that the performance of the al-
gorithm improves slightly when more training vectors are avail-
able. The fact that only a small number of training data results
in significant improvement over KEMI is important, since this
corresponds to requiring only a small amount of clean speech
data. The fact that we have such a significant improvement in
the KEMI algorithm without large variations in the number of
GMM parameters or training data is consistent with our previ-
ous observation (when comparing parallel vs. non-parallel train-
ing), that the Kalman filter is not influenced much by small vari-
ations in the LSF estimation error.

In Table 2, the ASSNR is given for the non-parallel case
(SC-KEMI-Adapt) and input SNR of 0 dB, for various choices
of adaptation parameters (L = N in (9)) and training dataset.
When varying the number of adaptation parameters, the training
dataset contains 20,000 vectors, and when varying the number
of vectors in the training dataset, the number of adaptation pa-
rameters is L = N = 4. For the results in this table, the noise
conditions of the parallel (reference) pair (i.e. initial conversion
parameters) were obtained for white noise of 10 dB SNR. This
choice was made so that we can show more evidently the effect
of adaptation on the algorithm performance, since in this case
the initial error (i.e. with no adaptation) is much larger than in
the case when the reference pair contains the same type (car in-
terior) noise. With no adaptation, i.e. simply applying the GMM
parameters of a different speaker/noise pair to the speaker in
car noise environment, the ASSNR is only 0.3359, which is
worse than the original KEMI results for 0 dB SNR (3.6702
to be specific). On the other hand, we observe once again the
lack of sensitivity of the Kalman filter to small LSF estimation
errors (as long as the adaptation procedure is employed). We
also observe that, similarly to the parallel case of Table 1, in-
creasing the number of training vectors consistently improves
the algorithm performance, although not significantly. The fact
that even a small number of training data results in good algo-
rithm performance is very positive, since in many cases gather-
ing large numbers of data is impractical.

6. Conclusions
Two algorithms were presented in this paper for improving
the initial parameter estimate of the iterative Kalman filter for
speech enhancement. They were both based on previous work
in the area of voice conversion, one of them on a well-known
parallel training procedure and the other one on our method
for non-parallel training. They were both shown to provide

Param. 0 1 2 4 6
ASSNR 0.3359 8.1757 8.0450 8.2340 8.0674
Vectors 500 1000 2000 5000 20000
ASSNR 7.7370 8.1359 7.9530 8.2912 8.2340

Table 2: Resulting ASSNR in dB (non-parallel training, 0 dB
input SNR), for different numbers of adaptation parameters (for
20,000 vectors) and training vectors (4 adaptation parameters).

good estimates of the clean speech parameters (from the noisy
speech) needed by the Kalman filter, by producing results that
are far superior to the original iterative Kalman filtering method.
Both methods are useful only in the case that training speech
data are a priori available. However, our non-parallel method
offers important practical advantages regarding the collection of
the speech corpus, since there is only need for a small amount of
clean speech data, and from the noisy speech (which is readily
available), in a non-parallel fashion.
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